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Figure 9: Failure latency and messages for p

f

(r) = exponential with base 0.85
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Figure 8: Success latency and messages for p
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(r) = exponential with base 0.1
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derives an estimate of communication latency from the topology of the internetwork. The second

mechanism uses observed access latencies from one access to predict the latencies for the next

access. The �rst method establishes an initial estimate of the ordering, while the second re�nes the

estimate, and adapts to changes in the network.

7 Conclusions

We have presented three algorithms for accessing replicated data in an internetwork, and analyzed

their performance. Each of these algorithms is parameterized on the delay fraction f , which can

be used to tune the algorithms to best match an application and an internetwork environment.

All three algorithms order replicas by their expected latency of response. The simple algorithm

initially queries enough nearby replicas to form a quorum if there are no failures, and additional

queries are sent as the algorithm times out before obtaining a quorum. The resched algorithm

improves the simple algorithm by sending additional queries either when the algorithm detects

that a replica is unavailable or when a time-out is reached. The retry algorithm also queries a

number of nearby replicas initially, but if one of those replicas is unavailable the retry algorithm

will continue to resend queries to that replica while sending additional queries to more distant

replicas.

In our performance simulations we have found that the the number of messages sent and the

time spent in an access by these algorithms are inversely related. In particular, when the value of f

is near one, the algorithms will favor messages over time, while values of f near zero will cause the

algorithms to send more messages but require less time to complete an access. The parameter f can

be used to tune the algorithm for di�erent internetwork environments and di�erent applications.

We assume that both messages and time have a cost. If messages are considered to be expensive,

perhaps due to the scale of the internetwork, large values of f can minimize the overall cost. If

time is more important, smaller values of f are to be preferred. Further, the number of messages

an algorithm can be expected to send is not a smooth function, but exhibits plateaus and sharp

changes in value, particularly when failure is unlikely. This attribute of the message curve implies

that only a few values of f need be considered when attempting to �nd a value which minimizes a

cost function.

The three algorithms we presented exhibit di�erent behaviors under di�erent probabilities of

a replica being unavailable. The retry algorithm is to be preferred when failure is unlikely, as it

will require both fewer messages and approximately the same time. However, as the probability of

failure increases the resched and simple algorithms perform better than retry, both by requiring

fewer messages to successfully form a quorum and by requiring less time and fewer messages to

detect when a quorum cannot be formed.
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In �gure 7 we observe the number of messages sent and amount of time required before each

algorithm determines a quorum cannot be obtained. These curves were computed at p

0

= 0:85, but

the observations we report here are valid for other failure probabilities as well. The most noticeable

feature of these data is that the retry algorithm requires both more messages and more time to

detect failure. This algorithm requires so much time because it continues trying to access replicas

until either the nth replica replies, or until that replica is found to have failed. All during this

time the algorithm will continually retry closer, failed replicas in case those replicas have become

available. The resched and simple algorithms require less time, because these algorithms declare

an access to have failed when fewer than q replicas are accessible, and no replicas are ever re-queried.

In all our trials the resched algorithm sent an access to every replica before giving up, though

the algorithm returned failure before the most distant replicas could reply. The simple algorithm

sent the fewest messages of our three algorithms, sending only 60% as many messages as resched

when f � 1. The times for both resched and simple were nearly constant, with simple requiring

slightly more time as f increased. Once again experiments 5 and 6 showed that the variability of

the access and fail times did not signi�cantly a�ect results.

Finally, �gures 8 and 9 show the results of similar experiments, where the probability of a replica

being unavailable increased according to the relative distance of the replica. For these experiments

we assumed that the probability of a replica being available was (1�p

0

)

r

for replica r, with p

0

= 0:1.

The data resulting from these experiments are nearly identical to those in �gure 6, and we conclude

that a non-uniform probability of failure has little a�ect on our conclusions.

6 Future Work

There are several assumptions and limitations in the model we have used for this simulation, and

we intend to eliminate these de�ciencies in further studies. The most signi�cant limitation is the

set of access times for each replica. We have assumed that the expected access time for replica r is

the linear function cr+ b time units. We would like to model the e�ects of a non-linear distribution

of access times, including placing several replicas on a local network (and making them accessible

by broadcast) and an exponential distribution of access times. We have also assumed negligible

time is spent in computation when processing an access. In reality an access may require data to

be read from disk, which can take a signi�cant amount of time. We intend to perform additional

simulations, in which we will use measurements taken on the Internet for the access and failure

latencies for each replica. Our simulations have assumed that the load on the network due to

one query is negligible. While we have conducted experiments which suggest this is an accurate

assumption, we intend to validate this assumption more accurately both by using more detailed

simulation and by measurement of the Internet.

In addition to using more accurate distributions for latencies, we intend to improve our model of

failure. The topology of the Internet provides many redundant paths along the backbone networks,

while \leaf" sites are often connected by one gateway. When a gateway crashes it may make a large

portion of the internetwork unavailable. We intend to improve our simulation by including all the

components of an internetwork. We have conducted some preliminary studies of failure modes on

the Internet; we intend to supplement these studies to better inform our simulation.

Our algorithms assume a known ordering on the expected access times for the replicas. We

intend to study two di�erent mechanisms for deriving an ordering on replicas. The �rst method

12



probability of failure as the systems hosting replicas, then we would expect to see an exponential

increase in the probability that the connection to a replica is down as the number of intermediate

gateways increases.

5 Results

Figure 4 shows the time spent and messages sent in processing a successful access, when the access(r)

and fail(r) functions are single-valued, rather than distributions. These graphs were obtained with

p

0

= 0:1. We observe a number of phenomena related to success latency. First, the retry algorithm

succeeds faster than the resched algorithm, which is in turn faster than the simple algorithm.

The retry algorithm uses only very slightly more messages than the other two algorithms. From

these data we also observe that the number of messages required to complete an access drops, as

expected, as the delay fraction f is varied from 0 to 1, while the time to completion increases

linearly. We observe that the slope of the time line increases as the ratio of fail(r) to access(r)

increases.

Figure 5 shows the time spent and messages sent in a successful access when the access and

failure times are normally distributed, measured when p

0

= 0:1. Once again the retry algorithm

requires substantially less time to complete than do the other algorithms, while requiring only

slightly more messages. We observe that the number of messages decreases as f increases, and

that the time to completion increases. We also observe that the results appear to be reasonably

insensitive to the variability of the access and failure times, as the curves for experiments 5 and 6

are similar.

In �gures 4 and 5, the number of messages decreases in a roughly stair-step fashion, and if there

are no failures the number reaches a minimum value at f � f

min

, where

df

min

� fail(q)e >

fail(q)

access(q)

:

Thus as the ratio between the time required to detect failure and the expected time for a successful

reply for the qth closest replica increases, the value of f

min

decreases. As the number of failures

in the system increases, f

min

appears to increase as well. In our experiments, when p

0

= 0, the

resulting values of f

min

closely matched this formula. The messages curves for experiments 1, 7,

and 10, when compared to the curves for experiments 3, 8, and 11 bear out this relationship. The

predicted value of f

min

for experiments 5, 6, 9, and 12 is approximately 0:86, which closely matches

our data. Most notably, we �nd that all three algorithms reach plateaus at approximately the same

values of f , excepting the increase in number of messages for the retry algorithm at low values of

f .

Figure 6 reports the number of messages and amount of time required when p

0

= 0:25, sub-

stantially increasing the probability that nearby replicas will be unavailable. The retry algorithm

still requires much less time to successfully form a quorum, but uses yet more messages to do so.

When p

0

= 0:1, retry used approximately 2% more messages than resched or simple, but when

p

0

= 0:25, retry used 9% more messages. As the probability of failure increases we �nd that the

number of messages sent by the retry algorithm continues to grow. However, we also observe that

retry obtains a quorum somewhat more often than the other algorithms, succeeding 99% of the

time at p

0

= 0:25 while the resched and simple algorithms succeed in 95% of the trials.
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Table 2: Experiment latencies

Experiment Algorithm access(r) fail(r) p

f

(r)

1 simple r 2r uniform p

0

2 simple r 3r uniform p

0

3 simple r 4r uniform p

0

4 simple uniform distribution 2r uniform p

0

on [r; 2r)

5 simple normal distribution normal distribution uniform p

0

� = 50+ 50r, � = 10=3:3 � = 100 + 50r, � = 10=3:3

6 simple normal distribution normal distribution uniform p

0

� = 50 + 50r, � = 10 � = 100 + 50r,� = 10

7 resched r 2r uniform p

0

8 resched r 4r uniform p

0

9 resched normal distribution normal distribution uniform p

0

� = 50+ 50r, � = 10=3:3 � = 100 + 50r, � = 10=3:3

10 retry r 2r uniform p

0

11 retry r 4r uniform p

0

12 retry normal distribution normal distribution uniform p

0

� = 50+ 50r, � = 10=3:3 � = 100 + 50r, � = 10=3:3

13 resched r 2r 1� (1� p

0

)

r

14 resched r 4r 1� (1� p

0

)

r

15 resched normal distribution normal distribution 1� (1� p

0

)

r

� = 50+ 50r, � = 10=3:3 � = 100 + 50r, � = 10=3:3

16 simple r 2r 1� (1� p

0

)

r

17 simple normal distribution normal distribution 1� (1� p

0

)

r

� = 50+ 50r, � = 10=3:3 � = 100 + 50r, � = 10=3:3

18 retry r 2r 1� (1� p

0

)

r

19 retry normal distribution normal distribution 1� (1� p

0

)

r

� = 50+ 50r, � = 10=3:3 � = 100 + 50r, � = 10=3:3

in experiment 5 was set so that 99% of all events would occur within 10 time units of the mean

value �. For experiment 6 the standard deviation was set to a larger value, so that 99% of all events

would occur within 33 time units of the mean value. Taken together the two experiments show the

e�ect of variability in latencies on our results.

Experiments 7, 8, and 9 were used to obtain performance measures for the resched algorithm.

The results of these experiments can be compared to those of experiments 1, 2, and 5 respectively

to determine the performance of the resched algorithm as compared to the simple algorithm.

Experiments 10, 11, and 12 likewise were used to obtain performance data for the retry algorithm.

Experiments 13{19 are used to determine the e�ect of non-uniform probabilities of failure. In

these experiments we assume that the probability that a replica is available decreases exponentially

as the replica number index increases. This approximates the failure behavior of gateways and

intermediary networks in an internetwork. If every gateway in the internetwork has the same
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messages in the simple and resched algorithms. The retry algorithm used one timer to trigger

additional messages, and one timer per replica to retry the replica after a message to that replica

had failed. Each simulation was run 3000 times for each experiment. For each experiment, the

simulation program collected the number of messages sent and the time spent before the access

algorithmwas able to obtain a quorum or declared failure. The program also derived 95% con�dence

intervals on these data.

In table 2 we summarize the experiments we conducted using these simulations. Each experi-

ment gathered performance measures on one algorithm, reported in the \algorithm" column. Each

algorithm was tested against several distributions of access(r) and fail(r), and against di�erent

distributions of p

f

(r). The distribution used in each experiment is also listed in table 2. In each

experiment we tested an algorithm with the probability p

f

(r) of a replica failing at several di�erent

values. In some experiments the probability of a replica being unavailable was a function of the

base failure probability p

0

. For example, experiments 13{19 measure the e�ect of increasing the

likelihood of failure as the \distance" of a replica increases.

All experiments shared certain parameters. In all experiments we assumed 9 replicas, with 5

replicas required to form a quorum. We selected 9 replicas to ensure that we would be able to test

each algorithm with a relatively large number of replicas, and we selected 5 replicas as our quorum

size as the smallest majority of 9.

There were four questions we wanted to examine in our experiments. The most important

question was the relative performance of each of the three access algorithms. We also wanted to

measure the sensitivity of each algorithm to its networking environment. We were interested in

how each algorithm would perform as the variance of the access and fail latencies were varied, how

a uniform versus an exponential probability of failure a�ected each algorithm, and the e�ect of

varying the time required to detect failure.

In experiments 1, 2, and 3 we assume that the variances of the access and failure latencies for

an access of a replica are zero; that is, that the values are exact, rather than a random distribution.

For experiment 1 we assume that the failure latency is twice the access latency; for experiment

2, three times the access latency; and for experiment 3, four times the access latency. Using a

single latency value produced very clear result graphs, especially at very low and very high failure

probabilities. Taken together, these three experiments show the e�ect of di�erent failure latencies

on our performance �gures. Experiments 1, 2, 7, 8, 10, and 11 show the relative performance of

our three algorithms under the assumption of no variability in access and �le times.

For experiment 4 we modi�ed experiment 1, to assume that responses from replicas arrive

according to a uniform distribution. We assumed that responses from replica r arrived no sooner

than r time units after they were sent, and that responses would never take longer than the failure

time-out of 2r time units, with a mean of 1:5r time units. This experiment has the highest variability

of all the experiments. It also has a smaller ratio of failure latency to access latency than any of

experiments 1, 2, or 3.

Experiments 5 and 6 were used to determine the e�ect of a normal distribution of both the access

and the failure latencies on the simple algorithm. In these experiments replicas were ordered by the

expected value of their access and failure latency distributions. We have measured communication

times on the Internet, and found that actual times to send a message are approximately normally

distributed. The normal distribution in these experiments exhibits less variability than does the

uniform distribution used in experiment 4. The standard deviation � of the access and fail latencies

9



// Retry -- send additional messages at a fraction of the longest

// failure time for any outstanding message. If a message

// fails, periodically retry that replica.

retry(int q, site_list R, float f)

{

int n = |R|; // number of replicas

int delay[|R|]; // time to wait for retry of replica i

int succ = 0; // number of successful replies

int fail = 0; // number of failed replies

int next = 0; // next replica to access

for i = 1 to q { // send off q queries

access R(i);

delay[i]=0;

}

schedule time-out(q) in (f*fail(q)) units;

next = q+1;

for each event {

if event is reply(i) {

succ = succ+1;

if succ >= q

return SUCCESS;

else if i == n

return FAILURE;

} else if event is failed(i) {

if i == n

return FAILURE;

} else {

schedule retry(i) in delay[i] units;

}

} else if (event is time-out(i)) and (next <= r) {

access R(next);

delay[next]=0;

schedule time-out(next) in (f*fail(next)) units;

next = next+1;

} else if event is retry(i) {

access R(i);

delay[i] = backoff(i,delay[i]);

}

}

}

Figure 3: Access algorithm with retry for failed queries
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// Resched -- extra messages sent at the shorter of a fraction of the

// longest failure time for any outstanding message, or

// the time detection of an actual failure for a replica

// with a shorter failure time.

resched(int q, site_list R, float f)

{

int n = |R|; // number of replicas

int succ = 0; // number of successful replies

int fail = 0; // number of failed replies

int next = 0; // next replica to access

int extra = 0; // number of extra replicas queried

for i = 1 to q // send off q queries

access R(i);

schedule time-out(q) in (f*fail(q)) units;

next = q+1;

for each event {

if event is reply(i) {

succ = succ+1;

if succ >= q

return SUCCESS;

} else if event is failed(i) {

fail = fail+1;

if n-fail < q

return FAILURE;

else if (next <= n) and (i > extra) {

access R(next);

reschedule time-out(next) in (f*fail(next)) units;

next = next+1;

extra = extra+1;

}

} else if (event is time-out(i)) and (next <= n) and (i > extra) {

access R(next);

schedule time-out(next) in (f*fail(next)) units;

next = next+1;

extra = extra+1;

}

}

}

Figure 2: Access algorithm with queries sent on failure
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is sent out. Another time-out is requested, again as f � fail(i). The next time-out is always at the

fraction f of the failure time of the most recently sent access.

We can adjust the algorithm by varying f . When f = 0, all queries are sent out at once, and

when f = 1 the algorithm waits until all the initial q queries have responded before sending out

additional queries. When f has some intermediate value, additional queries are sent out when the

algorithm has waited the fraction f of the longest outstanding failure time-out and not yet obtained

a quorum. For example, when f = 0:5 the algorithm sends additional queries when a quorum has

not been reached by half of the time required to obtain failure noti�cation from the longest-latency

outstanding access. Values of f near zero will cause the algorithm to time out and send additional

queries soon after the q initial queries are sent, while values of f near one will wait much longer to

send additional queries, with the expectation that by waiting longer it is more likely that a quorum

can be reached using the messages already sent.

The second algorithm, called resched (�gure 2), presents an improvement on the simple version.

The simple algorithm will always wait to send additional queries until a time-out has been reached,

even if a replica is determined to have failed before that time. The resched algorithm improves

this behavior by accessing additional replicas at either the shorter of the time when a replica is

known to have failed, or when a time-out occurs. When f = 0, all replicas are queried at once,

as with the simple algorithm. When f = 1, additional replicas are queried only when a failure

is reported. When f � 0:5, additional replicas are queried either if a failure is reported, or if a

time-out is reached and no additional access has already been sent due to a failure.

Our third algorithm, called retry (�gure 3), continually retries queries to replicas which are

believed to have failed, in the hope that the failure is due to a transient problem. The algorithm

will continue to retry replicas until either a quorum has been gathered, or all replicas have been

tried. The retry algorithm, like simple, will only send queries to additional replicas when a

time-out is reached, so the success and failure latencies are bounded above by the times for the

simple algorithm. However, if a nearby replica recovers before a distant replica replies, the retry

algorithm may be able to declare success sooner than simple. This improvement in latency comes

at the cost of additional messages as nearby replicas are retried. Retry will exhibit a larger failure

latency than simple, since a failure is not declared until all replicas have been tried, while simple

will declare a failure when su�cient replicas have failed that it is no longer possible to gather a

quorum.

4 Experiments

To determine the actual performance of varying the time of sending extra queries, we constructed

a set of discrete-event simulations [Fishman78]. These simulations implement the algorithms as

we have presented them. All experiments were conducted using abstract time units, as we are

concerned with the relative performance of di�erent algorithms induced by di�erent parameter

values rather than absolute performance measures.

The simulations were written in C, using a set of locally-written simulation libraries. Each

message to a replica was initiated with a SendMessage event, which caused either DetectFailure

or ReceiveReply event at a later time, as determined by a sample of the fail(r) and access(r)

latency distributions respectively. In addition the algorithm could schedule one or more timers,

which produced a Timeout event when the timer expired. Timeouts triggered the sending of extra

6



// Simple -- extra messages sent at a fraction of the longest

// failure time for any outstanding message

simple(int q, site_list R, float f)

{

int n = |R|; // number of replicas

int succ = 0; // number of successful replies

int fail = 0; // number of failed replies

int next = 0; // next replica to access

for i = 1 to q // send off q queries

access R(i);

schedule time-out in (f*fail(q)) units;

next = q+1;

for each event {

if event is reply(i) {

succ = succ+1;

if succ >= q

return SUCCESS;

} else if event is failed(i) {

fail = fail+1;

if n-fail < q

return FAILURE;

} else if event is time-out {

if next <= n {

access R(next);

schedule time-out in (f*fail(next)) units;

next = next+1;

}

}

}

}

Figure 1: Simple access algorithm

at once, since delaying any one access could slow down the response. Of course, this approach

produces the maximum possible message tra�c, since all replicas are queried even though not all

replicas need to be queried to establish a quorum. We observe that the lowest network tra�c can

be achieved by sending out queries one at a time, and ceasing to send queries when we have either

established a quorum or know that a quorum cannot be established. Since we must access at least

q replicas, we can start by sending q queries and sending additional queries as failures are reported.

All our algorithms are parameterized on 0 � f � 1, which determines how soon additional queries

will be sent. When f is near zero, the algorithms send extra messages sooner than when f is near

one.

The �rst version of our access algorithm, which we call simple, is presented in �gure 1. The

algorithm initially sends as many queries as are required to obtain a quorum. When this initial

set of queries has been sent, a time-out is requested at the fraction f of the longest time expected

to detect failure for the initial set. Since we have assumed that replicas are ordered by expected

failure latency, this time is E(fail(q)). As replies are returned from replicas, the algorithm counts

them and exits successfully when a quorum has been reached. As failures are noted, they too are

counted, and the algorithm gives up when enough replicas have failed that it is impossible to obtain

a quorum. If the algorithm times out, the situation is still indeterminate, and one additional access
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Table 1: Simulation variables

Variable Meaning

n number of replicas

r the rth replica, 1 � r � n

q quorum size (number of replicas required for completion)

access(r) latency of successful requests to replica r

fail(r) latency of failed requests to replica r

p

f

(r) probability replica r has failed

p

0

base probability of failure for experiment

f fraction of fail(r) for time-out

We use these orderings in our algorithms to select replicas which will provide the fastest response

to a message. By assuming a monotonic ordering on expected access time, we can send messages

to those replicas we expect will respond most rapidly. Assuming a similar monotonic ordering on

failure times we can easily identify the longest time required to detect a failure when querying some

set of replicas as the expected failure time of the replica with largest index. The algorithms we

present in the next section could be modi�ed to relax this monotonic ordering, though we have not

done so in our experiments to date.

In systems which use an RPC protocol similar to the Birrell and Nelson protocol [Birrell84],

an operation request is sent to a replica in a single message on an unreliable datagram channel,

and the reply message is taken as the acknowledgment of the original request. If the sender does

not receive a reply before a time-out occurs, the sender polls the replica to determine whether the

replica is available or not. If we assume that normal messages and polls have the same transmission

time, then the time to detect a failure is the time for a normal request message plus one or more

polls, and our assumed monotonicity conditions are met. Since the actual time required to access a

replica or to detect failure is a distribution, we require that replicas be ordered by expected access

and fail times. This ordering is used in our algorithms to determine which replicas are likely to

respond most quickly to a message.

An operation is said to be a success if a quorum can be obtained; an operation is said to fail

if a quorum cannot be obtained because too many replicas have failed. We are interested in four

measures of performance: success latency, the time required to successfully access the replicated

data; the number of messages sent in a successful access; failure latency, the time required to

determine that a replicated object cannot be accessed; and the number of messages required to

determine failure.

3 Access Algorithm

Our algorithms for accessing replicas balance the latency of a request against the number of mes-

sages required to complete the access. To provide the lowest latency, an algorithm must obtain

a quorum of replicas at the earliest possible time. This implies sending o� queries to all replicas
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2 Replication Model

In our performance measurements we measure the time and number of messages required to access

a replicated data object. The replicated object is composed of a number of replicas, each of which

stores a copy of the object being replicated. A client can access the replicas to read or write

information in the object. Both the client and the replicas reside on hosts. All hosts are connected

using an internetwork, which consists of several networks with gateways connecting the di�erent

networks. Sending a message between any two sites on the internetworkmay take a variable amount

of time depending on the load on the network at the time, and sending messages to di�erent sites

may take di�erent amounts of time. The network can lose and reorder messages. We assume that

hosts sending a message can use timeouts to detect with high probability that a message has not

been received. Hosts cannot, however, distinguish whether a message has been lost due to network

failure or due to host failure.

A replication protocol is used to control the accesses. The replication protocol speci�es what

kinds of messages must be sent, and to which replicas, for each kind of access. For any kind of

access a quorum of replicas must be established; depending on the replication protocol, this might

be one replica, all replicas, or some fraction of replicas.

A replica is either available or unavailable. Replicas can be unavailable due to host system

failure or network failure, or a replica may appear to be unavailable due to network congestion.

We do not attempt to distinguish between these di�erent sources of failure. If a client is unable

to gather enough replicas to form a quorum, then an access is said to fail; otherwise it is said to

succeed.

We have made several simplifying assumptions in our analysis. Rather than model an internet-

work in detail, we have simply assigned a distribution of latencies for successful accesses and failed

accesses for each replica. This distribution models all network delays, including transmission time

and queuing delay at forwarding sites. We have conducted a series of experiments on the Internet,

which lead us to conclude that actual communication times exhibit a complex distribution, depend-

ing on the load of the client host and on the topology of the network. In many of our experiments

we have approximated this distribution by a normal distribution. We do not consider the e�ects

of contention for network bandwidth on these times. We believe that individual accesses do not

signi�cantly a�ect the load on a network, because an individual access transmits little data, and

lasts a very short time. By making these assumptions we were able to use a signi�cantly simpler

and faster simulation to obtain performance measurements.

In table 1 we summarize the variables used in our study. We assume that there are n replicas

of the data, labeled 1 through n. For any access to complete successfully, a quorum of q replicas

must respond to the access request message. If fewer than q replicas respond, the access fails. We

associate two functions with each replica r: access(r) is the latency of the operation for replica r

if it is available, and fail(r) is the latency of the operation if replica r has failed or is unavailable

due to network partitioning. A replica is treated as failed if it is unreachable for any reason; this

includes corrupted data, failure of the site holding the replica, and failure of any network gateways

between the process performing the access and the replica. We model failure by assigning each

replica a probability of failure p

f

(r).

We assume that the replicas are ordered by expected access time, so that E(access(r)) �

E(access(r + 1)) for 1 � r < n. We also assume that E(access(r)) < E(fail(r)), and that ex-

pected failure times are monotonically increasing so that E(fail(r)) � E(fail(r+ 1)) for 1 � r < n.
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connections across a continent. Most LANs use 10{100 megabit/second networks, while many long-

distance networks use 56 kilobit/second to 4 megabit/second links. The long-distance links also

exhibit much higher communication latency than local network segments. Some local-area networks

allow broadcast, while internetworks do not. Broadcast messages on a LAN allow replication

protocols to send requests to all replicas in one message, while a message must be sent to each

replica in an internetwork, increasing the message tra�c required for replication.

An internetwork is shared among more systems than is a local-area network, and the links which

connect LANs are often slower than those of the LANs, so tra�c must be considered more expensive

in an internetwork than in a LAN. Few local-area networks have more than a hundred systems on a

single network segment, while internetworks are used to connect hundreds of thousands of systems

together. This di�erence in scale between local- and wide-area networks means that the load on

any particular resource which is shared among all systems in an internetwork will be much higher,

and that the demands on the bandwidth of the networks will be greater.

Our algorithms for replica access address these di�erences. In a LAN, access to replicated data

can be accomplished using a single multicast message to all replicas. In an internetwork this is

infeasible, and simulating a broadcast generates too much network tra�c to be feasible in large-

scale internetworks. Our algorithms send messages to replicas in a more controlled fashion, and can

be tuned to minimize either network tra�c or time spent on the access, while taking advantage of

the quorum size required by the replication protocol. The algorithms are sensitive to the \distance"

of replicas and will tend to communicate with nearby replicas rather than distant ones, providing

lower access latencies and limiting the portion of the internetwork a�ected by an access. One of

the algorithms also addresses the problems associated with transient failures in the internetwork.

Since our algorithms are tunable, an access can be parameterized to minimize a cost function

of message tra�c and latency. One application might place a high cost on latency, and so use

a tuning parameter which will provide low latency, though at the cost of extra network tra�c.

Another application, on the other hand, might not require low latency and place a low cost on

latency. In this case the tuning parameter could be selected to minimize the cost of network tra�c.

In this article we are concerned with replication in general, and not with any one particular

replication protocol. All replication protocols maintain consistency between a set of replicas of

data. For each operation on the data, some fraction of the replicas are required to participate.

For example, the Available Copy protocol [Bernstein84] requires all replicas to participate in a

write operation, but any one current replica is su�cient for a read operation. Other protocols,

such as Majority Consensus Voting [Davcev85, Jajodia87], require some quorum of the replicas to

participate. For many operations it is preferable to involve as many replicas as possible, but in some

cases a read operation gains no advantage by reading from more replicas than the quorum size. Our

algorithms can coexist with other access algorithms, so that a process can improve performance by

accessing fewer replicas when that is pro�table, or accessing all replicas when necessary.

The remainder of the paper is organized as follows: in x2 we present a generalized model of

replication for internetworks. In x3 we describe our methods for accessing such replicated objects.

We then describe in x4 a set of simulation experiments we conducted to determine the performance

of our techniques, and in x5 the results of those experiments. Finally, we report our future plans

in x6 and our conclusions in x7.
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Abstract

When accessing a replicated data object across an internetwork, the time to access di�erent

replicas is non-uniform. Further, the probability that a particular replica is inaccessible is much

higher in an internetwork than in a local-area network because of partitions and the many

intermediate hosts and networks that can fail. We report three replica-accessing algorithms

which can be tuned to minimize either the time spent on the access, or the number of messages

sent. We have obtained performance results for these algorithms by simulation. We �nd an

inverse relationship between the time spent processing an access and the number of messages

required to complete the access.

1 Introduction

Our goal is to identify e�cient techniques for accessing a data object replicated on an internetwork.

We have found that replication on an internetwork presents di�erent problems than replication on

a local-area network, due to the di�erences in the structure and uses of each kind of network.

These di�erences in networking between LANs and internetworks makes the techniques used for

replication in a local-area network inappropriate for internetwork use.

Internetworks exhibit higher partial failure rates than local-area networks, and partitions are

common. An internetwork consists of a set of local networks, connected by gateways. On the

Internet, an internetwork which includes many university and industrial local networks throughout

the world, many local network segments are connected to the rest of the internetwork by a single

gateway. For example, we have found that on the Internet, we are often temporarily unable to

connect from the west coast to sites on the east coast. Many of these perceived failures are transient,

caused by network congestion, remote host unavailability, or gateway failure.

There are signi�cant di�erences between the network systems used for local-area networks and

those in wide-area internetworks. All the replicas on a local-area network have very similar access

times, usually less than ten of milliseconds. On the other hand, replicas on an internetwork have

non-uniform access times, and access times are greater, often several hundred milliseconds for

�
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