
References 21

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, San Francisco, CA, 1979.

[Kar86] Kevin Karplus. Exclusion constraints, a new application of graph algorithms to VLSI

design. In 4thMIT Conference on Advanced Research in VLSI, pages 123{139, Cambridge,

MA, April 7{9 1986.

[KM90] Kevin Karplus and Dipen Moitra. Using dominators for Boolean function manipulation.

Technical report, Department of Computer Science, Cornell University, Ithaca, NY 14853,

forthcoming, probably 1990.

[Lee59] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell System

Technical Journal, 38:985{999, July 1959.

[NO79] Greg Nelson and Derek Oppen. Simpli�cation by cooperating decision procedures. ACM

Transactions on Programming Languages and Systems, 1(2):245{257, October 1979.



20 References

Other researchers have found that using don't-care sets provides signi�cant improvement in

multi-level minimizers. A transformation that simpli�es expressions modulo don't-care sets has been

implemented and is being debugged and evaluated. The transformation is intended to guarantee

that an if-then-else dag is prime and irredundant with respect to the don't-care set|that is, that

any change in meaning occurs only for cases that we know are unimportant.

Several size measures, including the three presented in this paper, are being evaluated to de-

termine which ones provide the best predictors of circuit size and delay after technology mapping.

Ideally, we would like to generate an appropriate measuring function directly from a description of

the technology.

Because sum-of-products representations are so important for PLA implementation, we are

working on methods to convert prime, irredundant if-then-else dags into prime, irredundant sum-

of-products representations.

Acknowledgements

I would like to thank Liisa Raiha, for implementing a version of Bryant's canonical form; Dipen

Moitra, for examining the graph theoretic properties of binary decision diagrams, particularly

identifying dominators as an interesting feature; Habib Krit, for studying my undocumented code

for if-then-else dags and suggesting several improvements, and for reading early drafts of this paper;

and Martine Schlag, for providing several useful comments on a draft of this paper.

References

[Ake77] Sheldon B. Akers. On the speci�cation and analysis of large digital functions. In 7th

Annual International Conference on Fault Tolerant Computing, pages 88{93, Los Angeles,

CA, 28{30 June 1977. IEEE.

[Ake78] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-

27(6):509{516, June 1978.

[Ber88] UC Berkeley. Berkeley logic interchange format (BLIF). In Rick Spickelmier, editor, Oct

ToolsDistribution2.1. Electronics Research Laboratory,University of California,Berkeley,

25 March 1988.

[BHMS84] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L. Sangio-

vanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic

Publishers, 1984.

[Bra87] Robert K. Brayton. Algorithms for multi-level logic synthesis and optimization. In G. De

Micheli, Alberto Sangiovanni-Vincentelli, and P. Antognetti, editors, Design Systems for

VLSI Circuits|Logic Synthesis and Silicon Compilation, pages 197{247.Martinus Nijho�

Publishers, 1987.

[Bry86] RandalEveritt Bryant. Graph-based algorithmsfor Boolean functionmanipulation. IEEE

Transactions on Computers, C-35(8):677{691, August 1986.

[Bry87] Randal Everitt Bryant. Algorithmic aspects of symbolic switch network analysis. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, CAD-

6(4):618{633, July 1987.

[DGR

+

87] Ewald Detjens, Gary Gannot, Richard Rudell, Alberto Sangiovanni-Vincentelli, and

Albert Wang. Technology mapping in MIS. In IEEE International Conference on Com-

puter-Aided Design ICCAD-87, pages 116{119, Santa Clara, CA, 9{12 November 1987.

IEEE Computer Society Press.

[FS87] Steven J. Friedman and Kenneth J. Supowit. Finding the optimal variable ordering for

binary decision diagrams. InACM IEEE 24

th

Design Automation Conference Proceedings,

pages 348{355, Miami Beach, FL, 28 June{1 July 1987.



5. Conclusions and current work 19

canonical form Printform

expression size count pcount size count pcount

abcd 7 4 4 7 4 4

a+ b+ c+ d 7 4 4 7 4 4

a� b� c� d 10 10 4 10 10 4

ad+ be + cf 29 24 25 11 6 6

a(c+ d+ e+ g) + b(c+ d+ e+ f)+

c(e + f) + d(f + g)

32 24 30 36 23 23

(a + b+ c+ d)(:a+ :b+ :c+ :d) 12 8 8 12 8 8

(b+ c)(a(e + g)(:e + f + :g)) + h+ i)+

d(e+ g)(:e + f + :g)

27 20 37 21 14 19

a(c+ d+ e+ g) + b(c+ d+ e+ f)+

(c+ d)(dg + e + f)

30 23 31 38 24 24

Table 4.3: The change in size that results from applying the Printform transformations to

the canonical forms of several expressions. The variable ordering used is alphabetical.

the order in which the transformations were applied. If the transformations had the Church-Rosser

property, then the transformed expressions would also be a canonical form, but one which is smaller

than the the if-then-else dags with �xed variable order. Unfortunately, counter-examples are easily

found. For example,

(if a then (if b then (if c then d else false) else c) else (if :b then c else e))

can be converted in two di�erent ways, depending whether the left subdag is converted using the

�rst transformation, or the whole dag is converted using the last transformation. Transforming the

left subdag, we get

(if a then (if (if b then d else true) then c else false) else (if :b then c else e));

which cannot be transformed further, and transforming at the root �rst we get

(if b then (if a then (if c then d else false) else e) else c);

which also cannot be further transformed. One interesting direction for further research is to �nd a

more complete set of transformations that has the Church-Rosser property.

5 Conclusions and current work

This paper has presented a new way of looking at if-then-else dags, based on two-cuts in a

corresponding binary decision diagram. The relationship between the two representations leads to

a natural canonical form for if-then-else dags.

If-then-else dags are attractive for VLSI CAD work, because they provide sharing of subex-

pressions, a compact canonical form for tautology checking, easy manipulation for all the standard

Boolean operators, straightforward representation of networks of gates, and factoring by simple

transformations of the dag.

Several implementations of binary decision diagrams and if-then-else dagS have been written,

and used for switch-level veri�cation tasks [Kar86] and for multi-level logic minimization. Current

work focusses on using transformations of if-then-else dags to do logic minimization. In addition to

the Printform transformations described in this paper, more powerful transformations, which violate

even the weakened version of Condition 1, have been implemented. These transformations, together

with heuristics for �nding good variable orderings for arbitrary if-then-else dags, have given some

promising results, but are still under intensive development.



18 4. Current work|multi-level logic optimization

Existing expression =) Transformed expression

Transformations involving 3 subdags:

(if a then (if b

a

then b

b

else false) else b

a

) =) (if (if a then b

b

else true) then b

a

else

false)

(if a then (if b

a

then b

b

else:b

b

) else b

a

) =) (if (if a then b

b

else true) then b

a

else :b

a

)

(if a then (if b

a

then b

b

else true) else :b

a

) =) (if (if a then:b

b

else true) then :b

a

else

true)

(if a then (if b

a

then b

b

else:b

b

) else :b

a

) =) (if (if a then:b

b

else true) then :b

a

else

b

a

)

(if a then c

a

else (if c

a

then c

b

else false)) =) (if (if :a then c

b

else true) then c

a

else

false)

(if a then c

a

else (if c

a

then c

b

else:c

b

)) =) (if (if :a then c

b

else true) then c

a

else

:c

a

)

(if a then :c

a

else (if c

a

then c

b

else true)) =) (if (if :a then:c

b

else true) then c

a

else

true)

(if a then :c

a

else (if c

a

then c

b

else:c

b

)) =) (if (if :a then:c

b

else true) then :c

a

else

c

a

)

Transformations involving 4 subdags:

(if a then (if b

a

then b

b

else b

c

) else b

c

) =) (if (if a then b

a

else false) then b

b

else b

c

)

(if a then (if b

a

then b

b

else b

c

) else b

b

) =) (if (if a then b

a

else true) then b

b

else b

c

)

(if a then c

b

else (if c

a

then c

b

else c

c

)) =) (if (if :a then c

a

else true) then c

b

else c

c

)

(if a then c

c

else (if c

a

then c

b

else c

c

)) =) (if (if :a then c

a

else false) then c

b

else

c

c

)

Transformations applied only if result is simpler:

(if a then (if b

a

then b

b

else b

c

) else

(if b

a

then c

b

else c

c

))

=) (if b

a

then (if a then b

b

else c

b

) else

(if a then b

c

else c

c

))

(if a then (if b

a

then b

b

else b

c

) else

(if :b

a

then c

b

else c

c

))

=) (if b

a

then (if a then b

b

else c

c

) else

(if a then b

c

else c

b

))

Table 4.2: The Printform transformations, which do a crude job of factoring if-then-else

dags. Each transformation decreases the complexity of the if-then-else dag, using the

pcount measure.

which is transformed to

(if (if a then d else true) then (if b then c else:c) else (if :b then c else:c)):

To satisfy Condition 6, the result should be

(if (if (if a then d else true) then b else:b) then c else:c):

The problem occurs only with exclusive-or functions, and amounts to choosing left- or right-

associativity for the exclusive-or. Although the violation of Condition 6 can be viewed as a bug

in the current set of transformations, it does not appear to have any consequences in the current

applications. If the transformations are to be used for many purposes, it may become important to

�x this bug.

The set of transformations would be more useful if they had the Church-Rosser property|that

is, when no more transformations can be applied to the dag, the result is the same independent of



4. Current work|multi-level logic optimization 17

The most e�ective factoring techniques I have found for if-then-else dags involve transformations

that change the order of the variables, either locally for one part of the dag, or for the entire dag.

A complete description of the transformations used is beyond the scope of this paper, but I will

illustrate the concept with a particularly simple set of transformations. These transformations were

originally intended to be applied to if-then-else dags in my new canonical form, to make them easier

to read when printed, and so are called Printform transformations.

The Printform transformations do crude factoring while maintaining a weakened version of

Condition 1. The variables in the if-part are required to be disjoint from the variables in the then-

and else-parts, but are not required to be before them in the variable ordering. This weakened form

of Condition 1 is still enough to guarantee that an expression is prime and irredundant, using the

same proof as in Section 3.3.

Another set of transformations (the local factoring transformations) are similar, but allow some

duplication of variables between if-part and the then- and else-parts. The local factoring trans-

formations are far more powerful, and provide most of the improvements obtained by my factoring

programs, but do not guarantee that the result is prime and irredundant. They will be described in

a later paper.

By rearranging the if-then-else dags (converting them to a non-canonical form), we can increase

the number of times the constants true and false appear, without increasing the number of nodes

in the dag, thus decreasing the size of the dag by any of the measures. The transformations

currently used are shown in Table 4.2. The transformations are �rst applied to the component

parts, then to the expression as a whole. The last two transformations in Table 4.2 are applied

only if the size of the dag would be reduced, that is, if the new then- or else-part simpli�es. For

example, in the second-from-the-last transformation, if b

b

= c

b

, then (if a then b

b

else c

b

) = b

b

, and

the transformation can be applied. As another example, if b

b

= true and c

c

= false in the last

transformation, then (if a then b

b

else c

c

) = a, and the transformation is acceptable for the size

measure, but not for the count measure.

The Printform transformations may actually increase the size and count measures of an if-then-

else dag, because rearranging the then-part may reduce the amount of sharing with the else-part.

For example, the canonical form for (c+ d)(dg+ e+ f) is (if c then (if d then e + f + g else e + f)

else d(e+ f + g)), which has size 13, count 10, and pcount 13. After applying the Printform

transformations, we get (if c then dg + e + f else d(e+ f + g)), which has size 16, count 10, and

pcount 10. The pcount measure, which estimates the complexity of the printed form, is always

reduced by the transformations, as one would expect from transformations originally intended for

improving printing. The Printform transformation is still valuable as a factoring tool, as it enables

the more powerful local factoring transformations to �nd the factoring (c + d)(dg + e+ f).

Table 4.3 shows the sizes of the results of applying the Printform transformations to the canonical

forms for the examples in Table 4.1.

The procedure that does the transformations makes sure that Conditions 2, 3, 4, 5, and 7 are not

violated, but allows Conditions 1 and 6 to be violated. Note that the second set of transformations

(those involving 4 subdags) are simply ways to maintain Condition 7.

Condition 1 is not removed entirely, but is weakened|variables in the if-part are not necessarily

earlier in the variable ordering than the variables in the then- and else-parts, but are disjoint

from them. The transformations can re-order the variables di�erently in the then- and else-parts,

and are thus potentially more powerful than simply re-ordering variables (a technique suggested by

Randal Bryant [Bry86, page 26]). An exponential algorithm for �nding the best ordering for BDD's

is given in [FS87]. A combination approach using transformations and heuristics for doing complete

variable re-ordering of if-then-else dags has yielded the most powerful factoring techniques, as will

be reported in a later paper.

The violation of Condition 6 is illustrated by

(if :a then (if b then c else:c) else (if (if b then c else :c) then d else:d));



16 4. Current work|multi-level logic optimization

expression size count pcount sum-of-products

abcd 7 4 4 4

a+ b+ c+ d 7 4 4 4

a� b� c� d 10 10 4 32

ad+ be+ cf 11 6 6 6

a(c+ d+ e + g) + b(c+ d+ e + f)+

c(e+ f) + d(f + g)

27 14 16 24

(a+ b + c+ d)(:a+ :b+ :c+ :d) 12 8 8 12

(b+ c)(a(e + g)(:e + f + :g)) + h+ i)+

d(e+ g)(:e + f + :g)

20 12 16 41

a(c+ d+ e + g) + b(c+ d+ e + f)+

(c+ d)(dg + e + f)

35 13 16 29

Table 4.1: Di�erent ways to measure the size of an if-then-else dag illustrated on some sim-

ple expressions. The �rst three size measures are for an if-then-else dag that corresponds

to the expression as factored in the �rst column. The last size measure is the number of

literals in a sum-of-products representation for the same function. The last four functions

are taken from [Bra87], but are factored to minimize the count measure.

reported by misII minus the number of nodes in the decomposition. Note that extra inverters, which

should have zero cost, add one node and one literal to misII's count. Because misII's technology

mapper adds and removes inverters, and removes many of the intermediate nodes from an AND/OR

decomposition, my cost estimate seems quite reasonable for this mapper.

Other minor variants of the count measure are useful for other purposes. For example, we may

want to count the number of literals that would be printed if we expanded with AND, OR, XOR,

and NOT operators. A general if-then-else triple (if a then b else c) can be expanded as either

ab + (:a)c or (a + c)(:a + b), whichever is more convenient. For this measure, we want to count

shared subexpressions fully each time, as they will have to be printed repeatedly.

pcount(true) = pcount(false) = 0

pcount(literal) = 1

pcount((if a then b else c)) = pcount(a) + pcount(b); if c = :b, c = true, or c = false

pcount((if a then b else c)) = pcount(a) + pcount(c); if b = true or b = false

pcount((if a then b else c)) = 2pcount(a) + pcount(b) + pcount(c); otherwise

Table 4.1 shows the sizes of several simple expressions, comparing the di�erent measures and

the number of literals needed in the equivalent sum-of-products representation. Other measures

of expression complexity are easily devised, and studies are needed to determine which measures

correlate best with circuit size and delay after mapping to various technologies.

4.2 Factoring

The process of reducing the complexity of an expression is usually called factoring, because the

main techniques used by other researchers involve �nding shared parts of terms in a sum-of-products

representation, and factoring them out. For example, abc+ad+cdmight be factored as a(bc+d)+cd.

When dealing with if-then-else dags, factoring means any transformation of the dag that

preserves the meaning while reducing the size (as measured by the \count"function in Section 4.1.



4. Current work|multi-level logic optimization 15

way, a technology mapper generates a speci�c implementation. Some optimizations are done by the

mapper, equivalent to the peephole optimizations done by the code generator of a compiler.

For technology-independent minimization to work, we need measures that are not dependent on

any particular cell library, but that roughly approximate the cost or speed obtained by a technology

mapper. Technology-independent delay estimates are hard to come up with, so most research has

concentrated on size minimization, leaving the delay minimization to the technology mapper. Other

researchers have used

� the number of literals in sum-of-products form,

� the number of literals in the factored form,

� the number of distinct literals the function depends on, or

� the number of distinct variables that the function depends on

as an estimate of the complexity of a complex gate, and added the size estimates for all gates in a

network to get a size estimate for the network [Bra87, page 235]. Note that with any of these methods,

inverters are essentially free, as any input to a gate can be inverted and the gate de�nition changed

without changing the size of the gate. Because optimal signal polarity is technology-dependent, this

hiding of inverters is usually considered a good feature for technology-independent optimization.

The measures described above are useful when a network has been decomposed into gates, but

are not directly applicable to a Boolean network described as an if-then-else dag. New measures

are needed that are as useful for estimating circuit size.

If we are interested primarily in the storage cost of the representation, the following de�nition

seems natural.

De�nition 7: The size of an if-then-else dag is the number of nodes in the dag, counting the

if-then-else triples and the literals, but not the constants true and false.

If we use space-e�cient if-then-else dags, inverters can be inserted arbitrarily without changing

the cost of the expression, as no new nodes are created. This de�nition of size is excellent for use

in inductive proofs of properties of the dags, or for determining the storage costs in a program

manipulating the dags, but may not be the best estimator of circuit size when mapped to typical

technologies.

Another size measure I have experimented with is intended to be roughly proportional to the

number of transistors needed in a multi-level MOS implementation. It is computed by a depth-�rst

search of the dag:

count(true) = count(false) = 0

count(literal) = 1

count(internal node) = 1; if node previously visited

count((if a then b else c)) = count(a) + count(b); if c is true or false

count((if a then b else c)) = count(a) + count(c); if b if true or false

count((if a then b else c)) = 1 + count(a) + count(b) + count(c); otherwise

In the \count" measure, multiple uses of a literal are counted separately, so the \count" measure

provides a much better estimate of circuit size than the \size" measure. Adding one for general

if-then-else triples, but not for triples with a constant then- or else-part, reects the additional cost

of selectors and XOR gates over AND, OR, NAND, NOR, and AND-OR-INVERT gates in most

technologies. Other meeasures could be devised to get better matches to the costs of particular

technologies.

I am primarily interested in technology-independent optimization, and so have been using the

technology mapper in misII [DGR

+

87], rather than developing a new technology mapper. To use this

mapper, it has been necessary to convert if-then-else dags into networks of gates, each speci�ed in

sum-of-products form. My conversion routine generates n-input ANDs and ORs, inverters, 2-input

XORs, and if-then-else selectors. The \count" measure is almost identical to the number of literals



14 4. Current work|multi-level logic optimization

A more space-e�cient method for representing negated expressions steals one bit from each

pointer to represent negation. If negation is allowed arbitrarily, the representation is not canonical.

For example, (if a then b else c) has the same meaning as (if :a then c else b), and (if a then :b

else :c) has the same meaning as :(if a then b else c). The space-e�cient form is made canonical

by requiring that the if- and then-parts of an expression be pure pointers, with negation allowed

only for the else-part or the entire expression. Eliminating all negated triples cuts the number of

triples in half, and saves one pointer in each triple: the pointer to the negation.

Memory usage can be reduced by using space-e�cient symbol tables to store the unique triples.

The symbol table that guarantees unique triples can be implemented as a hash table, as a 2-3-tree,

or as a balanced binary tree. If linear probing is used in the hash table, rehashing is needed to keep

the table between 40% and 80% full; the storage cost is about 1.6 words per triple. Using chained

hashing, we can over�ll the hash table. If the average chain length is k, then the storage cost for the

hash table is 1+ 1=k words per triple. The rehashing required for either hash table implementation

causes an enormous burst of page faults in a virtual memory environment, and hashing looks much

less desirable.

A 2-3-tree implementation requires 5 words per node of the tree. If half the nodes are full, then

1.5 triples per node implies a storage cost of 3.33 words per triple. The depth of the 2-3-tree can

be reduced by having a separate 2-3-tree for each set of triple with the same if-part. Each triple e

has a pointer to the symbol table for the set f(a; b; c)ja = eg. Breaking the symbol table into pieces

greatly reduces the lookup time, at a cost of one more word per triple.

If we use a balanced binary tree, instead of a 2-3-tree, the pointers for the symbol table can be

included in the data structure for the expression, requiring only 2 words per triple. Breaking up

the symbol table in the same way as for 2-3-trees increases the cost of the symbol table to 3 words

per node. Although the balanced binary trees are slightly deeper than the corresponding 2-3-trees,

access is slightly faster, since insertion can be done with an iterative algorithm, instead of a recursive

one. The average depth of an expression in the balanced binary trees is empirically estimated at

about 0:5 ln(total number of triples).

Because the total number of triples that can be stored is limited by the size of the swap space,

the best performance is obtained by using a large hash table with chaining, and never rehashing.

4 Current work|multi-level logic optimization

Logic synthesis usually consists of several somewhat separable stages. My current work has

been applying if-then-else dags to one of those stages|technology-independent multi-level logic

optimization. In this stage of the process, the main goal is to reduce the complexity of a logic

network, so that technology mappers can �nd good implementations.

If-then-else dags are particularly attractive for representing logic networks, because they can

explicitly represent shared subexpressions, and can easily be manipulated to minimize the network.

Single-output functions can be represented as one dag, and multiple-output networks either as

multiple dags or as a single dag with multiple roots. Because my implementations use a symbol

table to store if-then-else triples uniquely, the two ways of representing multiple-output networks

are equivalent.

4.1 Expression complexity, counting literals

When doing logic minimization, the �rst question is \what exactly is being minimized?" Usually

there are constraints on signal delays and on implementation costs, and the goal is to �nd the best

(fastest or cheapest) design that meets the constraints. Unfortunately, both signal delay and imple-

mentation cost are very dependent on the technology used, and optimizations tied to a particular cell

library quickly become obsolete. Just as compiler writers have found code optimizations that work

well independent of the target machine, we look for logic optimizations that will work well indepen-

dent of the target technology. After doing what optimization we can in a technology-independent



3. If-then-else dags with an expression in the if-part 13

Having extended the de�nitions of prime and irredundant to if-then-else dags, let's now show

that the two-cut canonical forms are both prime and irredundant. We will show that replacing a

pointer to anything else with a pointer to true must change the meaning of the expression, showing

that the canonical forms are prime. An exactly analogous proof (changing one pointer to a pointer

to false) shows that the forms are irredundant.

For Bryant's canonical form, the proof is trivial. Every non-constant node in a BDD in Bryant's

form must have a path to both true and false. In the original expression, follow the path from the

root to the node originally pointed to by the changed pointer, setting each variable to 1 if you follow

the then-branch out of a node, and to 0 if you follow the else-branch. Continue along the path

from the node to false in the same manner. The variable-order condition for Bryant's canonical

form guarantees that no variable has been set twice. This setting of the variables will make the

original expression false, but the modi�ed expression will be true, showing that the two are not

equivalent, and an expression in Bryant's canonical form is prime. By swapping true and false in

the proof, we can show that Bryant's canonical form is irredundant as well.

We can reason in an analogous way for the new canonical form.

Lemma 1: If (if a then b else c) is in canonical form and x is an expression not equivalent to b

but using no variables other than those in b, then (if a then b else c) is not equivalent to (if a then

x else c).

Proof: There is some setting of the variables of a that make it true, and some setting of the

variables of b that distinguishes it from x. By Condition 1 the two sets of variables do not intersect,

so the combined setting distinguishes (if a then b else c) from (if a then x else c). The same proof

works if we modify c or both b and c.

Lemma 2: If (if a then b else c) is in canonical form and x is an expression not equivalent to

a but using no variables other than those in a, then (if a then b else c) is not equivalent to (if x

then b else c).

Proof: Because x is not equivalent to a, we can �nd a way to set the variables of a so that its

value is di�erent from the value of x. By Condition 2, we can �nd a setting of the variables of b and

c so that their values are di�erent. By Condition 1, the variables set to distinguish x and a do not

overlap with the variables set to distinguish b and c, so the combined setting of the variables will

distinguish (if a then b else c) from (if x then b else c).

Theorem 1: An expression in the new canonical form is both prime and irredundant.

Proof: We want to show that changing any pointer in the canonical form to a pointer to true

or false will result in an expression not equivalent to the original. If the pointer was the root, then

the modi�ed expression is clearly not equivalent. Otherwise the pointer is part of some if-then-else

triple, and by the lemmas, the original triple is not equivalent to the modi�ed triple. We can continue

applying the lemmas to triples higher up the dag until we reach the root, showing that the meaning

of the expression was changed by modifying the pointer.

We have proven that expressions in Bryant's canonical form or the new canonical form presented

in Section 3.1 are prime and irredundant.

3.4 Space-e�cient if-then-else DAGs

The rather arbitrary order of then- and else-clauses imposed by Condition 3 of Section 3.1 leads

to an ine�cient use of storage space or computation time. Because if-parts may need to be negated

to put the then- and else-parts in the right order, we either have to build negated expressions on

demand (which is slow), or we can build the negation of each expression at the same time as the

expression (which doubles the storage cost).



12 3. If-then-else dags with an expression in the if-part

Paste MacDraw picture here.

Figure 3.3: A prime if-then-else dag corresponding to the non-prime sum-of-products

expression acd + bcd + b:d. If the shared sub-dag for cd is duplicated, the resulting if-

then-else tree is not prime.

We have to be a little careful about what \changing the meaning of the expression" means.

Usually, two expressions are considered to have the same meaning if their values di�er only on some

speci�ed don't-care set, but for this paper, we will restrict ourselves to equality of Boolean functions,

which is equivalent to an empty don't-care set.

The new de�nitions of \prime" and \irredundant" correspond to existing ones for sum-of-products

and factored forms. For example, we can use an if-then-else tree (no sharing of parts of terms) to

represent a sum-of-products expression as shown in Figure 3.2. If the if-then-else tree is prime or

irredundant, then the sum-of-products expression must be, because the substitutions to be tested

in the sum-of-products form are a subset of those tested in the if-then-else tree.

Note that an if-then-else dag that shares parts of di�erent terms may be prime and irredundant

without the corresponding sum-of-products expression being prime or irredundant. For example,

the expression acd + bcd + b:d is not prime, because it is equivalent to acd + bc + b:d, but the

corresponding if-then-else dag shown in Figure 3.3 is prime.

The extra tests for the if-then-else tree are easily satis�ed for trees corresponding to sum-of-

products representations. If a sum-of-products expression is prime, then the corresponding if-then-

else tree will have its meaning changed if any pointer to a literal is changed to a pointer to true.

If changing any literal in a term to true increases the coverage of the term enough to change the

meaning of the whole expression, then changing a sequence of literals in one term would change

the meaning at least as much. Converting an entire term or sequence of terms to true changes the

expression to true, thus changing the meaning of the expression. The if-then-else tree corresponding

to a prime sum-of-products expression is, therefore, also prime. An irredundant sum-of-product

expression converts to an irredundant tree, because changing a literal or sequence of literals to

false is equivalent to changing the term it is in to false.

Factored forms, literals combined with arbitrary combinations of AND and OR operators, can

also be represented as if-then-else trees. Brayton's de�nitions of prime and irredundant for factored

forms [Bra87, page 203]) correspond to the de�nition for if-then-else dags.



3. If-then-else dags with an expression in the if-part 11

The transformation is generalized to covers cases when one or two of the input expressions do

not include the shared part x, but have only variables that are after those in x. For example, if b

and c share a common if-part x, but a starts with a variable after those in x, we can think of a as

(if x then a else a), and apply the simple transformation.

Of course, the generalization of the simple transformation does not always apply to three arbitrary

input expressions. However, there are always equivalent, non-canonical representations of the three

expressions to which the transformation can be applied. For the non-canonical representations to be

useful, they must still satisfy Condition 1, but we can relax Conditions 6 and 7. The transformation

(if (if a

a

then a

b

else a

c

) then b else c) 7!

(if a

a

then (if a

b

then b else c) else (if a

c

then b else c))

can be applied repeatedly to the canonical input expressions to reduce the size of their if-parts. This

process of peeling o� the end of the if-part and attaching it to the then- and else-parts is called

walking up the cuts. By walking up the cuts of the three expressions, always peeling o� variables

from the expression with the largest range of variables in its if-part, we eventually reach a point

where the generalized transformation is applicable.

Walking up the cuts can be made faster if one (or two) of the input expressions does not use

the lowest variable used by any of the three. When an expression (say a) does not use the lowest

variable, walking up its cuts will eventually convert it to (if don't care then a else a), so we can

immediately do the conversion, and just walk up the cuts of the other expressions until their if-parts

use only variables that come before the variables in a.

The slowness of walking up the cuts is the main limitation on the speed of the if-then-else dag

implementations. Walking up the cuts can sometimes be avoided by recognizing special cases. For

example, commutative operations like (if b then a else false) and (if b then a else :a) can be

immediately rearranged to get (if a then b else false) and (if a then b else :b).

Even when walking up the cuts is unavoidable, it need not be as slow as it is in the current

implementations. The bottleneck in the current process is storing the intermediate if-then-else triples

in the symbol table. By not explicitly building the intermediate expressions, the process could be

made much faster. This trick has been used for converting if-then-else dags to sum-of-products

form, resulting in substantial speedups.

After Condition 1 is satis�ed, we can satisfy Conditions 6 and 7 fairly easily. The de�nitions

of the conditions give the necessary tests and transformations. If the if-, then-, and else-parts of

an expression are already known to be in canonical form, then the tests for Conditions 6 and 7 are

applied only at the top level.

3.3 Two-cut canonical forms are prime and irredundant

Other researchers in multi-level minimization, working primarily with sum-of-products represen-

tations, have found the concepts of primality and irredundancy to be important [BHMS84, page 28],

[Bra87, page 202]. Both concepts have natural analogs in if-then-else dag representations. Both

Bryant's canonical form and the new canonical form presented in Section 3.1 can be shown to be

prime and irredundant with the de�nition presented here.

In sum-of-products form, an expression is said to be prime if no term could be modi�ed by

changing a literal to true without changing the meaning of the expression. Similarly, an expression

in sum-of-products form is said to be irredundant if no term can be changed to false without

changing the meaning of the expression.

De�nition 6: An if-then-else dag is prime if no pointer to a literal, subdag, or the constant false

could be replaced with a pointer to true without changing the meaning of the expression. An if-then-

else dag is irredundant if no pointer to a literal, subdag, or the constant true could be replaced

with a pointer to false without changing the meaning of the expression.



10 3. If-then-else dags with an expression in the if-part

c is one of the constants true or false, this condition amounts to choosing left-associativity

for commutative AND or OR operations.

Note that the choice of ordering in Condition 3 guarantees that we need not test whether c can

be represented as (if c

a

then c

b

else b) or (if c

a

then b else c

c

), because the lowest variable

in c is no lower than the lowest one in b. With a di�erent ordering, such as that described in

Section 3.4, the symmetric test would have to be made.

We can show that imposing the conditions listed above de�nes a canonical form by exhibiting

an isomorphism with Bryant's canonical form.

A general if-then-else dag can be turned into Bryant's canonical form by repeatedly applying

the transformation

(if (if a then b else c) then d else e) 7!

(if a then (if b then d else e) else (if c then d else e));

and using a symbol table to merge identical subexpressions. Condition 1 guarantees that the variable

ordering in the binary decision diagram will be correct.

To do the reverse mapping, we can cut apart an if-then-else dag in Bryant's canonical form at the

lowest two-cut above ftrue; falseg, converting the dag above the cut for the if-part, and the two

subdags below the cut for the then- and else-parts (see Section 2.3 for the de�nition of two-cuts).

We may need to negate the if-part and swap the then- and else-parts to meet Condition 3 above.

We need to use a symbol table to ensure that identical subexpressions are properly merged.

If we take an expression that meets Conditions 1 through 7, convert it to Bryant's canonical

form, and convert it back, we will get the original expression. The proof is straightforward but

tedious, so will be left as an exercise for the reader. This isomorphism between Bryant's canonical

form and the new form implies that the new form is also canonical.

3.2 General algorithm for reducing to canonical form

We can use essentially the same algorithm for converting to either Bryant's canonical form or the

new form described in Section 3.1. Given three expressions, a, b, and c, we construct an expression

for (if a then b else c) that is in the desired canonical form.

First, we convert each of the three arguments to canonical form, then transform the triple (if a

then b else c) until Conditions 1 through 7 are met. Some of the conditions are easy to meet, but

others may require extensive transformation of the expression. The non-trivial ones are Conditions 1,

6, and 7.

The hardest condition to satisfy is Condition 1, which requires that all variables of the if-

part be before any variables of the then- and else-parts. Other than some checks for trivial cases,

transformations are �rst applied to satisfy this condition, then transformations that do not a�ect the

order of the variables are applied to satisfy Conditions 6 and 7, and �nally, a trivial transformation

is applied to satisfy the then-else ordering condition (Condition 3). The other conditions are

automatically taken care of by the checks for trivial cases and are not re-introduced by any of the

transformations.

The main transformation is the one that makes the variable ordering required by Condition 1

correct. The transformation is a generalization of the following simple one:

(if (if x then a

b

else a

c

) then (if x then b

b

else b

c

) else (if x then c

b

else c

c

)) 7!

(if x then (if a

b

then b

b

else c

b

) else (if a

c

then b

c

else c

c

)):

Because the three input expressions are in canonical form, the variable ordering is correct in each.

In particular, all the variables in x are earlier in the ordering than any variable in a

b

, a

c

, b

b

, b

c

, c

b

,

or c

c

, satisfying Condition 1 at this level of the dag. After the new then- and else-parts have been

converted to canonical form, the entire dag satis�es the condition.



3. If-then-else dags with an expression in the if-part 9

3.1 Two-cut canonical forms

One of the attractive features of binary decision diagrams, especially for veri�cation applications,

is the ease of computing a canonical form|Bryant's canonical form. It would be useful to have a

similar canonical form for if-then-else dags. Of course, binary decision diagrams are a special case

of if-then-else dags, so we could just use Bryant's canonical form, but in doing so we lose the

explicit representation of all two-cuts except the two trivial ones (the two children of the root and

the two leaves true and false). Building a separate two-cut graph to �nd the other two-cuts is an

inelegant solution, but we can use the relationship between BDD's and if-then-else dags to represent

the two-cuts directly.

An if-then-else triple corresponds to a BDD with a two-cut. The if-part corresponds to the

BDD above the cut, and the then- and else-parts correspond to the subdags below the two-cut.

Restricting the if-part to simple variables is equivalent to choosing always to represent the topmost

two-cut in the BDD. If, instead of choosing the topmost two-cut, we always choose the non-trivial

one closest to the leaves, then the triple for the if-part of an expression corresponds to the next

two-cut up. Following the chain of if-parts until we get to a literal gives us the two-cuts in order

from the bottom up.

To make these if-then-else dags canonical, we must place some restrictions on the expressions

allowed in the if-, then-, and else-parts of the structure. There are seven restrictions, the �rst three

of which are modi�ed slightly from corresponding restrictions in Bryant's canonical form.

1. All the atoms in the if-part must be before all atoms in the then- and else-parts. This

restriction is a direct translation of Bryant's restriction that the atom in a node be before

the atoms of the subdags. A weaker restriction, that the variables of the if-part be disjoint

from those of the then- and else-parts, would be enough to eliminate paths with duplicate

variables, but not enough to make the form canonical. Non-canonical expressions using this

weaker version of the restriction are useful for factoring.

2. The then- and else-parts of an expression must be distinct Boolean functions|exactly as in

Bryant's canonical form.

3. A systematic choice must be made between equivalent expressions (if a then b else c) and (if

:a then c else b). This corresponds to Bryant's choice of atoms as node labels (never negations

of atoms). The preferred choice is not obvious for if-then-else dags, so I have experimented

with two choices. In one system, I picked an ordering that puts the constants true and false

in the else- position rather than the then-position. The ordering also guaranteed that no

atom of the else-part comes before the �rst atom of the then-part. This choice of ordering

simpli�es some of the code in the implementation, but is otherwise arbitrary. A better choice

of ordering is described in Section 3.4.

4. Triples of the form (if a then true else false) and (if a then false else true) are

prohibited. The �rst triple should be represented simply as a, and the second one by :a,

which is structured like a, but has the then- and else-parts negated. (Section 3.4 describes

a better way of handling negation.) Any literal can be used as an expression, not just an

un-negated atom, so expressions of the form (if a then false else true) are never needed.

5. Triples of the form (if true then b else c) and (if false then b else c) are prohibited, and

should be replaced with b and c respectively.

6. In the triple (if a then b else c), b and c must not share both then- and else-parts. If

b = (if b

a

then b

b

else c

c

) and c = (if c

a

then b

b

else c

c

), then the correct representation for

the original expression is (if (if a then b

a

else c

a

) then b

b

else c

c

).

Note that the ordering in Condition 3 guarantees that b

b

and c

c

will be in the same order

in both the then- and the else-part, but if we use the variant of Section 3.4, we also have

to look for b = (if b

a

then b

b

else b

c

) and c = (if c

a

then b

c

else b

b

), and convert the original

expression to (if (if a then b

a

else:c

a

) then b

b

else b

c

).

7. In the triple (if a then b else c), b must not contain c as a then- or else-part. If b =

(if b

1

then b

b

else c) or b = (if b

2

then c else b

c

), then the expression should be represented as

(if (if a then b

1

else false) then b

b

else c) or (if (if a then b

2

else true) then c else b

c

). If



8 3. If-then-else dags with an expression in the if-part

Draw this with MacDraw

Figure 3.2: If-then-else tree representing the sum-of-products expression abc+ :ad+ :bd.

A free-form dag using any subset of the operators AND, OR, XOR, NOT, and IF can easily

be converted to a if-then-else dag having the same structure. Each operator can be converted as

follows:

AND abc is converted to (if (if a then b else false) then c else false).

OR a+ b+ c is converted to (if (if a thentrue else b) then true else c).

XOR a� b� c is converted to (if (if a then b else:b) then c else :c).

NOT :a is directly representable by ipping one bit in the pointer to a. ::a is not representable,

but the equivalent expression a is.

IF (if a then b else c) needs no conversion.

This conversion can also be done in the reverse direction. The mapping is not an isomorphism, as

some information about the grouping of operands is lost when converting to the if-then-else dag.

The output of an arbitrary operator can be handled by substituting an expression for the literal

corresponding to each input in the de�ning dag for the operator. The experimental multi-level

logic minimization programs I have been working on accept dags of arbitrary operators (in BLIF

format [Ber88]), convert them to if-then-else dags, transform them to reduce their complexity (as

measured by the functions in Section 4.1), then convert to n-input AND, n-input OR, 2-input XOR,

and NOT gates.

A sum-of-products expression can be represented exactly using just the conversions for AND

and OR, as illustrated in Figure 3.2. Note that a sum-of-products expression allows no sharing of

subexpressions, so the if-then-else dag is always a tree.

Sheldon Akers [Ake78, page 514] suggested using if-then-else trees rather than binary decision

diagrams to generate expressions more easily. Nelson and Oppen [NO79] showed how to convert

if-then-else trees into binary decision diagrams by recursively using the transformation

(if (if a then b else c) then d else e) =

(if a then (if b then d else e) else (if c then d else e)):

To get a BDD, leaves labeled with atoms need to be further expanded to (if atom then true else

false). Neither Akers [Ake77, Ake78] nor Nelson and Oppen [NO79] used the restriction that an

atom appear only once on each path. Akers explicitly refers to paths with repeated occurrences of

the same atom [Ake78, page 512].



3. If-then-else dags with an expression in the if-part 7

Draw this with MacDraw

Figure 3.1: If-then-else dag for abc+ :ad+ :bd, factored as (if ab then c else d).

An asymptotically faster algorithm for keeping track of two-cuts probably exists, but the time

taken by this algorithm is an insigni�cant fraction of the time spent manipulating BDD's, so further

re�nement is not worthwhile.

3 If-then-else DAGs with an expression in the if-part

Finding two-cuts so useful for simplifying binary decision diagrams, I looked for a new representa-

tion in which the two-cuts were more naturally represented. We can view a binary decision diagram

with a two-cut as having three parts: the dag from the root to the cut, and the two subdags below

the cut. For example, for the BDD in Figure 2.2, the parts are ab, c, and d. If we allow arbitrary

expressions in the if-part of if-then-else expressions, we can represent the two-cut explicitly as (if ab

then c else d), as shown in Figure 3.1.

De�nition 5: An if-then-else dag is a ternary directed acyclic graph in which each leaf is labeled

with true, false or a literal, and each internal node has three out-edges pointing to the if-, then-,

and else-parts. The meaning of a leaf node is the label on the node, and the meaning of an internal

node is de�ned recursively as

(if meaning(if-part) thenmeaning(then-part) elsemeaning(else-part)):

If-then-else dags are not new, but they do have several properties that make themmore attractive

than binary decision diagrams for CAD work. If-then-else dags

� provide a single representation scheme for representing binary decision diagrams, sum-of-

products, and arbitrary combinations of 1- and 2-input gates. Every 1- or 2-input gate can be

represented as an if-then-else triple, as explained on page 1, so networks without feedback can

be made by replacing each gate by the appropriate if-then-else triple.

� expose more subexpressions for potential sharing than do binary decision diagrams. The

same sharing of then- and else-parts is possible in both BDD's and if-then-else dags, but

only the general dags allow sharing subexpressions in the if-part. For example, the three

functions ab(d + e), c(d + e), and abd are represented as (if (if a then b else false) then

(if d then true else e) else false), (if c then (if d then true else e) else false), and (if

(if a then b else false) then d else false), sharing the subexpressions (if a then b else

false) and (if d then true else false).

� have at least two useful canonical forms: Bryant's canonical form and a new canonical form

introduced in this paper.

� are a more factored form than BDD's, providing for better printing and logic minimization.

With the aid of the transformations described in Section 4.2, good factorings can be found

from the canonical forms.

� express Boolean operations naturally as if-then-else triples, so the same symbol table used for

storing canonical forms can be used for caching the results of operations.



6 2. Binary decision diagrams

Paste MacDraw picture here.

Figure 2.3: Two-cut graph for the binary decision diagram of Figure 2.1, which represents

the expression ab+ cd+ ef .

the next two-cut is unique, and the out-degree of each node of the two-cut graph will be one, except

for the two-cut ftrue; falseg which has out-degree zero.

We can easily show that every two-cut in a BDD must be the two children of some vertex. Look

at any vertex above the two-cut in the BDD. If one of its children is not one of the two vertices of the

two-cut, descend to that child. Keep repeating the descent until the two children are the two-cut.

The �niteness of the BDD guarantees that the descent must terminate sometime, and the two-cut

property guarantees that the path we descend along cannot skip the vertices in the two-cut.

Because each two-cut is somewhere the two children of a vertex in the BDD, we only need to

put a new node and edge in the two-cut graph when we add a new node to the BDD. Whenever a

new triple (if a then B else C) is created, the two-cut fB;Cg may need to be added to the graph,

and an edge added pointing to the two-cut immediately below fB;Cg.

The two-cut below the new one may be a collapsed cut (sharing one of B or C with the new cut)

or it may be a two-cut of B and a two-cut of C. To look for collapsed cuts, we walk down the cuts of

B (follow the edges in the two-cut graph), starting with the two-cut formed by B's children, looking

for a cut containing C. We can stop walking down the cuts when both expressions in the cut do not

contain the smallest variable of C. To look for a common cut below both B and C, we start at the

two-cuts representing the children of B and C and walk down the cuts until we �nd the place where

the paths to the sink ftrue; falseg join. We can always decide which edge in the two-cut graph

to traverse next by looking at the smallest variable in the expressions for the two-cuts. Figure 2.3

shows the two-cut graph built for the BDD of Figure 2.1.

With n nodes in a binary decision diagram, we have at most n possible two-cuts, and the longest

path in the two-cut graph is at most n � 1 long. At worst, we will have to traverse O(n) edges of

the two-cut graph when adding a new two-cut, so building the entire graph is O(n

2

).

The O(n

2

) bound is not necessarily tight for the problem, but is for this particular algorithm.

Here is a way to build a BDD that uses 
(n

2

) steps to build the two-cut graph:

1. Build two BDDs: X = x

1

+ x

2

+ � � �+ x

k

and Y = y

1

+ y

2

+ � � �+ y

k

. Note that the two-cut

for the children of X begins a path of length k in the two-cut graph, as does the two-cut for

the children of Y . The two paths are joined only at ftrue; falseg.

2. Build 2m nodes: R

i

= r

i

+X and S

i

= s

i

+ Y .

3. Build m

2

nodes: M

i;j

= (if m

i;j

then r

i

else s

j

). The next two-cut below fr

i

; s

j

g is

ftrue; falseg, but it requires traversing 2k + 2 edges of the two-cut graph to create each

new edge.

4. Build tree for each row: B

i

= (if b

i;1

then (if b

i;2

then . . . elseM

i;2

) elseM

i;1

).

5. Build tree for each column: A = (if a

1

then (if a

2

then . . . elseB

2

) elseB

1

).

The BDD A contains 2m

2

+ 2m + 2k nodes, and takes over 2km

2

operations to build the two-cut

graph just for step 3. If m is chosen to be approximately

p

k, then the BDD contains O(k) nodes,

but the two-cut graph takes k

2

steps to compute.



2. Binary decision diagrams 5

Draw this with MacDraw

Figure 2.2: Canonical binary decision diagram for abc+ :ad+ :bd, showing the two-cuts.

De�nition 4: A pair of vertices fx; yg is a two-cut between the root r and a pair of vertices fv; wg,

if, and only if, every path from r to v or w contains at least one of x or y. If a two-cut is mentioned

without giving fv; wg explicitly, then the pair ftrue; falseg is assumed.

There are two trivial two-cuts in any BDD: the leaves true and false themselves, and the

two children of the root. Every dominator of true or false is part of a two-cut (with the other

leaf node), but there are other two-cuts. The paper [KM90] describes several useful properties of

two-cuts and gives proofs.

The main use of dominators was in simplifying the printing of the if-then-else dag, because we

could ignore part of the dag while printing another part. To use two-cuts e�ectively, we need to

generalize the OR-split that made dominators useful. If x is a dominator of false, then ftrue; xg

and ftrue; falseg are both two-cuts, and share a common vertex (true). It turns out that any

two-cuts that share a common vertex can be used to simplify the expression. Let's call such pairs

of two-cuts collapsed two-cuts.

Consider the expression abc+:ad+:bd, whose binary decision diagram is shown in Figure 2.2.

The two-cuts of the dag are f2; 4g, f3; 4g, and ftrue; falseg. Notice that the dag has no

dominators of either true or false, so printing using just dominator information yields abc +

a:bd + :ad, which has an unnecessary a in the second term. Because two of the two-cuts share a

common node (f2; 4g and f3; 4g share the node 4), we can do better on this expression. The whole

expression can be viewed as (if ab then c else d), which is abc + (:a + :b)d, printing neatly as

abc+ :ad+ :bd.

Although the two-cuts were discovered while looking for better ways to print BDD's in sum-of-

products form, they provide far more, giving us a partially factored form of the expression.

2.4 Finding two-cuts or dominators is O(n

2

)

My implementations of BDD's with two-cuts keep track of the cuts as they build expressions.

The algorithm used has an O(n

2

) worst-case running time for building a a dag with n nodes, but

in practice is rarely worse than linear. The algorithm and an example for which it takes n

2

time

are presented below. The computation of dominators of true and false is almost identical to the

two-cut computation, and the same example gives worst-case O(n

2

) performance.

The algorithm maintains a directed graph whose nodes are the two-cuts of the BDD. Edges in

the two-cut graph point from a two-cut to the two-cut immediately below it in some BDD. Because

the part of the BDD above a two-cut is irrelevant to the structure of the BDD below the two-cut,



4 2. Binary decision diagrams

Paste MacDraw picture here.

Figure 2.1: Binary Decision Diagram for the expression ab+ cd+ ef , showing the two-cuts.

2.3 Dominators and two-cuts in binary decision diagrams

After developing the strong canonical form, I looked for ways to improve the printing of BDD's.

I found that heavily parenthesized if-then-else trees were hard to understand, and that printing all

paths to true generated voluminous output, with many more terms than needed, and extra literals

in some of the terms. For example, printing all paths to true in ab + cd+ ef (represented by the

binary decision diagram in Figure 2.1) would produce ab+ a:bcd+ a:bc:def + a:b:cef + :acd+

:ac:def + :a:cef .

Dipen Moitra and I looked for properties of the graphs that could be used to improve the printing.

We identi�ed two such properties|dominators and two-cuts. These closely-related properties have

also turned out to be important in factoring expressions for multi-level logic minimization.

De�nition 3: Vertex v of a rooted dag is a dominator of vertex w, if, and only if, every path from

the root to w contains v.

One particularly interesting set of nodes in a BDD is the dominators of the leaf node false.

In [KM90], we proved that a BDD with a non-trivial dominator of false (that is, a dominator

other than the root or false) can be split into two BDDs that are OR'd together. This OR-split is

particularly useful for converting BDDs into sum-of-products form. For example, in Figure 2.1, the

nodes labeled with c and e are dominators of false, and the expression can be printed as ab+cd+ef

as desired. In a similar way, the dominators of true can be used to do an AND-split.

The dominators of true and false in a BDD can be easily computed as the BDD is built,

usually taking only a constant number of operations per node, but in the worst case taking O(n

2

)

operations for a BDD with n nodes (see Section 2.4).

Because the dominators of true and false were so useful for printing expressions, we tried to

generalize the concept, looking for a more powerful way to reduce the complexity of the expression.

The useful property of dominators was that we could cut a BDD into two parts by removing one

interior node. A natural generalization was to look at ways to cut a BDD apart by removing two

nodes.



2. Binary decision diagrams 3

triples of the form (atom, left-bdd, right-bdd) into unique pointers to records containing the triple.

I passed the idea of a master symbol table on to Randal Bryant, who has since incorporated it into

another representation scheme [Bry87].

Because expressions are always built from the bottom up, the left-bdd and right-bdd pointers

are guaranteed to be in the strong canonical form, so the check needed to see if the left and right

children are equivalent is simply an equality check on pointers.

Bryant's techniques for manipulating BDD's can be used directly, without the costly overhead

of repeatedly converting from non-canonical trees. The �rst implementation I made of the strong-

canonical-form BDD's ran several times faster than the best implementation we had of Bryant's

canonical form that worked by reducing trees to canonical form.

One disadvantage of this representation is that application programmers cannot free expressions

explicitly, because they have no way of telling whether a particular expression is a subexpression of

some still active expression. Without explicit freeing, garbage collection is needed to reclaim unused

space. My implementations of BDD's give the expressions in�nite life, and make no attempt to

reclaim storage. A study needs to be made to determine how much space is wasted this way.

After implementing several di�erent variants of Bryant's representation, I observed that his

method for performing boolean operations on BDD's can be considerably simpli�ed. Bryant imple-

mented all the standard binary operators by means of a general Apply() operator, which took as

arguments the operands and a description of what the operator did on the leaves of the BDD. All

these Boolean operations can be de�ned in terms of a single if-then-else operator. The if-then-else

operator can be implemented by the same sort of traversal as is used for Apply(), but without

having to keep track of the operator to be applied at the leaves.

The if-then-else operator can be de�ned recursively using two simpler operations: UniqTriple

and split. UniqTriple is a symbol table routine that looks up the if-then-else triple passed

as arguments and creates a new entry in the symbol table if the triple is not found. We de�ne

split(a,v,left) to be the left subdag a->left if v is the atom in the root, and the whole dag

a otherwise. To change (if a then b else c) to canonical form (with each of a, b, and c already in

canonical form), we choose the smallest atom in the three arguments, call it m, and return

UniqTriple(m, IfThenElse(split(a,m,left),split(b,m,left),split(c,m,left)),

IfThenElse(split(a,m,right),split(b,m,right),split(c,m,right))

)

We stop the recursion when we get to one of the following special cases:

� If a = true, return b.

� If a = false, return c.

� If b = c, return b.

� If b = true and c = false, return a.

� If c = true and b = false, return :a.

� If (if a then b else c) is already in the symbol table, return it.

In practice, recursion is needed for about half the calls to IfThenElse(), and about one-seventh of

the triples are already in the symbol table. Another minor speedup can be made by recognizing the

following cases:

� If a = b, replace b with true.

� If a = c, replace c with false.

� If a = :b, replace b with false.

� If a = :c, replace c with true.

This if-then-else replacement for Bryant's Apply() operator seems to be as fast as the best

implementations of Apply(), which use a symbol table to make the representation a strong canonical

form and a hash table to cache the results of Apply().



2 2. Binary decision diagrams

Because BDD's always have an atom as the if-part of the if-then-else and true and false as the

only leaves, they are easy to evaluate. If no other restrictions are put on binary decision diagrams,

they can be di�cult to simplify or to compare for equality.

A representation is canonical if any two expressions that are logically equivalent are identical.

For example, if ab+ a:b is represented di�erently from a, then the representation is non-canonical.

We can distinguish between weak canonical forms, in which logically equivalent expressions have

identical structure, but may occur in di�erent locations in memory, and strong canonical forms, in

which expressions in di�erent locations represent di�erent Boolean functions.

Using canonical forms makes checking for equivalence easier. For a strong canonical form, only

one pointer has to be checked for equality, and for other canonical forms, a simple traversal of the data

structure (taking O(n) time) su�ces. In non-canonical forms, checking for equivalence is usually an

NP-hard problem. Unfortunately, conversion from a non-canonical form to canonical form may take

a lot of time or memory. Because equivalence checking in canonical form is fast, but equivalence

checking in a non-canonical form is equivalent to the the NP-complete problem satisfiability

[GJ79, pages 38{44], we are essentially guaranteed that the conversion to any canonical form is

exponential in the worst case. In the common cases, however, a well-chosen canonical form can be

small and easy to manipulate, and exponential blow-up is rare.

In some representations, subexpressions can be shared between di�erent expressions, keeping

memory usage small. Strong canonical forms are particularly useful, because they guarantee that

any explicitly represented subexpression is shared by all expressions that need it.

In most applications, many di�erent Boolean expressions are created, but several expressions

have parts that are the same. Considerable savings in memory and processing time is possible if the

common subexpressions are shared between di�erent expressions. Tree representations that have no

sharing of common subexpressions can often be modi�ed to dag representations in which repeated

parts within a single expression are not duplicated. Bryant's canonical form is an example of sharing

subexpressions within a single expression.

2.1 Bryant's canonical form

A common restriction put on binary decision diagrams is that no atom may appear twice on any

path from the root to a leaf. One way to guarantee this property is to require that the set of all

atoms be ordered, and that the atom at each node of the diagram be earlier in the order than the

atoms of the successor nodes.

With one more restriction, we have Randal Bryant's canonical form for binary decision dia-

grams [Bry86]. The extra restriction is that distinct nodes represent non-equivalent expressions.

Within a single dag, the representation is a strong canonical form, but each expression is handled

separately, so two independently built expressions may occupy di�erent memory locations, but be

logically equivalent.

Bryant also showed how to manipulate the binary decision diagrams e�ciently. When Liisa

Raiha and I implemented Bryant's representation, we found several minor improvements over the

implementation described in [Bry86]. For example, a small symbol table can be used to cache the

results of operations. The table uses triples (an operator and two operands) as a key to look up

the result of the operation. The symbol table need not be large, as results are likely to be re-used

either soon or not at all. One simple technique is to use a hash table with no provision for handling

collisions; when a bucket is already in use, the old cached value is simply discarded.

2.2 Using a symbol table to improve Bryant's representation

After studying Bryant's canonical form and Liisa Raiha's minor improvements, I came up with

the concept of a strong canonical form (Section 2), and found a way to make strong canonical forms

out of binary decision diagrams. The structure of the diagrams needs no change, but the diagrams

are built in a di�erent way. Instead of building binary decision trees and reducing them to canonical

form, as Bryant did, only canonical diagrams are built. A master symbol table is used to convert



1. Boolean expressions 1

1 Boolean expressions

Boolean expressions have found uses in several �elds, including arti�cial intelligence, information

retrieval, and vlsi design. The main uses in cad have been in veri�cation, logic minimization, logic

synthesis, and simulation.

Various representations have been used, with three being the most popular:

� sum-of-products form for logic minimizers,

� arbitrary graphs of logic gates for logic synthesis and simulation, and

� binary decision diagrams for veri�cation.

The representations for Boolean expressions can be classi�ed in several ways:

� By the operators used: arbitrary operators, restricted class of operators, or single universal

operator.

� By the ease of comparing expressions: canonical versus non-canonical forms.

� By the sharing of subexpressions: no sharing (trees), sharing within an expression, sharing

between di�erent expressions.

This paper is primarily about if-then-else dags (directed, acyclic graphs), a simple generalization

of binary decision diagrams. Like binary decision diagrams, if-then-else graphs are directed and

acyclic, and allow substantial sharing of common subexpressions. The if-then-else dags have the

advantage of being able to represent sum-of-products expressions and arbitrary combinations of logic

gates, while being easy to manipulate, to convert to canonical forms, or to factor.

Section 2 will review binary decision diagrams and Bryant's canonical form, then introduce two-

cuts, which give a natural mapping from binary decision diagrams to if-then-else dags.

Section 3 will introduce two-cut canonical forms (of which Bryant's canonical form is a special

case), and will give a general algorithm for doing binary operations on if-then-else dags. Finally,

Section 4 will sketch some of the applications of if-then-else dags to logic minimization.

2 Binary decision diagrams

Binary decision digrams (BDD's, for short) use a single universal operator, are easily converted to

canonical forms, and can share subexpressions either within an expression or across all expressions.

The operator in a BDD is the if-then-else operator, with the restriction that the if-part must always

be a single variable. The idea has been independently invented several times: early references to

if-then-else trees include [Lee59], [Ake77], [Ake78], [Bry86], and [NO79].

The basic operator underlying if-then-else trees and dags is the if-then-else operator.

De�nition 1: The if-then-else operator is a ternary Boolean function, with (if a then b else c)

de�ned as ab+ :ac or, equivalently, (a + :c)(:a+ b).

Common operators are easily de�ned in terms of the if-then-else operator. For example,

� :a = (if a then false else true)

� ab = (if a then b else false)

� a nand b = (if a then:b else true)

� a+ b = (if a then true else b)

� a� b = (if a then:b else b).

De�nition 2: A binary decision diagram is a binary directed acyclic graph with two leaves true

and false, in which each non-leaf node is labeled with an atom and has two out-edges pointing to

the then-part and the else=part. The meaning of a binary decision diagram is de�ned recursively

as (if label(node) then meaning(then-part) else meaning(else-part)).



Representing Boolean Functions

with If-Then-Else DAGs

Kevin Karplus

�

UCSC-CRL-88-28

30 November 1988

Baskin Center for

Computer Engineering & Information Sciences

University of California, Santa Cruz

Santa Cruz, CA 95064 USA

abstract

This article describes the use of binary decision diagrams (BDDs) and if-then-else dags

for representing and manipulating Boolean functions.

Two-cuts are de�ned for binary decision diagrams, and a relationship is exhibited be-

tween general if-then-else expressions and the two-cuts of a BDD for the same function. An

algorithm for computing all two-cuts of a BDD in O(n

2

) time is given.

A new canonical form for if-then-else dags, analogous to Bryant's canonical form for

BDDs, is introduced. The canonical form is based on representing the lowest non-trivial

two-cut in the corresponding BDD, while Bryant's canonical form represents the highest

two-cut. Expressions in Bryant's canonical form or in the new canonical form are shown to

be prime and irredundant.

Some applications of if-then-else dags to multi-level logic minimization are given, and the

Printform transformations for reducing the complexity of if-then-else dags are presented.

�

This research was partially supported by an IBM Faculty Development Award and by NSF grant DCR-8503262.


