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Figure 4.5: A graphical comparison between the misII and LocalFactor factoring tech-

niques.
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name no factor misII Printform LocalFactor

area delay area delay area delay area delay

5xp1 2552 10.0 2080 9.8 2456 9.6 1680 9.6

5xp1-hdl 1264 13.6 1152 14.8 1280 20.2 1336 16.8

9sym 4104 12.2 3848 14.0 4736 14.8 1184 13.6

9sym-hdl 2248 21.4 2152 20.8 2984 23.0 1168 13.0

9symml 3824 11.6 3464 15.8 3864 12.0 1184 13.6

C17 144 3.8 168 4.8 144 3.8 136 2.4

C499 7712 18.6 7648 25.6 10480 36.6 10512 38.2

alupla 2288 16.2 2520 18.4 2792 16.8 2768 15.6

aralis 4800 12.8 2896 11.2 4720 12.2 4688 12.4

aralis1 3992 10.6 2168 16.2 3240 16.4 2000 9.4

b9 2376 9.6 2096 8.4 2472 10.2 2144 10.4

bitcount.clp 744 5.8 480 6.4 528 5.6 528 5.6

bw 4456 13.8 3264 13.4 4392 13.8 4064 11.2

clip-ab.clp 4136 12.4 2168 11.2 5032 15.8 3136 12.6

con1 368 5.2 328 4.0 384 4.8 400 5.0

duke2 11416 18.6 6440 15.2 13568 19.6 13072 19.0

f2 416 4.6 416 4.6 400 4.4 416 5.4

f51m 2392 9.6 2176 10.0 2536 10.8 1448 9.6

f51m-hdl 1208 10.4 1096 15.6 1200 17.2 1112 15.4

ftest 25456 39.2 6160 20.2 27152 24.8 5784 10.4

ftest.clp 7952 14.6 4952 17.2 10216 17.0 5328 13.0

legan.clp 248 3.6 168 4.8 256 4.8 168 4.8

misex1 1464 6.8 1104 7.8 1384 9.0 1288 7.6

misex2 2520 6.6 1760 8.2 2576 7.0 2472 7.2

misex3 16560 19.8 9544 25.8 14696 23.2 14656 21.2

misex3c 11680 17.6 8944 15.6 15176 20.4 13584 23.2

rd53 904 7.0 920 6.6 904 8.0 696 8.0

rd53-hdl 760 10.8 856 12.4 960 10.8 696 8.0

rd73 3104 11.2 1992 10.8 2320 15.0 1368 12.6

rd73-hdl 1232 13.6 1192 13.6 1752 14.8 1408 12.6

rd84 6152 16.2 3528 14.4 5592 17.6 1952 14.8

rd84-hdl 1696 16.6 1696 16.6 2392 19.0 1888 15.0

rot 12568 31.0 11640 28.4 15112 32.2 ? ?

sao2 2976 13.2 2664 10.4 3712 13.4 3528 13.4

sao2-hdl 5280 46.6 3008 30.4 5760 41.2 2984 13.6

seq 53384 43.4 ? ? 60000 45.6 51784 47.2

vg2 3752 10.4 1504 11.8 5000 10.2 4872 13.8

xor5.clp 176 3.4 160 3.4 176 4.6 176 4.6

z4ml 1152 9.4 624 10.8 1432 9.0 1048 8.2

z4ml-hdl 848 9.4 888 11.2 968 9.6 1000 10.0

Table 4.2: Area and delay from misII's technology mapper for four di�erent factoring

techniques.

Several size measures, including the ones presented in this paper, are being evaluated to determine

which ones provide the best predictors of circuit size and delay after technology mapping. Ideally,

we would like to generate an appropriate measuring function directly from a description of the

technology.

Because sum-of-products representations are so important for PLA implementation, we are

working on methods to convert prime, irredundant if-then-else dags into prime, irredundant sum-

of-products representations.
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LocalFactor transformations

A full description of the rather ad hoc LocalFactor transformations would lengthen this paper

signi�cantly, but a quick, sketchy overview is possible. The basic idea is to simplify (if a then b

else c) when b implies c, c implies b, b implies :c, or :b implies c. For example, if c implies b, (if

a then b else c) can be factored as ab + c. The transformations also try to decompose b and c as

c = xy and b = x+y, recognizing (if a then b else c) as the symmetric function ax+ay+xy, which

can be factored in several ways, including a(x+ y) + xy, (a+ xy)(x+ y), and a(xxory) + xy. These

symmetric decompositions appear to be particularly useful for factoring arithmetic expressions.

The LocalFactor procedure also checks to see whether reducing to canonical form or applying

the Printform transformations will reduce the complexity of the expression. As an option, the

LocalFactor procedure will apply don't-care information as described in Section 4.4. The don't-

care option was not used for the preliminary results reported here, as the implementation is still too

slow.

Table 4.2 gives the area and delay obtained by several di�erent factoring techniques. For each

technique, the results were mapped to the msu.genlib library with the misII mapper commands map

-m1; phase -g. The �rst column is the result of mapping the original problem speci�cation, without

any attempt at factoring. The second column is obtained by running the default script provided

with misII release 2.0. The third column is the result of applying the Printform transformations to

the input. The Printform transformations often are worse than doing nothing at all, partly because

they are designed to optimize the pcount metric, which is a poor predictor of area, and partly

because they are applied separately to each output, sometimes eliminating sharing that already

exists. The fourth column is the result of applying the LocalFactor transformations.

Two of the columns of Table 4.2 are compared in Figure 4.5, which is a scatter diagram of the

ratio of the areas versus the ratio of the delays for the misII and LocalFactor factoring techniques.

The upper right quadrant contains the examples for which the misII script is clearly superior, and

the lower left quadrant contains the examples for which local factoring is clearly superior. Neither

method is universally superior to the other, suggesting that a combination of approaches may be a

fruitful area for exploration. We are particularly interested in exploring a combined technique that

uses rectangle covering to select common subexpressions from the operands of associative operations

found by local factoring.

5 Conclusions and current work

This paper has presented a new way of looking at if-then-else dags, based on two-cuts in a

corresponding binary decision diagram. The relationship between the two representations leads to

a natural canonical form for if-then-else dags.

If-then-else dags are attractive for VLSI CAD work, because they provide sharing of subex-

pressions, a compact canonical form for tautology checking, easy manipulation for all the standard

Boolean operators, straightforward representation of networks of gates, and factoring by simple

transformations of the dag.

Several implementations of binary decision diagrams and if-then-else dags have been written,

and used for switch-level veri�cation tasks [Kar86] and for multi-level logic minimization. Current

work focusses on using transformations of if-then-else dags to do logic minimization. In addition to

the Printform transformations described in this paper, more powerful transformations, which violate

even the weakened version of Condition 1, have been implemented. These transformations, together

with heuristics for �nding good variable orderings for arbitrary if-then-else dags, have given some

promising results, but are still under intensive development.

Other researchers have found that using don't-care sets provides signi�cant improvement in

multi-level minimizers. A transformation that simpli�es expressions modulo don't-care sets has been

implemented and is being debugged and evaluated. The transformation is intended to guarantee

that an if-then-else dag is prime and irredundant with respect to the don't-care set|that is, that

any change in meaning occurs only for cases that we know are unimportant.
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canonical form Printform

expression size count pcount size count pcount

abcd 7 4 4 7 4 4

a+ b+ c + d 7 4 4 7 4 4

a� b� c � d 10 10 4 10 10 4

ad+ be+ cf 29 24 25 11 6 6

a(c+ d+ e + g) + b(c+ d+ e+ f)+

c(e+ f) + d(f + g)

32 24 30 36 23 23

(a+ b+ c+ d)(:a+ :b+ :c+ :d) 12 8 8 12 8 8

(b+ c)(a(e + g)(:e + f + :g)) + h+ i)+

d(e+ g)(:e + f + :g)

27 20 37 21 14 19

a(c+ d+ e + g) + b(c+ d+ e+ f)+

(c + d)(dg + e+ f)

30 23 31 38 24 24

Table 4.1: The change in size that results from applying the Printform transformations to

the canonical forms of several expressions. The variable ordering used is alphabetical.

The Printform transformations do crude factoring while maintaining a weakened version of

Condition 1. The variables in the if-part are required to be disjoint from the variables in the

then- and else-parts, but are not required to come earlier in the variable ordering. This weakened

form of Condition 1 is still enough to guarantee that an expression is prime and irredundant.

Another set of transformations (the LocalFactor transformations) are similar, but allow some

duplication of variables between if-part and the then- and else-parts. The LocalFactor transfor-

mations are far more powerful, and provide most of the improvements obtained by my factoring

programs, but do not guarantee that the result is prime and irredundant.

By rearranging the if-then-else dags (converting them to a non-canonical form), the Printform

transformations increase the number of times the constants true and false appear, without

increasing the number of nodes in the dag, thus decreasing the size of the dag by most of the

measures. The Printform transformations may increase the size and count measures of an if-then-

else dag, because rearranging the then-part may reduce the amount of sharing with the else-part.

For example, the canonical form for (c+ d)(dg+ e+ f) is (if c then (if d then e+ f + g else e + f)

else d(e + f + g)), which has size 13, count 10, and pcount 13. After applying the Printform

transformations, we get (if c then dg + e + f else d(e+ f + g)), which has size 16, count 10, and

pcount 10.

The pcount measure, which estimates the complexity of the printed form, is always reduced by

the transformations, as one would expect from transformations originally intended for improving

printing. Unfortunately, the pcount measure does not correlate particularly well with area. The

Printform transformations are still valuable as a factoring tool, as they enable the more powerful

LocalFactor transformations to �nd factorings ((c + d)(dg + e+ f) for the above example).

Table 4.1 shows the sizes of the results of applying the Printform transformations to the canonical

forms for a few simple expressions.

The Printform transformations re-order the variables in the if-then-else dag, and can re-order the

variables di�erently in the then- and else-parts, and are thus potentially more powerful than simply

re-ordering variables (a technique suggested by Randal Bryant [Bry86, page 26]). A combination

approach using transformations and heuristics for doing complete variable re-ordering of if-then-else

dags has yielded the most powerful factoring techniques, but appears to be too slow to be practical.

We are still investigating ways to get good variable orderings and apply them quickly. An

exponential algorithm for �nding the best ordering for bdds is given in [FS87]. More recently,

register allocation algorithms have been proposed as a way to order variables heuristically [Ber88b].

We are investigating the possibility of adapting these techniques to if-then-else dags.
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4.4 Using don't-care information

A substantial part of the multi-level logic minimization is to determine when the value of some

expression is irrelevant, and to use this don't-care information to simplify the expression [BBH

+

88,

HL87].

The most important don't-care information in previous work is the so-called global don't-care

information, which associates each node of a network with the function of the network up to that

node. This information is explicit in if-then-else dags, and can be automatically used whenever

operations are performed on the node. The fanout don't-care information for a node is used to

decide when the function of the node is irrelevant, allowing us to change the function implemented

by the node.

Determining the fanout don't-care information for an if-then-else dag is fairly easy. For example,

if we are trying to simply e = (if a then b else c), knowing that we don't care what the value is when

d is true, then

� we can simplify b with the don't-care expression d+ :a,

� we can simplify c with the don't-care expression d+ a, and

� we can simplify a with the don't-care expression d+ (:b� c). If we have already simpli�ed b

or c, then we have to use the simpli�ed version to build the new don't-care expression.

The simpli�cation presently implemented is a simple algorithm. If e implies d, then e can be

simpli�ed to a special variable don't-care. The triple (if a then don't-care else c) simpli�es

to c, and the triple (if a then b else don't-care) simpli�es to b. The triple (if don't-care then

b else c) can be simpli�ed to either b or c, choosing whichever is cheaper. This simple algorithm

guarantees that the resulting expression is prime and irredundant, according to the de�nitions in

Section 3.3 of [Karon].

Note that a shared subexpression may be simpli�ed di�erently in its di�erent uses, resulting in

reduced sharing and, possibly, an increase in the overall size of the network. We can be a little more

careful constructing the don't-care set for shared subexpressions by ANDing together the don't-care

expressions derived from each usage. This extension has not yet been implemented.

4.5 Factoring

Factoring is the transformation of an expression to make it smaller. In work by other researchers,

this has meant the conversion from sum-of-products form to a free form containing only AND and

OR operators, minimizing the number of literals in the process. For if-then-else dags, the goal is

to minimize whatever measure we have decided best predicts the property (area or delay) that we

are trying to minimize. For example, the Printform transformations described below attempt to

reduce the pcount metric. A better, but slower, set of transformations (LocalFactor) attempts to

minimize the count metric.

The process of reducing the complexity of an expression is usually called factoring, because

the main techniques used by other researchers involve �nding shared parts of terms in a sum-of-

products representation, and factoring them out. For example, abc + ad+ cd might be factored as

a(bc+d)+cd. Our most e�ective factoring techniques involve transformations that change the order

of the variables, either locally for one part of the dag, or for the entire dag.

Printform transformations

A complete description of the transformations used is beyond the scope of this paper, but I will

illustrate the concept with a particularly simple set of transformations. These transformations were

originally intended to be applied to if-then-else dags in my new canonical form, to make them easier

to read when printed, and so are called Printform transformations. They are presented in more

detail in [Karon].
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� Preserve the original and-or structure of the sum-of-products expression. This is guaranteed

not to be too big, but o�ers few advantages over simply using sum-of-product representations.

� Build a partially factored expression for the gate.

We use a recursive function to get an if-then-else dag E for a set of terms T . The terms are

sorted, grouping together those that don't use the �rst input variable (T

d

), those that use :v

1

(T

0

), and those that use v

1

(T

1

). We then strip the �rst variable o� the terms in each group,

and apply the routine recursively to get expressions E

d

, E

0

, and E

1

. We build the expression

E as (if E

d

then true else (if v thenE

1

elseE

0

)). This idea can be improved by sorting

the variables with the most frequently used ones �rst.

This algorithm is essentially the same as the popular method of factoring out one-literal cubes,

and produces expressions that are often signi�cantly smaller than either the canonical form or

the straight sum-of-products form.

After building an expression for a gate, we can try factoring the gate with the Printform or

LocalFactor transformations, or we can try reordering the variables in various ways to attempt

to reduce the size. When the gates in the input BLIF are large and complex, extra e�ort spent

in minimizing them is valuable. When the gates are simple AND, OR, NAND, or NOR gates, no

simpli�cation is possible in a single gate.

After building if-then-else dags for all the gates, we can compose them to get a multiply-rooted

if-then-else dag for the entire logic module. The preliminary results in this paper were obtained by

applying the transformations to each gate as it was built, and again after each composition (except

for seq, in which memory limitations forced us to do factoring only on the gates).

4.3 Converting to BLIF networks (decomposition)

The misII technology mapper expects BLIF �les as input, and so we need to convert if-then-

else dags back into BLIF format. This task is a decomposition of the if-then-else dag into simple

gates, attempting to preserve any shared subdags as explicit nodes in the BLIF network. The

decomposition procedure starts at an output, choosing a gate for the output, then recursively

choosing gates for the necessary inputs to the selected gate. Each gate selected is an inverter,

a n-input AND, a n-input OR, a 2-input XOR, or a 2-to-1 selector.

A simple set of heuristics for doing the decomposition is

� If the internal representation of the if-then-else dag is a negated expression, use an inverter.

� If the dag has the form (if a then b else :b), use an XOR gate.

� If the dag has the form (if a then true else c), use an n-input OR gate, collecting as many

subexpressions as possible to use as inputs.

� If the dag has the form (if a then b else false), use an an n-input AND gate, collecting as

many subexpressions as possible to use as inputs.

� Otherwise, use a selector to represent (if a then b else c) directly.

One small re�nement has been added, in that subexpressions that are known to be shared are

not expanded when collecting subexpressions for an AND or OR gate. For example, if abc is known

to be shared, then abcde will be decomposed as (abc)(d)(e), rather than as (a)(b)(c)(d)(e). The

mechanism used for recognizing shared subexpressions is currently quite crude, and could be greatly

improved by using the rectangle-covering techniques of misII.

Other re�nements are possible. For example, n-input XORs could be recognized and converted

to a properly balanced tree of 2-input XORs that attempts to minimize delay. We could also expand

(if a then b else c) to either ab+:ac or (a+ c)(:a+ b), depending on which produces the smaller

description.
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Figure 4.3: Scatter diagram of the ratio between actual area and predicted area versus

the actual area for the best estimator found. The technology mapper is misII's map -m1

command followed by phase -g using the msu.genlib library.

Figure 4.4: Scatter diagram of the ratio between actual delay and predicted delay versus

the actual delay for the best estimator found. The technology mapper is misII's map -m1

command followed by phase -g using the msu.genlib library.
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Figure 4.2: Scatter diagram of the ratio between actual area and predicted area versus the

actual area for an improved estimator that counts the literals in the factored forms and

subtracts the number of nodes in the network. The technology mapper is misII's map -m1

command followed by phase -g using the msu.genlib library.

count a recursively de�ned function that attempts to match the values of the sum-of-products

estimator (literals(factored)-nodes). count is

� 0 for the constants true and false.

� 1 for literals.

� 1 for a subdag that has been previously counted.

� c(x) + c(y) + c(z) for (if x then y else z), if the triple represents a 2-input AND or OR,

that is, if y or z is a constant.

� c(x) + c(y) + c(z) + 1 for other triples (if x then y else z).

Of these new functions, count is the best predictor of area for our benchmarks, with a standard

deviation of 12.73%. See Figure 4.3 for a scatter diagram showing the error of the estimate.

Delay estimation may be harder than area estimation. Our best predictor so far is the height

of the if-then-else dag, with a standard deviation of 34.8% (see Figure 4.4). We may be able to

estimate delay better by adding a penalty to nodes that are used repeatedly, and by using smaller

costs for triples that have a constant then- or else-parts. An active area of our research is to �nd

good estimators of both area and delay for popular mapper-library pairs.

4.2 Coverting from BLIF (sum-of-products) format

Most of the standard benchmarks are available in a standard format, the Berkeley Logic Inter-

mediate Format (BLIF, for short) [Ber88a], and so we need to convert BLIF �les into if-then-else

dags. In BLIF, combinational logic is described as a directed, acyclic network of gates, and each

gate is described in sum-of-products form.

Building an if-then-else dag from a network of gates is easy if each gate is described as an if-

then-else dag|the only tricky part is converting the sum-of-products descriptions of the gates into

if-then-else dags. We have several choices:

� Build a canonical dag for the function expressed by the gate. For gates of the form ab+ cd+

ef + gh+ � � �, the wrong variable ordering can cause an exponential blowup in size.
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Figure 4.1: Scatter diagram of the ratio between actual area and predicted area versus the

actual area for the conventional estimator: the sum of the number of literals in the factored

forms of the gates. The technology mapper is misII's map -m1 command followed by phase

-g using the msu.genlib library.

We have made some attempts to calibrate area estimators for misII's technology mapper on

a collection of di�erent designs, including the MCNC benchmarks. The mapper we attempted to

calibrate was the command map -m1 followed by phase -g. We looked at several di�erent measures,

including the ones reported by misII (number of nodes, sum of literals in sum-of-products form, sum

of literals in factored form). Of the standard measures, the sum of literals in factored form was

the best predictor, with the ratio of actual area over predicted area having a standard deviation of

16.8% of the mean ratio. See Figure 4.1 for a scatter diagram of the error of this estimate.

We also tried a measure intended to make inverters free, by subtracting the number of nodes in

the Boolean network from the sum of literals in factored form. This measure is a slightly better �t,

having a standard deviation of only 12.1% of the mean ratio. See Figure 4.2 for a scatter diagram.

The standard measures described above are useful when a network has been decomposed into

gates, but are not directly applicable to a Boolean network described as an if-then-else dag with

multiple roots. New measures are needed that are as useful for estimating circuit size.

Several possible size measures could be used to estimate the area or delay of if-then-else dags.

Rather than choosing one measure in an ad hoc way, we propose to use a parameterizable measure

that we can calibrate di�erently for each technology mapper and library. Once we �nd good

estimators for the delay and area achievable by a technology mapper, we can use them to guide

the minimization process.

We have experimented with severalnon-parameterized estimators, including the following:

triples the number of if-then-else triples in the dag,

size the number of triples plus the number of distinct variables,

opcount the number of n-input AND, n-input OR, and 2-input XOR gates produced by our

decomposition algorithm,

height the longest path from a root to a leaf,

pcount the number of literals that would be leaves of an if-then-else tree created by duplicating any

shared nodes, which is the number of times literals would appear in the factored expression, if

no intermediate variables are introduced,
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Factored forms, literals combined with arbitrary combinations of AND and OR operators, can

also be represented as if-then-else trees. Brayton's de�nitions of prime and irredundant for factored

forms [Bra87, page 203]) correspond to the de�nitions for if-then-else trees.

Both Bryant's canonical form and the new canonical form presented in Section 3.1 can be shown

to be prime and irredundant (for empty don't-care sets) with the de�nition presented here [Karon].

4 Multi-level logic optimization

Logic synthesis usually consists of several somewhat separable stages. My current work has

been applying if-then-else dags to one of those stages|technology-independent multi-level logic

optimization. In this stage of the process, the main goal is to reduce the complexity of a logic

network, so that technology mappers can �nd good implementations.

4.1 Expression complexity, counting literals

When doing logic minimization, the �rst question is \what exactly is being minimized?" Usually

there are constraints on signal delays and on implementation costs, and the goal is to �nd the

best (fastest or cheapest) design that meets the constraints. Unfortunately, both signal delay

and implementation cost are very dependent on the technology used, and optimizations tied to

a particular cell library quickly become obsolete.

When doing technology-independent logic minimization, determining whether a particular pro-

posed change in an expression is an improvement can be di�cult. The goal of minimization is to

reduce the area, power, or delay of the �nal circuit after technology mapping, but without having

to do the computationally expensive mapping repeatedly.

Just as compiler writers have found code optimizations that work well independent of the

target machine, we look for logic optimizations that will work well independent of the target

technology. After doing what optimization we can in a technology-independent way, a technology

mapper generates a speci�c implementation. Some optimizations are done by the mapper, equivalent

to the peephole optimizations done by the code generator of a compiler.

For technology-independent minimization to work, we need measures that are not dependent on

any particular cell library (or that are parameterized and easily tuned for di�erent technologies),

and that roughly approximate the cost or speed obtained by a technology mapper. Technology-

independent delay estimates are hard to come up with, and so most research has concentrated on

size minimization, leaving the delay minimization to the technology mapper. Other researchers have

used

� the number of literals in sum-of-products form,

� the number of literals in the factored form,

� the number of distinct literals (a and :a count separately) the function depends on, or

� the number of distinct variables that the function depends on

as an estimate of the complexity of a complex gate, and added the size estimates for all gates in a

network to get a size estimate for the network [Bra87, page 235].

Most technology-independent minimization work has used the same measure for determining the

quality of their results|the sum over all gates of the number of literals in the description of the

gate. This measure is usually justi�ed as an approximation of the area of the resulting circuitry|

especially for cMOS, where it corresponds fairly closely with the number of transistor pairs needed.

The literal count is an excellent area estimator if the mapper does not change the decomposition of

the circuit, but does not work as well when the mapper splits or merges gates.

Many technology mappers do polarity assignment, adding or removing inverters to minimize

delay or area. For such mappers, adding inverters in the input description usually does not increase

the cost of the �nal solution, and so should have zero cost for the technology-independent minimizer.

None of the standard cost functions described above have this property. A cost estimator that hides

such inverters should be a better estimator of �nal area.
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1. All the atoms in the if-part must be earlier in the order than all atoms in the then- and else-

parts. This restriction is directly translated from Bryant's restriction that the atom in a node

is earlier in the order than the atoms of the subdags. A weaker restriction, that the variables

of the if-part be disjoint from those of the then- and else-parts, would be enough to eliminate

paths with duplicate variables, but not enough to make the form canonical. Non-canonical

expressions using this weaker version of the restriction are useful for factoring.

2. The then- and else-parts of an expression must be distinct Boolean functions|exactly as in

Bryant's canonical form.

3. A systematic choice must be made between the equivalent expressions (if a then b else c)

and (if :a then c else b) and between (if a then b else c) and :(if a then:b else:c). This

corresponds to Bryant's choice of atoms as node labels (never negations of atoms). We require

that if- and then-parts of an expression be pure pointers, with negation allowed only for the

else-part or the entire expression.

4. Triples of the form (if a then true else false) and (if a then false else true) are

prohibited. The �rst triple should be represented simply as a, and the second one by :a.

5. Triples of the form (if true then b else c) and (if false then b else c) are prohibited, and

should be replaced with b and c respectively.

6. In the triple (if a then b else c), b and c must not share both then- and else-parts.

If b = (if b

a

then b

b

else c

c

) and c = (if c

a

then b

b

else c

c

), then the correct represen-

tation for the original expression is (if (if a then b

a

else c

a

) then b

b

else c

c

). If b =

(if b

a

then b

b

else b

c

) and c = (if c

a

then b

c

else b

b

), then convert the original expression to

(if (if a then b

a

else:c

a

) then b

b

else b

c

).

7. In the triple (if a then b else c), b must not contain c as a then- or else-part. If b =

(if b

1

then b

b

else c) or b = (if b

2

then c else b

c

), then the expression should be represented as

(if (if a then b

1

else false) then b

b

else c) or (if (if a then b

2

else true) then c else b

c

). If

c is one of the constants true or false, this condition amounts to choosing left-associativity

for commutative AND or OR operations. The symmetric test for c = (if c

1

then c

b

else b) or

c = (if c

2

then b else c

c

). is also needed.

We can show that imposing the conditions listed above de�nes a canonical form by exhibiting

an isomorphism with Bryant's canonical form [Karon]. We can use essentially the same algorithm

for converting to either Bryant's canonical form or the new form [Karon].

3.2 Two-cut canonical forms are prime and irredundant

Other researchers in multi-level minimization, working primarily with sum-of-products repre-

sentations, have found the concepts of primality and irredundancy to be important, particularly

for producing testable circuits [BHMS84, page 28], [Bra87, page 202]. Both concepts have natural

analogs in if-then-else dag representations.

In sum-of-products form, an expression is said to be prime if no term could be modi�ed by

changing a literal to true without changing the meaning of the expression. Similarly, an expression

in sum-of-products form is said to be irredundant if no term can be changed to false without

changing the meaning of the expression.

De�nition 6: An if-then-else dag is prime if no pointer to a literal, subdag, or the constant false

could be replaced with a pointer to true without changing the meaning of the expression. An if-then-

else dag is irredundant if no pointer to a literal, subdag, or the constant true could be replaced

with a pointer to false without changing the meaning of the expression.

The new de�nitions of \prime" and \irredundant" correspond to existing ones for sum-of-products

and factored forms. For example, we can use an if-then-else tree (so that no sharing is done between

terms) to represent a sum-of-products expression by replacing each binary AND or OR operator by

the corresponding if-then-else triple. If the if-then-else tree is prime or irredundant, then the sum-of-

products expression must be, because the substitutions to be tested in the sum-of-products form are a

subset of those tested in the if-then-else tree. The extra tests for primality and irredundancy in the if-

then-else tree are easily satis�ed for trees corresponding to sum-of-products representations [Karon].
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If-then-else dags are not new, but they do have several properties that make themmore attractive

than binary decision diagrams for CAD work. If-then-else dags

� provide a single representation scheme for representing binary decision diagrams, sum-of-

products, and arbitrary combinations of 1- and 2-input gates. Every 1- or 2-input gate can be

represented as an if-then-else triple, so every acyclic network of gates can be represented by

replacing each gate by the appropriate if-then-else triple.

� expose more subexpressions for potential sharing than do binary decision diagrams. The

same sharing of then- and else-parts is possible in both bdds and if-then-else dags, but

only the if-then-else dags allow sharing subexpressions in the if-part. For example, the three

functions ab(d + e), c(d + e), and abd are represented as (if (if a then b else false) then

(if d then true else e) else false), (if c then (if d then true else e) else false), and (if

(if a then b else false) then d else false), sharing the subexpressions (if a then b else

false) and (if d then true else e).

� have at least two useful canonical forms: Bryant's canonical form and a new canonical form

introduced in this paper.

� are a more factored form than bdds, providing for better printing and logic minimization.

With the aid of the transformations described in Section 4.5, good factorings can often be

found from the canonical forms or from arbitrary non-canonical expressions.

� express Boolean operations naturally as if-then-else triples, so that the symbol table used for

storing canonical forms can be used for caching the results of operations.

A free-form dag using any subset of the operators AND, OR, XOR, NOT, and IF can easily be

converted to an if-then-else dag having the same structure. This conversion can also be done in the

reverse direction. The mapping is not an isomorphism, as some information about the grouping of

operands is lost when converting to the if-then-else dag.

The experimental multi-level logic minimization programs I have been working on accept dags

of arbitrary operators (in BLIF format [Ber88a]), convert them to if-then-else dags, transform them

to reduce their complexity (as measured by the functions in Section 4.1), then convert to n-input

AND, n-input OR, 2-input XOR, and NOT gates.

3.1 Two-cut canonical forms

One of the attractive features of binary decision diagrams, especially for veri�cation applications,

is the ease of computing a canonical form|Bryant's canonical form. Of course, binary decision

diagrams are a special case of if-then-else dags, so we could use Bryant's canonical form for if-

then-else dags as well, but there is another canonical form that lets us represent all the two-cuts

explicitly, not just the two trivial ones (the two children of the root and the two leaves true and

false).

An if-then-else triple corresponds to a bdd with a two-cut. The if-part corresponds to the

bdd above the cut, and the then- and else-parts correspond to the subdags below the two-cut.

Restricting the if-part to simple variables is equivalent to choosing always to represent the topmost

two-cut in the bdd. If, instead of choosing the topmost two-cut, we always choose the non-trivial

one closest to the leaves, then the triple for the if-part of an expression corresponds to the next

two-cut up. Following the chain of if-parts until we get to a literal gives us the two-cuts in order

from the bottom up.

To simplify negation, and to reduce the storage needed for representing expressions, we allow

negation of an if-then-else dag to be represented by ipping one ag bit, which we keep in the

low-order bit of the pointer to the dag.

To make these if-then-else dags canonical, we must place some restrictions on the expressions

allowed in the if-, then-, and else-parts of the structure. Of the seven restrictions, the �rst three

are slightly modi�ed versions of the corresponding restrictions in Bryant's canonical form.
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Figure 2.2: Canonical binary decision diagram for abc+ :ad+ :bd, showing the two-cuts.

Figure 3.1: If-then-else dag for abc+ :ad+ :bd, factored as (if ab then c else d).

The main use of dominators was in factoring an if-then-else dag, by doing an OR-split at

dominators of false. If x is a dominator of false, then ftrue; xg and ftrue; falseg are both

two-cuts, and share a common vertex (true). It turns out that any two-cuts that share a common

vertex can be used to simplify the expression. Let's call such pairs of two-cuts collapsed two-cuts.

Consider the expression abc+:ad+:bd, whose binary decision diagram is shown in Figure 2.2.

The two-cuts of the dag are f2; 4g, f3; 4g, and ftrue; falseg. Notice that the dag has no

dominators of either true or false, so printing using only dominator information yields abc +

a:bd + :ad, which has an unnecessary a in the second term. Because two of the two-cuts share a

common node (f2; 4g and f3; 4g share the node 4), we can do better on this expression. The whole

expression can be viewed as (if ab then c else d), which is abc+ (:a+ :b)d.

3 If-then-else DAGs with an expression in the if-part

Finding two-cuts useful for simplifying binary decision diagrams, I looked for a new representation

in which the two-cuts were more naturally represented. We can view a binary decision diagram with

a two-cut as having three parts: the dag from the root to the cut, and the two subdags below

the cut. For example, for the bdd in Figure 2.2, the parts are ab, c, and d. If we allow arbitrary

expressions in the if-part of if-then-else expressions, we can represent the two-cut explicitly as (if ab

then c else d), as shown in Figure 3.1.
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Figure 2.1: Binary Decision Diagram for the expression ab+ cd+ ef , showing the two-cuts.

Attempting to print expressions more compactly is essentially a multi-level logic minimization

problem, with the rather unusual objective of minimizing the number of literals after all shared

expressions have been duplicated. Dipen Moitra and I looked for properties of the graphs that could

be used to do this minimization. We identi�ed two such properties|dominators and two-cuts.

De�nition 4: Vertex v of a rooted dag is a dominator of vertex w, if, and only if, every path from

the root to w contains v.

One particularly interesting set of nodes in a bdd is the dominators of the leaf node false.

In [KM90], we proved that a bdd with a non-trivial dominator of false (that is, a dominator

other than the root or false) can be split into two bdds that are OR'd together. This OR-split is

particularly useful for converting bdds into sum-of-products form. For example, in Figure 2.1, the

nodes labeled with c and e are dominators of false, and the expression can be printed as ab+cd+ef .

In a similar way, the dominators of true can be used to do an AND-split.

The dominators of true and false in a bdd can easily be computed as the bdd is built, usually

taking only O(n) time to build the dominator structure for a bdd with n nodes, but in the worst

case taking O(n

2

) operations [Karon].

Because the dominators of true and false were so useful for printing expressions, we tried to

generalize the concept, looking for a more powerful way to reduce the complexity of the expression.

The useful property of dominators was that we could cut a bdd into two parts by removing one

interior node. A natural generalization was to look at ways to cut a bdd apart by removing two

nodes.

De�nition 5: A pair of vertices fx; yg is a two-cut between the root r and a pair of vertices fv; wg,

if, and only if, every path from r to v or w contains at least one of x or y. If a two-cut is mentioned

without giving fv; wg explicitly, then the pair ftrue; falseg is assumed.

Every bdd has two trivial two-cuts: the leaves true and false themselves, and the two children

of the root. Every dominator of true or false is part of a two-cut (with the other leaf node),

but other two-cuts may exist. The paper [KM90] describes several useful properties of two-cuts and

gives proofs.
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Using canonical forms makes checking for equivalence easier. For a strong canonical form, only

one pointer has to be checked for equality, and for other canonical forms, a simple traversal of the

data structure (taking O(n) time) su�ces. Unfortunately, conversion from a non-canonical form

to canonical form may take a lot of time or memory. Because equivalence checking in canonical

form is fast, but equivalence checking in a non-canonical form (such as clause form) is equivalent to

the the NP-complete problem satisfiability, we are essentially guaranteed that the conversion to

any canonical form is exponential in the worst-case. For most commonly used Boolean functions,

however, a well-chosen canonical form can be small and easy to manipulate, and exponential blow-up

is rare.

A recent paper by Randy Bryant shows that one common function, integer multiplication,

requires exponentially many nodes to represent in his canonical form, no matter what ordering

is used for the variables [Bry88]. The same arguments can be applied to the new canonical form

described in Section 3.1. Small if-then-else dags for integer multiplication are easy to construct

from small circuits, but they all involve duplicating variables, and so are not canonical.

2.1 Bryant's canonical form

For binary decision diagrams, Bryant's canonical form is commonly used [Bry86]. As originally

described, it is a weak canonical form, but adding a permanent symbol table to give unique ids to

if-then-else nodes makes it a strong canonical form.

Bryant's canonical form is obtained by putting two restrictions on bdds. The �rst restriction is

to require that the set of all atoms be ordered, and that the atom at each node of the diagram be

earlier in the order than the atoms of the children. Among other things, this restriction guarantees

that no atom appears twice on any path from the root to a leaf. The other restriction is that distinct

nodes represent non-equivalent expressions.

After implementing several di�erent variants of Bryant's representation, I observed that his

method for performing boolean operations on bdds can be considerably simpli�ed. Bryant imple-

mented all the standard binary operators with a general Apply() operator, which took as arguments

the operands and a description of what the operator did on the leaves of the bdd. All these Boolean

operations can be de�ned in terms of a single if-then-else operator. The if-then-else operator can be

implemented by the same sort of traversal as is used for Apply(), but without having to keep track

of the operator to be applied at the leaves.

The if-then-else operator can be de�ned to generate canonical from representations automatically,

by recursively using two simpler operations: UniqTriple and split. UniqTriple is a symbol table

routine that looks up the if-then-else triple passed as arguments and creates a new entry in the

symbol table if the triple is not found. We de�ne split(a,v,left) to be the left subdag a->left

if v is the atom in the root, and the whole dag a otherwise. To change (if a then b else c) to

canonical form (with each of a, b, and c already in canonical form), we choose the smallest atom in

the three arguments (call it m) and return

UniqTriple(m, IfThenElse(split(a,m,left),split(b,m,left),split(c,m,left)),

IfThenElse(split(a,m,right),split(b,m,right),split(c,m,right)) )

We stop the recursion when we get to an obvious special case|for more details, see [Karon].

2.2 Dominators and two-cuts in binary decision diagrams

One of the �rst problems we encountered in using bdds was printing them out in a readable

fashion. We found that heavily parenthesized if-then-else trees were hard to understand, and that

printing all paths to true generated voluminous output, with many more terms than needed, and

extra literals in some of the terms. For example, printing all paths to true in ab+cd+ef (represented

by the binary decision diagram in Figure 2.1) would produce ab+ a:bcd+ a:bc:def + a:b:cef +

:acd+ :ac:def + :a:cef .
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1.3 Binary decision diagrams, if-then-else trees, and if-then-else DAGs

If-then-else trees and dags have a long history|references to if-then-else trees include [Lee59],

[Ake78], and [Bry86]. We divide if-then-else representations into two classes: binary decision

diagrams, in which the if-part is always a simple variable, and if-then-else dags, which may have

arbitrary expressions in the if-part.

De�nition 2: A binary decision diagram is a binary directed acyclic graph with two leaves true

and false, in which each non-leaf node is labeled with an atom and has two out-edges pointing to

the then-part and the else-part. The meaning of a binary decision diagram is de�ned recursively as

(if label(node) then meaning(then-part) else meaning(else-part)).

Binary decision diagrams (bdds) have been used extensively for logic veri�cation work, for

example in [Bry85, RI86, SF86, MWBS88]. They are attractive for such work as they are easy

to manipulate and have a convenient canonical form (Bryant's canonical form). They have also

been used for logic synthesis work, mainly for designing di�erential voltage-cascode switches, which

implement bdds directly [NB86, FS87]. For logic minimization in other technologies, the mismatch

between the bdd structure and the circuit structure has restricted their use.

If-then-else dags generalize binary decision diagrams by not restricting the if-parts to single

variables:

De�nition 3: An if-then-else dag is a ternary directed acyclic graph in which each leaf is labeled

with true, false or a literal, and each internal node has three out-edges pointing to the if-, then-,

and else-parts. The meaning of a leaf node is the label on the node, and the meaning of an internal

node is de�ned recursively as

(if meaning(if-part) thenmeaning(then-part) elsemeaning(else-part)):

If-then-else dags o�er several advantages over sum-of-products and Boolean decision diagram

representations.

� If-then-else dags can be used to represent bdds and sum-of-products expressions, but neither

bdds nor sum-of-products forms can represent if-then-else dags.

� Circuits built out of arbitrary gates can be converted to if-then-else dags without losing any

sharing of common subexpressions.

� If-then-else dags, like bdds, have a convenient canonical form. Canonical forms are particu-

larly valuable for tautology checking.

� The new canonical form for if-then-else dags allows more sharing of subexpressions than

Bryant's canonical form for bdds. Any shared subexpressions in Bryant's form have corre-

sponding sharing in the new canonical form, but the new form allows more sharing in the

if-part.

2 Binary decision diagrams

Binary decision digrams (bdds, for short) use a single universal operator, are easily converted to

canonical forms, and can share subexpressions either within an expression or across all expressions.

BDDs are easy to evaluate, but unless extra restrictions are put on them, they can be di�cult to

simplify or to compare for equality. By applying appropriate restrictions, we can create a canonical

form for bdds, making equality checks trivial.

A representation is canonical if any two expressions that are logically equivalent are identical.

For example, if ab+ a:b is represented di�erently from a, then the representation is non-canonical.

We can distinguish between weak canonical forms, in which logically equivalent expressions have

identical structure but may occur in di�erent locations in memory, and strong canonical forms

in which expressions in di�erent locations represent di�erent Boolean functions. Strong canonical

forms are particularly useful, because they guarantee that any explicitly represented subexpression

is shared by all expressions that need it.
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1 Introduction

1.1 What is multi-level logic minimization?

Multi-level logic minimization is the transforming of a speci�cation of a Boolean function into

an equivalent representation that can be implemented as a circuit with better characteristics than a

circuit built from the original speci�cation. The function usually has multiple outputs, and may be

only partially speci�ed. The parameters to be optimized are usually the area and delay of the �nal

circuit, which must be estimated from the representation of the function.

The minimization may be done by global or local optimization techniques. The main global

techniques are factoring by weak division, algebraic substitution to reuse already computed func-

tions, and various algorithms to �nd common factors. Local optimization techniques are primarily

\peephole" optimizations that apply ad hoc transformations to small parts of a circuit. The two

classes of techniques overlap, as some transformations can be applied to make global changes, and

factoring techniques can be applied locally.

Most previous work in multi-level logic synthesis is based on extensions of two-level (sum-of-

products) minimization for PLAs [Bra87, BHL

+

87, BCDH86, HL87, BBH

+

88]. A notable exam-

ple is the misII multi-level minimization system [BRSW87], based on the espresso two-level mini-

mizer [BHMS84].

Some subproblems of multi-level minimization may be easier in representations other than sum-

of-products. For example, tautology checking, �nding common subexpressions, and extracting

exclusive-or operations look more attractive in the if-then-else dag form (see Section 1.3) than

in sum-of-products form. We are investigating using if-then-else dags to do multi-level logic mini-

mization, and have some encouraging preliminary results.

Section 1.2 describes the if-then-else operator, which forms the basis for the representation

used, and Section 1.3 gives a quick introduction to binary decision diagrams and if-then-else dags.

Section 2 will review binary decision diagrams and Bryant's canonical form, then introduce two-cuts,

which give a natural mapping from binary decision diagrams to if-then-else dags. Section 3 will

introduce two-cut canonical forms (of which Bryant's canonical form is a special case). Section 4.1

discusses ways to estimate rapidly the area and delay of a circuit in a technology-independent logic

minimizer, Sections 4.2 and 4.3 discuss the conversions needed between networks of gates in sum-

of-products form and if-then-else dags, Section 4.4 talks about ways to use don't-care information

for simplifying if-then-else dags, and Section 4.5 describes some crude factoring techniques that do

surprisingly well.

1.2 The if-then-else operator

The choice of operators used in the representation is critical. For simulation and other expression

evaluation applications, arbitrary operators can be used, as long as an executable de�nition is

provided. If simpli�cation or comparison of expressions is needed, the class of operators must be

restricted to a set of operators whose semantics are understood by the program. The most extreme

form of restriction is to use a single, universal operator, and to de�ne all other operators using it. For

example, the misII technology mapper �rst converts the input description into a circuit using only

2-input NANDs, then does graph matching between that circuit and a technology library [DGR

+

87].

The research described here is based on a di�erent universal operator|the if-then-else operator.

De�nition 1: The if-then-else operator is a ternary Boolean function, with (if a then b else c)

de�ned as ab+ :ac or, equivalently, (a + :c)(:a+ b).

All binary Boolean functions are easily de�ned with the if-then-else operator. For example,

� ab = (if a then b else false)

� a+ b = (if a then true else b)

� a� b = (if a then:b else b).
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This article describes the use of if-then-else dags for multi-level logic minimization.

A new canonical form for if-then-else dags, analogous to Bryant's canonical form for

binary decision diagrams (bdds), is introduced. Two-cuts are de�ned for binary decision

diagrams, and a relationship is exhibited between general if-then-else expressions and the

two-cuts of a bdd for the same function. The canonical form is based on representing the

lowest non-trivial two-cut in the corresponding bdd, instead of the highest two-cut, as in

Bryant's canonical form.

The de�nitions of prime and irredundant expressions are extended to if-then-else dags.

Expressions in Bryant's canonical form or in the new canonical form can be shown to be

prime and irredundant.

Objective functions for minimization are discussed, and estimators for predicting the

area and delay of the circuit produced after technology mapping are proposed.

A brief discussion of methods for applying don't-care information and for factoring

expressions is included.
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