
Evaluating Rank Joins with Optimal Cost
Technical Report UCSC-CRL-07-10

Karl Schnaitter
UC Santa Cruz

karlsch@soe.ucsc.edu

Neoklis Polyzotis
UC Santa Cruz

alkis@cs.ucsc.edu

ABSTRACT
In the rank join problem, we are given a set of relations and a scor-
ing function, and the goal is to return the join results with the top
K scores. When the input relations are given in ranked order and
the scoring function is monotonic, it is possible to solve the rank
join problem without reading all of the input. This key observa-
tion allows for efficient rank join algorithms that may be used in
real-world applications. In this paper, we present a thorough anal-
ysis of such rank join algorithms. A strong point of our analysis is
that it is based on a more general problem statement than previous
work, making it more relevant to the execution model that is em-
ployed by database systems. One of our results indicates that the
well known HRJN algorithm has shortcomings, because it does not
stop reading its input as soon as possible. We find that it is NP-hard
to overcome this weakness in the general case, but cases of limited
query complexity are tractable. We prove the latter with an algo-
rithm that infers provably tight bounds on the potential benefit of
reading more input in order to stop as soon as possible. As a result,
the algorithm achieves a cost that is within a constant factor of the
best possible.

1. INTRODUCTION
A relational ranking query (or a top-K join query) specifies a

scoring function over the results of a join and returns the K tuples
with the highest scores. As an example, Figure 1 presents a ranking
query (written in an SQL-like language) that retrieves the top 10
hotels and restaurants located in the same city, giving priority to
the cheap hotels and the best restaurants with live music. Ranking
queries have become increasingly popular in many application do-
mains, from multimedia retrieval [2] to uncertain databases [1], as
they allow a user to focus on the most relevant query results.

In order to evaluate relational ranking queries efficiently, recent
studies [1, 4, 7, 8] have introduced specialized rank join algorithms
that access the input tuples in order of their importance and thus
generate the top join results after reading only a fraction of the input
data. In our example, this means that cheap hotels and highly rated
restaurants with music would be read first. Rank join algorithms
borrow ideas from aggregation algorithms for middleware [3], but
they assume that aggregation is performed through a relational join
that is more general than a merge of object lists.

The performance of rank join algorithms has been studied em-
pirically, but each experiment has been limited to a subset of exist-
ing algorithms. Some works have also included analytical studies.
These studies, however, generally assume that each input relation
is ranked according to a single numerical attribute, and are thus in-
consistent with recent works in ranking query optimization [6, 9]
that need to join relations with multiple score attributes. Overall,
previous studies provide little insight into the comparative perfor-

SELECT h.name, r.name
FROM Hotel h, Restaurant r
WHERE h.city = r.city
RANK BY 0.4/h.price + 0.4∗ r.rating + 0.2∗ r.hasMusic
LIMIT 10

Figure 1: Example ranking query.

mance of rank join algorithms under realistic assumptions, an issue
that is crucial for the realization of ranking query processors.

Our contributions. Motivated by the previous observations, we
embark on an extensive analysis of rank join algorithms. In con-
trast to earlier works, we consider a general model where input
relations may have multiple scoring attributes. This model has di-
rect applications in practice, as it lends itself to real-world queries
and the query execution plans used by database systems.

In order to structure our analysis, we introduce Pull/Bound Rank
Join (PBRJ), an algorithm template that generalizes previous rank
join algorithms. The idea of PBRJ is to alternate between pulling
tuples from input relations and upper bounding the score of join
results that use the unread part of the input. The join results are
collected as tuples are pulled, and the algorithm stops once the top
K buffered results have a score at least equal to the upper bound.
There are many possible ways that an algorithm may pull from its
input and compute an upper bound on unseen join results—for in-
stance, one simple pulling strategy is to read from all input relations
evenly, but it may be possible prioritize access to the most promis-
ing relations. These decisions lead to a rich family of PBRJ instan-
tiations that is general enough to model a wide variety of practical
algorithms. The PBRJ template thus provides a solid foundation
for a study of rank join processing.

Using the PBRJ framework, we first analyze the performance of
the well known HRJN algorithm template [4]. Our results reveal
that some HRJN variants have strong performance compared to
other members of the HRJN family, but the performance of HRJN
algorithms can be arbitrarily bad in general because they use a
loose upper bound on the scores of remaining join results. We rem-
edy this deficiency with a PBRJ algorithm that computes an upper
bound that is provably tight. The significance of this algorithm is
that it is the first to provide strong performance guarantees for the
practical rank join model that we consider. The algorithm runs in
polynomial time for queries with bounded size, but we show that
finding a tight bound requires solving a problem that is NP-hard in
general. Finally, we extend our analysis to additional cases, such as
alternative cost metrics and pipelined query plans. One of our re-
sults provides theoretical justification for the use of multi-way join
operators as opposed to plans of several operators. This result is
interesting since it suggests that the search space of ranking query
optimizers may be simplified without sacrificing performance.

1

In summary, this paper presents an in-depth analysis of rank join
algorithms for relational ranking queries. Our work makes signif-
icant technical contributions on several fronts: we characterize the
performance of existing algorithms, introduce a new algorithm with
strong performance guarantees, and analyze the complexity of a
key aspect of the problem, namely inferring tight score bounds.
Moreover, the presented results are directly applicable to existing
ranking query processors, and are thus of interest to application
developers and system designers.

2. PRELIMINARIES
In this section, we formalize the rank join problem and state the

assumptions of our analysis. We note that these assumptions are
revisited in Section 6 when we discuss extensions to our work.

Problem definition. Consider a natural join of relationsR1, ...,Rn

where each τi ∈ Ri is composed of named attributes and base
scores. The base scores are denoted as a vector b(τi) ∈ [0, 1]ei

for some ei, and signify the importance of the tuple according to
criteria specified by the query. Base scores are aggregated using
a scoring function S that computes the score of a join result τ as
S(b(τ)). We may also use S(τ) as a shorthand for the score of τ .
Following common practice, we assume that S is monotonic, i.e.,
S(x1, . . . , xe) ≤ S(y1, . . . , ye) if xi ≤ yi for all i.

Let τ be a join result such that τ = τ ′ 1 ρ for some intermediate
results τ ′ and ρ. We define S(τ ′) to be the value of S using the
base scores of τ ′, and substituting 1 for any that are missing. The
monotonicity of S implies that S(τ) ≤ S(τ ′) since each base score
of ρ is at most 1. Thus we call S(τ ′) the score bound of τ ′ since it
is an upper bound on the scores of join results derived from τ ′.

Loosely stated, the goal of the rank join problem is to find K
tuples with the highest scores from the natural join of R1, . . . , Rn.
We formally define an instance of the rank join problem as follows.

DEFINITION 2.1. An instance of the rank join problem is an
(n+2)-tuple (R1, . . . , Rn,S,K) such that S is a monotonic scor-
ing function, the relationsR1, . . . , Rn are accessed sequentially in
decreasing order of S, and 1 ≤ K ≤ |R1 1 · · · 1 Rn|.

We do not place any restrictions on the input relations except that
each Ri is accessed sequentially and in decreasing order of S.
More formally, we use Ri[p] to denote the p-th tuple in Ri and
assume that S(Ri[p]) ≥ S(Ri[q]) for q ≥ p. We note that this
particular access model is a common assumption in previous stud-
ies on the evaluation of rank joins in database systems [4, 8]. The
definition also requires that at leastK join results exist, which guar-
antees that it is possible to fulfill a request for the top K results.

A solution of I = (R1, . . . , Rn,S,K) is an ordered relation
O that comprises the top K tuples of R1 1 . . . 1 Rn ordered by
S. We note that there may be more than one possible solution O
for a particular instance I if there are tie scores in the output, but
the sequence of score bounds in O is completely determined by I .
In other words, if O and O′ are solutions of I , then S(O[p]) =
S(O′[p]) for all p. The last score, S(O[K]), is referred to as the
terminal score, and is denoted Sterm.

Returning to the query in Figure 1, the base scores are given by
b(h) = 〈1/h.price〉, b(r) = 〈r .rating , r .hasMusic〉, and the
scoring function S is a weighted average. The top 10 join results
are found by solving the instance (H,R,S, 10). It is interesting to
note that the input relation R is associated with two base scores.
This situation also occurs when an input relation is the output of a
subquery that joins multiple tables in a pipelined execution plan.

Algorithms considered. Our theoretical analysis is focused on
deterministic algorithms that solve the rank join problem. More

specifically, algorithms considered in this paper must be determined
by the visible contents of the input relations and the values of the
S function on combinations of input tuples that have been read.
This means an algorithm may not access any metadata, such as the
domains of the attributes. These basic assumptions do not exclude
any previously proposed rank join algorithms, so they provide rea-
sonable boundaries for our analysis.

Performance metrics. A cost metric is a function cost(A, I) that
yields the cost of solving instance I with algorithm A. The cost
metrics in this paper are defined using the idea of depth. The depth
on an input relation Ri is the number of tuples read sequentially
from Ri before returning a solution. For a rank join algorithm A
and instance I = (R1, . . . , Rn,S,K), the depth on Ri is denoted
depth(A, I, i). We define sumDepths(A, I) as the sum of depths
on all inputs. Clearly, sumDepths is an interesting cost metric as
it indicates the amount of I/O performed by an algorithm.

Given a class of algorithms B, a class of problem instances J ,
and a cost metric cost , we say that a rank join algorithm A ∈ B
is optimal if cost(A, I) ≤ cost(A′, I) for all rank join algorithms
A′ ∈ B and problem instances I ∈ J . Our analysis also uses a
relaxed form of optimality known as instance optimality. We say
that A is instance-optimal if there exist constants c1 and c2 such
that cost(A, I) ≤ c1 · cost(A′, I) + c2 for all A′ ∈ B and I ∈ J .
The constant c1 is called the optimality ratio.

We define A as the class of deterministic rank join algorithms
described above, and I as the set of all problem instances satisfying
Definition 2.1. Unless otherwise specified, our optimality results
are with respect to A and I with the cost metric sumDepths .

3. PULL/BOUND RANK JOIN
In this section, we introduce the Pull/Bound Rank Join (PBRJ)

algorithm template that forms the backbone of our analysis.
The PBRJ template, shown in Figure 2, is instantiated by a deter-

ministic pulling strategy P and bounding scheme B. On each loop
iteration of PBRJ, the pulling strategy P chooses a relation Ri to
read, and the new tuple ρi is stored in an input buffer HRi (typ-
ically a hash table). New join results are generated by joining ρi

with the tuples in the other input buffers HRj for j 6= i. The gen-
erated results are pushed to an output bufferO that holds the topK
results seen so far. After each tuple is processed, it is given to the
bounding scheme B via the method updateBound , which returns
a new upper bound on the score of unseen join results. The results
O are returned when the K-th buffered result has a score that is
at least as large as the bound t provided by the bounding scheme,
since this indicates that the buffered results cannot be improved by
reading more tuples.

We can easily show that PBRJ is correct if we require that P

Algorithm template PBRJ(R1, . . . , Rn,S,K)
Template parameters: pulling strategy P ; bounding scheme B
Input: relations R1, . . . , Rn; scoring function S; result size K
Output: set of K join results with highest score
Data structures: input buffers HR1, . . . ,HRn; output buffer O
1. t←∞
2. while |O| < K OR minω∈O S(ω) < t do
3. i← P.chooseInput()
4. ρi ← next unseen tuple of Ri

5. R← HR1 1 . . .HRi−1 1 {ρi} 1 HRi+1 1 · · · 1 HRn

6. Add each member of R to O, retaining only the top K tuples
7. Add ρi to HRi

8. t← B.updateBound(ρi)
9. end while
10. return O

Figure 2: PBRJ Template.

2

returns the index of an unexhausted relation, and that B returns a
correct upper bound on the scores of join results that use at least one
unread tuple. We define F as the set of instantiations of PBRJ with
a deterministic pulling strategy and bounding scheme that satisfy
these requirements, and note that F is infinite in principle.

We observe that F is a proper subset of the class A of rank join
algorithms that we consider, since F only contains deterministic
rank join algorithms and some members of A do not follow the
PBRJ template. However, we can show that F is equivalent to A
in terms of I/O performance, as stated by the following theorem.

THEOREM 3.1. Let A ∈ A. There exists a PBRJ algorithm
F ∈ F such that depth(A, I, i) = depth(F, I, i) for all problem
instances I = (R1, . . . , Rn,S,K) and all i.

Proof: We sketch a description of the pulling strategy and bound-
ing scheme of F . Initially, the pulling strategy accesses the rela-
tions in the same order as A, and the bounding scheme returns∞.
Once F has read all the tuples seen by A, the bounding scheme
returns Sterm. This behavior is deterministic by virtue of the fact
thatA is deterministic. After reading the same data asA, the output
buffer of F must contain a complete solution. Since the bound is
Sterm at this moment, F will halt with the same depths as A.

In other words, we can chart the cost of algorithms inA by studying
the cost of PBRJ for different choices of P and B. We therefore
focus our study on instantiations of the PBRJ template.

Choices for P andB. We now review some choices for the pulling
strategy and bounding scheme that are used in existing rank join
algorithms (primarily HRJN [4]).

To the best of our knowledge, only one previously studied bound-
ing scheme applies to our formulation of the rank join problem.

Corner Bound: Maintain bounds ti for each input relation Ri that
are initially set to S(1, . . . , 1). A call of updateBound(ρi)
sets ti = S(ρi) if Ri still has unseen tuples, or ti = −∞ if
Ri is exhausted. The returned bound is max(t1, . . . , tn).

The name of the corner bound comes from the fact that the bound
ti for a relation Ri is computed by setting every base score outside
of Ri to 1, which effectively sets the base scores of other relations
to the corner of their domain.

We distinguish the following two pulling strategies:

Round-Robin: This simple strategy accesses the inputs in a round-
robin fashion. Without loss of generality, we assume that the
inputs are accessed in the following order: R1, . . . , Rn.

Corner-Bound-Adaptive: This strategy prioritizes inputs based on
the per-input corner bounds. The idea is to select the input
Ri that has the highest bound ti. Ties are broken in favor of
the input with the least current depth, or the input with the
least index. Given that t = max(t1, . . . , tn), the intuition is
to drop the bound below the terminal score and thus lead to
termination faster.

In what follows, we use PBRJRR
c and PBRJ∗c respectively to refer to

the variants of PBRJ that use these strategies with the corner bound.

4. THE CORNER BOUND
In the previous section, we introduced the class F comprising

instantiations of the PBRJ template with any pulling strategy and
bounding scheme. This section is focused on a smaller class Fc,
which we define as the set of PBRJ algorithms that use the corner
bound. As noted earlier, the corner bound is the only previously

studied scheme that can be applied to our formulation of the rank
join problem. Moreover, Fc is equivalent to the HRJN family of
algorithms [4] that have received significant attention in previous
studies [6, 7, 9], so any results that we can derive aboutFc also hold
for HRJN. We also note that the “basic” HRJN operator and the
HRJN∗ variant are essentially iterative implementations of PBRJRR

c

and PBRJ∗c , and hence these corresponding algorithms share the
same performance guarantees.

In the first part of this section, we investigate the space of algo-
rithms in Fc, effectively analyzing the impact of the pulling strat-
egy when the corner bound is employed. We then expand our anal-
ysis to see how well Fc measures up to other algorithms in F . Be-
fore presenting our results, we observe that an algorithm in Fc will
terminate if and only if K results have been buffered and the last
read tuple ρi from each unexhausted Ri satisfies S(ρi) ≤ Sterm.
These conditions provide a convenient means to characterize the
termination of PBRJ when the corner bound is employed, and we
use them extensively in our analysis.

4.1 Analysis of Algorithms within Fc

4.1.1 Instance Optimality of PBRJRR
c and PBRJ∗c

It would be preferable if we could find a pulling strategy that
is superior in all cases, since this would yield an algorithm that is
optimal within the class Fc. Unfortunately, it can be shown that
no such strategy exists, using the adversary argument provided by
Fagin et al. [3]. The argument actually yields a stronger result: if
we define In-rel ⊆ I to be the instances with n input relations,
then no algorithm can have an optimality ratio less than n within
instances In-rel and algorithms Fc.

We show below that both PBRJRR
c and PBRJ∗c achieve this lower

bound. Our results are given by three theorems. First, we state
the instance optimality of PBRJRR

c . Then we show that the cost of
PBRJ∗c is never more than PBRJRR

c on the same problem instance.
These two results lead to the third theorem which states the instance
optimality of PBRJ∗c .

THEOREM 4.1. PBRJRR
c is instance-optimal within algorithms

Fc and instances In-rel with an optimality ratio of n.

Proof: Let I = (R1, . . . , Rn,S,K) be any problem instance
in In-rel and choose any algorithm A ∈ Fc. Suppose that A pulls
pi tuples from each relation Ri and define pmax = maxi(pi). We
claim that PBRJRR

c cannot pull more than pmax tuples from any re-
lation. We prove this by contradiction. Assume that PBRJRR

c pulls
pmax complete rounds, and then pulls an additional tuple. At the
point that this additional tuple is read, PBRJRR

c has seen at least all
of the input tuples seen by A, so it has buffered the top K results
returned by A. However PBRJRR

c does not halt, so there must be
some unexhausted Ri such that S(Ri[pmax]) > Sterm. This con-
tradicts the definition of the corner bound, since A halts at a depth
of pi ≤ pmax on Ri. It follows that PBRJRR

c cannot pull more than
pmax tuples from any relation, from which we have

sumDepths(PBRJRR
c , I) ≤ n · pmax ≤ n · sumDepths(A, I).

Since A and I were chosen arbitrarily, we conclude that PBRJRR
c is

instance-optimal with an optimality ratio of n.

THEOREM 4.2. Let I = (R1, . . . , Rn,S,K) be any instance.
Then depth(PBRJ∗c , I, k) ≤ depth(PBRJRR

c , I, k) for all k.

Proof: By contradiction. Suppose that there is some input k
such that depth(PBRJ∗c , I, k) > depth(PBRJRR

c , I, k). Let ORR

be the result returned by PBRJRR
c . For each i, we define pRR

i =

3

depth(PBRJRR
c , I, i). Also let pi be the current depth of Ri when

PBRJ∗c decides to pull Rk[pRR
k + 1]. We derive a contradiction by

showing that PBRJ∗c must actually halt at this moment.
We first claim that PBRJ∗ has seen all input tuples that partici-

pate inORR. This is shown by considering any unexhausted relation
Ri and checking that no tuples beyond Ri[pi] may participate in
ORR. Since PBRJ∗c pulls Rk, we know that Rk is also unexhausted
and S(Rk[pk]) ≥ S(Ri[pi]). We proceed in two cases.

Case 1: S(Rk[pk]) = S(Ri[pi]). In this case, there was a tie,
and PBRJ∗c breaks it by pullingRk. There are two ways the tie may
be broken. The first possibility is that pk < pi which means

pi ≥ pk + 1 = pRR
k + 1 ≥ pRR

i .

The other possibility is that pk = pi and k ≤ i which means

pi = pk = pRR
k ≥ pRR

i

where the last inequality is based on the order that PBRJRR
c pulls

from relations. Now we have observed that pi ≥ pRR
i so PBRJ∗c has

seen all the tuples in Ri that PBRJRR
c has seen.

Case 2: S(Rk[pk]) > S(Ri[pi]). Since PBRJRR
c terminates

without reading more than pRR
k = pk tuples from Rk, we know

Sterm ≥ S(Rk[pk]) > S(Ri[pi]). This means that no tuple past
Ri[pi] can contribute to a solution.

These cases show that PBRJ∗c has seen every input tuple that
participates in the solution ORR, so it must have buffered K results.
Furthermore, for each Ri not exhausted by PBRJ∗c , we have

S(Ri[pi]) ≤ S(Rk[pk]) = S(Rk[pRR
k]) ≤ Sterm.

Now the termination criteria of PBRJ∗c are met, so it will halt before
reading Rk[pRR

k + 1], contradicting our assumption.

The previous result provides an interesting tool for the analysis
of PBRJ∗c . Essentially, it is non-trivial to analyze the performance
of PBRJ∗c on an arbitrary input instance, as its depths depend on
the distribution of scores among the inputs. The simplicity of the
round-robin strategy, on the other hand, facilitates the derivation of
optimality properties for the depths of PBRJRR

c , e.g., the instance-
optimality property of Theorem 4.1. Theorem 4.2 makes possible
to transfer the same properties to PBRJ∗c by virtue of the fact that
PBRJ∗c can never exceed the depths of the round-robin strategy. The
following result is a direct application of this idea.

THEOREM 4.3. PBRJ∗c is instance-optimal within algorithms
Fc and instances In-rel with an optimality ratio of n.

4.1.2 Optimal Cases for PBRJ∗c
Our analysis has shown that PBRJRR

c and PBRJ∗c are instance-
optimal within Fc, but we are unable to show that any algorithm is
optimal in all cases. The main obstacle to optimality comes from
duplicate input scores, since ties create ambiguity in determining
which relation will lead to termination more quickly. Fortunately,
as we show below, duplicate input scores only cause difficulty if
the repeated score bounds are equal to the threshold Sterm. The
intuitive reason is that any algorithm inFc will need to read beyond
the tuples whose bound is strictly greater than Sterm, and hence any
ties in that part of the input will not affect performance.

We structure our analysis based on two different kinds of ties
that may occur between input scores and Sterm. We first consider
intra-input threshold ties where S(R[p]) = S(R[q]) = Sterm for
some input relation R and distinct indices p 6= q. We also consider
inter-input threshold ties where S(R[a]) = S(R′[a′]) = Sterm

for some distinct relations R 6= R′ and indices a, a′. We define
I intra ⊆ I and I inter ⊆ I to be the class of instances with intra-
and inter-input threshold ties respectively.

We show below that PBRJ∗c is optimal within Fc with a very
light restriction on the ties occurring in the input. In particular,
we show that optimality holds for any problem instance outside
I intra∩I inter where both intra- and inter-input threshold ties occur.
Our proof uses a lemma showing that PBRJ∗c minimizes the depth
on each input when the problem instance is in I−(I intra∩I inter).
The optimality result follows immediately.

LEMMA 4.1. Suppose that A ∈ Fc uses the corner bound, and
let I = (R1, . . . , Rn,S,K) such that I ∈ I − (I intra ∩ I inter).
Then depth(PBRJ∗c , I, k) ≤ depth(A, I, k) for all k.

Proof: Assume for contradiction that there exists some input k
such that depth(PBRJ∗c , I, k) > depth(A, I, k). For all i, define
pA

i = depth(A, I, i) and let pi denote the number of tuples that
PBRJ∗c pulls from Ri before pulling Rk past pA

k . Let Ri be any
relation not exhausted by PBRJ∗c . Observe that

S(Ri[pi]) ≤ S(Rk[pk]) ≤ Sterm

since PBRJ∗c pulls from Rk and A halts at depth pA
k = pk on Rk.

We next prove that PBRJ∗c has buffered a complete solution, with
two cases. If I 6∈ I inter then at least one of the above inequalities
is strict when i 6= k, and hence S(Ri[pi]) < Sterm. It follows
that PBRJ∗c has buffered a complete solution since it has observed
every tuple in Rk seen by A, and it has observed every tuple in
Ri 6= Rk that can contribute to a solution. Now if I 6∈ I intra

then Ri has at most one tuple with a score bound equal to Sterm.
Hence, S(Ri[pi]) ≤ Sterm implies that each tuple beyond Ri[pi]
has a score bound below Sterm and cannot contribute to a solution.
It follows that a complete solution has already been seen.

Now we also have Sterm ≥ S(Ri[pi]), so PBRJ∗c will halt with-
out reading past Rk[pA

k], which contradicts our assumption.

THEOREM 4.4. PBRJ∗c is optimal within algorithms Fc and in-
stances I − (I inter ∩ I intra).

4.2 Comparative Analysis of Fc and A
In the previous subsection, we showed various optimality prop-

erties of PBRJRR
c and PBRJ∗c compared to other algorithms in Fc.

Now we consider the performance of these algorithms compared to
the general class of algorithms A. We first state our positive re-
sults. We define Ie-dim to be the class of problem instances with
at most e base scores for each input relation, and recall that In-rel

is the class of problem instances with at most n input relations. If
we intersect I1-dim and I2-rel, we get a very simple class of inputs
where PBRJRR

c and PBRJ∗c are instance optimal.

THEOREM 4.5. PBRJRR
c and PBRJ∗c are instance-optimal within

instances I2-rel ∩ I1-dim with an optimality ratio of 2.

Proof: The proof for PBRJRR
c appears in Theorem 3 of [4], and

instance optimality extends to PBRJ∗c by Theorem 4.2.

The previous theorem places very restrictive conditions on the
class of problem instances. If we weaken these conditions at all,
the instance optimality property of PBRJRR

c and PBRJ∗c is lost. In
fact, as we show in the next theorem, there is no instance optimal
algorithm using the corner bound when we consider minimal gen-
eralizations of I2-rel ∩ I1-dim.

4

THEOREM 4.6. No PBRJ algorithm using the corner bound is
instance-optimal, either (a) within instances I3-rel ∩ I1-dim, or (b)
within instances I2-rel ∩ I2-dim.

Proof (a): Consider a problem instance I = (R1, R2, R3,S, 1)
where eachRi has a base score bi and S(b1, b2, b3) = b1 +b2 +b3.
The relations are joined on their first attribute, and their contents are
described as follows.

R1 Join b1
a 1.0
x 0.9
· · ·

x 0.6
x 0.4

R2 Join b2
y 1.0
a 0.7
y 0.4
· · ·

R3 Join b3
z 1.0
a 0.8
z 0.4
· · ·

Let τ be the result of joining the visible tuples with join attribute a
for a score of 2.5. None of the hidden rows of R2 or R3 can lead
to a higher score since the last shown score bounds are 2.4 in each
relation. Therefore, any solution must involve the single known
result from R2 1 R3, but this partial result has a score bound of
2.5 = S(τ). With this reasoning, an algorithm may correctly return
τ after reading the first row ofR1 and the first three rows ofR2 and
R3. Any algorithm in Fc must read all of R1 in order to lower the
corner bound below 2.5, leading to arbitrarily high cost.

Proof (b): Consider the instance (R1, R2 1 R3,S, 1). The first
score bound in R2 1 R3 is 2.5, so all join results have a score
≤ 2.5. Hence an algorithm may correctly return the join result with
score 2.5 after reading one tuple from each relation. Similar to
proof (a), any algorithm in Fc must read all of R1.

We remark that the problem instances used in this proof did not fall
in the classes I intra or I inter that we showed to cause suboptimality
for PBRJ∗c earlier in this section. Thus we cannot hope to gain any
ground by forbidding threshold ties.

We can make two interesting observations at this point. First, the
results in this section provide strong evidence in favor of the adap-
tive pulling strategy when the corner bounding scheme is assumed.
In brief, PBRJ∗c is instance-optimal within Fc (and becomes opti-
mal for specific classes of instances), and the choice of the specific
strategy does not cancel any optimality properties withinA. Hence,
system designers can safely focus on PBRJ∗c for the implementa-
tion of a rank join operator based on Fc. The second observation
is that the corner bound is not always tight. For example, in the
proof of Theorem 4.6 (b), the corner bounding scheme would yield
a bound of 3 after reading a tuple from each relation, although there
is sufficient evidence that no solution exists with a score above 2.5.
The problem is that the corner bound substitutes 〈1, 1〉 for 〈b2, b3〉
when computing the score bound for the unseen tuples in R1, even
though this score combination cannot appear in the other input.

5. TIGHT BOUNDING
The discussion at the end of the previous section indicated a need

for a bounding scheme that is “tight” in some sense. In this sec-
tion, we formalize the idea of tightness and show that a tight bound
enables PBRJ to be instance-optimal. With this motivation, we de-
velop a new bounding scheme and prove that it is tight. The section
concludes with results on the hardness of computing a tight bound.

We define a tight bounding scheme as follows.

DEFINITION 5.1. Let I = (R1, . . . , Rn,S,K) be a problem
instance in a context where only a prefix HRi of each Ri is visible.

• A continuation of I is an instance I ′ = (R′1, . . . , R
′
n,S ′,K)

that satisfies the following conditions.

(C1) The first |HRi| tuples in R′i and Ri are identical.

(C2) |R′i| = |Ri| for all i.

(C3) S(x) = S ′(x) for each x ∈×n
i=1 b[HRi] ∪ {1}ei

(C3) where b[HRi] is defined as {b(τ) | τ ∈ HRi}.

• If τ is a join result of some continuation of I , and τ uses at
least one unseen tuple, then we say τ is a potential result and
S ′(τ) is a potential score of I .

• A bounding scheme is tight if whenever
˛̨
1

n
i=1 HRi

˛̨
≥ K,

updateBound returns a potential score or −∞.

Observe that (C1)-(C3) ensure that no algorithm inA can differen-
tiate between I and I ′ based on the observed contents of the input
relations. The cross product in (C3) comes from the assumption
that rank join algorithms may evaluate S on any combination of
visible tuples. The definition of tightness only constrains the bound
when K join results have been found, because the bound does not
affect PBRJ before that time. Also note that a tight bound may
return −∞ to cover the case where there are no potential results.

Intuitively, a tight bound allows PBRJ to halt at the first opportu-
nity. The following theorem shows that any tight bounding scheme
with the round-robin pulling strategy is enough to ensure instance
optimality within the class of deterministic algorithms.

THEOREM 5.1. Let F be an instantiation of PBRJ with the
round-robin pulling strategy and a tight bounding scheme. F is
instance-optimal within instances In-rel with optimality ratio n.

Proof: Let I = (R1, . . . , Rn,S,K) be an arbitrary rank join
problem instance in In-rel. LetA ∈ A be an arbitrary deterministic
rank join algorithm. For each i, we define pF

i = depth(F, I, i)
and pA

i = depth(A, I, i). We also define pF
max = maxi p

F
i and

pA
max = maxi p

A
i . We want to show that pF

max ≤ pA
max. Assume

for contradiction that pF
max > pA

max, or in other words that F does
not halt after reading pA

max complete rounds. At this point, F has
seen at least the input tuples seen by A, so it must have buffered
the K results returned by A. Since F does not return, we know the
bound t is greater than Sterm > −∞. Since the bounding scheme
of F is tight, there is a potential result τ in some continuation I ′

with a score S(τ) = t > Sterm. When A is executed on I ′, it will
not return τ because it must behave the same as it did for I . This
is a contradiction because any rank join algorithm must return all
tuples that are strictly greater than Sterm. The contradiction tells
us that pF

max ≤ pA
max, and it follows thatPn

i=1 p
F
i ≤ n · pF

max ≤ n · pA
max ≤ n ·

Pn
i=1 p

A
i ,

indicating the instance optimality of F .

This motivates the development of a tight bounding scheme, which
we present after describing some necessary notation.

5.1 Notation
The analysis in this section requires some additional notation that

is useful for manipulating vectors of base scores. As in Defini-
tion 5.1, we define b[R] = {b(τ) | τ ∈ R}. Whenever x is a
vector, we use x[i] to denote the i-th coordinate of x and the no-
tation x[i 7→ a] represents the result of replacing x[i] with a. We
concatenate two vectors x and y by writing x y.

If x, y are m-ary vectors of base scores, we say x is dominated
by y or x � y when x[i] ≤ y[i] for 1 ≤ i ≤ m. We write x ≺ y
to mean that x is dominated by but not equal to y. The dominance
relation is used to define the notion of a cover. Formally, given
vector-sets X and Y , we say that Y is a cover of X , denoted as

5

L a b1 b2
x 0.3 1.0
z 0.3 0.5
· · ·

R a b3 b4
x 1.0 0.6
y 0.6 1.0
y 0.6 0.6
y 0.5 0.5
· · ·

1.0

0.6

1.00.6 b3

b4 cannot be
dominated

feasible
scores
of R

Figure 3: Illustration of Example 5.1.

X � Y , if for each x ∈ X there exists y ∈ Y such that x � y.
We observe that the � relation is preserved by the⊆ relation in the
following sense: if X ⊆ Y � C then X � C, and if X � C ⊆ D
thenX�D. Finally, for convenience in our pseudocode, we define
cut(R, x) = {x′ ∈ b[R] ∪ {1}m | x � x′} which yields a set of
vectors that dominate x, using base scores from a relation R or the
maximal vector of all ones.

5.2 The Feasible Region Bounding Scheme
We now present the feasible region (FR for short) bounding

scheme that computes a tight bound on the scores of unseen join
results. Before describing the computation of the FR bound, we
provide the intuition behind it with the following small example.

EXAMPLE 5.1. Suppose we need the top result from the join of
L,R in Figure 3, using the scoring function S(b1, b2, b3, b4) =
b1 + b2 + b3 + b4. After observing the shown tuples, one result τ
is known for a score of S(τ) = 2.9. It is clear that no additional
tuples need to be read fromL, since the last tuple has a score bound
less than S(τ). Hence, it may be possible to generate a higher
scoring result only by joining an unseen tuple fromR with a visible
tuple from L. Now, let us attempt to “bound” the base scores of
any unseen tuple ρ in R based on the observed score values (this
is the only information about S that is available to an algorithm).
We know that ρ cannot have base scores that dominate the vector
〈0.6, 0.6〉 since ρ would have a score bound at least 3.2 by the
monotonicity of S, and this would violate the ordering of R. This
observation implies that the base scores of unseen tuples in R are
covered by the setC = {〈1.0, 0.6〉, 〈0.6, 1.0〉}. Hence, a join tuple
that results from a visible tuple of L and an unseen tuple ofR has a
score of at most max{S(b(λ) bR) | λ ∈ L is visible∧bR ∈ C} =
2.9 ≤ S(τ). Overall, τ may safely be returned as the top result
since neither of the two inputs contain tuples that can generate a
higher result score. Note that PBRJ∗c would need to read more from
R since the bound for R is 3.0 > S(τ).

5.2.1 Bound Computation
Figure 4 shows the pseudocode for our new bounding scheme.

We first discuss the global variables CRi, Gi, and gi. Each CRi

stores a cover of b[Ri − HRi]. Intuitively speaking, CRi delin-
eates a region (defined as the space of vectors dominated by at least
one member of CRi) that contains the feasible base score vectors
from the unseen portion of Ri. The maintenance of CRi requires
additional variables Gi and gi, which keep track of tuples from Ri

that have the same score bound. More concretely, gi is the most
recently seen score bound from Ri, and Gi comprises all observed
tuples from Ri with a score bound of gi. This effectively divides
Ri into contiguous groups of tuples with equal score bounds. Thus
Gi acts as a buffer for the accessed tuples from the current group
and gi indicates their score.

The covers CRi are maintained by updateBound on lines 1–4
of the pseudocode. The interesting case occurs when a new group

Global Initialization
1. for i = 1, . . . , n do CRi ← {1}ei ; Gi ← ∅; gi ←∞ end for
Procedure updateBound(ρi)
Input: tuple ρi from relation Ri

1. if S(ρi) < gi then
2. CRi ← updateCR(CRi,b[Gi])
3. Gi ← {ρi}; gi = S(ρi)
4. else Gi ← Gi ∪ {ρi} end if
5. return max{resultBound(W) | W ⊆ {1, . . . , n} ∧W 6= ∅}

Procedure updateCR(C, Y)
Input: a current cover C and a set of new base scores Y ;

both sets have e-ary base scores for some e
1. if Y = ∅ then return C end if
2. y ← some element of Y
3. S ← updateCR(C, Y − {y})
4. S− ← {s ∈ S | y � s}
5. S+ ←

Se
i=1{s−[i 7→ y[i]] | s− ∈ S−}

6. return (S − S−) ∪ (S+ ∩ (0, 1]e)

Procedure resultBound(W)
Input: a nonempty subset W of {1, . . . , n};

for simplicity, assume W = {1, . . . , w}.
1. if

˛̨
1j>w HRj

˛̨
= 0 OR Rj is exhausted for some j ≤ w then

2. return −∞ end if
3. H ← {b(η) | η ∈1j>w HRj}
4. C ← {×j≤w cut(HRj ,bcj) | ∀j ≤ w(bcj ∈ CRj)}
5. tcover ← max{min{S(c h) | c ∈ X} | X ∈ C ∧ h ∈ H}
6. torder ← min{gj | j ≤ w}
7. return min{tcover, torder}

Figure 4: The feasible region bounding scheme.

is found, i.e., S(ρi) < gi. If γi is in the current group Gi and
τi is an unseen tuple in Ri − HRi, then the sorted access of Ri

implies that S(τi) ≤ S(ρi) < S(γi), and hence it follows that
γi 6� τi by the monotonicity of S. The crucial point, therefore, is
that the unseen tuples in Ri cannot dominate any tuple in Gi. The
call to updateCR(CRi,b[Gi]) uses this observation to compute
a new cover of Ri − HRi. The idea is to iterate over each base
score vector y in Gi and cut the points that dominate y out of the
feasible region. To do this, updateCR takes the set of cover points
that dominate y (line 4) and projects them along each dimension to
match the coordinate of y (line 5). As a final step, updateCR ex-
cludes cover points with a zero coordinate (line 6). This restriction
is important in our context, as these points may allow the feasi-
ble region to contain score vectors that lead to a loose bound. (An
example appears in the appendix.)

An example of a call to updateCR is shown in Figure 5. Observe
that the cover points 〈0.4, 1.0〉 and 〈0.7, 0.8〉 in the first graph are
projected along both dimensions to yield four new cover points, ef-
fectively cutting the feasible region by removing the vectors that
dominate 〈0.3, 0.6〉. We note that 〈0.4, 0.6〉 and 〈0.3, 0.8〉 are re-
dundant, as they do not affect the shaded region. Such redundant
points can be removed,1 but we do not consider this heuristic as it
does not affect the analysis in the remainder of the paper.

Having discussed the maintenance of CRi, we now describe the
computation of the bound through the resultBound method. Given
a nonempty subset W of {1, . . . , n}, resultBound(W) returns an
upper bound on the score of a hypothetical tuple τ that results from
joining unseen tuples τj ∈ Rj−HRj for j ∈W , and visible tuples
τj ∈ HRj for j 6∈W . There is no such τ if1j 6∈W HRj is empty,
or if Rj is exhausted for some j ∈ W . For these corner cases we
return −∞. For all other cases, a bound on S(τ) is computed as
the minimum of two correct upper bounds torder and tcover. We

1This can be achieved by computing the skyline of the cover.

6

〈b1, b2〉 〈0.4, 0.8〉 〈0.7, 0.4〉 〈0.3, 0.6〉 〈0.4, 0.3〉 〈0.5, 0.5〉 · · ·
S 30 30 20 10 10 · · ·

Cover

1.0

0.5

1.00.5 b1

b2

1.0

0.5

1.00.5 b1

b2

Figure 5: Cover update via updateCR. The dots represent the
base score vectors, and the white dots signify the current group.
The cover points are shown as crosses, and the shaded space
that they dominate contains all unseen base scores. The first
graph shows the state of the algorithm after observing three
tuples, and the second shows the state after calling updateCR
with the third tuple as input and observing two more tuples.

describe the computation of torder and tcover next, assuming for
simplicity that W = {1, . . . , w}.

The torder bound is based on the ordering of the input relations,
which tell us that, for j ≤ w, the witness τj of τ from the unseen
portion of Rj satisfies S(τj) ≤ gj . It follows that S(τ) ≤ gj , so
we set torder = min{gj | j ≤ w}.

To compute tcover, we first recall that each unseen witness τj for
j ≤ w is dominated by a member of CRj , and thus some combi-
nation of cover points in×j≤w CRj must dominate the join of
the first w witnesses τ1 1 · · · 1 τw. Given that the join of visible
witnesses τw+1 1 · · ·1 τn must be in 1j>w HRj , it follows that
S(τ) can be bounded by the maximum score over the cross product
of×j≤w CRj and 1j>w HRj . We write this “ideal” bound asbtcover = max{S(bcb(η)) | bc ∈×j≤w CRj∧η ∈1j>w HRj}.
We cannot use btcover in our algorithm, since algorithms in A are
only allowed to know the value of S on combinations of base score
vectors that have been read (but see Section 6.1. In other words,
S may be evaluated using any vector among b[HRj] ∪ {1}ej for
the j-th input. In order to follow this rule, we want to replace each
cover point with one of these admissible vectors that dominates it.
To state this formally, assume that bc is the concatenation of cover
points bc1 · · ·bcw where each bcj ∈ CRj . Now the admissible base
score vectors that dominate bcj are given by cut(HRj ,bcj), so it fol-
lows that any c ∈×j≤w cut(HRj ,bcj) is a possible replacement
for bc in the expression for btcover. If we use the minimum over all
values of c, we get the expression for tcover used in the algorithm.

5.2.2 Properties of the Feasible Region Bound
We now prove that the FR bound is correct and tight, meaning

that PBRJ is instance-optimal when the FR bound is used with the
round-robin pulling strategy. Before going into the details, we state
a simple lemma that is useful for both proofs. It establishes an
invariant that the CRi covers will never contain a vector with a
zero coordinate. The proof is trivial and is omitted.

LEMMA 5.1. If C ⊆ (0, 1]e then updateCR(C, Y) ⊆ (0, 1]e.

We prove the correctness of the FR bounding scheme in three
steps. We first show a necessary property of updateCR, namely,
that updateCR(C, Y) covers the points covered by C, given that
none of them dominate a point in Y . Second, we show that the un-
seen tuples from each relation Ri are covered by CRi. These two
steps are captured in the following two claims, and we conclude

with the correctness of the FR bound in Theorem 5.2.

CLAIM 5.1. Let X,Y ⊆ [0, 1]e and C ⊆ (0, 1]e. Suppose that
X�C and there do not exist x ∈ X, y ∈ Y such that y � x. Then
X � updateCR(C, Y).

Proof: By induction on the size of Y . If Y is empty, the claim
holds since we return the coverC. Now assume that Y is not empty.
We want to show that an arbitrary x ∈ X is covered by some ele-
ment of (S−S−)∪(S+∩(0, 1]e). Clearly,X�S by the inductive
hypothesis, so we know that x � s for some s ∈ S. It will suffice
to show that if s ∈ S− then x is dominated by some member of
S+ ∩ (0, 1]e. Thus we assume that s ∈ S−, meaning that y � s.
We also know y 6� x by our assumptions on X and Y , so there is
some j such that x[j] < y[j]. Let s+ = s[j 7→ y[j]] ∈ S+. We
know that s+ ∈ (0, 1]e because s ∈ S ⊆ (0, 1]e by Lemma 5.1
and y[j] > x[j] ≥ 0. Now we have

x[j] < y[j] = s+[j]
and x[i] ≤ s[i] = s+[i] for all i 6= j,

which implies that x � s+ ∈ S+ ∩ (0, 1]e, as desired.

CLAIM 5.2. After each call to the updateBound method of the
FR bound, CRk � b[Rk −HRk] for all k.

Proof: Choose any input k. Let CRp
k and HRp

k denote the values
of CRk and HRk after p calls to updateBound , for p ≥ 0. We
show that CRp

k �b[Rk−HRp
k] by induction on p. Considering the

value of CRk before the first iteration, we have CR0
k = {1}ek �

[0, 1]ek ⊇ b[Rk − HR0
k]. For the inductive case, let p ≥ 1. First

we observe that

CRp−1
k � b[Rk −HRp−1

k] ⊇ b[Rk −HRp
k].

If CRk is not updated by calling updateCR on line 2, we are done
since CRp

k = CRp−1
k . Henceforth, we assume that CRk gets

updated, meaning that ρk ∈ Rk is passed to updateBound and
S(ρk) < gk. We see that (before Gk is reset) for any γ ∈ Gk and
unseen tuple ρ ∈ Rk −HRp

k we have

S(γ) = gk > S(ρk) ≥ S(ρ) by the ordering of Rk,

which implies that b[γ] 6� b[ρ]. This, together with the fact that
CRp−1

k � b[Rk − HRp
k] allows us to apply Claim 5.1, yielding

CRp
k = updateCR(CRp−1

k ,b[Gk]) � b[Rk −HRp
k].

THEOREM 5.2. The FR bounding scheme is correct.

Proof: Suppose that the FR bound is t after observing part of an
instance I = (R1, . . . , Rn,S,K). Let τ be an unseen join result
with witnesses τi ∈ Ri. At least one witness of τ must not be
visible, thus we assume without loss of generality that τj is unseen
for each j ≤ w where w ≥ 1.

It will suffice to show that S(τ) ≤ t. We start by considering
the value of torder computed by resultBound({1, . . . , w}). For
each j ≤ w, we know S(τj) ≤ gj by the ordering of Rj , which
yields S(τ) ≤ torder. Now we consider tcover. For each j ≤ w,
choose any bcj ∈ CRj that dominates b(τj). This is made possible
by Claim 5.2. By the monotonicity of S and the fact that each
member of cut(HRj ,bcj) dominates bcj , we have

S(τ) ≤ min{S(c h) | c ∈×j≤w cut(HRj ,bcj)
∧ h = b(τw+1) . . .b(τn)}

≤ tcover

7

because tcover is computed as a maximum with additional options
for bc1, . . . ,bcw, τw+1, . . . , τn. Now we have shown S(τ) ≤ torder

and S(τ) ≤ tcover, so S(τ) ≤ resultBound({1, . . . , w}) ≤ t.
We conclude our analysis of the FR bound with the following

theorem that states the tightness of the bound.

THEOREM 5.3. The FR bounding scheme is tight.

Proof: Suppose that the FR bound returns t during execution
on a problem instance I = (R1, . . . , Rn,S,K). We know that
t = resultBound(W) for some W ⊆ {1, . . . , n}. We assume
without loss of generality that W = {1, . . . , w}. In the call to
resultBound(W), let h ≡ b(η) ∈ H , X ∈ C, and c ∈ X be the
choices that yield the value of tcover. Also suppose c = c1 c2 · · · cw
and let bcj ∈ CRj such that cj ∈ cut(HRj ,bcj) for each j ≤ w.

To check the definition of tightness, it will suffice to assume that
I has K visible join results and t > −∞, and then construct a
continuation I ′ = (R′1, . . . , R

′
n,S ′,K) that has a potential score

of t. Here, we specify conditions that I ′ must satisfy; the tedious
verification that such an instance exists is left to the appendix.

For j > w we define R′j = Rj . For j ≤ w, R′j is constructed
by replacing the first unseen tuple in Rj with a tuple ρj such that

(T1) ρ1, . . . , ρw join with η.

(T2) b(ρj)[`] = max(Aj`) for j ≤ w and 1 ≤ ` ≤ ej , where

Aj` = { 1
2
(aj [`]+bcj [`]) | aj ∈ b[HRj]∪{0}ej ∧aj [`] < bcj [`]}.

Condition (T2) intuitively ensures that b(ρj) is a feasible unseen
base score vector, since each member of Aj` falls under the cover
point bcj on every dimension. It also implies that a member of
b[HRj] dominates b(ρj) only if it dominates bcj . We use τ to
denote the result of joining ρ1, . . . , ρw with η.

Let S ′ be any monotonic scoring function for R1, . . . , Rn that
satisfies the following conditions:

(S1) S ′(x) = S(x) for all x ∈×n
i=1 b[HRi] ∪ {1}ei .

(S2) S ′(ρj) = gj for j ≤ w.

(S3) S ′(τ) = resultBound(W).

We see that I ′ is a valid problem instance, since the inserted tuples
have the same score bound as their predecessors, S ′ is monotonic,
and I ′ has at least the K visible join results of I . Then I ′ is clearly
a continuation of I by construction. This means τ is a potential
result because the tuples ρ1, . . . , ρw used to construct τ are not
visible. Now S ′(τ) = t is a potential score of I so we conclude
that the FR bound is tight.

5.3 Complexity of Tight Bounding
A tight bounding scheme enables PBRJ to stop as soon as pos-

sible and is thus crucial in achieving good I/O performance. The
flip-side, of course, is the computational overhead of obtaining a
tight bound and its impact on the running time of the rank join al-
gorithm. We investigate this issue in what follows, by analyzing
the complexity of tight bounding.

We first consider the problem of tight bounding under data com-
plexity. In other words, we limit the problem instances to the class
In-rel ∩ Ie-dim where there are n relations with at most e base
scores each. We note that this is a reasonable restriction in prac-
tice, as real-world queries are likely to have a bounded size. Under
these assumptions, we show that the computation of a tight bound
has polynomial complexity.

THEOREM 5.4. A tight bound can be computed in polynomial
time for problem instances in In-rel ∩ Ie-dim.

Proof: We consider the FR bound and the running time of the
corresponding updateBound method. Suppose that≤ p tuples have
been read from any relation. If we look at the updateCR method,
every point that is added to a cover must be constructed from some
combination of base scores from each dimension. There are at
most pe such combinations, so each cover has size O(pe). Based
on this bound, a rudimentary analysis provides an upper bound of
O(epe+1 + pn(e+1)) on the running time of updateBound .

We next consider the problem under query complexity. Our anal-
ysis uses a formulation of tight bounding as a decision problem.
Given an instance I with at least K visible join results and a real
number s, the problem is to decide if I has a potential score > s.
We refer to this decision problem as RESULTBOUND. In the con-
text of rank join algorithms, the value of s that we are interested in
is the score of theK-th best join result found so far. Clearly, a tight
bounding scheme can provide a solution to RESULTBOUND. As
we show next, however, RESULTBOUND is NP-hard under query
complexity, so it follows that we cannot compute a tight bound in
polynomial time unless P = NP.

THEOREM 5.5. The RESULTBOUND problem is NP-hard when
restricted to rank joins over a particular fixed database.

Proof: We consider a database containing two relations T and T
with the attribute values and base scores shown below.

T y x b
A B 1.0
D D 0.3
E E 0.2
F F 0.1

T x y′ b
C A 1.0
D D 0.3
E E 0.2
F F 0.1

We formulate a reduction from 3-SAT. Fix a 3-CNF formula Φ
over the variables v1, . . . , vn. We may write Φ as

Φ = (L11∨L12∨L13)∧(L21∨L22∨L23)∧· · ·∧(Ln1∨Ln2∨Ln3)

where Lk1, Lk2, Lk3 are distinct literals vi or vi for each k.
In what follows, we define an instance I = (R1, . . . , R2n,S, 1)

based on the formula Φ. For i ≤ n, let R2i−1 be the result of
renaming yxb→ yi−1xibi in T , and R2i be the result of renaming
xy′b → xiyibi in T . We also use mnemonic names Ti ≡ R2i−1

and T i ≡ R2i when convenient.
For any base score vector b = 〈b1, b1, b2, b2, . . . , bn, bn〉, define

f(b) = min
1≤k≤n

{max{h(Lk1), h(Lk2), h(Lk3)}}

where h(vi) = bi and h(vi) = bi. The idea is that f(b) indicates
whether Φ is satisfied if we interpret 〈bi, bi〉 = 〈1, 0〉 as an assign-
ment of vi to true and 〈bi, bi〉 = 〈0, 1〉 as an assignment of vi to
false. However, f is not this simple in reality since other assign-
ments of base scores are possible. We also define

g(b) = min{b1, b1, . . . , bn, bn}
and S(b) = f(b) + g(b).

Now we use I and s = 0.6 for the RESULTBOUND problem, with
only the first three tuples visible in each relation. Note that this
case is interesting since 0.6 is the score of the best known join
result. We need to show that Φ is satisfiable if and only if I has a
potential score > 0.6.

First assume that Φ has a satisfying assignment. We define an
instance I ′ = (R′1, . . . , R

′
2n,S, 1) where each R′i is the same as

Ri except for the following modifications. If vi is assigned to true,
we change the join attributes in the last tuple of T i to xi = B and
yi = A. Otherwise, we change the join attributes in the last tuple of

8

Ti to yi−1 = A and xi = C. In the first case, the modified tuple in
T i joins with the top tuple in Ti, and in the second case, the reverse
holds. Each of these pairs of joining tuples join with each other on
the valueA to get a result tuple τ . Since I ′ is clearly a continuation
of I and τ only occurs in the join results of I ′, we know that τ
is a potential result of I . The key property of τ is that it involves
the top tuple of Ti when vi is true, or the top tuple from T i when
vi is false. When we compute f(b(τ)), we know for each k, the
assignment will make one of Lk1, Lk2, Lk3 true, and this means
max{h(Lk1), h(Lk2), h(Lk3)} = 1 and hence f(b(τ)) = 1. We
also see that g(b(τ)) = 0.1, so S(τ) = 1.1 > s as desired.

Now assume there is a potential result τ from a continuation I ′ =
(R′1, . . . , R

′
2n,S ′, 1) such that S ′(τ) > 0.6. Let τ1, τ1, . . . , τn, τn

denote the witnesses of τ and let b1, b1, . . . , bn, bn denote their
base scores. The relations R′i can only differ from Ri on the fourth
row, and the unseen base score must be less than 0.3 (after read-
ing three rows of R′i, the FR bound would have a cover of 0.3
and the current group would contain 0.2). We also know that, for
each i, it is not possible for both τi and τ i to be the first tuples
in their respective relations, since these tuples do not join. From
these observations, either bi ≤ 0.3 or bi ≤ 0.3. In other words,
〈bi, bi〉 � 〈ci, ci〉 for some 〈ci, ci〉 ∈ {〈1.0, 0.3〉, 〈0.3, 1.0〉}. If
we define c = 〈c1, c1, . . . , cn, cn〉 then we have b(τ) � c. More-
over, the base scores in c are visible in I , so (C3) leads to

S(c) = S ′(c) ≥ S ′(τ) > 0.6.

This implies f(c) > 0.3 since g(c) ≤ 0.3. Now suppose we assign
vi to true if and only if ci = 1. Since f(c) > 0.3 we know that
max{h(Lk1), h(Lk2), h(Lk3)} > 0.3 for each k, and thus one of
h(Lk1), h(Lk2), h(Lk3), say h(Lk1) > 0.3. This can only happen
if either 〈ci, ci〉 = 〈1.0, 0.3〉 andLk1 = vi, or 〈ci, ci〉 = 〈0.3, 1.0〉
and Lk1 = vi for some i. In both cases, Lk1 is satisfied, which
implies that Φ is satisfied by this assignment and we are done.

If we look closely at the previous proof, we see that the con-
structed instance is relatively simple, since each relation has only
one base score. It follows that RESULTBOUND is NP-hard for a
fixed database, even when restricted to instances in I1-dim. It is
interesting to ask whether the theorem can be also be proved when
restricted to instances in In-rel for some n. We leave this as an
open problem.

6. EXTENSIONS
6.1 Generalizing the Problem

In our statement of the rank join problem, we made several as-
sumptions to focus the presentation. We now consider alternative
assumptions to generalize our results.

Cost metrics. The sumDepths metric that we have considered
thus far is appropriate if the input is accessed one tuple at a time,
with an equal cost for all relations. We can consider a more general
case where a problem instance I = (R1, . . . , Rn,S,K) allows
access to Ri in blocks of zi tuples and each block access has a cost
of ci. The cost of a rank join algorithm A in this case is

blockCost(A, I) =
nX

i=1

ci ·
‰
depth(A, I, i)

zi

ı
.

The optimality of PBRJ∗c , stated by Theorem 4.4, immediately ex-
tends to the blockCost metric by Lemma 4.1. Also observe that
each of our proofs of instance optimality for some algorithm A es-
sentially showed that sumDepths(A, I) ≤ n · sumDepths(B, I)
for any algorithm B under consideration and instance I ∈ In-rel.

When this is the case, it is routine to show that

blockCost(A, I) ≤ n ·max(ci/zi)

min(ci/zi)
· blockCost(B, I) +

nX
i=1

ci

and therefore the optimality ratio of n under the sumDepths metric
translates to n ·max(ci/zi)/min(ci/zi) under blockCost .

Join condition. The results in this paper are presented for natural
joins, but we may consider more general join conditions. Follow-
ing the approach used by the J∗ algorithm [8], we allow for a join
condition that is accessed with a method valid(). Given tuples
τ1, . . . , τk from a subset of the input relations, valid(τ1, . . . , τk)
returns true if and only if τ1, . . . , τk may hypothetically participate
in a join result with some selection of tuples from the other input
relations. We can show that our analysis extends to this more gen-
eral model. The only significant changes that we need to make are
as follows: (a) the join condition θ becomes part of the problem
instance, and (b) a continuation can employ any join condition θ′

that gives the same answers as θ on the visible portion of the input.

Maximum base score. Our definition of the score bound S is
based on the implicit assumption that each base score takes a max-
imum value of 1. It is important to note that none of our proofs use
this assumption. Since we do not allow for a priori knowledge of
the maximum base score, our results are based on the premise that
any base score may take the value 1 until the observed input tuples
prove otherwise.

There may be cases in practice where the maximum base scores
are known in advance. If this is the case, it is easy to normalize the
base scores to have maximum values of 1, then use a modified scor-
ing function that undoes the normalization before passing the base
scores to S. A rank join algorithm does not need to be changed
to benefit from this normalization, since it simply enforces the im-
plicit assumption on the range of base scores.

Problems with no solution. In our definition of a top-K rank join,
we require that at least K join results exist. Although it is possible
to lift this restriction and require a rank join algorithm to return
all the join results if there are fewer than K in total, these cases
would not be of much interest in our depth-based analysis since
any algorithm would generally read all of its input to compute the
join.

Access to the scoring function. One of the restrictions in our study
is that algorithms may only evaluate the score bound S on combi-
nations of input score vectors. This is necessary to allow a tight
bound to be computed: the intuitive reason is that a bound must
guarantee correctness based on what is known about the scoring
function, and arbitrary knowledge of the scoring function can be
learned by extra evaluations of S.

On the other hand, a practical implementation of a rank join algo-
rithm may evaluate S on some base scores that do not occur in the
input. In particular, an implementation of the resultBound method
of the skyline bound could replace tcover with the alternate btcover
bound that is described in Section 5.2.1. This change can only help
in practice, since btcover is simpler to compute and never larger than
tcover.

6.2 Ranking Query Plans
Earlier work on ranking queries has developed incremental oper-

ators [4, 8] that produce ranked join results one at a time through an
iterator interface. The PBRJ template can be made incremental by
buffering all join results, and returning the top buffered result when
its score is at least as large as the bound t. The practical advan-
tage of incremental operators is that the number of required results

9

K does not need to be known in advance, allowing for pipelined
execution plans involving a tree of rank join operators. More re-
cent work has developed optimization algorithms [5, 6] to select an
efficient execution plan involving various physical operators.

Our analysis has interesting implications for the selection of rank-
ing query plans. Observe that we can view a tree-structured plan
holistically as an algorithm that solves instances of the rank join
problem with a particular number of input relations. Hence we may
define T ⊆ A as the class of rank join algorithms that solve input
instances using an appropriate query plan. Then it follows from our
analysis in Section 5 that a member of T cannot improve the cost
of solving an instance in In-rel more than a factor of n over a single
PBRJ instance. In other words, a multi-level plan can only provide
a limited advantage over a single operator. In addition, multi-level
plans do not have performance guarantees when viewed as a single
algorithm.

We can reach stronger conclusions if we only consider plans
where each operator is an instantiation of PBRJ with the corner
bound. Let Tc denote the algorithms in T that use these plans. The
following lemma shows that if T ∈ Tc, then there is a single PBRJ
operator using the corner bound that outperforms the tree T on all
instances.

LEMMA 6.1. For any T ∈ Tc there exists FT ∈ Fc such that
sumDepths(FT , I) ≤ sumDepths(T, I) for all I ∈ In-rel.

Proof sketch: Let FT be an instantiation of PBRJ with the corner
bound and a pull strategy that starts by accessing the input relations
in the same order as T , and continues in round-robin order if more
tuples are needed. It is possible to show that the last tuple emitted
by each node of T has a score bound of at most Sterm, by induction
on the distance of the operator from the root of the plan. The lemma
then follows by directly checking the corner bound’s termination
conditions after pulling all the tuples seen by T .

This lemma allows us to extend our results of Section 4 to Tc.
For example, we see that PBRJ∗c is optimal within algorithms Tc

and instances I − (I intra ∩I inter), because otherwise there would
be an algorithm T ∈ Tc outperforming PBRJ∗c on some instance
I 6∈ I intra ∩ I inter. Then Lemma 6.1 implies that FT ∈ Fc also
outperforms PBRJ∗c on I , which contradicts Theorem 4.4. We can
similarly show that PBRJRR

c and PBRJ∗c are instance-optimal in Tc.
Recalling that PBRJ∗c is equivalent to the HRJN∗ algorithm, these
observations suggest that existing optimizers that consider plans
of pipelined HRJN∗ operators are most likely wasting work: the
pipelined operators cannot perform better than a single HRJN∗ op-
erator unless the input has both intra- and inter-input threshold ties,
and even in those cases, the performance difference is at most a
constant factor.

7. RELATED WORK
In this section, we briefly review the previous studies of ranking

queries and their relevance to our main results (see Figure 6 for a
summary). Early studies in relational ranking queries focused on
top-K selection queries, which involve selection over a single table
with several base scores. Each base score is assumed to have an
index that provides either sorted access to the scores of all tuples
or random access to the score of a given tuple, or possibly both.
This can be considered a special case of a rank join by viewing the
indexes as separate relations that are joined on a common primary
key, however it differs from our formulation of the problem because
we do not allow random access. The top-K selection algorithms of
Fagin et al. [2, 3] have been the most influential. Their strategy is

Optimality restricted to algorithms Fc (or Tc)
• PBRJ∗c never costs more than PBRJRR

c

• For In-rel: PBRJ∗c and PBRJRR
c are instance-optimal

• For I − (Iintra ∩ Iinter): PBRJ∗c is optimal

Optimality among all algorithmsA (or F)
• For I2-rel ∩ I1-dim: PBRJ∗c and PBRJRR

c are instance-optimal
• For more general problems: no algorithm in Fc is instance-optimal
• PBRJ is instance optimal with round-robin access and a tight bound

Investigation of Tight Bounding
• The feasible region bounding scheme is tight
• For In-rel ∩ Ie-dim: the feasible region bound takes polynomial time
• Under query complexity: RESULTBOUND is NP-hard

Figure 6: Summary of Main Results

fundamentally similar to PBRJ since they read their input in sorted
order, and use bounds on unseen scores to terminate.

The more recent work in top-K join queries is the most relevant
to our study. The various proposals all follow Fagin’s strategy of
reading the input streams in order of base score. The first rank join
algorithm, named J∗ [8], is based on an A∗ optimization strategy.
The rank join algorithm proposed by Ilyas et al. [4] is equivalent
to our PBRJ template when the corner bounding scheme is used,
and the basic HRJN and HRJN∗ implementations correspond to
PBRJRR

c and PBRJ∗c . Their experiments showed that HRJN∗ can
run faster than J∗, while performing roughly the same amount of
I/O. Another general-purpose rank join algorithm was presented in
the recent work of Agrawal and Widom [1] in the context of un-
certain databases. The main novelty of their algorithm is that it
operates with limited memory. Finally, the LARA-J algorithm [7]
is an algorithm that uses ideas similar to J∗: both algorithms ma-
terialize an exponential number of partial join results to compute
a tight bound for problem instances in I1-dim, which is consistent
with our hardness result for RESULTBOUND.

These rank join algorithms were shown to be instance-optimal
under various assumptions. In particular, the proofs assume that
there is only one base score per input relation, but our data model
follows recent work in query optimization [6, 9] that assumes sev-
eral base scores per relation. The proof of instance optimality pre-
sented by Ilyas et al. [4] only works for multi-way joins when the
join condition is a “black box,” which is not usually the case, since
natural joins are common in practice. Agrawal and Widom’s proof
of instance optimality [1] only covers the case of binary joins.

Our analysis is related to the theoretical study that was done in
our development of the DEEP framework [9] for estimating the
depths of operators in ranking query plans. This work provides an
alternate proof of Theorem 4.3 that does not use the fact that the
cost of PBRJ∗c is never more than PBRJRR

c . The only other relevant
theorem in this work is essentially a weaker version of Theorem 4.4
since it prohibits ties on values other than the threshold.

8. CONCLUSIONS
This paper was motivated by a desire to develop a complete and

detailed characterization of possible solutions to the rank join prob-
lem and their relative theoretical performance. We have accom-
plished this goal for a formulation of the problem that is more
general than prior studies of rank join algorithms. Some of our
results have very practical applications, such as the fact that a sin-
gle HRJN∗ operator is superior to an HRJN∗ pipeline in nearly all
cases. We also make a significant algorithmic contribution with the
introduction of the feasible region bounding scheme, which enables
the PBRJ algorithm to have instance-optimal I/O cost.

It would be interesting to consider special cases that were not

10

treated in our analysis, such as particular scoring functions and
cases where data statistics and integrity constraints are known. In
another direction, our work could be generalized further to employ
indexes for random access on join attributes.

Acknowledgements. We recognize Joshua Spiegel of BEA Sys-
tems, who contributed to our early discussions about the material
in this paper. We also wish to thank Tova Milo and Wang-Chiew
Tan for their feedback on previous drafts of this paper.

9. REFERENCES
[1] Parag Agrawal and Jennifer Widom. Confidence-aware joins in large

uncertain databases. Technical report, Stanford University, 2007.
Available at http://dbpubs.stanford.edu/pub/2007-14.

[2] Ronald Fagin. Combining fuzzy information from multiple systems.
Journal of Computer and System Sciences, 58(1):83–99, 1999.

[3] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation
algorithms for middleware. Journal of Computer and System Sciences,
66(4):614–656, 2003.

[4] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting
top-k join queries in relational databases. The VLDB Journal,
13(3):207–221, 2004.

[5] Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid, Hicham G.
Elmongui, Rahul Shah, and Jeffrey Scott Vitter. Adaptive rank-aware
query optimization in relational databases. ACM Transaction on
Database Systems, 31(4):1257–1304, 2006.

[6] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin
Song. RankSQL: query algebra and optimization for relational top-k
queries. In ACM SIGMOD International Conference on Management
of Data, pages 131–142, 2005.

[7] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W.
Cheung. Efficient top-k aggregation of ranked inputs. ACM
Transaction on Database Systems, 32(3):19, 2007.

[8] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li,
and Jeffrey Scott Vitter. Supporting incremental join queries on ranked
inputs. In International Conference on Very Large Databases, pages
281–290, 2001.

[9] Karl Schnaitter, Joshua Spiegel, and Neoklis Polyzotis. Depth
estimation for ranking query optimization. In International
Conference on Very Large Databases, pages 902–913, 2007.

APPENDIX
A. TIGHTNESS OF THE FR BOUND

This appendix completes the proof of tightness of the feasible
region bound. Our first step shows that a partial monotonic scoring
function can be extended to a total monotonic scoring function as
long as it contains a mapping for the maximal score vector.

CLAIM A.1. Suppose {1}k ⊆ A ⊆ [0, 1]k and let f : A → R
be monotonic. There exists a monotonic function f ′ : [0, 1]k → R
such that f ′(a) = f(a) for all a ∈ A.

Proof: For any b ∈ [0, 1]k define S(b) = {a ∈ A | b � a}. We
know that S(b) is nonempty sinceA ⊇ {1}k � [0, 1]k. This allows
us to define f ′(b) = infs∈S(b) f(s). To show that f ′ is monotonic,
consider any x, y ∈ [0, 1]k such that x � y. Clearly, S(y) ⊆ S(x)
by the definition of S, so we have

f ′(x) = infs∈S(x) f(s) ≤ infs∈S(y) f(s) = f ′(y)

thus proving the monotonicity of f ′.

We say x≺≺ y or x is strictly dominated by y to mean x[i] < y[i]
for each dimension i. The next claim intuitively states that the cover
points are pushed towards the origin far enough to guarantee that
they only strictly dominate scores in the current group.

CLAIM A.2. After each call to updateBound , if bci ∈ CRi and
τi ∈ HRi such that b(τi)≺≺ bci, then τi ∈ Gi.

Proof: Define the notationA↗B (pronouncedA is belowB) to
mean that a ��6 b for all a ∈ A and b ∈ B. One way to visualize this
relation in two dimensions is to imagine a staircase-shaped border
dividing R2 withA on the lower left andB on the upper right, while
allowing any points on the border. Using this notation, we can
restate the claim as CRi↗HRi−Gi. It will suffice to show that if
C↗X then updateCR(C, Y)↗X∪Y . Then the invariant stated
in the claim is clearly preserved by lines 2-3 of updateBound ,
which is the only time HRi −Gi and CRi are modified.

The proof is by induction on the size of Y . If Y is empty, we are
done since updateCR(C, Y) = C. Now suppose Y is not empty,
so we have the inductive hypothesis S↗X ∪ (Y −{y}). We need
to show that (S − S−) ∪ (S+ ∩ (0, 1]e)↗X ∪ Y . To show this,
we assume that s ∈ (S − S−) ∪ (S+ ∩ (0, 1]e) and z ∈ X ∪ Y ,
then we check that z≺≺6 s.

First suppose that s ∈ S − S−. If z 6= y, then z ≺≺6 s by
induction. We also have y ≺≺6 s because s ∈ S − S− and thus
y 6� s by the definition of S−.

Now suppose that s ∈ S+ ∩ (0, 1]e. We know s = s−[i 7→ y[i]]
for some s− ∈ S−, i ≤ e by the definition of S+. This also means
that s � s− since y[i] ≤ s−[i] by the definition of S−. Now if
z 6= y, then z ≺≺6 s− by induction, which implies that z ≺≺6 s since
s � s−. We also have y≺≺6 s since s[i] = y[i].

Now we finally prove that the construction in Theorem 5.3 is sound.

CLAIM A.3. The instance I ′ in the proof of Theorem 5.3 exists.

Proof: We need to check that R′1, . . . , R′w and S ′ exist. As long
as ρj exists for each j ≤ w, our construction of R′j that replaces
the first unseen tuple in Rj is valid because Rj is not exhausted.
Otherwise, we would get t = resultBound(W) = −∞, violating
the assumptions of the proof. Now to show ρj exists, first note that
it is easy to satisfy (T1) by choosing join attributes that match. To
address (T2), we need to show that each Aj` is nonempty. This
follows because bcj [`] > 0 by Lemma 5.1, implying that 0 ∈ Aj`.
Hence, the tuples ρj and τ are well-defined. We also note that it
is clear from the definition of Aj` that b(ρj)[`] < bcj [`], which
implies that b(ρj)≺≺ bcj .

11

We now show that S ′ exists. Suppose that u, v are vectors whose
scores under S ′ are specified by (S1)-(S3). In other words, u and
v may be members of the cross product of (S1), equal to b(τ), or
the result of filling in 1 for the missing base scores in b(ρj) for
some j ≤ w. We write the scores specified for u and v as S ′(u)
and S ′(v), although this is an abuse of notation since we have not
shown that S ′ exists. We need to show two things: first, that it is
possible to satisfy (S1)-(S3) (meaning that they don’t conflict), and
second, that this is possible when S ′ is monotonic. Our strategy is
to check the monotonicity condition u � v ⇒ S ′(u) ≤ S ′(v) for
all u, v. Since u, v are chosen symmetrically, this entails v � u⇒
S ′(v) ≤ S ′(u). Then u = v ⇒ S ′(u) = S ′(v), so (S1)-(S3) do
not make conflicting assignments, and S ′ exists by Claim A.1.

We know (S1) is compatible with monotonicity because S is
monotonic. It is also trivial to show that (S2) and (S3) respect
monotonicity when considered in isolation. Now we check that
each pair of (S1), (S2), (S3) are compatible.

(S1,S2): Let x ∈×n
i=1 b[HRi] ∪ {1}ei and let xi denote the

portion of x from input i. Take any j ≤ w and let r denote the
result of filling in 1 for the missing base scores in b(ρj). If r � x,
then every coordinate of x is 1, except possibly those corresponding
to xj . Then S(x) = S(xj) by the definition of S, and we have

S ′(x) = S(x) = S(xj) ≥ gj = S ′(r).

For the opposite case, assume that x � r. In particular, this means
that xj � b(ρj). Since b(ρj) ≺≺ bcj by construction, we have
xj ≺≺ bcj by transitivity. We also know that xj = b(γj) for some
γj ∈ HRj and then γj ∈ Gj by Claim A.2. We conclude that

S ′(x) = S(x) ≤ S(xj) = S(γj) = gj = S ′(r).

(S2,S3): Note that τ is constructed from ρj , so if r is the result of
filling in 1 for the missing base scores in ρj , then b(τ) � r. Thus
we only need to check that S ′(τ) ≤ S ′(r). Indeed,

S ′(τ) = t ≤ torder = min{g1, . . . , gw} ≤ gj = S ′(r).

(S1,S3): Before addressing this case, we claim that

b(ρj) � xj ⇒ bcj � xj for all j ≤ w and xj ∈ b[HRj].

We prove the contrapositive. Let xj ∈ b[HRj] such that bcj 6� xj .
This means xj [`] < bcj [`] for some `. Applying (T2), we have
b(ρj) ≥ 1

2
(xj [`] + bcj [`]) > xj [`], which means that b(ρj) 6� xj

as desired.
Let x ∈×n

i=1 b[HRi] ∪ {1}ei and let xi denote the portion
of x from input i. First suppose that b(τ) � x. In particular,
this means that b(ρj) � xj for all j ≤ w, and the observa-
tion above implies that bcj � xj . It follows by the definition of
X that x1 . . . xw ∈ X . Since c ∈ X was chosen to minimize
S(c h), we have S(c h) ≤ S(x1 . . . xw h). It is also clear that
h � xw+1 . . . xn since b(τ) � x. Combining this with the previ-
ous observation yields S(c h) ≤ S(x). We conclude that

S ′(τ) = t ≤ tcover = S(c h) ≤ S(x) = S ′(x).

For the opposite case, suppose x � b(τ). We want to check that
torder and tcover are both upper bounds for S(x). Using the same
reasoning as the (S1,S2) case, for j ≤ w, we have xj = b(γj)
for some γj ∈ Gj . This says that x is derived from tuples with
score bounds g1, . . . , gw, so S(x) ≤ min{g1, . . . , gw} = torder.
Now in order to check tcover we first observe that b(τ) � c h since
b(ρj) ≺≺ bcj � cj for each j ≤ w. This yields x � c h by
transitivity, and so S(x) ≤ S(c h) = tcover. We conclude that

S ′(x) = S(x) ≤ min{torder, tcover} = t = S ′(τ).

B. EXCLUSION OF COVER POINTS WITH
A ZERO COORDINATE

As discussed in Section 5.2.1, method updateCR excludes cover
points with a zero coordinate. We now show that this restriction is
necessary in order to achieve a tight bound.

We consider the instance (R1, R2,S, 1), where R1, R2, and S
are defined as shown below:

R1 a b1 b2
x 1.0 0
z 0 1.0
z 0.2 0.2
z 0.1 0.1
· · ·

R2 a b3 b4
y 1.0 1.0
x 1.0 0.9
y 0 0.8
y 0.3 0.3
· · ·

S(b1, b2, b3, b4) =

(
10 + b3 + b4 if b1 = b2 = 1

b1 + b2 + b3 + b4 otherwise

The visible portion of the two inputs yields one join result τ
with score S(τ) = 2.9. First, we observe that, if {1} ⊆ W ,
then resultBound(W) ≤ g1 = 2.2 since resultBound(W) is
no larger than torder and the latter is defined as min{gj | j ∈ W}.
Next, we consider the computation of resultBound(W) whenW =
{2}. We observe that

CR2 = {〈1, 0.8〉},

and

cut(HR2, 〈1, 0.8〉) = {〈1, 1〉, 〈1, 0.9〉}

It follows that

tcover = max{min{S(h c) | c ∈ cut(HR2, 〈1, 0.8〉)} | h ∈ b[HR1]}
= 2.9

At the same time, we know that torder = g2 = 10.6. Hence,
resultBound({2}) = min(torder, tcover) = 2.9. Overall, the pre-
vious observations imply that the FR bound is equal to 2.9, since
it is the maximum of resultBound(W) on all possible choices of
W .

Now, we consider the computation of the FR bound if we alter
updateCR to include cover points with a zero coordinate. We refer
to this version as the FR0 bound. It is straightforward to verify
again that resultBound(W) ≤ 2.2 for {1} ⊆ W . For W = {2},
we first observe that CR2 is computed as follows:

CR2 = {〈1, 0.8〉, 〈0, 1〉, 〈0, 0.9〉}

Recall that tcover is computed as the maximum over cover points in
CR2. Hence, we can state the following:

tcover ≥ max{min{S(h c) | c ∈ cut(HR2, 〈0, 1〉)} | h ∈ b[HR1]}
= 3

Given that g2 = 10.6 and resultBound({2}) = min{torder, tcover},
it follows that resultBound({2}) ≥ 3. In turn, the FR0 bound is at
least 3, making it larger than the provably tight FR bound (=2.9).

12

