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4. Conclusion

We have de�ned a dimension for a set of integer vectors, called the GC-dimension, and

given tight bounds on the cardinality of a set of vectors taken from a particular domain

which has a given GC-dimension. We have used this result to obtain similar tight bounds

for generalizations of the VC-dimension which have been proposed by others, namely the

pseudo dimension discussed by Pollard [Pol84] and the graph dimension introduced by

Natarajan [Nat89]. We also have used a similar technique obtain tighter bounds for another

generalization of the VC-dimension introduced by Natarajan, which we have called the

Natarajan dimension. The problem of obtaining tight bounds for the Natarajan dimension

remains open.

In addition, we have applied this result to bound the rate of convergence of empirical

estimates of the expectations of a sequence of random variables to their true expectations,

obtaining bounds similar to those already derived in [Pol84] [Hau89]. These results can be

extended to bound the sample size required for learning under the computational model of

learnability discussed in [Hau89].

The primary motivation for this research, however, was to attempt to �nd some simple

property of a class of functions that would characterize the uniform rate of convergence of

estimates to true means. While the �niteness of any of the dimensions discussed in this

paper is su�cient for rapid convergence, none of them are necessary. We hope that the

insight gained by studying these generalizations of the VC-dimension will aid us in this

pursuit.

Towards this end, we are currently investigating the following conjecture. Let m 2

Z

+

; N 2 N. De�ne  as in the de�nition of N-dimension given previously. Let G = (V;E)

be a graph with V = f0; :::;Ng. Form G

m

= (V

m

; E

m

) as follows. Let V

m

= f0; :::;Ng

m

,

as the notation suggests. Let

E

m

= fh

�

f; �gi :

�

f; �g 2 V

m

; 9i; 1 � i � m; hf

i

; g

i

i 2 Eg:

Let F � V

m

be a clique in G

m

. Let I � N

m

. We say I is GN-shattered by F if there exist

�

f ; �g 2 F such that for all i 2 I , hf

i

; g

i

i 2 G, and

f0; 1g

jIj

� (F

j

I

;

�

f; �g):

We de�ne the GN-dimension of F to be the cardinality of the largest subset ofN

m

shattered

by F . Our conjecture is that if the GN-dimension of F is no greater than d, then

jF j �

d

X

i=0

 

m

i

! 

N + 1

2

!

i

:

Note that if G is the complete graph, any F � V

m

induces a clique, and the GN-dimension

of F reduces to its N -dimension, so the above bound follows from Corollary 1.5.

If such a result could be obtained, it would lead to a new characterization of conditions

that ensure rapid uniform convergence similar to the conditions outlined by Vapnik [Vap89].

We are also working on the problem of characterizing those functions � (or ) such that

a bound on the �-dimension of a set gives the bounds of Theorem 1.2, or more generally,

characterizing the functions � such that there exist bounds polynomial in m and N on the

cardinality of subsets of

Q

m

i=1

f0; :::; Ng of a given �-dimension.
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Since by the preceding lemma for any � 2 R; 0 < � < 1,

lnm �

�

��

kd

�

m+

�

ln

kd

��e

�

;

the following is su�cient to guarantee Inequality 3.4:

�m

2k

� d

�

��

kd

m+ ln

kd

��e

+ ln

ke

d

�

+ ln 4=�

=

��

k

m+ d ln

k

2

��

+ ln 4=�:

Solving for m yields

m �

2k

�(1� 2�)

�

2d ln

k

p

��

+ ln

4

�

�

and resubstituting k =

4M

��

gives

m �

8M

�

2

�(1� 2�)

�

2d ln

4M

��

p

��

+ ln

4

�

�

:

We choose � = 1=18 for readability, yielding

m �

9M

�

2

�

�

2d ln

17M

(�

p

�)�

+ ln

4

�

�

which is the desired bound. 2

For comparison, we give the following theorem from [Hau89], which was obtained using

a completely di�erent technique, due to Pollard [Pol89, Theorem 4.7].

Theorem 3.6: Let F be a set

3

of random variables on S such that there exists M 2 R

+

with 0 � f(�) �M for all f 2 F and � 2 S. Assume 0 < � � 4M=d, 0 < � < 1 and m � 1.

Suppose that

�

� is generated by m independent random draws according to the �xed measure

D on S. Suppose also that P-dim(F ) � d. Then

Pr

n

9f 2 F : d

�

(

^

E

�

�

(f); E(f))> �

o

� 8

�

16eM

��

ln

16eM

��

�

d

e

��

2

�m=8M

:

Moreover, for

m �

8M

�

2

�

�

2d ln

8eM

��

+ ln

8

�

�

;

this probability is less than �.

3

Again, the same measurability assumptions as Theorem 3.1 are required.
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Theorem 3.5: Let F be a set

2

of random variables on S such that there exists M 2 R

+

with 0 � f(�) �M for all f 2 F and � 2 S. Assume � > 0, 0 < � < 1 and m � 1. Suppose

that

�

� is generated by m independent random draws according to the �xed measure D on S.

Suppose also that P-dim(F ) � d. Then

Pr

n

9f 2 F : d

�

(

^

E

�

�

(f); E(f))> �

o

� 4

�

4M

��

�

d

�

em

d

�

d

e

��

2

�m=8M

:

Moreover, for

m �

9M

�

2

�

�

2d ln

17M

(�

p

�)�

+ ln

4

�

�

;

this probability is less than �.

Proof: First, from Corollary 3.3, we have that

N (��=8; F

j

�

�

; d

L

1
) �

d

X

i=0

 

m

i

!

�

4M

��

�

i

:

Using the well known combinatorial identity that

d

X

i=0

 

m

i

!

� (em=d)

d

and substituting

�

4M

��

�

d

for each

�

4M

��

�

i

;

we get

N (��=8; F

j

�

�

; d

L

1
) �

�

4M

��

�

d

�

em

d

�

d

:

Applying Theorem 3.1 yields the �rst result.

Now, we wish to determine a lower bound on m which guarantees that

4

�

4M

��

�

d

�

em

d

�

d

e

��

2

�m=8M

� �:

Set k =

4M

��

. Then the above expression simpli�es to

4k

d

�

em

d

�

d

e

�

�m

2k

� �:

Taking logs and rearranging terms yields the following equivalent expression:

�m

2k

� d

�

lnm+ ln

ke

d

�

+ ln 4=�: (3:4)

2

The same measurability assumptions as Theorem 3.1 are required.
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Suppose b

j

= 0 and f

i

j

� 2�y

j

. This implies f

i

j

=2� � y

j

, which in turn implies

g

i

j

=

�

f

i

j

2�

�

� y

j

;

since y

j

2 Z. But this is a contradiction, since g

i

j

< y

j

, which holds because b

j

= 0 and g

satis�es

�

b. So if b

j

= 0, we have f

i

j

< 2�y

j

.

In the preceding two paragraphs we have established that for all j; 1 � j � k, we have

f

i

j

� 2�y

j

if and only if b

j

= 1, and thereby that

�

f satis�es

�

b. Since

�

b was chosen arbitrarily,

I is shattered by F . Since I was chosen arbitrarily, P-dim(G) � P-dim(F ) = d.

Now, by Corollary 1.3,

jGj �

d

X

i=0

 

m

i

!

��

M

2�

��

i

:

Since H is an �-cover of F and jGj = jH j, we have

N (�; F; d

L

1

) �

d

X

i=0

 

m

i

!

��

M

2�

��

i

;

which completes the proof. 2

Corollary 3.3: Let M 2 R

+

; m 2 Z

+

. Let F � [0;M ]

m

be such that P-dim(F ) � d. Let

� 2 R

+

. Then

N (�; F; d

L

1) �

d

X

i=0

 

m

i

!

��

M

2�

��

i

Proof: As discussed above

N (�; F; d

L

1) � N (�; F; d

L

1

):

The corollary then follows from the previous lemma. 2

The technique by which we obtain bounds on the sample size necessary for the uniform

convergence of estimates to true means for a sequence of random variables is similar to that

used to in [SAB89] improve the bounds of [BEHW89]. The following lemma is useful in this

derivation.

Lemma 3.4 ([SAB89]): Let x; y 2 R

+

. Then

ln x � xy � ln ey:

Proof: Fix y 2 R

+

. Consider f : R

+

! R de�ned by

f(x) = xy � ln exy:

Then

f

0

(x) = y � 1=x:

Clearly, f

0

(x) is positive when x > 1=y and negative when x < 1=y and f is continuous and

di�erentiable over its domain, so f assumes its minimum at 1=y and

f(1=y) = y(1=y)� ln ey(1=y) = 0:

So f(x) � 0 for all x 2 R

+

, which yields the desired result. 2

Finally, we are ready to bound the sample size necessary to ensure that with high

probability an empirical estimate of the expected value of a random variable chosen from a

set of a small P-dimension is accurate.
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Note that this de�nition is equivalent to that of the previous sections when X = N

m

and

we restrict the range of functions in F to initial intervals of the nonnegative integers. If we

assume that X = N

m

and the range of all functions in F is [0;M ] for some positive real M ,

we obtain from the above de�nition a de�nition of the P-dimension of a subset of [0;M ]

m

analogous to that of the previous section for integer vectors. This will prove useful.

Now we wish to show that if a subset of a product of closed intervals of R has small

P-dimension, then it can has a small �-cover in the d

L

1

metric.

Lemma 3.2: Let M 2 R

+

; m 2 Z

+

. Let F � [0;M ]

m

be such that P-dim(F ) � d. Let

� 2 R

+

. Then

N (�; F; d

L

1

) �

d

X

i=0

 

m

i

!

��

M

2�

��

i

Proof: If S � R

m

, �y 2 R

m

and c 2 R, denote by cS + �y the set fc�s+ �y : �s 2 Sg.

De�ne � : [0;M ]

m

! f0; :::;

j

M

2�

k

g

m

by �(

�

f) = �g, where g

i

=

j

f

i

2�

k

for all i; 1 � i � m.

Let G = �(F ). Let H = 2�G+ (�; �; :::; �).

First, we claim thatH is an �-cover for F with respect to the d

L

1

metric. Choose

�

f 2 F .

Let

�

h = 2��(

�

f) + (�; �; :::; �). Choose i; 1 � i � m. Then we have

jf

i

� h

i

j =

�

�

�

�

f

i

�

�

2�

�

f

i

2�

�

+ �

�
�

�

�

�

= 2�

�

�

�

�

f

i

2�

�

�

f

i

2�

�

�

1

2

�

�

�

�

� �:

Since i was chosen arbitrarily,

d

L

1

(f; h) = maxfjf

i

� h

i

j : 1 � i � mg � �:

Since

�

f 2 F was chosen arbitrarily, H is an �-cover for F .

Next, we wish to show that P-dim(G) � d. Let I = fi

1

; :::; i

k

g be a set shattered by G

and let

�y 2 f0; :::;

�

M

2�

�

g

k

witness this shattering. We claim that 2��y witnesses F 's shattering of I . Choose

�

b 2 f0; 1g

k

.

Let �g 2 G satisfy

�

b. Choose

�

f 2 F , such that �(

�

f) = �g.

If b

j

= 1, we have g

i

j

� y

j

which is equivalent to

�

f

i

j

2�

�

� y

j

which implies

f

i

j

2�

� y

j

since x � bxc for all x 2 R. Finally, the previous inequality implies

f

i

j

� 2�y

j

:

So if b

j

= 1, f

i

j

� 2�y

j

.
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Also, we denote by N (�; F

j

�

�

; d

L

1) the size of the smallest �-cover of F

j

�

�

in the d

L

1 metric

by elements of R

m

.

Similary, we can view F

j

�

�

as a subspace of (R

m

; d

L

1

), where d

L

1

is de�ned as follows.

For �x = (x

1

; :::; x

m

) and �y = (y

1

; :::; y

m

) in R

m

,

d

L

1

(�x; �y) = maxfjx

i

� y

i

j : 1 � i � mg:

Denote by N (�; F

j

�

�

; d

L

1

) the size of the smallest �-cover of F

j

�

�

in the d

L

1

metric by

elements of R

m

. Since clearly for all �x; �y 2 R

m

, d

L

1
(�x; �y) � d

L

1

(�x; �y), any �-cover in the

d

L

1

metric also serves as a �-cover in the d

L

1 metric, which implies

N (�; F

j

�

�

; d

L

1) � N (�; F

j

�

�

; d

L

1

):

We are now ready for the following theorem. Similar results are given in [Dud84] [Pol84]

[Vap82]. In general, these theorems bound deviation of estimates

^

E

�

�

(f) from true means

E(f) for functions f in F in terms of sizes of �-covers for F

j

�

�

.

Theorem 3.1 ([Hau89]): Let F be a set

1

of random variables on S such that there exists

M 2 R

+

with 0 � f(�) � M for all f 2 F and � 2 S. Assume � > 0, 0 < � < 1 and

m � 1. Suppose that

�

� 2 S

m

is generated by m independent random draws according to the

�xed measure D on S. Let

p(�; �;m) = Pr

n

9f 2 F : d

�

(

^

E

�

�

(f); E(f))> �

o

:

Then

p(�; �;m) � 2E

�

min(2N (��=8; F

j

�

�

; d

L

1
)e

��

2

�m=8M

; 1)

�

:

Let us generalize the de�nition of the �-dimension given above for sets of integer vectors

to sets of real valued functions. F be a set of real valued functions de�ned on some linearly

ordered domain X . Let I = fx

1

; :::; x

k

g � X , with x

1

< x

2

< � � � < x

k

. For f 2 F , let

f

j

I

= (f(x

1

); :::; f(x

k

)):

De�ne

F

j

I

= ff

j

I

: f 2 Fg:

Choose � : R � R ! f0; 1; ?g. Extend � to 2

R

k

� R

k

as in Section 1. We say that I is

�-shattered by F if there exists �y 2 R

k

such that

f0; 1g

k

� �(F

j

I

; �y):

We say that �y witnesses F 's �-shattering of I and that f 2 F satis�es

�

b 2 f0; 1g

k

if and

only if �(f

j

I

; �y) =

�

b. The �-dimension of F is the cardinality of the largest subset of X

shattered by F .

As in Section 1, we de�ne the P-dimension and P-shattering to be the �-dimension and

�-shattering with � de�ned by

�(i; j) =

(

1 if i � j

0 if i < j

:

1

Further measurability assumptions are required. See [Hau89].
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3. An application

In this section, we give an application of Corollary 1.3, bounding the sample size

necessary to obtain uniformly good empirical estimates for the expectations of all random

variables of a given class F in terms of a generalization of the de�nition of P-dimension given

above to classes of real valued functions, in this case, random variables. We will measure the

deviation of the estimates from the true expectations using a metric introduced in [Hau89].

These results can be extended to bound the sample size necessary for learning according to

the computational model of learning discussed in [Hau89], an extension of that introduced in

[Val84] which incorporates additional methods from previous work in Pattern Recognition.

We begin with some de�nitions. First, we will denote the set of positive real numbers

by R

+

. Now, let S be a set. Let d : S � S ! R

+

. We say that d is a metric on S if for all

x; y; z 2 S,

x = y , d(x; y) = 0 (3.1)

d(x; y) = d(y; x) (3.2)

d(x; z) � d(x; y) + d(y; z): (3.3)

In this case, we say (S; d) is a metric space. Let T � S. We say T is bounded if

supfd(x; y) : x; y 2 Tg is �nite. For any � 2 R

+

, a �nite set N is an �-cover for T if

and only if for all x 2 T , there exists y 2 N with d(x; y) � �. We say T is totally bounded if

T has a �nite �-cover for each � 2 R

+

. In this case, we let N (�; T; d) denote the cardinality

of the smallest �-cover of T (w.r.t. S and d).

Now, we de�ne the metric relative to which we prove uniform convergence results in

this section. This metric was introduced and its utility as a measure of accuracy for

an approximation of a function was discussed in [Hau89]. For each � 2 R

+

, de�ne

d

�

: R

+

�R

+

! R

+

by

d

�

(r; s) =

jr � sj

� + r + s

:

It is straightforward but tedious to verify that for all � 2 R

+

, d

�

is a metric on R

+

.

Let (S;B; D) be probability space with D a probability measure on the set S, and B

some appropriate �-algebra on S. Let F be a set of (measurable) random variables on S.

For m � 1, denote by S

m

the m-fold product space with the usual product probability

measure. For any

�

� = (�

1

; :::; �

m

) 2 S

m

and f 2 F , let

^

E

�

�

(f) =

1

m

m

X

i=1

f(�

i

):

and

F

j

�

�

= f(f(�

1

); :::; f(�

m

)) : f 2 Fg:

We can view F

j

�

�

as a subspace of the metric space (R

m

; d

L

1), where d

L

1 is the usual L

1

metric, i.e., for any �x = (x

1

; :::; x

m

) and �y = (y

1

; :::; y

m

) in R

m

,

d

L

1(�x; �y) =

1

m

m

X

i=1

jx

i

� y

i

j:
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Using the same argument as in the previous lemma, under the inductive hypothesis that

the lemma holds for all sets F of vectors of m� 1 elements, we have

jF

�

j �

d

X

i=0

X

S2�

(m�1)i

Y

k2S

 

N

k

+ 1

2

!

:

Now, we wish to establish the following claim under the same inductive hypothesis.

Claim 2.6: For all u; v 2 N; 0 � u < v � N

m

, we have

jF

uv

j �

d�1

X

i=0

X

S2�

(m�1)i

Y

k2S

 

N

k

+ 1

2

!

:

Proof (of Claim): Choose u; v 2 N; 0 � u < v � N

m

. We will show that the N-dimension of

F

uv

is at most d� 1. The claim then follows by an argument similar to that of Claim 2.3.

Let I be a set of indices shattered by F

uv

with jI j = l. Note that m 62 I , since f

m

= v for

all

�

f 2 F

uv

.

Now we show that I [ fmg is shattered by F . Let �y and �z be the witnesses of F

uv

's

N-shattering of I . Consider (y

1

; :::; y

l

; u) and (z

1

; :::; z

l

; v). We claim that these vectors

witness F 's N-shattering of I [ fmg. Choose

�

b 2 f0; 1g

l+1

. Let

�

f 2 F

uv

satisfy (b

1

; :::; b

l

)

(with respect to I).

If b

l+1

= 1, then

�

f satis�es

�

b, and if b

l+1

= 0, then

(f

1

; :::; f

m�1

; �(f

1

; :::; f

m�1

)) = (f

1

; :::; f

m�1

; u)

satis�es

�

b. Since

�

b was chosen arbitrarily, I[fmg is N-shattered by F . Since by assumption

the N-dimension of F is no greater than d and m 62 I , we have jI j � d � 1. Since I was

chosen arbitrarily, the N-dimension of F

uv

is no greater than d � 1, which completes our

proof of this claim, by the discussion above. 2

From the previous two claims, we have that

jF j �

2

4

d

X

i=0

X

S2�

(m�1)i

Y

k2S

 

N

k

+ 1

2

!

3

5

+

 

N

m

+ 1

2

!

d�1

X

i=0

X

S2�

(m�1)i

Y

k2S

 

N

k

+ 1

2

!

=

2

4

d

X

i=0

X

S2�

(m�1)i

Y

k2S

 

N

k

+ 1

2

!

3

5

+

d�1

X

i=0

X

S2�

(m�1)i

Y

k2S[fmg

 

N

k

+ 1

2

!

=

2

4

1 +

d

X

i=1

X

S2�

(m�1)i

Y

k2S

 

N

k

+ 1

2

!

3

5

+

d

X

i=1

X

S2�

(m�1)(i�1)

Y

k2S[fmg

 

N

k

+ 1

2

!

= 1+

d

X

i=1

8

<

:

2

4

X

S2�

(m�1)i

Y

k2S

 

N

k

+ 1

2

!

3

5

+

2

4

X

S2�

(m�1)(i�1)

Y

k2S[fmg

 

N

k

+ 1

2

!

3

5

9

=

;

= 1+

d

X

i=1

8

<

:

2

4

X

S2�

mi

;m62S

Y

k2S

 

N

k

+ 1

2

!

3

5

+

2

4

X

S2�

mi

;m2S

Y

k2S

 

N

k

+ 1

2

!

3

5

9

=

;

=

d

X

i=0

X

S2�

mi

Y

k2S

 

N

k

+ 1

2

!

which completes the induction. 2

Theorem 1.4 can now easily be established.
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= 1 +

d

X

i=1

8

<

:

2

4

X

S2�

mi

;m62S

Y

k2S

N

k

3

5

+

2

4

X

S2�

mi

;m2S

Y

k2S

N

k

3

5

9

=

;

=

d

X

i=0

X

S2�

mi

Y

k2S

N

k

:

This completes the induction. 2

Theorem 1.2 easily follows from the previous lemmas together with the discussion

relating GC

max

to G

max

and P

max

.

Next, we turn to Theorem 1.4. The lower bound was established in Lemma 2.1. We

obtain the upper bound with the following lemma, the proof of which is similar to that of

Lemma 2.2.

Lemma 2.5: Let d;m 2 Z

+

; N

1

; :::; N

m

2 N be such that d � m. Let

F � X =

m

Y

i=1

f0; :::; N

i

g

be such that N-dim(F ) � d. Then

jF j �

d

X

i=0

X

S2�

mi

Y

k2S

 

N

k

+ 1

2

!

:

Proof: As before, our proof is by double induction on m and d.

Using the same argument as the previous lemma, we can establish this lemma for the

case d = 0.

Next, suppose that d = m. By partitioning the elements of the domain as discussed

above, we can see that

jX j �

m

X

i=0

X

S2�

mi

Y

k2S

N

k

�

m

X

i=0

X

S2�

mi

Y

k2S

 

N

k

+ 1

2

!

so since F � X , certainly

jF j �

m

X

i=0

X

S2�

mi

Y

k2S

 

N

k

+ 1

2

!

:

Now, choose d;m 2 Z

+

such that 0 < d < m. De�ne � and F

�

as in the previous lemma

and for each pair of distinct elements u; v 2 N; 0 � u < v � N

m

, de�ne

F

uv

= f

�

f 2 F � F

�

: f

m

= v; �(f

1

; :::; f

m�1

) = ug:

Since each of the above sets are disjoint and their union is all of F , we have

jF j = jF

�

j+

N

m

�1

X

u=0

N

m

X

v=u+1

jF

uv

j:
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Claim 2.3:

jF

�

j �

d

X

i=0

X

S2�

(m�1)i

Y

k2S

N

k

:

Proof (of Claim 2.3): The restriction of � to F

�

is 1-1 by construction of F

�

. The set

�(F

�

) has GC-dimension no greater than d since any set of indices shattered by �(F

�

) is

also shattered by F

�

, and therefore by F . By the induction hypothesis,

j�(F

�

)j �

d

X

i=0

X

S2�

(m�1)i

Y

k2S

N

k

;

so since �'s restriction to F

�

is 1-1, the claim is veri�ed. 2

Next, under the same induction hypothesis, we make the following claim.

Claim 2.4: For all n 2 N; 1 � n � N

m

,

jF

n

j �

d�1

X

i=0

X

S2�

(m�1)i

Y

k2S

N

k

:

Proof (of Claim 2.4): Choose n 2 f1; :::;N

m

g. We will show that the GC-dimension of F

n

is at most d � 1. The claim then follows by an argument similar to that of the previous

claim. Let I be a set of indices GC-shattered by F

n

and let jI j = l. Note that m 62 I , since

f

m

= n for all

�

f 2 F

n

.

Now we show that I [ fmg is GC-shattered by F . Let �y be the witness of F

n

's GC-

shattering of I . Consider (y

1

; :::; y

l

; n). Choose

�

b 2 f0; 1g

l+1

. Let

�

f 2 F

n

satisfy (b

1

; :::; b

l

)

(with respect to I).

If b

l+1

= 1, then

�

f satis�es

�

b, and if b

l+1

= 0, then

(f

1

; :::; f

m�1

; �(f

1

; :::; f

m�1

))

satis�es

�

b. Since

�

b was chosen arbitrarily, I[fmg is GC-shattered by F . Since by assumption

the GC-dimension of F is no greater than d and m 62 I , we have jI j � d� 1. Since I was

chosen arbitrarily, the GC-dimension of F

n

is no greater than d� 1, which is su�cient to

prove this claim, as discussed above. 2

From the previous two claims, we have that

jF j �

2

4

d

X

i=0

X

S2�

(m�1)i

Y

k2S

N

k

3

5

+N

m

d�1

X

i=0

X

S2�

(m�1)i

Y

k2S

N

k

=

2

4

d

X

i=0

X

S2�

(m�1)i

Y

k2S

N

k

3

5

+

d�1

X

i=0

X

S2�

(m�1)i

Y

k2S[fmg

N

k

=

2

4

1 +

d

X

i=1

X

S2�

(m�1)i

Y

k2S

N

k

3

5

+

d

X

i=1

X

S2�

(m�1)(i�1)

Y

k2S[fmg

N

k

= 1+

d

X

i=1

8

<

:

2

4

X

S2�

(m�1)i

Y

k2S

N

k

3

5

+

2

4

X

S2�

(m�1)(i�1)

Y

k2S[fmg

N

k

3

5

9

=

;
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Lemma 2.2: Let d;m 2 Z

+

; N

1

; :::; N

m

2 N be such that d � m. Let

F � X =

m

Y

i=1

f0; :::; N

i

g

be such that GC-dim(F ) � d. Then

jF j �

d

X

i=0

X

S2�

mi

Y

k2S

N

k

: (2:1)

Proof: Our proof is by double induction on m and d.

First we consider the case in which d = 0. Here, the bound 2.1 reduces to jF j � 1. If

jF j > 1, then F must have two distinct elements f and g. Let i be an index on whose entry

f and g di�er. Then fig is shattered by F , so the GC-dimension of F is at least 1, which

contradicts the assumption that d = 0, so jF j � 1 and the lemma holds.

Next, suppose that d = m. By partitioning the elements of the domain as discussed

above, we can see that

jX j �

m

X

i=0

X

S2�

mi

Y

k2S

N

k

:

so since F � X , certainly

jF j �

m

X

i=0

X

S2�

mi

Y

k2S

N

k

;

establishing the result in this case.

Now, choose d;m 2 Z

+

such that 0 < d < m. De�ne � : X !

Q

m�1

i=1

f0; :::; N

i

g by

�(

�

f) = (f

1

; :::; f

m�1

):

De�ne

� : �(F )! f0; :::; N

m

g

by

�(w

1

; :::; w

m�1

) = minfv : (w

1

; :::; w

m�1

; v) 2 Fg

De�ne

F

�

= f(f

1

; :::; f

m�1

; �(f

1

; :::; f

m�1

)) :

�

f 2 Fg

and for each n 2 N; 1 � n � N

m

, de�ne

F

n

= f

�

f 2 F � F

�

: f

m

= ng:

Since each of the above sets are disjoint and their union is all of F , we have

jF j = jF

�

j+

N

m

X

n=1

jF

n

j:

Let us make the inductive assumption that the bound 2.1 holds for all sets F of vectors

of m� 1 elements. We claim that this implies the following.
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2. Proofs of the results

We begin by exhibiting large sets of a given G-, P-, GC-, and N-dimension.

Lemma 2.1: Let d;m 2 Z

+

; N

1

; :::; N

m

2 N be such that d � m. Then there exists

F � X =

m

Y

i=1

f0; :::; N

i

g

such that F has G-, P-, GC-, and N-dimension d and

jF j =

d

X

i=0

X

S2�

mi

Y

k2S

N

k

:

Proof: De�ne F to be all the elements of X with at most d nonzero entries. We claim F

has G-, P-, GC- and N-dimension d, and jF j is as given above.

To prove that the G-, P-, GC- and N-dimensions of F are all no greater than d, it is

su�cient to prove that G-dim(F ) � d and P-dim(F ) � d, since as discussed above

N-dim(F ) � GC-dim(F )

GC-dim(F ) � P-dim(F )

GC-dim(F ) � G-dim(F ):

First, we show that G-dim(F ) � d. Assume G-dim(F ) > d for contradiction. Let �y

witness F 's G-shattering of I with jI j = k > d. Form

�

b 2 f0; 1g

k

by

b

i

=

(

0 if y

i

= 0

1 otherwise

:

Let

�

f 2 F satisfy

�

b. Let �g =

�

f

j

I

. By de�nition of G-shattering, we have g

i

6= y

i

if y

i

= 0

and g

i

= y

i

if y

i

6= 0, so g

i

6= 0 for all i, which implies f

j

6= 0 for all j 2 I which contradicts

the de�nition of F , since jI j > d.

Next, we need to show that P-dim(F ) � d. Again, assume P-dim(F ) > d for contradic-

tion. Let �y witness F 's P-shattering of I = fi

1

; :::; i

k

g with jI j = k > d. Let

�

f 2 F satisfy

(0; 0; :::; 0). Since y

j

> f

i

j

for all j; 1 � j � k, we have y

j

> 0 for all j; 1 � j � k. Let �g 2 F

satisfy (1; 1; :::; 1). Since g

i

j

� y

j

for all j; 1 � j � k, we have g

i

j

> 0 for all j; 1 � j � k,

which again contradicts the de�nition of F .

We can see that the G-, P-, GC- and N-dimensions of F are all no less than d, since

for each of the de�nitions of shattering, any subset I of d elements of N

m

is shattered,

since it is trivially N-shattered (taking �y = (0; 0; :::; 0) , �z = (1; 1; :::; 1)), and as discussed

previously, the N-shattering of I implies its G-, P- and GC-shattering.

We can see that F 's cardinality is as given in the lemma by breaking the elements of F

up into subsets consisting of the elements with exactly i non-zero elements, 0 � i � d, and

for each i further breaking these up according to which i elements are nonzero. 2

For our next lemma, we give an upper bound on the cardinality of sets of a given

GC-dimension, and thereby that of sets of a given G- or P-dimension. Our argument is a

generalization of that given by Sauer in [Sau72], and is similar to Natarajan's generalization

of this argument in [Nat89].
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which in turn implies that

P

max

(d;m;N

1

; :::; N

m

) � GC

max

(d;m;N

1

; :::; N

m

)

G

max

(d;m;N

1

; :::; N

m

) � GC

max

(d;m;N

1

; :::; N

m

)

GC

max

(d;m;N

1

; :::; N

m

) � N

max

(d;m;N

1

; :::; N

m

)

for all relevant d;m 2 Z

+

; N

1

; :::; N

m

2 N.

Our main result is stated below, and will be proved in the following section. In the

following, for each i;m 2 Z

+

, let �

mi

� 2

N

m

be de�ned by

�

mi

= fS � N

m

: jSj = ig:

Theorem 1.2: For all d;m 2 Z

+

; N

1

; :::; N

m

2 N such that d � m,

G

max

(d;m;N

1

; :::; N

m

) =

P

max

(d;m;N

1

; :::; N

m

) =

GC

max

(d;m;N

1

; :::; N

m

) =

d

X

i=0

X

S2�

mi

Y

k2S

N

k

:

When there is an N 2 N such that N

i

= N for all i; 1 � i � m, we obtain the following

corollary, which is useful for obtaining learning results such as those in [Hau89].

Corollary 1.3: Let d;m 2 Z

+

; N 2 N be such that d � m. Let

F � f0; :::; Ng

m

such that F has G-, P- or GC-dimension no greater than d. Then

jF j �

d

X

i=0

 

m

i

!

N

i

:

Proof: Follows from Theorem 1.2 by substituting N for each N

k

and collecting terms. 2

Using similar techniques, we can establish the following.

Theorem 1.4: For all d;m 2 Z

+

; N

1

; :::; N

m

2 N such that d � m,

d

X

i=0

X

S2�

mi

Y

k2S

N

k

� N

max

(d;m;N

1

; :::; N

m

)

�

d

X

i=0

X

S2�

mi

Y

k2S

 

N

k

+ 1

2

!

:

This gives a result similar to that obtained by Natarajan [Nat89] in the special case

above.

Corollary 1.5: Let d;m 2 Z

+

; N 2 N be such that d � m. Let

F � f0; :::; Ng

m

such that F has N-dimension no greater than d. Then

jF j �

d

X

i=0

 

m

i

! 

N + 1

2

!

i

Note that both Corollary 1.3 and Corollary 1.5 give Sauer's result (Theorem 1.1) in the

case N = 1.
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with the corresponding de�nition for GC-shattering. The GC-dimension of F is denoted by

GC-dim(F ).

Note that if N

i

= 1 for all i; 1 � i � m, all of these dimensions reduce to the VC-

dimension. This can be seen by viewing the subsets ofN

m

in the de�nition of VC-dimension

as elements of f0; 1g

m

. Then F � f0; 1g

m

shatters I � N

m

exactly when f0; 1g

jIj

� F

j

I

.

It can now easily be veri�ed that, for each function � given above, F is shattered exactly

when F is �-shattered.

We now look at a fourth generalization of the VC-dimension.

Choose  :N

3

! f0; 1; ?g. Extend  to

[

k2N

2

N

k

�N

k

�N

k

as above. We say that I is -shattered by F if there exist �y; �z 2 X

j

I

such that for all

i; 1 � i � k, y

i

< z

i

and

f0; 1g

jIj

= (F

j

I

; �y; �z):

Here we say that �y and �z witness F 's -shattering of I and say

�

f 2 F satis�es

�

b 2 f0; 1g

jIj

if and only if

(

�

f

j

I

; �y; �z) =

�

b:

We say F N-shatters I if F -shatters I with  given by

(i; j; l) =

8

>

<

>

:

1 if i = j

0 if i = l

? otherwise

:

The Natarajan-dimension (or N-dimension) of F is de�ned to be its -dimension in this case.

This de�nition appears in [Nat89]. The N-dimension also reduces to the VC-dimension when

N

i

= 1 for all 1 � i � m.

De�ne

P

max

(d;m;N

1

; :::; N

m

) = maxfjF j : F �

m

Y

i=1

f0; :::; N

i

g;P-dim(F ) � dg

G

max

(d;m;N

1

; :::; N

m

) = maxfjF j : F �

m

Y

i=1

f0; :::; N

i

g;G-dim(F ) � dg

GC

max

(d;m;N

1

; :::; N

m

) = maxfjF j : F �

m

Y

i=1

f0; :::; N

i

g;GC-dim(F ) � dg

N

max

(d;m;N

1

; :::; N

m

) = maxfjF j : F �

m

Y

i=1

f0; :::; N

i

g;N-dim(F ) � dg

It is easily veri�ed that if a set F N-shatters a set, it also GC-shatters it, and if F

GC-shatters a set, it also G-shatters it and P-shatters it. This implies that

N-dim(F ) � GC-dim(F )

GC-dim(F ) � P-dim(F )

GC-dim(F ) � G-dim(F )
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De�ne

F

j

I

= f

�

f

j

I

:

�

f 2 Fg:

Suppose that we extend Sauer's de�nition of shattering to say that F shatters I if and

only if F

j

I

= X

j

I

. Generalizations of Sauer's result using this extension of the de�nition of

shattering are given in [Alo83] [KM78] [Ste78]. Unfortunately, if N

1

= ::: = N

m

= N , the

bounds obtained grow exponentially with N . For applications such as that given in section

3, a generalization of shattering which gives rise to bounds on jF j that grow polynomially

in m and N is desirable. We extend Sauer's result to some such generalizations which were

given in [Nat89] [Pol84].

Choose � : N�N! f0; 1; ?g. Extend � to

[

k2N

N

k

�N

k

by de�ning

�(�x; �y) = (�(x

1

; y

1

); :::; �(x

k

; y

k

)):

Extend � further to 2

N

k

�N

k

by de�ning

�(S; �y) = f�(�s; �y) : s 2 Sg:

We say that I is �-shattered by F if there exists �y 2 X

j

I

such that

f0; 1g

jIj

� �(F

j

I

; �y):

We say that �y witnesses F 's �-shattering of I and that

�

f 2 F satis�es

�

b 2 f0; 1g

jIj

if and

only if �(

�

f

j

I

; �y) =

�

b. The �-dimension of F is the cardinality of the largest subset of N

m

shattered by F .

We say F � X Pollard-shatters (P-shatters) I if F �-shatters I with � de�ned by

�(i; j) =

(

1 if i � j

0 if i < j

and de�ne the Pollard-dimension (hereafter called the P-dimension) of F to be its �-

dimension in this case. We denote the P-dimension of F by P-dim(F ). This de�nition

is discussed in [Hau89][Pol84][Pol89]. It is called the pseudo dimension in [Pol89] and the

combinatorial dimension in [Hau89].

Graph-shattering (G-shattering) and the Graph-dimension (G-dimension) are de�ned

similarly with � de�ned by

�(i; j) =

(

1 if i = j

0 if i 6= j

:

The G-dimension of F is denoted by G-dim(F ). This de�nition is treated in [Nat89].

For the purpose of bounding the cardinality of sets of a given dimension using either of

the previous two de�nitions, we de�ne the GC-dimension of F to be its �-dimension when

� is given by

�(i; j) =

8

>

<

>

:

1 if i = j

0 if i < j

? if i > j
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1. Introduction

Let N denote the positive integers, Z

+

denote the nonnegative integers and Z denote

the integers. Let N

0

= ; and for each m 2 N, let N

m

be the set f1; :::; mg.

We begin by stating Sauer's result [Sau72]. Vapnik and Chervonenkis independently

proved a similar lemma in [VC71].

Let m 2 Z

+

. Let F be a family of subsets of N

m

. If I is a subset of N

m

, we say that I

is shattered by F if and only if

ff \ I : f 2 Fg = 2

I

:

The Vapnik-Chervonenkis(VC) dimension of F [VC71] is the cardinality of the largest subset

of N

m

shattered by F .

Theorem 1.1 ([Sau72]): If the VC-dimension of F is d, then

jF j �

d

X

i=0

 

m

i

!

and this bound is tight; i.e., for all d;m 2 Z

+

; d � m, there exists F � 2

N

m

of VC-dimension

d that meets this upper bound.

In this paper, we look at some generalizations of the above de�nition of dimension and

of Theorem 1.1.

Following [Bon72], let (m; k)! (n; l) denote the statement: If F � 2

N

m

, jF j = k, then

there exists I � N

m

such that jI j = n

jff \ I : f 2 Fgj � l:

Sauer's result can now be stated as

 

m; 1 +

d�1

X

i=0

 

m

i

!!

! (d; 2

d

):

Proofs of other statements of the form (m; k)! (n; l) are given in [Bon72] [Fra83] [Tom81].

Let m 2 Z

+

. Let N

i

2 N; 1 � i � m. Let

F � X =

m

Y

i=1

f0; :::;N

i

g:

Note that when N

i

= 1 for all i; 1 � i � m, F is essentially a family of subsets of N

m

, as

in Sauer's lemma. For

�

f 2 X , denote by f

i

the ith coordinate of

�

f , and similarly for all

cartesian products used in the paper.

Let I = fi

1

; :::; i

k

g �N

m

, with i

1

< i

2

< � � � < i

k

. De�ne

X

j

I

=

k

Y

j=1

f0; :::;N

i

j

g:

For each

�

f 2 X , let

�

f

j

I

= (f

i

1

; :::; f

i

k

):
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We generalize Sauer's lemma to multivalued functions. In addition, we give an

application of this result, bounding the uniform rate of convergence of empirical

estimates of the expectations of a set of random variables to their true expectations.


