
References 17

[HSW90] D. Helmbold, R. Sloan and M.K.Warmuth. Learning Lattices and Reversible,

Commutative Regular Languages. Proceedings of the Third Workshop on

Computational Learning Theory, 1990.

[HP89] D. Helmbold and G. Pagallo. There is No Continuous Prediction Preserving

Reduction Between the Intersection of Two Halfspaces and a Single Halfs-

pace. Manuscript.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming.

Combinatorica, 4:373-395, 1984.

[Lev87] L.A. Levin. One-way functions and pseudorandom generators. Combinator-

ica, 7(4):357-363, 1987.

[MSS89] S. Miyano, S. Shiraishi and T. Shoudai. A list of P-complete problems. Tech-

nical Report RIFIS-TR-CS-17, Kyushu University, Japan, 1989.

[Par87] I. Parberry. Parallel Complexity Theory. Pitman, London, 1987.

[PV88] L. Pitt and L.G. Valiant. Computational limitations on learning from exam-

ples. JACM, 35(4):965-984, 1988.

[PW90] L. Pitt and M.K. Warmuth. Prediction Preserving Reducibility. To appear in

a special issue of J.C.S.S. for Structures in Complexity Theory (1989).

[Shv88] H. Shvaytser. Linear Manifolds are learnable from positive examples. April,

1988. Manuscript.

[Val84] L.G. Valiant. A theory of the learnable. Communications of the ACM.

27(11):1134-1142, 1984.

[Vap82] V.N. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer

Verlag. New York, 1982.

[VC71] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. Theoretical Probability and its

Applications. 16, 2 (1971), 264-280.

[VW89] L.G. Valiant and M.K. Warmuth. The border-augmented symmetric di�er-

ence of halfspaces is learnable. June, 1989. Manuscript.

[War89] M.K. Warmuth. Towards Representation Independence in PAC Learning.

Analogical and Inductive Inference : International Workshop AII 1989.

Springer-Verlag, 1989.



16 6. Acknowledgements

We close with the observation that all theorems of this paper still hold if we use the

\unit cost" model, in which any real number is assumed to be encoded using unit space

and the standard arithmetic operations on real numbers are assumed to take unit time, and

replace all references to Q

d

with R

d

. By applying Lemma 10 together with the fact that

the VC-dimension of halfspaces in d dimensions is d+1, we can see that the VC-dimension

of intersections of k halfspaces in R

d

grows polynomially in both k and d. It is an open

problem whether the class of convex polytopes in R

d

with k vertices (i.e., convex hulls of k

points in R

d

) has VC dimension which grows polynomially in k and d.

6 Acknowledgements

We thank Naoki Abe, David Cohn, Andrzej Ehrenfeucht, Yoav Freund, David Haussler,

David Helmbold, Michael Kearns, Nick Littlestone, Shlomo Moran, Giulia Pagallo and

Leslie Valiant for valuable conversations.

References

[Bau89] E.B. Baum. On learning a union of halfspaces. Manuscript. May, 1989.

[Bau90] E.B. Baum. A polynomial algorithm that learns two hidden unit nets. Pro-

ceedings of the Third Workshop on Computational Learning Theory, 1990.

[Blu89] A. Blum. On the Computational Complexity of Training Simple Neural Net-

works. Technical Report MIT/LCS/TR-445 (Master's Thesis). MIT. May,

1989.

[BEHW87] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Occam's razor.

Information Processing Letters, 24:377-380, 1987.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability

and the Vapnik-Chervonenkis dimension. JACM, 36(4), 1989.

[Ede84] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag.

New York, 1984.

[GKL88] O. Goldreich, H. Krwaczyk and M. Luby. On the existence of pseudorandom

generators. Proceedings of the 29th Annual IEEE Symposium on Foundations

of Computer Science, pp. 12-24, 1988.

[Gol77] L.M. Goldschlager. The monotone and planar circuit value problems are log

space complete for P . SIGACT News, vol. 9, no. 2, pp. 25-29, 1977.

[Gru67] B. Gr�unbaum. Convex Polytopes. Interscience. New York, 1967.

[HKLW90] D. Haussler, M. Kearns, N. Littlestone and M.K. Warmuth. Equivalence of

models for polynomial learnability. Information and Control, to appear. An

extended abstract appeared in Proceedings of the 1st Workshop on Computa-

tional Learning Theory, Morgan Kaufmann, San Mateo, CA, August, 1988.

[HLW88] D. Haussler, N. Littlestone and M.K. Warmuth. Predicting f0; 1g functions

on randomly drawn points. Proceedings of the 29th Annual IEEE Symposium

on Foundations of Computer Science, pp. 100-109. October, 1988.

[HR85] H.J. Hoover, W.L. Ruzzo. A compendium of problems complete for P. Tech-

nical Report, University of Washinton, 1986.



5. Conclusion 15

the class of unbounded unions of boxes remains open. Since the intersection of any box

with the vertices of the unit cube consists of the vertices of some subcube, our algorithm for

learning a �xed number of boxes leads to an Occam algorithm [BEHW89] for learning k-

term DNF using hypotheses in DNF. The number of terms in the DNF expression returned

by our algorithm is bounded by k(2n)

k

, where n is the number of variables. In contrast, it

is NP-hard to produce a consistent DNF with no more than 2k� 3 terms.

Note that the by now standard algorithm for learning k-term DNF [PV88] uses hypothe-

ses in k-CNF (CNF expressions with at most k literals per clause). Along the same lines

one can construct an algorithm for learning unions of k boxes by an appropriate general-

ization of k-CNF (We presented the algorithm of Figure 4.1 because of its implications for

learning k-term DNF in terms of DNF). The clauses generalize to unions of no more than

k \axis-aligned" halfspaces; i.e., halfspaces of the form

fx 2 R

d

: �x

i

� ag

where 1 � i � d and a 2 R. As with k-term DNF, unions of up to k boxes can be expressed

as intersections of at most (2d)

k

generalized clauses, since

k

[

j=1

d

Y

i=1

[l

(j)

i

; u

(j)

i

] =

k

[

j=1

d

\

i=1

(fx : �x

i

� �l

(j)

i

g \ fx : x

i

� u

(j)

i

g) (5.1)

=

k

[

j=1

2d

\

i=1

H

(j)

i

(5.2)

where

H

i

=

(

fx : �x

i

� �l

(j)

i

g if 1 � i � n

fx : x

i�n

� u

(j)

i�n

g otherwise

and we can \distribute out" the expression 5.2 to get

\

~

i2f1;:::;2dg

k

k

[

j=1

H

(j)

i

j

which is an intersection of at most (2d)

k

generalized clauses. Thus we can use a standard

greedy covering algorithm [BEHW89], to obtain an intersection of at most (2d)

k

lnm + 1

generalized clauses consistent with any sample of size m. The greedy algorithm iteratively

�nds a generalized clause consistent with all the positive examples and at least a fraction

(2d)

�k

of the as yet \uncovered" negative examples. By the results of [BEHW89], this

implies the predictability of U

k

(B

2

) if the greedy algorithm requires polynomial time.

Note that there are in�nitely many generalized clauses but that if S � R

d

is the set of m

sample points, the algorithm need only consider clauses formed by the union of at most k

axis-aligned halfspaces in

ffx : x

i

� s

i

g : 1 � i � d; s 2 Sg [ ffx : �x

i

� s

i

g : 1 � i � d; s 2 Sg:

Thus for each iteration, the algorithm need only consider (2md)

k

clauses, which is polyno-

mial in the relevant parameters for �xed k. Since there are at most (2d)

k

lnm+1 iterations,

this algorithm requires polynomial time.
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Since j was chosen arbitrarily, x 2

Q

j

[u

(1)

j

; v

(1)

j

], which contradicts the assumption that the

sample is consistent with

[

i

Y

j

[u

(i)

j

; v

(i)

j

]:

So if the algorithm returns \inconsistent," then the sample truly is not consistent with any

k boxes. This completes the induction. 2

The above algorithm clearly requires time polynomial in m, but exponential in k. Since

the output hypothesis is in the concept class of U

k(2d)

k

(B

2

) boxes, and the VC-dimension

of B

2

is 2d [BEHW89], by Lemma 10, the VC dimension of the hypothesis class of this

algorithm is no more than 2

k+2

kd

k+1

log 2

k

3kd

k

, which is polynomial in d for �xed k, which,

by the results of [BEHW89][HKLW90], implies that only polynomially many examples are

required for any desired accuracy � of prediction. This gives the following theorem.

Theorem 12: For all k 2 N, U

k

(B

2

) is predictable.

Note that increased e�ciency could be obtained by replacing the interior for loops

with binary searches. Also, some redundant recursive calls could be avoided. Finally,

immediately after lower

j

and upper

j

are assigned their values, some examples can be

removed from S. That is, after line 20, we can add the statement

S:=S � f(x

(i)

; l

(i)

) : 1 � i � j

0

� 1g:

Similarly, after line 24, we can add

S:=S � f(x

(i)

; l

(i)

) : j

0

+ 1 � i � mg:

The algorithm is presented in the given form for clarity.

5 Conclusion

We have shown that the problem of predicting membership in convex polytopes where

the polytopes are encoded by listing their vertices is prediction complete for P , and therefore

almost certainly intractable. The question of whether the same concept class encoded

by listing the facets is predictable remains open. The associated membership evaluation

problem for the latter problem is in NC

1

[PW90] which suggests that this problem might be

easier, and that it is unlikely to be prediction complete for P . However, even the problem of

whether intersections of two halfspaces can be predicted for arbitrary distributions remains

open (Note that the boolean restriction of this problem to 2-clause CNF is predictable

[PV88]). The fact that the class of border augmented symmetric di�erences of halfspaces

reduces to halfspaces might lead one to believe that the class of intersections of two

halfspaces reduces to halfspaces. In [War89], it was conjectured that no such reduction

exists, and if the instance transformation is restricted to be continuous, there is provably

no such reduction [HP89]. Still, the question of whether there is a reduction with a

discontinuous instance transformation remains open.

On the positive side, we showed that unions of a �xed number of subspaces, and therefore

of a �xed number of 
ats, are predictable. It is an open problem whether the class of

unbounded unions of 
ats is predictable. Another interesting open question is whether the

class of unions of a �xed number of integer lattices [HSW90] is predictable. In addition, we

showed that unions of a �xed number of boxes are predictable. The problem of predicting
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Next, we claim that if the algorithm returns a concept, that it covers all positive

examples. Choose a positive example x. If x 2

Q

j

[y

j

; z

j

], then trivially x is covered.

Suppose x 62

Q

j

[y

j

; z

j

]. Choose j such that x

j

62 [y

j

; z

j

]. If x

j

< y

j

, then by the inductive

hypothesis, x is covered by lower

j

. Similarly, if x

j

> z

j

, x is covered by upper

j

. Since x was

chosen arbitrarily, if the algorithm returns a concept, every positive example is covered.

We have now established that if the algorithm returns a concept, it is consistent with

the sample. We now claim that the output concept contains at most k(2d)

k

boxes. By the

inductive hypothesis, each of the lower

j

's and the upper

j

's contains at most (k� 1)(2d)

k�1

boxes, so the output hypothesis contains at most

2d[(k� 1)(2d)

k�1

] + 1 = (k � 1)(2d)

k

+ 1 � k(2d)

k

boxes.

Finally, we wish to show that if the algorithm returns \inconsistent," that the sample is in

fact not consistent with any concept in U

k

(B

2

). Assume for contradiction that boxes(S; k)

returns \inconsistent" and the sample is consistent with

k

[

i=1

d

Y

j=1

[u

(i)

j

; v

(i)

j

]:

Since boxes(S; k) returns \inconsistent,"

Q

j

[y

j

; z

j

] must contain a negative example from

S. Note that boxes(S; k� 1) also outputs \inconsistent," since otherwise boxes(S; k) would

return boxes(S; k� 1) in line 14. For each j; 1 � j � d, let

y

�

j

= maxfu

(i)

j

: 1 � i � kg

z

�

j

= minfv

(i)

j

: 1 � i � kg

Choose j. Let

(x

(1)

; l

(1)

); :::; (x

(m)

; l

(m)

)

be the enumeration returned by the jth sort performed by the algorithm. Thus x

(1)

j

; :::; x

(m)

j

is a nondecreasing sequence. Let

j

0

= minfi

0

: boxes(f(x

(i)

; l

(i)

) : 1 � i � i

0

g; k � 1) = \inconsistent"g:

Trivially, y

j

= x

(j

0

)

j

. Assume for contradiction that x

(j

0

)

j

< y

�

j

. Let i

0

be such that u

(i)

j

� u

(i

0

)

j

for all i; 1 � i � k. So y

�

j

= u

(i

0

)

j

, which implies x

(j

0

)

j

< u

(i

0

)

j

, so

f(x

(i)

; l

(i)

) : 1 � i � j

0

g \ (

Y

j

[u

(i

0

)

j

; v

(i

0

)

j

]) = ;

which implies that f(x

(i)

; l

(i)

) : 1 � i � j

0

g is consistent with the other k � 1 boxes, which

is a contradiction, so y

j

= x

(j

0

)

j

� y

�

j

.

Similarly, we can show that z

j

� z

�

j

. Since the algorithm returns \inconsistent,"

Q

j

[y

j

; z

j

] contains a negative example. Call it x. Choose j. Then

u

(1)

j

� y

�

j

� y

j

� x

j

� z

j

� z

�

j

� v

(1)

j

:
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1. boxes(S = f(x

(i)

; l

(i)

) 2 Q

d

� f0; 1g : 1 � i � mg; k);

2.

3. if (k = 1)

4. then begin

5. for j := 1 to d do begin

6. z

j

:= maxfx

(i)

j

: l

(i)

= 1g;

7. y

j

:= minfx

(i)

j

: l

(i)

= 1g;

8. end;

9. if ((

Q

j

[y

j

; z

j

]) \ f(x

(i)

; l

(i)

) : l

(i)

= 0g 6= ;)

10. then return(\inconsistent")

11. else return(

Q

j

[y

j

; z

j

])

12. end

13. else if (boxes(S; k� 1) 6= \inconsistent")

14. then return(boxes(S; k� 1))

15. else begin

16. for j := 1 to d do begin

17. sort S according to the jth entries of the x

(i)

's;

18. for j

0

:= 1 step 1

19. until boxes(f(x

(i)

; l

(i)

) : 1 � i � j

0

g,k � 1) = \inconsistent");

20. lower

j

:= boxes(f(x

(i)

; l

(i)

) : 1 � i � j

0

� 1g; k� 1);

21. y

j

:= x

(j

0

)

j

;

22. for j

0

:= m step �1

23. until boxes(f(x

(i)

; l

(i)

) : j

0

� i � mg,k � 1) = \inconsistent");

24. upper

j

:= boxes(f(x

(i)

; l

(i)

) : j

0

+ 1 � i � mg; k� 1);

25. z

j

:= x

(j

0

)

j

;

26. end;

27. if

Q

j

[y

j

; z

j

] contains a negative example

28. then return(\inconsistent")

29. else return(([

j

lower

j

) [ ([

j

upper

j

) [ f

Q

j

[y

j

; z

j

]g);

30. end

Figure 4.1: The subroutine for the algorithm for U

k

(B

2

).

This implies that since

Q

j

[y

j

; z

j

] contains a negative example,

Q

j

[u

j

; v

j

] contains a negative

example, which is a contradiction. So in the case that k = 1, the algorithm behaves as

described above.

Choose k. Make the inductive assumption that the algorithm is correct when its second

argument is k � 1.

First, we claim that if the algorithm returns a concept, it contains no negative examples.

By the inductive hypothesis, ([

j

lower

j

)[([

j

upper

j

) contains no negative examples, and the

algorithm tests to ensure that

Q

j

[y

j

; z

j

] contains no negative examples prior to outputting

its hypothesis.
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which in turn holds if and only if

^

a2A;b2B

[(a � x)(b � x) = 0] :

This is true if and only if

^

a2A;b2B

2

4

X

i;j

a

i

b

j

x

i

x

j

= 0

3

5

which, �nally, holds if and only if f(w) 2 c

1

(g(r

0

)).

Since f is clearly polynomially computable and g is clearly polynomially length preserv-

ing, this theorem holds. 2

Corollary 8: For all k 2 N, U

k

(B

FLAT

)� B

FLAT

:

Sketch of proof: By an argument similar to the above, taking f to be as above and

letting g operate on pairs of halfspaces as above, we can easily verify that U

k

(B

FLAT

) �

U

dk=2e

(B

FLAT

): The corollary then easily follows by induction. 2

Corollary 9: For all k 2 N, U

k

(B

FLAT

) is predictable.

Proof: Follows from Corollary 8, together with the fact that � preserves predictability

[PW90] and B

FLAT

is predictable [Shv88] [HSW90]. 2

Note that there is a trivial prediction preserving reduction to U

k

(B

FLAT

) from the

corresponding prediction problem in which the 
ats are not restricted to be homogeneous,

so our result extends to unions of arbitrary 
ats.

For our second positive result, we give an prediction algorithm for U

k

(B

2

) for each

k 2 N. For k = 1, this problem has been solved in [BEHW89]. Our algorithm consists of

�nding a concept h of U

k(2d)

k

(B

2

) consistent with the sample, and using h for prediction.

We make use of the following lemma.

Lemma 10 ([BEHW89]): Let B be any prediction problem whose associated concept class

has �nite VC dimension d

0

� 1. For all k � 1, Then the VC dimension of the concept class

of U

k

(B) is no more than 2d

0

k log(3k).

9

Our algorithm for �nding a concept of U

k(2d)

k

(B

2

) consistent with the sample works

by calling a subroutine (given in Figure 4.1) which behaves as described in the following

lemma.

Lemma 11: The algorithm given in Figure 4.1 either returns a hypothesis in U

k(2d)

k

(B

2

)

consistent with the sample, or correctly informs the caller that the sample was not consistent

with any concept of U

k

(B

2

).

Proof (by induction on k): Choose a sample S arbitrarily. Let d be the dimension of the

space containing the points of S.

For the base case, in which k = 1, we claim the algorithm either returns a single box

consistent with the sample, or correctly reports that there is no such box. First, trivially,

if the algorithm outputs a concept, it is consistent with the sample. Now, assume for

contradiction that the algorithm returns \inconsistent" when in fact

Q

j

[u

j

; v

j

] is consistent

with the sample. Clearly, for all j, z

j

� v

j

and y

j

� u

j

, which implies

Q

j

[y

j

; z

j

] �

Q

j

[u

j

; v

j

].

9

The lemma also holds if unions are replaced by intersections.
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Recall that we assumed that rationals are represented by writing their numerator and

denominator in binary

8

. Given n and s, all these numbers can trivially be output using

O(logns) space. The theorem now easily follows. 2

4 Positive Results

In this section we give proofs of the polynomial predictability of two classes. We list

below some of the prediction problems treated in this section.

� B

2

= (R; c), where R = fr : 9d 2 N such that r encodes (l; u) 2 Q

d

� Q

d

g and

c(r) =

Q

d

i=1

[l

i

; u

i

].

� B

FLAT

= (R; c), where R consists of encodings of coe�cients of elements of fA �

Q

d

: A �nite; d 2 Ng and c(r) is de�ned as follows: If r encodes A, then

c(r) = fx 2 Q

d

: 8a 2 A; a � x = 0g:

If (R; c) is a prediction problem, de�neU

k

(R; c) = (R

0

; c

0

), where R

0

consists of encodings

of all �nite sequences of elements of R of length no greater than k and for each r

0

2 R

0

, if

r

0

represents (s

1

; :::; s

l

), c

0

(r

0

) = [

n

i=1

s

i

: De�ne U similarly for unbounded �nite unions.

As our �rst positive result, we show that U

k

(B

FLAT

) is predictable by reducing this

prediction problem to B

FLAT

. The fact that B

FLAT

is predictable was proven in [Shv88]

and [HSW90]. Our reduction is similar to that of [Blu89][VW89] which showed that the class

of border augmented symmetric di�erences of halfspaces reduces to the class of halfspaces.

Theorem 7: U

2

(B

FLAT

)� B

FLAT

.

Proof: Let (R

0

; c

0

) = U

2

(B

FLAT

) and (R

1

; c

1

) = B

FLAT

.

Suppose w 2 �

�

represents (x

1

; :::; x

d

) 2 Q

d

. Let f(w) represent

(x

2

1

; :::; x

1

x

d

; x

2

x

1

; :::; x

2

x

d

; � � � ; x

d

x

1

; :::; x

2

d

):

Let r

0

2 R

0

encode A;B � Q

d

. Then let g(r

0

) represent

f(a

1

b

1

; :::; a

1

b

d

; a

2

b

1

; :::; a

2

b

d

; � � � ; a

d

b

1

; :::; a

d

b

d

) : a 2 A; b 2 Bg:

We have that w 2 c

0

(r

0

) if and only if

"

^

a2A

(a � x = 0)

#

_

2

4

^

b2B

(b � x = 0)

3

5

which is true if and only if

^

a2A;b2B

[(a � x = 0) _ (b � x = 0)]

8

Note that our results are not sensitive to which integer basis b � 2 is used for representing integers. We

can simply substitute the fractions f�b

s+2

;�nb

s+2

;�

b

s+2

b

s+2

+1

;

nb

s+2

nb

s+2

+1

g in the reduction of Theorem 1 and

the proof goes through essentially without modi�cation.
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Theorem 4: B

PLUS

� B

CHULL

.

Proof: De�ne g(r) as follows. Suppose r represents the constraints a

(i)

� x < 1; 1 � i � s.

Then let g(r) be the representation of the set fa

(i)

: 1 � i � sg [ f0g. De�ne f as follows.

Suppose w represents the hyperplane b � x = 1, then let f(w) be a representation of b. By

Lemma 3, w 2 c(r) if and only if f(w) 62 c(g(r)). 2

By the transitivity of � , together with the fact that one can test whether a point is a

convex combination of a �nite set of points in polynomial time using linear programming

[Kar84], we get the main result (see Figure 3.2 for an example tracing both reductions used).

Theorem 5: B

CHULL

is prediction complete for B

P

�

�

�

�

�

�

y

1

= 1

y

2

= 0

y

3

= 1

y

4

y

5

Constraints In B

PLUS

form Dual points

x

1

� x

4

<

1

32

32x

1

� 32x

4

< 1 (32; 0; 0;�32; 0)

y

4

x

2

� x

4

<

1

32

32x

2

� 32x

4

< 1 (0; 32; 0;�32; 0)

x

4

� x

1

� x

2

<

1

32

32x

4

� 32x

1

� 32x

2

< 1 (�32;�32; 0; 32; 0)

g(r) x

5

� x

4

<

1

32

32x

5

� 32x

4

< 1 (0; 0; 0;�32; 32)

y

5

x

5

� x

3

<

1

32

32x

5

� 32x

3

< 1 (0; 0;�32; 0; 32)

x

3

+ x

4

� x

5

<

33

32

32

33

x

3

+

32

33

x

4

�

32

33

x

5

< 1 (0; 0;

33

32

;

33

32

;

�33

32

)

8i; x

i

>

�1

96

8i;�96x

i

< 1 (0; :::;�96; :::;0)

8i; x

i

<

97

96

8i;

96

97

x

i

< 1 (0; :::;

96

97

; :::; 0)

f(w) (1�x

1

)+x

2

+(1�x

3

)+(1�x

5

)=0

�1

3

x

1

+

1

3

x

2

�

1

3

x

3

�

1

3

x

5

=1 (

�1

3

;

1

3

;

�1

3

; 0;

�1

3

)

Figure 3.2: An example of the reductions B

CIRC

� B

PLUS

� B

CHULL

: y

5

is 1

corresponding to the fact that (

�1

3

;

1

3

;

�1

3

; 0;

�1

3

) is not in the convex hull of the

other dual points together with the origin.

We can easily extend the preceding argument to establish that the following problem is

log space complete for P : given a �nite set S � Q

d

, and x 2 Q

d

, is x in the convex hull of

S? First, it was established in [Gol77] that the evaluation problem for monotone circuits is

log space complete for P .

7

Using the reduction of the previous section, we can now prove

the following.

Theorem 6: The problem of determining whether a point is in the convex hull of a �nite

set of points is log space complete for P .

Proof: The only question is whether the inequalities of the reduction of Theorem 1 (with

right hand sides normalized to 1) can be output using log space. Each inequality is

represented with a constant number of fractions chosen from

f�2

s+2

;�n2

s+2

;�

2

s+2

2

s+2

+ 1

;

n2

s+2

n2

s+2

+ 1

g:

7

Surveys of P -complete problems can be found in [HR85] [MSS89].
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Since x

s

> 1=2, this implies that y

s

= 1, which in turn implies that the input circuit

evaluates to 1, i.e., w 2 c

0

(r). 2

We next reduce B

PLUS

to B

CHULL

, for which we need the following simple lemma. Our

proof, which is omitted, is similar to that of a related theorem in [Gru67, page 11].

Lemma 2: Let C be a closed, convex subset of R

d

and let y 2 R

d

be an element outside of

C. Then there exists a hyperplane H containing y such that H \ C = ;.

Proof: Since C is closed, there is a point c 2 C closest to y. Let

H = fx : (c� y) � x = (c� y) � yg:

Clearly, y 2 H .

First, assume for contradiction that c 2 H . Then

(c� y) � c = (c� y) � y

which implies

(c� y) � c� (c� y) � y = 0

which in turn gives

(c� y) � (c� y) = 0:

This implies c = y, which in turn implies y 2 C, which is a contradiction.

Now, choose z 2 H � fyg. Note that c; y and z are distinct. Assume for contradiction

that z 2 C. Trivially, the triangle with vertices at c; y and z is a right triangle with the

right angle at y, so if w is the element of the segment between c and z closest to y, then

w 62 fc; zg, and thus w is closer to y than c. But since c and z are in the convex set C, w

is in C also, which contradicts the assumption that c is the closest element to y in C.

Since z was chosen arbitrarily, H \ C = ;. 2

The following technical lemma basically amounts to the observation discussed above that

under certain assumptions a hyperplane intersects the interior of a polyhedron if and only if

its dual point is not a member of the convex hull of the duals of the bounding hyperplanes

of the polyhedron together with the origin. Similar facts are proved in [Ede84].

Lemma 3: Let A = fa

(i)

: 1 � i � ng � Q

d

. Let b 2 Q

d

. There exists x 2 R

d

such that

b � x = 1 and a

(i)

� x < 1 for all i; 1 � i � n if and only if b is not a member of the convex

hull of A [ f0g.

Proof: First, assume for contradiction that there exists x 2 R

d

such that b � x = 1, and

a

(i)

� x < 1 for all i; 1 � i � n and b is in the convex hull of A [ f0g. Since b is in the

convex hull of A[ f0g, there exists a sequence �

i

; 1 � i � n, such that for all i, �

i

2 R and

P

�

i

� 1 and for all i; 1 � i � n, 0 � �

i

� 1 and b =

P

n

i=1

�

i

a

(i)

: So we have

b � x =

 

n

X

i=1

�

i

a

(i)

!

� x =

n

X

i=1

�

i

(a

(i)

� x) <

X

i

�

i

� 1:

This contradicts the assumption that b � x = 1, and thereby proves the forward direction of

the Lemma.

To see the other direction, let x 2 R

d

be such that H = fz : x � z = 1g contains b

and avoids the convex hull of A [ f0g. The existence of such an x is given by Lemma 2.

Since x � 0 < 1, and all points of A are in the same halfspace of H as the origin, we have

a � x = x � a < 1 for all a 2 A. 2
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We can handle the case w

i

0

= 1 similarly, showing that in this case x

i

0

� 1 �

1

2

s+2

. This

completes the proof of the base case.

Also, it is easy to prove that x

s

� 1�

1

2

s+2

> 1=2 using (3.7) and (3.8) as above.

For the induction step, choose i; n < i � s and make the inductive assumption that for

all j < i, jx

j

� y

j

j � (2

j+1

� 1)=2

s+2

.

Assume as a �rst case that y

i

is an AND-gate with inputs y

j

and y

k

, and that y

i

= 0.

Assume wlog that y

j

= 0. Then by (3.1),

x

i

<

1

2

s+2

+ x

j

�

1

2

s+2

+

2

j+1

� 1

2

s+2

�

1

2

s+2

+

2

i

� 1

2

s+2

<

2

i+1

� 1

2

s+2

:

Assume as a second case that y

i

is an AND-gate with inputs y

j

and y

k

, and that y

i

= 1.

Then by (3.3),

x

i

> x

j

+ x

k

� 1�

1

2

s+2

� (1�

2

i

� 1

2

s+2

) + (1�

2

i

� 1

2

s+2

)� 1�

1

2

s+2

= 1�

2

i+1

� 1

2

s+2

:

Assume as a third case that y

i

is an OR-gate with inputs y

j

and y

k

, and that y

i

= 0.

Then by (3.6),

x

i

< x

j

+ x

k

+

1

2

s+2

�

2

i

� 1

2

s+2

+

2

i

� 1

2

s+2

+

1

2

s+2

=

2

i+1

� 1

2

s+2

:

Assume as a fourth case that y

i

is an AND-gate with inputs y

j

and y

k

, and that y

i

= 1.

Assume wlog that y

j

= 1. Then by (3.4),

x

i

> x

j

�

1

2

s+2

� 1�

2

i

� 1

2

s+2

�

1

2

s+2

> 1�

2

i+1

� 1

2

s+2

:

This completes the induction. So for all i; 1 � i � s, we have

jx

i

� y

i

j �

2

i+1

� 1

2

s+2

�

2

s+1

� 1

2

s+2

< 1=2:
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We explain the purpose of these inequalities in parenthesis following each inequality and

give an example in Figure 3.2.

x

i

� x

j

< 2

�(s+2)

(�x

j

) �x

i

) (3.1)

x

i

� x

k

< 2

�(s+2)

(�x

k

) �x

i

) (3.2)

x

j

+ x

k

� x

i

< 1 + 2

�(s+2)

(x

j

^ x

k

) x

i

) (3.3)

For each OR gate y

i

= y

j

_ y

k

, include the following inequalities.

x

j

� x

i

< 2

�(s+2)

(x

j

) x

i

) (3.4)

x

k

� x

i

< 2

�(s+2)

(x

k

) x

i

) (3.5)

x

i

� x

j

� x

k

< 2

�(s+2)

(�x

j

^ �x

k

) �x

i

) (3.6)

In addition, for each x

i

; 1 � i � s, add the inequalities

�1

n2

s+2

< x

i

< 1 +

1

n2

s+2

: (3:7)

Note that by multiplying by a constant, each of the inequalities given above can be trans-

formed into the form a � x < 1. Also note that since n � s, each of the inequalities given

above can be written using O(s) bits, so g is polynomially length preserving.

Form f(w) as follows. Choose w. Let Z = fi : w

i

= 0g, N = fi : w

i

= 1g. Let f(w)

represent b such that fx : b � x = 1g is equal to

fx :

"

X

i2Z

x

i

#

+

"

X

i2N

(1� x

i

)

#

+ (1� x

s

) = 0g (3:8)

Note that the guaranteed appearance of the (1�x

s

) component ensures that this hyperplane

can be written in the form b � x = 1. Also note that f is trivially polynomially computable.

Choose w 2 �

�

and r, a representation of an acyclic monotone boolean circuit. Let H be

the hyperplane represented by f(w) and let L be the set of points satisfying the inequalities

of g(r). Let y

i

; 1 � i � s, be the values of the circuit represented by r computing w.

First, we can establish that if w 2 c

0

(r), then f(w) 2 c

1

(g(r)) by constructing x 2 R

s

witnessing this fact: set x

i

= y

i

for 1 � i � s. One can methodically verify that x satis�es

all the constraints de�ning L and that x 2 H , which together imply that f(w) 2 c

1

(g(r)).

We prove that f(w) 2 c

1

(g(r)) implies w 2 c

0

(r) by choosing x 2 H \ L and proving

by induction that for all i; 1 � i � s, x

i

is close to y

i

, i.e., that x simulates the execution

of the input circuit. Choose x 2 H \ L, so x satis�es all of (3.1) through (3.8). We claim

that for all i, jx

i

� y

i

j �

2

i+1

�1

2

s+2

. Note that by (3.7), we need only show that if y

i

= 0 then

x

i

�

2

i+1

�1

2

s+2

and if y

i

= 1, then x

i

� 1�

2

i+1

�1

2

s+2

.

For our base case, in which 1 � i � n, we show that jx

i

� y

i

j � 1=2

s+2

. Note that all of

these are input gates, i.e. y

i

= w

i

for all i; 1 � i � n. Choose i

0

, 1 � i

0

� n. Suppose that

w

i

0

= 0. We have

x

i

0

=

2

4

X

i2Z�fi

0

g

�x

i

3

5

+

"

X

i2N

(x

i

� 1)

#

+ (x

s

� 1) (by (3.8))

�

2

4

X

i2Z�fi

0

g

1

n2

s+2

3

5

+

"

X

i2N

1

n2

s+2

#

+

1

n2

s+2

(by (3.7))

=

1

2

s+2



3. Convex Polytopes are Hard 5
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x

1

?

6

x

2

1

1

s

O

6

?

H

(1)

-�

H

(2)

@

@

@

@

@I

@

@

@

@

@R

H

(3)

B

B

B

BN

B

B

B

B

B

B

B

B

B

B

B

BM

H

(�)

� -

x

1

?

6

x

2

s

O 1

1

s

D(H

(1)

)

s

D(H

(2)

)

s

D(H

(3)

)

s

D(H

(�)

)

Figure 3.1: An illustration of the dual mapping D. We have that D(H

(�)

) is not in

the convex hull of fD(H

(1)

);D(H

(2)

);D(H

(3)

); 0g, corresponding to the fact that

H

(�)

intersects the interior of the polyhedron containing the origin and bounded

by H

(1)

; H

(2)

and H

(3)

.

The �rst obstacle was that the halfspaces in B

HY P=POLY

were closed halfspaces and

potentially homogeneous as well, so we were forced to prove the following strange problem

prediction complete for B

P

which is a restriction of B

HY P=POLY

: B

PLUS

= (R; c), where

each representation of R consists of the encoding of a dimension d and a �nite set of points

in Q

d

and c is de�ned as follows. Given a representation r, let A � Q

d

be the set of points

encoded by r. De�ne the concept c(r) represented by r as

fb 2 Q

d

: 9x 2 R

d

; b � x = 1 and 8a 2 A; a � x < 1g:

Applying the dual transformation to this class gives B

CHULL

. Since simulating a circuit with

open, nonhomogeneous halfspaces is more di�cult than with closed arbitrary halfspaces,

our reduction fromB

CIRC

toB

PLUS

is more complex than the original proof of the hardness

of B

HY P=POLY

.

First, we give the reduction from B

CIRC

to B

PLUS

.

Theorem 1: B

CIRC

� B

PLUS

.

Proof: Since any circuit using AND, OR, and NOT gates can be trivially simulated by a

monotone circuit with constant blowup using double-railed logic, assume without loss of

generality that all circuits in B

CIRC

are monotone.

Suppose B

CIRC

= (R

0

; c

0

) and B

PLUS

= (R

1

; c

1

). We give a concept transformation

g and an instance transformation f satisfying the requirements of a prediction preserving

reduction. Let r be a representation of an acyclic monotone circuit C

r

, with gates y

i

; 1 �

i � s, where the input gates are y

i

; 1 � i � n, and for all i; n+ 1 � i � s, y

i

is an AND or

OR gate taking inputs from some y

j

and y

k

, such that j < i and k < i.

Form g(r) by creating linear inequalities in Q

s

as follows. When reading these, it is

useful to keep in mind that we intend x

i

to be \near" 1 when y

i

evaluates to 1 and \near" 0

when y

i

evaluates to 0. For each AND gate y

i

= y

j

^ y

k

, include the following inequalities.
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problems whose associated membership evaluation problem can be computed in polynomial

time. We say a prediction problem B is prediction complete for B

P

if for every B

0

2 B

P

, B

0

reduces to B using the more general de�nition of reduction given in [PW90]. Many exam-

ples are given in [PW90]. Our proof that B

CHULL

is prediction complete for B

P

consists

of a reduction from the following prediction problem, which was shown to be prediction

complete for B

P

in [PW90]: B

CIRC

= (R; c), where R = fr : r encodes an acyclic boolean

circuit with AND, NOT and OR gatesg, and if r has n inputs, c(r) is the set of boolean

strings of length n which are accepted by the circuit encoded by r. Similar prediction

problems consisting of circuits using only AND and NOT gates or AND and OR gates are

also prediction complete for B

P

, since there is a trivial reduction between any two such

prediction problems.

3 Convex Polytopes are Hard

In this section we prove that B

CHULL

is prediction complete for B

P

. Our approach is

motivated by the concept of a dual relationship between points and hyperplanes. Edels-

brunner [Ede84] describes the following mapping D from nonzero points to hyperplanes and

nonhomogeneous hyperplanes to points:

� If p is a nonzero point in R

d

, then D(p) = fx 2 R

d

: p � x = 1g.

� If H is a nonhomogeneous hyperplane in R

d

and h 2 R

d

is such that H = fx : h �x =

1g, then D(H) = h.

Note that a point p is on the same side of a hyperplane H as the origin if and only if the point

D(H) is on the same side of the hyperplane D(p) as the origin and p is contained in H if and

only if D(H) is contained in D(p). For any geometric problem involving only points and

hyperplanes, there is an equivalent dual problem in which the roles of points and hyperplanes

are reversed. Our proof that B

CHULL

is prediction complete for P was motivated by the

observation that such a relationship exists between the problem of determining whether a

hyperplane intersects each of a �nite set of open nonhomogeneous halfspaces and whether

a point is not in the convex hull of a set of points. This can be seen be observing that if

H

(1)

; H

(2)

; :::; H

(n)

are nonhomogeneous hyperplanes bounding a polyhedron P containing

the origin and H

(�)

is a nonhomogeneous hyperplane, then the following are equivalent:

� H

(�)

intersects the interior of P .

� H

(�)

contains a point on the same side of each of H

(1)

; H

(2)

; :::; H

(n)

as the origin.

� There is a hyperplane G containing the point D(H

(�)

) such that each of the points

D(H

(1)

);D(H

(2)

); :::;D(H

(n)

) is on the same side of G as the origin (by the properties

of the dual mapping D described above).

� The point D(H

(�)

) is not in the convex hull of fD(H

(1)

);D(H

(2)

); :::;D(H

(n)

); 0g.

An algebraic formalization of this argument is given in Lemma 3 and an example is given in

Figure 3.1. Consider the following prediction problem (call it B

HY P=POLY

) also described

in the introduction. The instances are subcubes of the unit-cube or alternately hyperplanes

that cut the unit-cube. The instances are labeled according to whether they intersect

with a hidden convex polytope (contained in the unit-cube) represented by a conjunction

of halfspaces. Since B

HY P=POLY

is known to be prediction complete for B

P

[PW90], we

hoped to construct a prediction preserving reduction from B

HY P=POLY

to B

CHULL

based

on duality.
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In the conclusion, we summarize the paper and give a number of open problems.

2 Preliminary De�nitions

We begin by formalizing the de�nition of predictability discussed in the introduction

[HLW88] [PW90]. Let � and � be �nite alphabets. If s is a string, let jsj denote the length

of s. A concept is any subset of �

�

. A prediction problem is a pair (R; c), where R � �

�

, and

c is a function from R to 2

�

�

. Elements of R are representations of concepts, and c maps

representations to the concepts they represent, so c(R) is the associated concept class.

Throughout the paper, we assume that integers are encoded in binary, requiring space

�(log jnj). Let Q denote the rationals and R denote the reals. We assume that rationals are

encoded by representing their numerator and denominator. Therefore, the space to encode

the rational p=q (with p and q relatively prime) is assumed to be �(log jpqj).

Our hardness result is for the following prediction problem: B

CHULL

= (R; c), where

each representation of R consists of the encoding of a dimension d and a �nite set of points

in Q

d

and for each r 2 R, c(r) is the convex hull

5

of the points represented by r.

If (R; c) is a prediction problem and r 2 R, an example of c(r) is a pair (w; label(w; c(r))),

where w 2 �

�

and label(w; c(r)) is 1 if w 2 c(r) and 0 otherwise.

A prediction algorithm A is an algorithm that takes as inputs s; n 2 N; � 2 Q, a collection

of elements of �

[n]

� f0; 1g, and an element w 2 �

[n]

. The output of A is either 1 or 0. We

say A is a polynomial time prediction algorithm if there exists a polynomial t such that the

run time of A is at most t(s; n; 1=�; l) where l is the total length of the input to A.

We say a prediction problem (R; c) is polynomially predictable if and only if there exists

a polynomial time prediction algorithm A and a polynomial p such that for all input

parameters s; n and � > 0, for all r 2 R, jrj � s, and for all probability distributions

P on �

[n]

, if A is given at least p(s; n; 1=�) examples of c(r) generated according to P and

w 2 �

[n]

, also chosen from P , then the probability thatA's output di�ers from label(w; c(r))

is at most �. Throughout the paper, we will use predictable as a synonym for polynomially

predictable. A number of equivalent models are described in [HKLW90].

Let B

0

= (R

0

; c

0

) and B

1

= (R

1

; c

1

) be prediction problems. We say B

0

reduces to B

1

(denoted by B

0

� B

1

) if there exist f : �

�

! �

�

(called the instance transformation) and

g : R

0

! R

1

(called the concept transformation) and polynomials t and q such that

1. For all r 2 R

0

, w 2 �

�

, w 2 c

0

(r) i� f(w) 2 c

1

(g(r)), or for all r 2 R

0

, w 2 �

�

,

w 2 c

0

(r) i� f(w) 62 c

1

(g(r)).

2. For all w 2 �

�

, f is computable in time t(jwj).

3. For all r 2 R

0

, jg(r)j � q(jrj).

This notion of reducibility is more restrictive than that introduced in [PW90], but is all

that is required for the reductions of this paper. The fact that � is transitive and preserves

predictability was proven in [PW90].

For a prediction problem (R; c), its associated (membership) evaluation problem is de-

�ned as follows: Given w 2 �

�

; r 2 R, is w 2 c(r)? Let B

P

6

be the set of all prediction

5

The convex hull of a set S is the set of all convex combinations of elements of S. The convex hull of a

�nite set is a convex polytope [Gru67].

6

This set is called R

P

in [PW90].
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vertex represented convex polytopes are predictable, then so is every prediction problem in

B

P

. However any one-way function that is hard on its iterates [GKL88] [Lev87] leads to a

problem in B

P

that is not predictable [PW90]. Thus modulo the minimalist cryptographic

assumption that such functions exist, any prediction complete problem for B

P

(including

vertex represented convex polytopes) is not predictable.

Baum [Bau89] gives an algorithm for predicting the class of unions of halfspaces which

requires resources polynomial in the number of halfspaces and the inverse of the accuracy,

but exponential in the domain dimension. The problem of whether the dependence on the

domain dimension can be made polynomial as well remains open.

3

Consider the following more complex prediction problem associated with a hidden convex

polytope (contained in the unit cube) represented by a conjunction of halfspaces. The

examples do not consist of points labeled according to whether they are in the hidden

polytope. Instead they consist of encodings of hypercubes labeled according to whether

they intersect the hidden polytope. In [PW90] this prediction problem was proven to be

prediction complete for B

P

. We give a dual transformation from a problem related to the

above to the prediction problem for vertex represented convex polytopes (see the beginning

of Section 3 for a high-level discussion of this reduction).

Our second result gives a proof of the predictability of the class of unions of a �xed

number of 
ats. Flats are translations of subspaces of Euclidian space. Our proof of the

predictability of �xed �nite unions of 
ats consists of reducing this prediction problem to

that of predicting 
ats. The class of 
ats was shown to be predictable in [Shv88]. In

[VW89] and independently in [Blu89], a similar technique was applied to show that the

class of \border augmented symmetric di�erences of halfspaces"

4

is predictable. Our result

for predicting a �xed number of 
ats holds even if the dimension varies with the target

concept.

Finally, we give an Occam algorithm [BEHW87] for predicting unions of a �xed number

of \boxes" (Cartesion products of intervals). Again the dimension is allowed to vary. When

given a sequence of examples in n dimensional space labeled consistently with some k boxes,

it produces a union of up to k(2n)

k

boxes consistent with the examples. Provided that

the example sequence is large enough, the hypothesis produced is an accurate predictor.

The class of single boxes was shown to be predictable in [BEHW89] using single boxes as

hypotheses.

Note that the class of intersections of halfspaces is a generalization of CNF (boolean

formulae in conjunctive normal form). Also, the class of unions of axis-parallel rectangles

and the class of unions of 
ats are generalizations of DNF (boolean formulae in disjunctive

normal form). The question of whether DNF and CNF are predictable is one of the

major open problems in Computational Learning Theory. As discussed in the conclusion,

our algorithm for predicting unions of a �xed number of boxes induces an algorithm for

predicting k-term DNF using DNF as hypotheses. The hypotheses produced are k(2n)

k

-

term DNF, where n is the number of variables. The by now \standard" algorithm for k-term

DNF uses k-CNF as hypotheses [PV88].

3

Recently, Baum [Bau90] gave an elegant learning algorithm for a union of two homogeneous halfspaces

that requires resources which grow only polynomially in domain dimension. Unfortunately, his method does

not appear to generalize to unions of nonhomogeneous halfspaces or to unions of more than two homogeneous

halfspaces. It also assumes that the distribution is symmetric about the origin.

4

The border augmented symmetric di�erence of a set of halfspaces is the union of their symmetric

di�erence and all of their bordering hyperplanes.
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1 Introduction

We study the problem of predicting membership in a hidden subset of Euclidian space

(called the target concept), given such information about a �nite set of points chosen

independently at random according to some �xed distribution. We measure the accuracy

of a prediction algorithm by its probability of misclassifying a point chosen from the same

distribution. We wish to �nd an algorithm which, given few examples, is able to achieve

any desired accuracy in a small amount of time, where the amount of time, as well as

the number of examples, is allowed to grow polynomially with the inverse of the desired

accuracy as well as with the size of the examples and with some measure of the complexity

of the hidden subset. The model of polynomial predictability used here is related to and

in some sense equivalent to the PAC model introduced by Valiant

1

[Val84]. The prediction

algorithm assumes that the target concept is chosen by an adversary from some class of

subsets of Euclidian space (called the target concept class), and we ask the question of

whether this assumption is strong enough to admit acceptable performance. If so, we say

that this concept class is predictable. In the model treated in this paper, we assume not

only that the target concept is chosen from a particular class, but that the concepts of this

class are encoded using a particular representation language, and we allow the time and

the number of examples required by our prediction algorithms to grow polynomially in the

length of the target representation, which we take to be a measure of the complexity of the

hidden concept. A more formal de�nition of the model (which was introduced in [HLW88]

and [PW90]) will be given in the following section.

Since any set of points on a sphere can be shattered by the class of convex polytopes,

this class has in�nite Vapnik-Chervonenkis (VC) dimension

2

[VC71], and therefore, if we do

not allow the algorithm's resources to grow with the complexity of the target concept, this

class is not predictable [BEHW89]. To address the question of the predictability of this

class when resources are allowed to grow with the length of the representation of the hidden

concept, we must choose a representation language for the class of convex polytopes.

As in [PW90] we are only interested in representation classes and their associated

prediction problems for which the following question can be answered in polynomial time:

given a point and a representation, is the point in the concept de�ned by the representation.

Call B

P

the set of all such prediction problems.

Since the resources of the prediction algorithm are allowed to grow polynomially in the

length of the representation of the target, positive results for representation languages which

encode their concept classes concisely are stronger than those for less concise representations.

For hardness results, the opposite relationship holds. Two natural representation languages

(both in B

P

) for convex polytopes are to list the coe�cients of the bounding hyperplanes

and to list the vertices of the convex polytope. Since hypercubes have exponentially more

vertices than facets and their duals have exponentially more facets than vertices, neither

encoding scheme \dominates" the other in terms of conciseness.

Using the tool of prediction preserving reductions we show in this paper that the class

of polytopes represented by listing their vertices is prediction complete for B

P

. Thus if

1

In the original model proposed by Valiant, the algorithm is required to output a hypothesis from the

target class. The notion of polynomial predictability is equivalent to that of PAC learnability in terms of

any \reasonable" hypothesis class [HKLW90].

2

Called capacity in [Vap82].
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We study the predictability of geometric concepts, in particular those de�ned by

boolean combinations of simple geometric objects. First, we give a negative result,

showing that the problem of predicting the class of convex polytopes encoded by

listing their vertices is prediction complete for P . Thus, an e�cient solution to

this prediction problem implies the existence of e�cient solutions to all prediction

problems whose associated evaluation problem is in P . Assuming the existence of a

one-way function that is hard on iterates, there are such prediction problems which

do not admit e�cient solutions. Thus we show under minimalist cryptographic

assumptions that the class of convex polytopes encoded by listing their vertices is

not predictable. As a side e�ect, we show that determining membership in the

convex hull of a given set of points is complete for P with respect to log space

reductions. Next, we establish the predictability of the class consisting of unions

of a �xed number of 
ats by reducing its prediction problem to that of the class of


ats, which has previously been shown to be predictable. Finally, we give an Occam

algorithm for predicting �xed �nite unions of boxes. Both constructive results for


ats and boxes hold if the dimension is variable.
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