
[17] D. Haussler. Generalizing the PAC model for neu-

ral net and other learning applications. Informa-

tion and Computation, 1990. to appear.

[18] D. Haussler. Learning conjunctive concepts in

structural domains. Machine Learning, 4:7{40,

1989.

[19] D. Haussler. Quantifying inductive bias: AI learn-

ing algorithms and Valiant's learning framework.

Arti�cial Intelligence, 36:177{221, 1988.

[20] D. Haussler, M. Kearns, N. Littlestone, and

M. K. Warmuth. Equivalence of models for poly-

nomial learnability. Information and Computa-

tion, 1990. to appear.

[21] D. Haussler, N. Littlestone, and M. War-

muth. Predicting 0,1-functions on randomly

drawn points. In Proceedings of the 29th Annual

Symposium on the Foundations of Computer Sci-

ence, pages 100{109, IEEE, 1988.

[22] D. Haussler and L. Pitt, editors. Proceedings of the

1988 Workshop on Computational Learning The-

ory. Morgan Kaufmann, San Mateo, CA, 1988.

[23] M. A. John Shawe-Taylor and N. Biggs. Bounding

Sample Size with the Vapnik-Chervonenkis Dimen-

sion. Technical Report CSD-TR-618, University of

London, Surrey, England, 1989.

[24] M. Kearns and M. Li. Learning in the presence

of malicious errors. In 20th ACM Symposium on

Theory of Computing, pages 267{279, Chicago,

1988.

[25] M. Kearns, M. Li, L. Pitt, and L. Valiant. On

the learnability of boolean formulae. In 19th ACM

Symposium on Theory of Computing, pages 285{

295, New York, 1987.

[26] M. Kearns and R. Schapire. E�cient distribution-

free learning of probabilistic concepts. 1990.

manuscript.

[27] M. Kearns and L. Valiant. Cryptographic limita-

tions on learning boolean formulae and �nite au-

tomata. In 21st ACM Symposium on Theory of

Computing, pages 433{444, Seattle, WA, 1989.

[28] N. Littlestone. From on-line to batch learning.

In Proceedings of the 2nd Workshop on Computa-

tional Learning Theory, pages 269{284, published

by Morgan Kaufmann, 1989.

[29] N. Littlestone. Learning quickly when irrelevant

attributes abound: a new linear-threshold algo-

rithm. Machine Learning, 2:285{318, 1988.

[30] N. Littlestone. Mistake Bounds and Logarithmic

Linear-threshold Learning Algorithms. PhD thesis,

University of Calif., Santa Cruz, 1989.

[31] N. Littlestone and M. K. Warmuth. The weighted

majority algorithm. In 30th Annual IEEE Sym-

posium on Foundations of Computer Science,

pages 256{261, 1989.

[32] T. Mitchell. The need for biases in learning gener-

alizations. Technical Report CBM-TR-117, Rut-

gers University, New Brunswick, NJ, 1980.

[33] B. K. Natarajan. On learning sets and functions.

Machine Learning, 4(1), 1989.

[34] L. Pitt. Inductive Inference, DFAs, and Compu-

tational Complexity. Technical Report UIUCDCS-

R-89-1530, U. Illinois at Urbana-Champaign, 1989.

[35] L. Pitt and L. Valiant. Computational limitations

on learning from examples. J. ACM, 35(4):965{

984, 1988.

[36] R. Rivest, D. Haussler, and M. Warmuth, editors.

Proceedings of the 1989 Workshop on Computa-

tional Learning Theory. Morgan Kaufmann, San

Mateo, CA, 1989.

[37] R. L. Rivest. Learning decision lists. Machine

Learning, 2:229{246, 1987.

[38] D. Rumelhart. 1990. personal communication.

[39] W. Sarrett and M. Pazzani. Average case analysis

of empirical and explanation-based learning algo-

rithms. Technical Report 89-35, UC Irvine, 1989.

[40] G. Tesauro and D. Cohn. Experimental tests of

statistical learning theories. In Snowbird confer-

ence on Neural Networks for Computing, 1990. un-

published manuscript.

[41] L. G. Valiant. Learning disjunctions of conjunc-

tions. In Proc. 9th IJCAI, pages 560{6, Los Ange-

les, August 1985.

[42] L. G. Valiant. A theory of the learnable. Comm.

ACM, 27(11):1134{42, 1984.

[43] V. N. Vapnik. Estimation of Dependences Based

on Empirical Data. Springer-Verlag, New York,

1982.



proposes an instance in the instance space and then is

told whether or not this instance is a member of the tar-

get concept. The ability to make membership queries

can greatly enhance the ability of an algorithm to ef-

�ciently learn the target concept in both the mistake

bound and PAC models. It has been shown that there

are polynomial time algorithms that make polynomially

many membership queries and have polynomial worst

case mistake bounds for learning

1. monotone DNF concepts (Disjunctive Normal

Form with no negated variables) [3],

2. �-formulae (Boolean formulae in which each vari-

able appears at most once) [5],

3. deterministic �nite automata [2], and

4. Horn sentences (propositional PROLOG pro-

grams) [4].

In addition, there is a general method for convert-

ing an e�cient learning algorithm that makes mem-

bership queries and has a polynomial worst case mis-

take bound into a PAC learning algorithm, as long as

the PAC algorithm is also allowed to make member-

ship queries. Hence, all of the concept classes listed

above are PAC learnable when membership queries are

allowed. This contrasts with the evidence from crypto-

graphic assumptions that classes (2) and (3) above are

not PAC learnable from random examples alone [27].

8 Conclusion

In this brief survey we were able to cover only a small

fraction of the results that have been obtained recently

in computational learning theory. For a glimpse at some

of these further results we refer the reader to [22,36].

However, we hope that we have at least convinced the

reader that the insights provided by this line of inves-

tigation, such as those about the di�culty of searching

hypothesis spaces, the notion of bias and its e�ect on re-

quired training size, the e�ectiveness of majority voting

methods, and the usefulness of actively making queries

during learning, have made this e�ort worthwhile.

References

[1] J. Amsterdam. The Valiant Learning Model: Ex-

tensions and Assessment. Master's thesis, MIT

Department of Electrical Engineering and Com-

puter Science, Jan. 1988.

[2] D. Angluin. Learning regular sets from queries and

counterexamples. Information and Computation,

75:87{106, Nov. 1987.

[3] D. Angluin. Queries and concept learning. Ma-

chine Learning, 2:319{342, 1988.

[4] D. Angluin, M. Frazier, and L. Pitt. Learning con-

junctions of horn clauses. 1990. manuscript.

[5] D. Angluin, L. Hellerstein, and M. Karpinski.

Learning read-once formulas with queries. JACM,

1990. to appear.

[6] D. Angluin and P. Laird. Learning from noisy ex-

amples. Machine Learning, 2(4):343{370, 1988.

[7] E. Baum. When are k-nearest neighbor and

back propogation accurate for feasible sized sets

of examples. In Snowbird conference on Neu-

ral Networks for Computing, 1990. unpublished

manuscript.

[8] G. M. Benedek and A. Itai. Learnability by �xed

distributions. In Proc. 1988 Workshop on Comp.

Learning Theory, pages 80{90, Morgan Kaufmann,

San Mateo, CA, 1988.

[9] F. Bergadano and L. Saitta. On the error prob-

abilty of boolean concept descriptions. In Pro-

ceedings of the 1989 European Working Session on

Learning, pages 25{35, 1989.

[10] A. Blum and R. L. Rivest. Training a three-neuron

neural net is NP-Complete. In Proceedings of the

1988 Workshop on Computational Learning The-

ory, pages 9{18, published by Morgan Kaufmann,

San Mateo, CA, 1988.

[11] A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. K. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. JACM, 36(4):929{965,

1989.

[12] A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. K. Warmuth. Occam's razor. Information Pro-

cessing Letters, 24:377{380, 1987.

[13] W. Buntine. A Theory of Learning Classi�cation

Rules. PhD thesis, University of Technology, Syd-

ney, 1990. Forthcoming.

[14] T. M. Cover. Geometrical and statistical prop-

erties of systems of linear inequalities with appli-

cations in pattern recognition. IEEE Trans. on

Electronic Computers, EC-14:326{334, 1965.

[15] R. O. Duda and P. E. Hart. Pattern Classi�cation

and Scene Analysis. Wiley, 1973.

[16] S. E. Hampson and D. J. Volper. Linear function

neurons: structure and training. Biol. Cybern.,

53:203{217, 1986.



of this set-up using the discrete loss function, but with

the added twist that learning performance is measured

with respect to the worst case over all joint distribu-

tions in which the entire probability measure is concen-

trated on a set of examples that are consistent with a

single target concept of a particular type. Hence, in

the PAC case it is possible to get arbitrarily close to

zero loss by �nding closer and closer approximations to

this underlying target concept. This is not possible in

the general case, but one can still ask how close the hy-

pothesis produced by the learning algorithm comes to

the performance of the best possible hypothesis in the

hypothesis space. For an unbiased hypothesis space,

the latter is known as Bayes optimal classi�er [15].

Some recent PAC research has used this more general

framework. By using the quadratic loss function men-

tioned above in place of the discrete loss, Kearns and

Shapire investigate the problem of e�ciently learning

a real-valued regression function that gives the proba-

bility of a \+" classi�cation for each instance [26]. In

[17] it is shown how the VC dimension and related tools,

originally developed by Vapnik, Chervonenkis, and oth-

ers for this type of analysis, can be applied to the study

of learning in neural networks. Here no restrictions

whatsoever are placed on the joint probability distri-

bution governing the generation of examples, i.e. the

notion of a target concept or target class is eliminated

entirely.

7 Other Theoretical Learning Models

A number of other theoretical approaches to machine

learning are ourishing in recent computational learn-

ing theory work. One of these is the total mistake bound

model [29]. Here an arbitrary sequence of examples of

an unknown target concept is fed to the learning al-

gorithm, and after seeing each instance the algorithm

must predict the label of that instance. This is an in-

cremental learning model like the probability of mistake

model described above, however here it is not assumed

that the instances are drawn at random, and the mea-

sure of learning performance is the total number of mis-

takes in prediction in the worst case over all sequences

of training examples (arbitrarily long) of all target con-

cepts in the target class. We will call this latter quan-

tity the (worst case) mistake bound of the learning al-

gorithm. Of interest is the case when there exists a

polynomial time learning algorithm for a concept class

C = fC

n

g

n�1

with a worst case mistake bound for tar-

get concepts in C

n

that is polynomial in n. As in the

PAC model, mistake bounds can also be allowed to de-

pend on the syntactic complexity of the target concept.

The perceptron algorithm for learning linear thresh-

old functions in the Boolean domain is a good exam-

ple of a learning algorithm with a worst case mistake

bound. This bound comes directly from the bound on

the number of updates given in the perceptron con-

vergence theorem (see e.g. [15]). The worst case mis-

take bound of the perceptron algorithm is polynomial

(and at least linear) in the number n of Boolean at-

tributes when the target concepts are conjunctions, dis-

junctions, or any concept expressible with 0-1 weights

and an arbitrary threshold [16]. A variant of the per-

ceptron learning algorithm with multiplicative instead

of additive weight updates was developed that has a sig-

ni�cantly improved mistake bound for target concepts

with small syntactic complexity [29]. The performance

of this algorithm has also been extensively analysed in

the case when some of the examples may be mislabeled

[30].

It can be shown that if there is a polynomial time

learning algorithm for a target class C with a polyno-

mial worst case mistake bound, then C is PAC learn-

able. General methods for converting a learning al-

gorithm with a good worst case mistake bound into a

PAC learning algorithm with a low sample complexity

are given in [28]. Hence, the total mistake bound model

is actually not unrelated to the PAC model.

Another fascinating transformation of learning algo-

rithms is given by the weighted majority method [31].

This is a method of combining several incremental

learning algorithms into a single incremental learning

algorithm that is more powerful and more robust than

any of the component algorithms. The idea is simple.

All the component learning algorithms are run in paral-

lel on the same sequence of training examples. For each

example, each algorithm makes a prediction and these

predictions are combined by a weighted voting scheme

to determine the overall prediction of the \master" al-

gorithm. After receiving feedback on its prediction, the

master algorithm adjusts the voting weights for each

of the component algorithms, increasing the weights of

those that made the correct prediction, and decreasing

the weights of those that guessed wrong, in each case

by a multiplicative factor. It can be shown that this

method of combining learning algorithms produces a

master algorithmwith a worst case mistake bound that

approaches the best worst case mistake bound of any of

the component learning algorithms, and that the result-

ing algorithm is very robust with regard to mislabeled

examples [31]. The weighted majority method can also

be used in conjunction with the conversion mentioned

above to design better PAC learning algorithms.

Both the PAC and total mistake bound models can

be extended signi�cantly by allowing learning algo-

rithms to perform experiments or make queries to a

teacher during learning [3]. The simplest type of query

is a membership query, in which the learning algorithm



mistake. The results can be summarized as follows. Let

C = fC

n

g

n�1

be a concept class and d

n

= V Cdim(C

n

)

for all n � 1.

First, for any concept class C and any consistent

algorithm for C using hypothesis space C, the worst

case probability of mistake on example t is at most

O((d

n

=t)ln(t=d

n

)), where t > d

n

. Furthermore, there

are particular consistent algorithms and concept classes

where the worst case probability of mistake on example

t is at least 
((d

n

=t)ln(t=d

n

)), hence this is the best

that can be said in general of arbitrary consistent algo-

rithms.

Second, for any concept class C there exists a learn-

ing algorithm for C (not necessarily consistent or com-

putationally e�cient) with worst case probability of

mistake on example t at most d

n

=(t � 1). (An extra

factor of 2 appears in the bound in [21]. This can be re-

moved.) In addition, any learning algorithm forCmust

have worst case probability of mistake on example t at

least 
(d

n

=t). Furthermore, there are particular con-

cept classes C, particular prior probability distributions

on the concepts in these classes, and particular distribu-

tions on the instance spaces of these classes, such that

the average case probability of mistake on example t is

at least 
(d

n

=t) for any learning algorithm.

These results show two interesting things. First, cer-

tain learning algorithms perform better than arbitrary

consistent learning algorithms in the worst case and

average case, therefore, even in this restricted setting

there is de�nitely more to learning than just �nding

any consistent hypothesis in an appropriately biased

hypothesis space. Second, the worst case is not always

much worse than the average case. Some recent exper-

iments in learning perceptrons and multilayer percep-

trons have shown that in many cases d

n

=t is a rather

good predictor of actual (i.e. average case) learning

curves for backpropagation on synthetic random data

[7,40]. However, it is still often an overestimate on

natural data [38], and in other domains such as learn-

ing conjunctive concepts on a uniform distribution [39].

Here the distribution (and algorithm) speci�c aspects

of the learning situation must also be taken into ac-

count. Thus, in general we concur that extensions of

the PAC model are required to explain learning curves

that occur in practice. However, no amount of experi-

mentation or distribution speci�c theory can replace the

security provided by a distribution independent bound.

The second criticism of the PAC model is that the

assumptions of well-de�ned target concepts and noise-

free training data are unrealistic in practice. This is cer-

tainly true. However, it should be pointed out that the

computational hardness results for learning described

above, having been established for the simple noise-free

case, must also hold for the more general case. The PAC

model has the advantage of allowing us to state these

negative results simply and in their strongest form.

Nevertheless, the positive learnability results have to

be strengthened before they can be applicable in prac-

tice, and some extensions of the PAC model are needed

for this purpose. Many have been proposed (see e.g.

[6,24]).

Since the de�nitions of target concepts, random ex-

amples and hypothesis error in the PAC model are just

simpli�ed versions of standard de�nitions from statisti-

cal pattern recognition and decision theory, one reason-

able thing to do is to go back to these well-established

�elds and use the more general de�nitions that they

have developed. First, instead of using the probabil-

ity of misclassi�cation as the only measure of error, a

general loss function can be de�ned that for every pair

consisting of a guessed value and an actual value of the

classi�cation, gives a non-negative real number indicat-

ing a \cost" charged for that particular guess given that

particular actual value. Then the error of a hypothesis

can be replaced by the average loss of the hypothesis on

a random example. If the loss is 1 if the guess is wrong

and 0 if it is right (discrete loss), we get the PAC no-

tion of error as a special case. However, using a more

general loss function we can also choose to make false

positives more expensive than false negatives or vice-

versa, which can be useful. The use of a loss function

also allows us to handle cases where there are more than

two possible values of the classi�cation. This includes

the problem of learning real-valued functions, where we

might choose to use jguess�actualj or (guess�actual)

2

as loss functions.

Second, instead of assuming that the examples are

generated by selecting a target concept and then gen-

erating random instances with labels agreeing with this

target concept, we might assume that for each random

instance, there is also some randomness in its label.

Thus, each instance will have a particular probability

of being drawn and, given that instance, each possi-

ble classi�cation value will have a particular probabil-

ity of occurring. This whole random process can be

described as making independent random draws from

a single joint probability distribution on the set of all

possible labeled instances. Target concepts with at-

tribute noise, classi�cation noise, or both kinds of noise

can be modeled in this way. The target concept, the

noise, and the distribution on the instance space are

all bundled into one joint probability measure on la-

beled examples. The goal of learning is then to �nd

a hypothesis that minimizes the average loss when the

examples are drawn at random according to this joint

distribution.

The PAC model, disregarding computational com-

plexity considerations, can be viewed as a special case



This improves on earlier bounds given in [11], but may

still be a considerable overestimate. In terms of the car-

dinality of H

n

, denoted jH

n

j, it can be shown [43,33,12]

that the sample complexity is at most

1

�

�

lnjH

n

j+ ln

1

�

�

:

For most hypothesis spaces on Boolean domains, the

second bound gives the better bound. However, linear

threshold functions are a notable exception, since the

VC dimension of this class is linear in n, while the log-

arithm of its cardinality is quadratic in n [11]. Most

hypothesis spaces on real-valued attributes are in�nite,

so only the �rst bound is applicable.

6 Criticisms of the PAC Model

The two criticisms most often leveled at the PAC model

by AI researchers interested in empirical machine learn-

ing are

1. the worst-case emphasis in the model makes it un-

usable in practice [13,39] and

2. the notions of target concepts and noise-free train-

ing data are too restrictive in practice [1,9].

We take these in turn.

There are two aspects of the worst case nature of the

PACmodel that are at issue. One is the use of the worst

case model to measure the computational complexity of

the learning algorithm, the other is the de�nition of the

sample complexity as the worst case number of random

examples needed over all target concepts in the target

class and all distributions on the instance space. We

address only the latter issue.

As pointed out above, the worst case de�nition of

sample complexity means that even if we could calcu-

late the sample complexity of a given algorithm exactly,

we would still expect it to overestimate the typical error

of the hypothesis produced as a function of the training

set size on any particular target concept and particular

distribution on the instance space. This is compounded

by the fact that we usually cannot calculate the sam-

ple complexity of a given algorithm exactly even when

it is a relatively simple consistent algorithm. Instead

we are forced to fall back on the upper bounds on the

sample complexity that hold for any consistent algo-

rithm, given in the previous section, which themselves

may contain overblown constants.

The upshot of this is that the basic PAC theory is

not good for predicting learning curves. Some variants

of the PAC model come closer, however. One simple

variant is to make it distribution speci�c, i.e. de�ne and

analyze the sample complexity of a learning algorithm

for a speci�c distribution on the instance space, e.g. the

uniform distribution on a Boolean space [8,39]. There

are two potential problems with this. The �rst is �nding

distributions that are both analyzable and indicative

of the distributions that arise in practice. The second

is that the bounds obtained may be very sensitive to

the particular distribution analyzed, and not be very

reliable if the actual distribution is slightly di�erent.

A more re�ned, Bayesian extension of the PAC model

is explored in [13]. Using the Bayesian approach in-

volves assuming a prior distribution over possible tar-

get concepts as well as training instances. Given these

distributions, the average error of the hypothesis as a

function of training sample size, and even as a function

of the particular training sample, can be de�ned. Also,

1� � con�dence intervals like those in the PAC model

can be de�ned as well. Experiments with this model

on small learning problems are encouraging, but fur-

ther work needs to be done on sensitivity analysis, and

on simplifying the calculations so that larger problems

can be analysed. This work, and the other distribution

speci�c learning work, provides an increasingly impor-

tant counterpart to PAC theory.

Another variant of the PAC model designed to ad-

dress these issues is the \probability of mistake" model

explored in [21]. This is a worst case model that was

designed speci�cally to help understand some of the

issues in incremental learning. Instead of looking at

sample complexity as de�ned above, the measure of

performance here is the probability that the learning

algorithm incorrectly guesses the label of the tth train-

ing example in a sequence of t random examples. Of

course, the algorithm is allowed to update its hypoth-

esis after each new training example is processed, so

as t grows, we expect the probability of a mistake on

example t to decrease. For a �xed target concept and

a �xed distribution on the instance space, it is easy to

see that the probability of a mistake on example t is the

same as the average error of the hypothesis produced

by the algorithm from t� 1 random training examples.

Hence, the probability of mistake on example t is ex-

actly what is plotted on empirical learning curves that

plot error versus sample size and average several runs

of the learning algorithm for each sample size.

In [21], some comparisons are made between the

worst case probability of mistake on the tth example

(over all possible target concepts and distributions on

the training examples) and the probability of mistake

on the tth example when the target concept is selected

at random according to a prior distribution on the tar-

get class and the examples are drawn at random from a

certain �xed distribution (a Bayesian approach). The

former we will call the worst case probability of mistake

and the latter we will call the average case probability of



the complexity theoretic assumption that RP 6= NP

[35].

1. Conjunctive concepts are properly PAC learnable

[42], but the class of concepts in the form of the dis-

junction of two conjunctions is not properly PAC

learnable [35], and neither is the class of existential

conjunctive concepts on structural instance spaces

with two objects [18].

2. Linear threshold concepts (perceptrons) are prop-

erly PAC learnable on both Boolean and real-

valued instance spaces [11], but the class of con-

cepts in the form of the conjunction of two linear

threshold concepts is not properly PAC learnable

[10]. The same holds for disjunctions and linear

thresholds of linear thresholds (i.e. multilayer per-

ceptrons with two hidden units). In addition, if the

weights are restricted to 1 and 0 (but the thresh-

old is arbitrary), then linear threshold concepts

on Boolean instances spaces are not properly PAC

learnable [35].

3. The classes of k-DNF, k-CNF, and k-decision lists

are properly PAC learnable for each �xed k [41,37],

but it is unknown whether the classes of all DNF

functions, all CNF functions, or all decision trees

are properly PAC learnable.

Most of the di�culties in proper PAC learning are

due to the computational di�culty of �nding a hy-

pothesis in the particular form speci�ed by the tar-

get class. For example, while Boolean threshold func-

tions with 0-1 weights are not properly PAC learnable

on Boolean instance spaces (unless RP = NP), they

are PAC learnable by general Boolean threshold func-

tions. Here we have a concrete case where enlarging

the hypothesis space makes the computational problem

of �nding a good hypothesis easier. The class of all

Boolean threshold functions is simply an easier space

to search than the class of Boolean threshold functions

with 0-1 weights. Similar extended hypothesis spaces

can be found for the two classes mentioned in (1.) above

that are not properly PAC learnable. Hence, it turns

out that these classes are PAC learnable [35,18]. How-

ever, it is not known if any of the classes of DNF func-

tions, CNF functions, decision trees, or multilayer per-

ceptrons with two hidden units are PAC learnable.

It is a much stronger result to show that a concept

class is not PAC learnable than it is to show that it

is not properly PAC learnable, since the former re-

sult implies that the class is not PAC learnable by any

reasonable hypothesis space. Nevertheless, such non-

learnability results have been obtained for several im-

portant concept classes, including the class of Boolean

formulae (Boolean expressions using \and" \or" and

\not"), the general class of multilayer perceptrons with

a multiple (but �xed) number of hidden layers, and the

class of deterministic �nite automata [27]. These results

assume certain widely used cryptographic postulates in

place of the (weaker) postulate that RP 6= NP.

5 Methods for Proving PAC

Learnability; Formalization of Bias

All of the positive learnability results above are ob-

tained by

1. showing that there is an e�cient algorithm that

�nds a hypothesis in a particular hypothesis space

that is consistent with a given sample of any con-

cept in the target class and

2. that the sample complexity of any such algorithm

is polynomial.

By consistent we mean that the hypothesis agrees with

every example in the training sample. An algorithm

that always �nds such a hypothesis (when one exists)

is called a consistent algorithm.

As the size of the hypothesis space increases, it may

become easier to �nd a consistent hypothesis, but it will

require more random training examples to insure that

this hypothesis is accurate with high probability. In the

limit, when any subset of the instance space is allowed

as a hypothesis, it becomes trivial to �nd a consistent

hypothesis, but a sample size proportional to the size of

the entire instance space will be required to insure that

it is accurate. Hence, there is a fundamental tradeo�

between the computational complexity and the sample

complexity of learning.

Restriction to particular hypothesis spaces of lim-

ited size is one form of bias that has been explored

to facilitate learning [32]. In addition to the cardinal-

ity of the hypothesis space, a parameter known as the

Vapnik-Chervonenkis (VC) dimension of the hypothe-

sis space has been shown to be useful in quantifying

the bias inherent in a restricted hypothesis space [19].

The VC dimension of a hypothesis space H, denoted

V Cdim(H), is de�ned to be the maximumnumber d of

instances that can be labeled as positive and negative

examples in all 2

d

possible ways, such that each label-

ing is consistent with some hypothesis inH [14,43]. Let

H = fH

n

g

n�1

be a hypothesis space and C = fC

n

g

n�1

be a target class, where C

n

� H

n

for n � 1. Then it can

be shown [23] that any consistent algorithm for learning

C by H will have sample complexity at most

1

�(1�

p

�)

�

2V Cdim(H

n

)ln

6

�

+ ln

2

�

�

:



to D, and a label that is \+" if that instance is in the

target concept c (positive example), otherwise \�" (neg-

ative example). Thus, training and testing use the same

distribution, and there is no \noise" in either phase. A

learning algorithm is then a computational procedure

that takes a sample of the target concept c, consisting

of a sequence of independent random examples of c, and

returns a hypothesis.

For each n � 1 let C

n

be a set of target concepts over

the instance space f0; 1g

n

, and let C = fC

n

g

n�1

. Let

H

n

, for n � 1, and H be de�ned similarly. We can de-

�ne PAC learnability as follows: The concept class C is

PAC learnable by the hypothesis space H if there exists

a polynomial time learning algorithm A and a polyno-

mial p(�; �; �) such that for all n � 1, all target concepts

c 2 C

n

, all probability distributions D on the instance

space f0; 1g

n

, and all � and �, where 0 < �; � < 1, if the

algorithmA is given at least p(n; 1=�; 1=�) independent

random examples of c drawn according to D, then with

probability at least 1��, A returns a hypothesis h 2 H

n

with error(h) � �. The smallest such polynomial p is

called the sample complexity of the learning algorithm

A.

The intent of this de�nition is that the learning algo-

rithm must process the examples in polynomial time,

i.e. be computationally e�cient, and must be able to

produce a good approximation to the target concept

with high probability using only a reasonable number

of random training examples. The model is worst case

in that it requires that the number of training exam-

ples needed be bounded by a single �xed polynomial

for all target concepts in C and all distributions D in

the instance space. It follows that if we �x the number

of variables n in the instance space and the con�dence

parameter �, and then invert the sample complexity

function to plot the error � as a function of training

sample size, we do not get what is usually thought of

as a learning curve for A (for this �xed con�dence),

but rather the upper envelope of all learning curves for

A (for this �xed con�dence), obtained by varying the

target concept and distribution on the instance space.

Needless to say, this is not a curve that can be observed

experimentally. What is usually plotted experimentally

is the error versus the training sample size for particular

target concepts on instances chosen randomly accord-

ing to a single �xed distribution on the instance space.

Such a curve will lie below the curve obtained by in-

verting the sample complexity. We will return to this

point later.

Another thing to notice about this de�nition is that

target concepts in a concept class C may be learned by

hypotheses in a di�erent class H. This gives us some

exibility. Two cases are of interest. The �rst is that

C = H, i.e. the target class and hypothesis space are

the same. In this case we say that C is properly PAC

learnable. Imposing the requirement that the hypoth-

esis be from the class C may be necessary, e.g. if it

is to be included in a speci�c knowledge base with a

speci�c inference engine. However, as we will see, it

can also make learning more di�cult. The other case

is when we don't care at all about the hypothesis space

H, so long as the hypotheses inH can be evaluated e�-

ciently. This occurs when our only goal is accurate and

computationally e�cient prediction of future examples.

Being able to freely choose the hypothesis space may

make learning easier. If C is a concept class and there

exists some hypothesis space H such that hypotheses

inH can be evaluated on given instances in polynomial

time and such that C is PAC learnable by H, then we

will say simply that C is PAC learnable.

There are many variants of the basic de�nition of

PAC learnability. One important variant de�nes a no-

tion of syntactic complexity of target concepts and, for

each n � 1, further classi�es each concept in C

n

by its

syntactic complexity. Usually the syntactic complex-

ity of a concept c is taken to be the length of (number

of symbols in) the shortest description of c in a �xed

concept description language. In this variant of PAC

learnability, the number of training examples is also

allowed to grow polynomially in the syntactic complex-

ity of the target concept. This variant is used when-

ever the concept class is speci�ed by a concept descrip-

tion language that can represent any boolean function,

for example, when discussing the learnability of DNF

(Disjunctive Normal Form) formulae or decision trees.

Other variants of the model let the algorithm request

examples, use separate distributions for drawing posi-

tive and negative examples, or use randomized (i.e. coin

ipping) algorithms [25]. It can be shown that these lat-

ter variants are equivalent to the model described here,

in that, modulo some minor technicalities, the concept

classes that are PAC learnable in one model are also

PAC learnable in the other [20]. Finally, the model

can easily be extended to non-Boolean attribute-based

instance spaces [19] and instance spaces for structural

domains such as the blocks world [18]. Instances can

also be de�ned as strings over a �nite alphabet so that

the learnability of �nite automata, context-free gram-

mars, etc. can be investigated [34].

4 Outline of Results for the Basic

PAC Model

A number of fairly sharp results have been found for the

notion of proper PAC learnability. The following sum-

marizes some of these results. For precise de�nitions of

the concept classes involved, the reader is referred to

the literature cited. The negative results are based on



Probably Approximately Correct Learning

David Haussler

�

haussler@saturn.ucsc.edu

Baskin Center for Computer Engineering and Information Sciences

University of California, Santa Cruz, CA 95064

1 Abstract

This paper surveys some recent theoretical results on

the e�ciency of machine learning algorithms. The main

tool described is the notion of Probably Approximately

Correct (PAC) learning, introduced by Valiant. We de-

�ne this learning model and then look at some of the

results obtained in it. We then consider some criti-

cisms of the PAC model and the extensions proposed

to address these criticisms. Finally, we look briey at

other models recently proposed in computational learn-

ing theory.

2 Introduction

It's a dangerous thing to try to formalize an enterprise

as complex and varied as machine learning so that it

can be subjected to rigorous mathematical analysis. To

be tractable, a formal model must be simple. Thus, in-

evitably, most people will feel that important aspects of

the activity have been left out of the theory. Of course,

they will be right. Therefore, it is not advisable to

present a theory of machine learning as having reduced

the entire �eld to its bare essentials. All that can be

hoped for is that some aspects of the phenomenon are

brought more clearly into focus using the tools of math-

ematical analysis, and that perhaps a few new insights

are gained. It is in this light that we wish to discuss

the results obtained in the last few years in what is now

called PAC (Probably Approximately Correct) learning

theory [3].

Valiant introduced this theory in 1984 [42] to get

computer scientists who study the computational e�-

ciency of algorithms to look at learning algorithms. By

taking some simpli�ed notions from statistical pattern

recognition and decision theory, and combining them

with approaches from computational complexity the-

ory, he came up with a notion of learning problems that

are feasible, in the sense that there is a polynomial time

algorithm that \solves" them, in analogy with the class

P of feasible problems in standard complexity theory.

�

Supported by ONR grant N00014-86-K-0454

Valiant was successful in his e�orts. Since 1984 many

theoretical computer scientists and AI researchers have

either obtained results in this theory, or complained

about it and proposed modi�ed theories, or both.

The �eld of research that includes the PAC theory

and its many relatives has been called computational

learning theory. It is far frombeing a monolithicmathe-

matical edi�ce that sits at the base of machine learning;

it's unclear whether such a theory is even possible or

desirable. We argue, however, that insights have been

gained from the varied work in computational learn-

ing theory. The purpose of this short monograph is to

survey some of this work and reveal those insights.

3 De�nition of PAC Learning

The intent of the PAC model is that successful learning

of an unknown target concept should entail obtaining,

with high probability, a hypothesis that is a good ap-

proximation of it. Hence the name Probably Approxi-

mately Correct. In the basic model, the instance space

is assumed to be f0; 1g

n

, the set of all possible assign-

ments to n Boolean variables (or attributes) and con-

cepts and hypotheses are subsets of f0; 1g

n

. The notion

of approximation is de�ned by assuming that there is

some probability distribution D de�ned on the instance

space f0; 1g

n

, giving the probability of each instance.

We then let the error of a hypothesis h w.r.t. a �xed

target concept c, denoted error(h) when c is clear from

the context, be de�ned by

error(h) =

X

x2h�c

D(x);

where � denotes the symmetric di�erence. Thus,

error(h) is the probability that h and c will disagree

on an instance drawn randomly according to D. The

hypothesis h is a good approximation of the target con-

cept c if error(h) is small.

How does one obtain a good hypothesis? In the sim-

plest case one does this by looking at independent ran-

dom examples of the target concept c, each example

consisting of an instance selected randomly according

1


