
6. Conclusion 23

References

[AP87] T. R. Allen and D. A. Padua. Debugging fortran on a shared memory machine.

In Proc. International Conf. on Parallel Processing, pages 721{727, 1987.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control.

Communications of the ACM, 8(9), September 1965.

[EGP89] P. A. Emrath, S. Ghosh, and D. A. Padua. Event synchronization analysis for

debugging parallel programs. In Supercomputing '89, November 1989. Reno,

NV.

[EP88] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in

parallel programs. In Proc. Workshop on Parallel and Distributed Debugging,

pages 89{99, May 1988.

[Fid88] C. J. Fidge. Partial orders for parallel debugging. In Proc. Workshop on

Parallel and Distributed Debugging, pages 183{194, May 1988.

[GPH*88] M. D. Guzzi, D. A. Padua, J. P. Hoeinger, , and D. H. Lawrie. Cedar fortran

and other vector and parallel fortran dialects. In Proceedings Supercomputing

'88, pages 114{121, 1988.

[IBM88] Parallel FORTRAN language and library reference. IBM, 1988.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

CACM, 21(7):558{565, July 1978.

[Lam86] Leslie Lamport. The mutual exclusion problem: part i{a theory of interprocess

communication. JACM, 33(2):290{312, April 1986.

[Mat88] F. Mattern. Virtual time and global states of distributed systems. In M.

Cosnard, editor, Proceedings of Parallel and Distributed Algorithms, 1988.

[McD89] C. E. McDowell. A practical algorithm for static analysis of parallel programs.

Journal of Parallel and Distributed Computing, June, 1989.

[NM89] R. Netzer and B. P. Miller. Detecting Data Races in Parallel Program Exe-

cutions. Technical Report 894, University of Wisconsin-Madison, November

1989.

[Tay84] R. N. Taylor. Debugging Real-Time Software in a Host-Target Environment.

Technical Report, U.C. Irvine Tech. Rep. 212, 1984.

6. Conclusion 22

of events. We feel that this is misleading { an execution is more properly viewed as a

partial ordering on the events. Fidge and Mattern have pioneered the use of time vectors

to represent these partial orders. We have extended this approach by using time vectors

to analyze sets of executions rather than just capturing a single execution.

6. Conclusion 21

After adding the virtual edge from BW1

to CW1, CW1 becomes the second wait

on S1. Using Algorithm 5: S(BW1,CW1)

is f(BW1,CW1), (BW1,CS1), (BW1,CS2),

(BS1,CW1), (BS1,CS1), (BS1,CS2)g.

After adding the virtual edge from CS1 to

BW1, BW1 becomes the second wait on

S1. Again using Algorithm 5: S(CW1,BW1)

is f(BW1,CW1), (BS1,CW1), (BS2,CW1),

(BW1,CS1), (BS1,CS1), (BS2,CS1)g.

S(BW1,CW1) \S(CW1,BW1) = f(BW1,CW1),(BW1,CS1),(BS1,CS1),(BS1,CW1)g

Figure 5.1: Detect Critical Regions

The problem is made even more di�cult when there is no clear correspondence between

the blocking and enabling events in the trace.

This paper contains a series of algorithms for extracting useful information from

sequential traces with anonymous synchronization. The �rst algorithm is very similar to

the vector timestamp methods of Fidge and Mattern [Fid88, Mat88]. The other algorithms

systematically manipulate these vectors of timestamps in order to discover pairs of events

that must be ordered in every execution which is consistent with the trace. In addition to

presenting our algorithms, we have also proved their correctness.

Although our algorithms �nd many of these \must-be-ordered" relationships, we have

been unable to prove that they �nd all of them. We are investigating additional procedures

which can increase the number of \must-be-ordered" relationships found. We would also

like to distinguish all pairs of events that are concurrent in some consistent execution from

pairs of events which can happen in either order, but not concurrently.

Some parallel programming environments view a parallel execution as a linear sequence

6. Conclusion 20

� If s � w � 2 =) e k e

0

, i.e., if there are enough signals for both waits to precede,

then the two waits can happen concurrently.

� If s�w = 1 =) :(e k e

0

), i.e., there is only one signal for a wait to precede, then we

can conclude that they cannot happen concurrently. The starting points of critical

regions have been found. The following procedure is used to determine unordered

sequential event pairs in critical region.

1. First, assume that event e happened before e

0

. Thus e

0

is the w + 2nd wait for

S. Using Algorithm 4 with k = w+ 2 to calculate time vectors for event e

0

and

other events.

Let S(e; e

0

) = f(e

i

; e

j

) : (e

i

; e

j

) 2 Conc; e

i

2 E

i

; e

j

2 E

j

; and �̂ (e

i

)[i] � �̂(e

j

)[i]

or �̂ (e

j

)[j] � �̂ (e

i

)[j]g.

Undo the timestamp updating.

2. Similarly, assume that event e

0

happened before e. Thus e is the w + 2nd wait

for S. Using Algorithm 4 with k = w + 2 to calculate time vectors for event e

and other events.

Let S(e

0

; e) = f(e

i

; e

j

) : (e

i

; e

j

) 2 Conc; e

i

2 E

i

; e

j

2 E

j

; and �̂ (e

i

)[i] � �̂(e

j

)[i]

or �̂ (e

j

)[j] � �̂ (e

i

)[j]g.

Undo the timestamp updating.

Let Seq

t

= S(e; e

0

) \ S(e

0

; e). Notice that Seq

t

maintains the set of unordered

event pairs in the critical region. They are not concurrent in any executions,

whenever e happened before e

0

or e

0

occurred before e.

3. Let Seq = Seq [Seq

t

.

Let Conc = Conc� Seq

t

.

� s� w � 0 means neither of them can precede. In this case, there is a deadlock.

End Algorithm 5.

Algorithm 5 generates two sets of event pairs. Conc contains those concurrent event

pairs. Seq contains those unordered sequential event pairs. The remaining event pairs are

ordered. Figure 5.1 shows the application of this algorithm to the trace from Figure 1.1.

6 Conclusion

One of the most di�cult tasks in debugging parallel programs is determining the timing

relationships between the events performed by the parallel program. Although several

parallel systems include facilities for creating a trace of the signi�cant events, the sequential

nature of the trace makes it di�cult to determine which events could have happened in

parallel.

5. Adjusting the Timestamps to Determine Concurrency 19

From equation 4.6 we know that at most k non-shadowed signals (excluding e

i

) in R(e) do

not follow e

i

(i.e. the k + 1st smallest and later always follow e

i

).

Therefore, in every execution, at least one of the k + 1 non-shadowed signals preceding e

follows (or is equal to) e

i

.

By transitivity e

i

happens before e in every execution consistent with, so, e

i

� e.

5 Adjusting the Timestamps to Determine Concurrency

Up to now, we have computed a partial order that reects a safe order relation between

events from the trace E. Given any two events e

i

2 E

i

and e

j

2 E

j

, if �̂(e

i

)[i] � �̂ (e

j

)[i] or

�̂(e

j

)[j] � �̂(e

i

)[j] then the two events are ordered. Otherwise, e

i

and e

j

are two unordered

events. The unordered events are not necessarily concurrent events. They may have to

occur sequentially. In this case, we call them unordered sequential events. For example,

if the program has a properly implemented lock around a critical region, then di�erent

executions may have tasks entering the critical region in di�erent orders. In no execution,

however, do two tasks concurrently enter the critical region.

When debugging parallel programs, we would like to distinguish those pairs of events

that are concurrent in some consistent execution from pairs of events which can happen

in either order, but not concurrently. Unfortunately, the concurrent relation cannot be

determined immediately from the timestamps. We cannot necessarily say e

i

can happen

concurrently with event e

j

even if we know �̂(e

i

) k �̂(e

j

). As an example, in Figure 4.2,

even though �̂ (BW1) k �̂ (CW1), the two W1 events cannot occur at the same time. It is,

in general, a hard problem to determine whether two unordered events can really happen

concurrently.

Let e; e

0

2 E be a pair of events. Event e may happen concurrently with e

0

only

if �̂ (e) k �̂ (e

0

). The following procedure can be used to detect critical regions, and

to determine unordered sequential event pairs in critical regions. The algorithm will

calculate two sets. The set Conc contains concurrent event pairs, while the set Seq

contains unordered sequential event pairs. Initially, we assume that all unordered events are

potential concurrent events. Once some critical regions have been detected, the algorithm

will move those unordered sequential event pairs from Conc to Seq.

Algorithm 5: Initially let Conc = ffe; e

0

g : e; e

0

2 E, and �̂(e) k �̂(e

0

) g. Let Seq = �.

Repeat the following procedure until no more changes are possible.

Pick any two unordered wait events e and e

0

for semaphore S where (e; e

0

) 2 Conc.

Let G(e; e

0

) be the set of wait events for semaphore S which precede either event e or e

0

(based on current timestamps �̂).

Let R(e; e

0

) = fe

00

: e

00

is a signal event using S and e

00

precedes e or e

0

g [fe

00

: e

00

is not

shadowed with respect to either e or e

0

, and e

00

does not follow either e or e

0

g.

Let s =j R(e; e

0

) j and w =j G(e; e

0

) j.

4. Expanding the Safe Order Relation 18

Figure 4.2: Expanding the Safe Order Relation

Case1: Assume �̂ (e)[i] = �̂(e

p

)[i] then

�̂ (e

i

)[i] � �̂(e

p

)[i]) e

i

� e

p

by the induction hypothesis (4.4)

) e

i

� e by transitivity (4.5)

Case2: �̂(e)[i] 6= �̂ (e

p

)[i].

Event e is a wait on semaphore S. Let k be computed as speci�ed in the algorithm, then

�̂(e

i

)[i] � �̂ (e)[i] = min

k+1

f�̂(e

s

)[i] : e

s

2 R(e)g (4.6)

where non-shadowed signal set R(e) is computed according to the algorithm, and

min

k+1

selects the k + 1st smallest value from the set.

In every execution, at least k + 1 signal events precede e since there are at least k waits

on the same semaphore must happen before e.

In any arbitrary execution P, let k

s

be the number of shadowed signals (with respect to e)

that precede e.

By transitivity the corresponding k

s

shadowing waits precede e, and at least k + k

s

waits

on S precede wait event e.

Therefore, at least k + k

s

+ 1 signal events precede e in the execution and k + 1 of them

are non-shadowed signals.

4. Expanding the Safe Order Relation 17

Therefore, the signal event e

0

s

is shadowed by some wait event e

0

w

where e

s

� e

0

w

� e

0

s

with

respect to e.

This forms a contradiction with the assumption that e

0

s

is shadowed by e

w

.

The Algorithm 4 is based on the following observation. If e is a wait event on semaphore

S and k other wait events on S must happen before e, then at least k + 1 non-shadowed

signal events happen before e in every execution consistent with the trace.

Algorithm 4: Initially �̂(e) = �

0

(e) for all events e 2 E.

Repeat the following procedure until no more changes are possible.

Pick an event e. If e is a wait event using semaphore S, let

� W (S) be the set of wait events on semaphore S,

� k be the number of wait events e

w

2 W (S) such that e

w

6= e and if e

w

2 E

i

then

�̂(e

w

)[i] � �̂ (e)[i], and

� R(e) = fê : ê is a signal event on S, e 6� ê as indicated by the �̂ timestamps, and ê

is not shadowed with respect to eg

and v

s

= the k + 1st component-wise minimum of �̂ (ê) for ê 2 R(e).

If e is not a wait event, let v

s

be the 0 vector.

�̂(e) = max(�̂ (e

p

); �

#

(e); v

s

)

End Algorithm 4.

Figure 4.2 shows the new �̂ timestamps generated when Algorithm 4 is executed starting

with Figure 3.1.

Theorem 5: Algorithm 4 generates only safe order relations, i.e., for any two events

e

i

2 E

i

and e 2 E:

�̂ (e

i

)[i] � �̂(e)[i]) e

i

� e

Proof: The proof is by induction on the number of updates. As a base case the theorem

holds for the initial values of �̂ from Theorem 4.

Assume the theorem holds before some update. Consider two events e

i

2 E

i

and e 2 E

where

�̂(e

i

)[i] > �̂ (e)[i] before the update, and

�̂(e

i

)[i] � �̂ (e)[i] after the update.

Because �̂(e

i

)[i] never changes, �̂(e)[i] was updated.

We consider two cases.

4. Expanding the Safe Order Relation 16

Figure 4.1: Shadowed Signal Event

Since for each shadowed signal there is only one corresponding shadowing wait (by

De�nition 15), we have j R

i

s

(e) j�j R

i

w

(e) j.

We only need to show that j R

i

s

(e) j=j R

i

w

(e) j.

Assume to the contrary that j R

i

s

(e) j>j R

i

w

(e) j, which means that there are at least two

signals e

s

and e

0

s

in R

i

s

(e) shadowed by some e

w

2 R

i

w

(e).

Assume e

w

� e

s

� e

0

s

. Let w

1

and s

1

be the number of waits and signals on S performed by

T

i

between e

w

and e

s

, w

2

and s

2

be the number of waits and signals on S performed by T

i

between e

s

and e

0

s

. This is shown in the following which represents the local subsequence

of events performed by some task, where time moves from left to right.

j � s

1

�!j j � s

2

�!j

. . . e

w

. . . e

s

. . . e

0

s

. . .

j � w

1

�!j j � w

2

�!j

Therefore,

w

1

= s

1

since e

s

is shadowed by e

w

(4.1)

w

1

+ w

2

= s

1

+ s

2

+ 1 since e

0

s

is shadowed by e

w

(4.2)

Combining equations 4.1 and 4.2 gives us

w

2

= s

2

+ 1 (4.3)

However, equation 4.3 means that the subsequence between e

s

and e

0

s

contains more waits

on S than signals.

4. Expanding the Safe Order Relation 15

add additional safe orderings into the partial order using the fact that only some wait

events in the trace can actually proceed immediately after each signal event. The partial

order resulting from this �nal step will be represented by the time vectors �̂(e). Initially,

�̂(e) = �

0

(e).

De�nition 14: Let e 2 E

i

be a wait event and e

s

2 E

j

be a signal event on the same

semaphore S where �̂(e) k �̂ (e

s

). Let E(e; e

s

) be the subsequence of E

j

containing every

event e

j

where e

j

� e

s

and �̂(e

j

) k �̂ (e). If any su�x of E(e; e

s

) contains more wait events

on S than signal events on S, then the signal event e

s

is shadowed with respect to e.

De�nition 15: Let E

0

(e; e

s

) be the shortest su�x of E(e; e

s

) which contains more wait

events than signal events on S, and let e

w

be the �rst event of E

0

(e; e

s

). We say e

s

is

shadowed by event e

w

with respect to e.

Lemma 2: Given a wait event e and a signal event e

s

on the same semaphore S, if e

s

is

shadowed by some event e

w

with respect to e then

� Event e

w

is a wait event on semaphore S,

� The event e

w

, which shadows e

s

with respect to e, is unique. We de�ne e

w

to be the

shadowing wait event corresponding to e

s

, and

� The subsequence between e

w

and e

s

(in the same task) contains as many signal events

as wait events on semaphore S.

Proof: The proof is straightforward from the de�nitions.

De�nition 16: For any wait event e 2 E, let

R

s

(e) = fe

s

: e

s

is shadowed with respect to e g, and

R

w

(e) = fe

w

: 9e

s

2 R

s

(e) s.t. e

s

is shadowed by e

w

with respect to e g.

In the example shown in Figure 4.1, the signal event CS1 is shadowed by CW1 with

respect to two wait events performed by task B.

Lemma 3: For any wait event e 2 E, the correspondence between shadowed signal and

shadowing wait is one to one, i.e.,

j R

s

(e) j=j R

w

(e) j :

Proof: Let e 2 E be a wait event on semaphore S. From De�nitions 14 and 15, we know

that any pair of corresponding shadowed signal and shadowing wait belongs to the same

task.

Therefore, it is enough to show that the correspondence between shadowed signal and

shadowing wait is one to one within each task T

i

where 1 � i � n.

Let R

i

s

(e) and R

i

w

(e) be the sets of shadowed signal events and shadowing wait events

performed by task T

i

with respect to e.

4. Expanding the Safe Order Relation 14

Equation 3.7 implies for some c

max(�

P

(e

p

); �

#

(e); �

P

(e

s

))[c] < max(�

0

(e

p

); �

#

(e);min(�

0

(e

s

1

); . . . �

0

(e

s

m

)))[c]: (3:8)

Equation 3.5 and 3.8 imply

�

P

(e

s

)[c] < min(�

0

(e

s

1

); . . . �

0

(e

s

m

))[c] (3.9)

�

P

(e

s

)[c] < �

0

(e

s

)[c] (3.10)

�

P

(e

s

) 6� �

0

(e

s

) (3.11)

Again 3.11 contradicts the assumption that e is the �rst event in the topological order of

the partial order P such that �

P

(e) 6� �

0

(e).

Therefore, there is no event e in any execution P such that �

P

(e) 6� �

0

(e).

Theorem 4: After rewinding, we have a partial order that is a safe order relation, i.e.

�

0

(e

i

) < �

0

(e)) e

i

� e:

Proof: Let i be the task performing e

i

, so �

0

(e

i

)[i] = �

P

(e

i

)[i] = �

#

(e

i

)[i].

�

0

(e

i

)[i] � �

0

(e)[i] from the hypothesis (3.12)

�

0

(e

i

)[i] � �

P

(e)[i] by Lemma 1 (3.13)

�

P

(e

i

)[i] � �

P

(e)[i] since e

i

2 E

i

(3.14)

e

i

P

! e for all P and (3.15)

e

i

� e from the de�nition of �: (3.16)

The rewinding process is based on the fact that any signal event might enable any

wait event on the same semaphore. We may have lost some safe order relations during

rewinding. As an example, in Figure 3.1, time vector �

0

says that two W2 events and

the W1 event in task A may happen concurrently with all of the events in task B and C.

However, it is obvious that the W1 in task A must happen after the two S1 events in task

B and C, and the second W2 in task A has to wait until all of the events in B and C have

occurred. The �nal step in the algorithm will �nd some of the order relations lost during

the rewinding procedure.

4 Expanding the Safe Order Relation

The result of the rewind step is a partial order that is a safe order relation. It is an

overly conservative safe order relation because it assumed that any wait could happen

immediately after any signal for the same semaphore. We now undertake a process to

3. Rewinding the Time Vectors 13

From the inductive hypothesis

�

0

(e) � min(�

0

(e

S

1

); . . . ; �

0

(e

S

k

));

and from the algorithm

min(�

0

(e

S

1

); . . . ; �

0

(e

S

k

)) < �

0

(ê):

Therefore �

0

(e) < �

0

(ê).

After rewinding, we have a partial order that is a safe order relation. If event e

i

has

an earlier time vector than e, we can say e

i

will happen before e in all executions that are

consistent with the given trace. Before we prove this in theorem 4 we �rst present one

lemma used in the proof.

Lemma 1: For any execution P consistent with a trace E and for all events e 2 E

�

P

(e) � �

0

(e)

Proof: Assume to the contrary that there is an execution P and some event e such that

�

P

(e) 6� �

0

(e).

In any topological ordering (with respect to partial order P) of events in E, let e be the

�rst event in the topological ordering such that �

P

(e) 6� �

0

(e).

We consider two cases.

Case1: If e is not a wait event then from Algorithms 1 and 3:

�

0

(e) = max(�

0

(e

p

); �

#

(e)) (3.3)

�

P

(e) = max(�

P

(e

p

); �

#

(e)) (3.4)

Note that �

P

(e

p

) 6� �

0

(e

p

) by our choice of e. This contradicts the assumption that e is the

�rst event in the topological order of the partial order P such that �

P

(e) 6� �

0

(e).

Case2: Event e is a wait event. From the choice of e we get

�

P

(e

p

) � �

0

(e

p

) (3.5)

�

P

(e) 6� �

0

(e) (3.6)

Substituting the de�nitions of �

P

and �

0

into 3.6 gives:

max(�

P

(e

p

); �

#

(e); �

P

(e

s

)) 6� max(�

0

(e

p

); �

#

(e);min(�

0

(e

s

1

); . . . �

0

(e

s

m

))) (3:7)

where e

s

is the corresponding signal event of e and thus appears before e in the topological

order, and each e

s

i

for 1 � i � m is one of the m signal events for the semaphore waited

on by e

w

.

3. Rewinding the Time Vectors 12

Figure 3.1: Rewinding the Time Vectors

Proof: It is enough to show that �

0

(e)[i] � �

0

(ê)[i]) �

0

(e) < �

0

(ê). The opposite direction

follows directly from the de�nition of vector comparison.

The proof is by induction on the number of updates made by Algorithm 3. As the base

case, from theorem 2, the theorem holds for the initial �

0

values.

Assume the theorem holds before some update. Consider two arbitrary events, e 2 E

i

and

ê 2 E

j

, after updating a single time vector.

Since Algorithm 3 does not change �

0

(e)[i] and never increases time vectors, updating �

0

(e)

can not make �

0

(e)[i] � �

0

(ê)[i]) �

0

(e) < �

0

(ê) false. Therefore, we consider three cases

when �

0

(ê) was updated.

Case1: i = j

If e = ê

p

then from the algorithm �

0

(e) < �

0

(ê).

Otherwise, �

0

(e) < �

0

(ê

p

) which implies �

0

(e) < �

0

(ê).

Case2: i 6= j and �

0

(ê)[i] = �

0

(ê

p

)[i].

This implies �

0

(e)[i] � �

0

(ê

p

)[i]. Since neither �

0

(ê

p

) nor �

0

(e) changed, by the induction

hypothesis �

0

(e) � �

0

(ê

p

), and the algorithm ensures that �

0

(ê

p

) < �

0

(ê). Therefore

�

0

(e) < �

0

(ê).

Case3: i 6= j and �

0

(ê)[i] 6= �

0

(ê

p

)[i]. This implies that ê is a wait event for some semaphore

S.

Let e

S

1

. . . e

S

k

be the signal events for the semaphore S. From the algorithm de�nition and

the assumption we know

�

0

(e)[i] � �

0

(ê)[i] = min(�

0

(e

S

1

); . . . ; �

0

(e

S

k

))[i]:

3. Rewinding the Time Vectors 11

3 Rewinding the Time Vectors

The result of the initialize step in the previous section is an unsafe order relation. It is

unsafe because we assumed that the kth signal event for a particular semaphore was the

one allowing the kth wait event to precede. The next step is to rewind the time vectors to

account for the fact that any signal event might be the one that allowed any wait event on

the same semaphore to complete. We use �

0

(e) to represent the new time vector assigned

to event e during and after the rewinding process. Initially �

0

is the same as � .

Suppose e is a wait event, and e

1

and e

2

are two signal events, either of which could

have caused e to complete. In this case, we only know that either e

1

or e

2

must have

happened before e. The trace might be in any of the forms:

. . . ; e

1

; . . . ; e; . . . ; e

2

; . . .;

. . . ; e

2

; . . . ; e; . . . ; e

1

; . . .;

. . . ; e

1

; . . . ; e

2

; . . . ; e; . . .; or

. . . ; e

2

; . . . ; e

1

; . . . ; e;

However, we can conclude that the common ancestors of e

1

and e

2

must occur before e.

Therefore if e

a

� e

1

and e

a

� e

2

then e

a

� e. The rewind step de�ned below uses this fact

to obtain a safe order relation.

Algorithm 3: Initially, 8e 2 E; �

0

(e) = � (e).

Repeat the following procedure until no further changes are possible.

For all event e 2 E, let

�

0

(e) = max(�

0

(e

p

); �

#

(e); v

s

)

where if e is wait event on semaphore S:

v

s

= min(�

0

(e

s

1

); . . . ; �

0

(e

s

k

)) (3.1)

where e

s

1

. . . e

s

k

are all the signal events for the semaphore S. (3.2)

otherwise v

s

is the 0 vector.

End Algorithm 3.

Observe that the only di�erence between Algorithm 3 and Algorithm 2 (used to

compute �) is that for wait events in Algorithm 3, v

s

is the minimum of a set of time

vectors, which includes the time vector used for v

s

in computing � . Therefore the values

of �

0

will only get smaller as Algorithm 3 executes.

Theorem 3: For any two distinct events e 2 E

i

; ê 2 E

j

,

�

0

(e)[i] � �

0

(ê)[i]() �

0

(e) < �

0

(ê)

2. Initializing the Vectors 10

2. If e

l

is the corresponding signal event and e

i

! e

l

then � (e

i

)[i] � � (e

l

)[i] and e

l

! e

) � (e

l

)[i] � � (e)[i] and the result follows.

3. If e

l

is the corresponding signal event and e

i

6! e

l

then

e

i

! e

p

Property 8 (2.8)

� (e

i

)[i] � � (e

p

)[i] from the inductive hypothesis (2.9)

� (e

p

)[i] � � (e)[i] from the de�nition of � (2.10)

and the result follows.

Theorem 2: For any two distinct events e

i

2 E

i

; e 2 E,

� (e

i

)[i] � � (e)[i]() � (e

i

) < � (e)

Proof: The(direction is trivial. For the) direction, assume to the contrary that there

are two events, e

i

2 E

i

and e 2 E where � (e

i

)[i] � � (e)[i] but � (e

i

) 6< � (e). Thus there is

some vector component c such that

� (e

i

)[c] > � (e)[c]: (2.11)

Let e

c

be the event occurring in E

c

with sequence number � (e

i

)[c] then

� (e

c

)[c] = � (e

i

)[c]: (2.12)

e

c

! e

i

from Theorem 1 and 2.12 (2.13)

e

i

! e from the hypothesis and theorem 1 (2.14)

e

c

! e from transitivity of ! (2.15)

� (e

c

)[c] � � (e)[c] from 2.15 and Theorem 1 (2.16)

Combining 2.12 and 2.16 forms a contradiction with 2.11.

Corollary 1: For any two distinct events e 2 E

i

, ê 2 E

j

, i 6= j:

� (e)[i] > � (ê)[i] and � (ê)[j] > � (e)[j] =) e k ê

The initialization process creates a partial ordering of the events in the trace. This

partial ordering corresponds to an execution which is strongly consistent with the trace.

It describes the happened before relation for the canonical execution.

Unfortunately, this partial order only gives the happened before relationships between

events for the canonical execution, i.e. it is an unsafe order relation. The kth signal event in

one execution might not necessarily be the kth signal in some other execution. Therefore,

event e may not happen before ê in some other execution even if it did in this execution.

Even when � (e) < � (ê) we cannot say e must happen before ê.

2. Initializing the Vectors 9

Proof: From Properties 3 and 7 we know that if either side holds then e

i

appears before

e in the trace. Therefore, it su�ces to prove that whenever the algorithm assigns a time

vector to some event e, and e

i

is any event appearing earlier in the trace (and thus already

assigned a time vector by the algorithm) the two conditions are equivalent. We prove this

by induction on the position of e in the trace.

After the �rst event is assigned a time vector, the theorem trivially holds as no distinct

pairs of events have been assigned time vectors. We now show that the time vector assigned

to the next event, e, satis�es the theorem assuming that the time vectors assigned to all

events appearing before e in the trace satisfy the theorem.

We �rst show that assuming � (e

i

)[i] � � (e)[i] then e

i

! e. If e 2 E

i

, so that the

two events are in the same task, T

i

, the implication follows because the selected vector

component is the event count for task T

i

. Otherwise the events occur in di�erent tasks

and

� (e)[i] = � (ê)[i]

where

ê is either

(

e

p

or possibly

e

j

if e is a wait event and e

j

is the corresponding signal event.

In either case ê has previously been assigned a time vector and

� (e)[i] = � (ê)[i] by the de�nition of � (2.1)

� (e

i

)[i] � � (ê)[i] from the assumption (2.2)

ê ! e from the de�nition of ê (2.3)

Either e

i

= ê and the theorem is proven or by the induction hypothesis e

i

! ê, and by

transitivity e

i

! e.

To prove that e

i

! e) � (e

i

)[i] � � (e)[i] we consider three cases.

Case1: If e 2 E

i

, so that the two events are in the same task, the result follows from

Properties 3 and 4.

Case2: If e is not a wait event then

� (e)[i] = � (e

p

)[i] (2.4)

e

i

! e

p

Property 8 (2.5)

� (e

i

)[i] � � (e

p

)[i] from the hypothesis (2.6)

� (e

i

)[i] � � (e)[i]: (2.7)

Case3: If e is a wait event then we have three subcases:

1. If e

i

is the corresponding signal event then the result trivially holds.

2. Initializing the Vectors 8

Algorithm 2: To compute initial time vectors, � (e

i

), from a trace E use algorithm 1 with

the following modi�cations.

� The kth wait event on semaphore S (in trace order) corresponds to the kth signal

event on S.

� The events are assigned time vectors in the order they appear in the trace.

End Algorithm 2.

For the given trace, Figure 1.1(a) shows the result of the initialization procedure.

The time vectors computed for the canonical execution have the following properties:

Property 4: If e and ê are two events in the same task T

i

and e occurred before ê in the

trace, then e! ê and � (e) < � (ê).

Property 5: If e and ê are the corresponding signal/wait pair (the kth signal and the kth

wait on the same semaphore S in the trace), then e! ê and � (e) < � (ê).

Property 6: At any point in the trace, the maximum value of any time vector component

is the number of events performed by the corresponding task up to that point.

Property 7: If e 2 E

i

and � (e)[i] � � (ê)[i] then either e = ê or e appears before ê in the

trace.

Because an event is only constrained to follow its predecessor in the same task, and in

the case of wait events, the corresponding signal, the following property holds.

Property 8: If e! ê then one of the following is true:

1. e = ê

p

,

2. e = ê

s

where ê is a wait event and ê

s

is the corresponding signal event,

3. e! ê

p

or

4. e! ê

s

where ê is a wait event and ê

s

is the corresponding signal event.

Given the correspondence between signal and wait events for execution P, events can

be assigned time vectors by using Algorithm 1. Mattern [Mat88] has shown that the time

vector �

P

correctly represents the partial order relation

P

!, i.e., for any pair of distinct

events e

i

2 E

i

and e 2 E,

�

P

(e

i

)[i] � �

P

(e)[i]() e

i

P

!e:

For completeness, we now prove that the initial time vectors, � , correctly represent the

happened before relation for the canonical execution.

Theorem 1: For any pair of distinct events e

i

2 E

i

and e 2 E,

� (e

i

)[i] � � (e)[i]() e

i

! e

2. Initializing the Vectors 7

1.3 An Overview of the New Algorithms

In the following sections we will introduce a series of algorithms to calculate di�erent

time vectors for trace events. By comparing their �nal time vectors, we can distinguish

many ordered events from the unordered, potentially concurrent, events. Our goal is a set

of time vectors where if event e

1

has an earlier time vector than e

2

, then e

1

will happen

before e

2

in all executions that are consistent with the given trace

3

.

The three phases of the algorithm are \initialize", \rewind", and \expand". The

initialization uses Algorithm 1. The resulting partial order is similar to that computed

by the algorithm of [Fid88]. This partial order is shown to be equivalent to the \happened

before",

P

!, relation for a canonical execution P . Note that the canonical execution is in

general not the same execution which generated the trace. The result of the rewinding

phase is a partial order that is a subrelation of the � relation. Unfortunately this safe

order relation is overly conservative, in that there may be many \must happen before"

relations that it does not include. The third and �nal phase results in a safe partial order

that is closer to the \must happen before" relation.

2 Initializing the Vectors

Before giving the algorithm for computing the initial time vectors, we de�ne a canonical

execution that will be used to verify the \correctness" of the time vectors.

De�nition 13: Given a trace E with the total ordering of events, <

E

, the partial order

P

! corresponding to the canonical execution P is constructed by selecting and taking the

transitive closure of the following subrelation of <

E

.

� If e

i

and e

j

are two events from the same task and e

i

<

E

e

j

then e

i

P

!e

j

.

� If e

i

and e

j

are the kth signal and wait events respectively on the same semaphore,

then e

i

P

!e

j

.

In the remainder of the paper we will use ! to mean

P

! where P is the canonical

execution de�ned above.

Property 3: If e! ê then e appears before ê in the trace.

3

Given a speci�c input and a trace, there are in general executions which are not consistent with that

trace, however, any such execution will contain a race if and only if a race occurred in the execution that

generated the trace [AP87].

1. Introduction 6

length n, where n is the total number of tasks.

2

Each task T

i

has its own vector component

C

i

[i] which guarantees a strict temporal ordering of events occurring in that task. A local

event counter which is incremented each time an event occurs in the task can be used as

the local clock.

Before presenting the algorithms for computing time vectors from a trace, we need to

de�ne some notation.

De�nition 9: For an event e 2 E

i

, e

p

is the previous event performed by the same task

T

i

if such an event exists.

De�nition 10: For an event e 2 E

i

, �

#

(e) is the time vector containing the local event

count for e in the ith position and zeros elsewhere.

De�nition 11: For any two time vectors u; v in Z

n

1. u � v () 8i(u[i] � v[i])

2. u < v () u � v and u 6= v

3. u k v() :(u < v) and :(v < u).

De�nition 12: For any k time vectors v

1

; . . . ; v

k

of Z

n

� min(v

1

; . . . ; v

k

) is a vector of Z

n

whose ith component is min(v

1

[i]; . . . ; v

k

[i]), and

� max(v

1

; . . . ; v

k

) is a vector of Z

n

whose ith component is max(v

1

[i]; . . . ; v

k

[i]).

The following algorithm (derived from [Mat88, Fid88]) computes time vectors for the

events in an execution. This algorithm requires the correspondence between signal and

wait events. The time vectors produced reect the execution's partial order.

Algorithm 1: Given the correspondence between signal and wait events for execution P ,

events are assigned time vectors, �

P

(e

i

), in topological order.

�

P

(e

i

) = max(v

t

; v

s

; �

#

(e

i

))

where

v

t

=

(

�

P

(e

p

i

) if e

i

has a predecessor

the 0 vector otherwise

v

s

=

8

>

<

>

:

�

P

(ê) if e

i

is a wait event and

ê is the corresponding signal event

the 0 vector if e

i

is not a wait event

End Algorithm 1.

2

We use an integer valued clock in our discussion although a real number valued clock can also be used.

1. Introduction 5

De�nition 4: An execution is strongly consistent with a trace if it is consistent and

the total order speci�ed by the trace is an extension of the partial order speci�ed by the

execution.

For example, consider the trace fAS1, CW1, CS1, CS2, BW1, BS1, BS2, AW2, AW2,

AW1g. Event AS1 means task A performs a signal(S

1

), AW1 means task A performs

wait(S

1

) etc. Figure 1.1 shows the four executions which are consistent with this trace. In

addition, the executions (a) and (b) are strongly consistent with the trace.

De�nition 5: Consider the correspondence between signal and wait events in execution P

and two distinct events e; e

0

. If e

P

6! e

0

and e

0

P

6! e then events e and e

0

are concurrent, and

thus can happen at the same time, in the execution.

De�nition 6: The symbol \k" is used to represent the concurrent relationship between

events. Two events e and e

0

are concurrent, i.e. e k e

0

, if they can happen at the same

time in some execution which is consistent with the trace.

De�nition 7: The symbol \�" is used to represent the must happen before relationship

between events. Given two events e and e

0

, if e � e

0

, then event e will happen before e

0

in

all executions that are consistent with the given trace. Events e and e

0

are ordered if e � e

0

or e

0

� e, otherwise, they are unordered.

Concurrent events are always unordered, but unordered events need not be concurrent.

For example, see events BW1 and CW1 in Figure 1.1.

Notice that, in general, e � e

0

is di�erent from the relation e

P

!e

0

for any choice of P .

The former relation tells us that e must happen before e

0

in all executions consistent with

the trace being analyzed, while the later says that e happened before e

0

in the execution

represented by the partial order P . If e � e

0

then e

P

!e

0

for all consistent executions P .

But the converse condition does not hold.

In Figure 1.1, CS1

P

! BW1 if P is the execution (a). However, if P is the execution

(c), BS1

P

! CW1, and BW1

P

! CS1 by transitivity. Event AS1 happens before BW1 and

CW1 in all executions consistent with the trace, therefore AS1 � BW1 and AS1 � CW1.

There is no order relation between event CS2 and BW1 in execution (a). Therefore, they

can happen concurrently, i.e., CS2 k BW1.

De�nition 8: A partial ordering R on the events is a safe order relation if e

i

R e

j

)

e

i

� e

j

. If R is not safe, then R is unsafe.

1.2 Virtual Time

The concept of virtual time for distributed systems was introduced by Lamport in 1978

[Lam78]. The time vectors we compute in this paper are an extension of the time vectors of

Fidge [Fid88] and Mattern [Mat88]. There, each task T

i

has a clock C

i

which is a vector of

1. Introduction 4

Trace = fAS1, CW1, CS1, CS2, BW1, BS1, BS2, AW2, AW2, AW1g

Figure 1.1: Trace, Executions, and Time Vectors

1. Introduction 3

� and a (positive integer) sequence number equal to one plus the number of previous

operations performed by the task.

In order to perform the �nal race analysis, it must be possible to determine from a trace

what shared objects are referenced between any two synchronization events. This can be

done by additionally associating with each event the source line number of the statement

generating the event. From this the path between two adjacent events can be determined

and the variables referenced along the path can be computed [McD89].

Many other kinds of synchronization operations can be simulated by using counting

semaphores. Consider, for example, the event \init task t" which creates a new task t

and the event \await task t" which blocks the running task until task t has terminated.

Given a trace containing these events, we can create an equivalent a trace containing only

semaphore events.

In each execution every wait event has a corresponding signal event. We use this

correspondence to de�ne a partial order representing that execution.

De�nition 1: An execution of a parallel program is a partial ordering of the events

performed. This partial order is the transitive closure of edges from each event to the

next event performed by the same task and edges to each wait event from the corresponding

signal event.

The relation de�ned by the partial order P representing an execution is called the happened

before relation and is denoted with the symbol

P

!. Our de�nition of \happened before" is

consistent with that of Lamport[Lam78].

De�nition 2: A trace of an execution is an interleaving of the local sequences of events

E

i

for 1 � i � n where for every pre�x of the trace and every semaphore S, the pre�x

contains at least as many signal(S) events as wait(S) events.

Every trace must satisfy the following properties:

Property 1: No two events in the trace have both the same task id and the same sequence

number.

Property 2: If there is an event with task id t and sequence number k, then for every

1 � i < k, there is an event with task id t and sequence number i appearing earlier in the

trace.

A single execution usually has many possible traces. Similarly, a single trace could have

been generated by any one of a number of executions. (Figures 1.1(a) and 1.1(b) show two

di�erent executions for the same trace).

De�nition 3: An execution is consistent with a trace if the local sequences of trace events

E

i

for each task 1 � i � n is the same as in the execution.

1. Introduction 2

occur" execution order. Our algorithms appear to be more e�cient and may �nd more

guaranteed order relations.

Netzer and Miller [NM89] present a formal model of a program execution based

on Lamport's model of concurrent systems [Lam86]. Their model includes fork/join

parallelism and synchronization using semaphores. They distinguish between an actual

data race, which is a data race exhibited by the particular program execution generating

the trace, and a feasible data race, which is a data race that could have been exhibited

due to timing variations. They show how to characterize each detected data race as either

being feasible, or as belonging to a set of data races such that at least one data race in

the set is feasible. They rely on the trace for their ordering information. As an example,

when two tasks try to enter some critical regions surrounded by some binary semaphore

S, their algorithm will say that these two tasks are ordered when accessing these regions.

Under their de�nitions there is neither an actual nor feasible data race even if two tasks

write to some shared variable in this case. We view the ordering relationships in the trace

with suspicion, and wish to generate race reports in this situation.

We believe that it is more helpful to analyze sets of executions rather than just one

speci�c execution based on some trace information. We feel that, in terms of detecting data

races by trace analysis, it is critical to distinguish the ordered events from the unordered,

potentially concurrent, events. In this paper we present a collection of algorithms that

extend previous work in computing partial orders. The algorithms presented compute a

partial order containing only \must occur" type orderings from a linearly ordered trace

containing anonymous synchronization. The algorithms presented in this paper make

few assumptions about speci�c trace features and can be adjusted to work with traces

generated by many parallel systems, including IBM Parallel Fortran [IBM88], and Cedar

Fortran [GPH*88].

1.1 Description of the Model

We view a parallel program as a �nite set of tasks T

1

; . . . ; T

n

where n is the number

of tasks in the system. These tasks perform synchronization and computation operations,

including computation on shared data

1

. In an execution, each task T

i

is a sequential entity

characterized by a local sequence E

i

of events. Di�erent tasks may perform operations

concurrently. We assume, for convenience, that each task has a unique identi�er.

In our model, programs synchronize using only counting semaphores which are assumed

to be initialized to zero. Therefore, each event is a tuple containing:

� the operation completed (wait or signal),

� the semaphore a�ected,

� the id of the task that performed the operation,

1

Although operations on shared data can be used for synchronization [Dij65], we only consider explicit

synchronization operations as capable of generating synchronization events.

1. Introduction 1

1 Introduction

One of the fundamental problems encountered when debugging a parallel program is

determining the race conditions in the program. A race condition may exist when two

or more parallel tasks access shared data in an unspeci�ed order and at least one of the

accesses is a write access. Notice that races include both accesses that may occur \at the

same time" and accesses that must occur sequentially but the order is unspeci�ed (e.g.

accesses protected by a lock). One approach to determining potential races is based on

computing all of the reachable concurrent states of the program [McD89, Tay84]. The

major disadvantage of this approach is that the number of concurrent states may become

prohibitively large. Another approach to determining potential races is based on analyzing

a trace from an execution of the program [EP88, EGP89, NM89]. This approach has the

disadvantage that a trace must be recorded, and is limited to determining races that

can occur given the input data used. Even for the given data, it may not be possible

to determine all races [AP87]. Nevertheless, this later approach can provide important

information to help in debugging parallel programs and is the subject of this paper.

A trace speci�es a total ordering of the events performed by the program. For our

purposes, the trace reects only one of the orders in which the events could have occurred.

A more restrictive de�nition that is di�cult to achieve in practice would be for a trace to

specify the exact order in which the events did occur. Since traces are only approximations

of executions, there are usually several executions that are consistent with a given trace.

What we want to compute is the orderings between pairs of events that must occur in all

executions which are consistent with the trace. In general this will be a partial order. If

the partial order contains all orderings that must occur, then a pair of events not ordered

by this \must occur" partial ordering can potentially execute in either order.

Much research has been directed towards determining the partial ordering of events in

parallel and distributed systems. Previous models have assumed point-to-point commu-

nication which makes it very easy to determine which events were caused by which other

events (e.g. \message received by B from A" is clearly caused by \message sent by A to

B"). Unfortunately the synchronization models supported by several parallel programming

languages allow for anonymous communication, where the partner is unknown. Examples

of anonymous communication include locks, semaphores, and monitors.

Emrath, Ghosh, and Padua [EGP89] present a method for detecting non-determinacy

in parallel programs that utilize fork/join and event style synchronization instructions

with the Post, Wait, and Clear primitives. They construct a Task Graph from the given

synchronization instructions and the sequential components of the program that is intended

to show the guaranteed orderings between events. For each Wait event node, all Post nodes

that might have triggered that Wait are identi�ed. An edge is then added from the closest

common ancestor of these Post events to the Wait event node. The idea of the algorithm

is very simple, but it may be computationally complex. Also some of the guaranteed

order relations may be missed by their algorithm. Rather than repeatedly computing

the common ancestor information, we use time vectors to calculate the guaranteed \must

0

Analyzing Traces with

Anonymous Synchronization

David P. Helmbold

Charles E. McDowell

Jian-Zhong Wang

UCSC-CRL-89-42

December, 1989

Board of Studies in Computer and Information Sciences

University of California at Santa Cruz

Santa Cruz, CA 95064

abstract

In a parallel system, events can occur concurrently. However, programmers are often

forced to rely on misleading sequential traces for information about their program's behav-

ior. We present a series of algorithms which extract ordering information from a sequential

trace with anonymous semaphore-style synchronization.

We view a program execution as a partial ordering of events, and de�ne which executions

are consistent with a given trace. Although it is generally not possible to determine which

of the consistent executions occurred, we de�ne the notion of \safe orderings" which are

guaranteed to occur in every execution which is consistent with the trace.

The main results of the paper are algorithms which determine many of the \safe or-

derings". The �rst algorithm starts from a sequential trace and creates a partially ordered

canonical execution. The second algorithm strips away the ordering relationships particular

to the canonical execution, so that the resulting partial order is safe. The third algorithm

increases the amount of ordering information while maintaining a safe partial order. All

three algorithms are accompanied by proofs of correctness.

keywords: virtual time, program tracing, parallel processing, debugging

This work was supported by IBM under agreement SL 88096.

