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Abstract

First call resolution, which in essence means the proportion of inquires that are successfully

addressed after one call (note that the definitions of FCR differ, see below), has been getting

more attention in call center management. A review of the literature, however, reveals that

most of the interest has come from the practitioners (call center managers, consultants, etc.).

We can only find a few research reports on FCR - the benefits, the potential downsides, and

more importantly, how FCR should be implemented in the routing of calls.

1 Introduction

Over the past two decades, customer service call centers have become a very important part of many

companies’ business operations. Today, inbound call centers employ millions of agents across the

globe and serve as a primary customer-facing channel in many different industries. As such, there

has been a great deal of research interest in call center operations management (Gans, Koole and

Mandelbaum [9] and Aksin, Armony, and Mehrotra [1] provide very thorough literature surveys).

Much of this research has focused on queueing models, staffing, and performance analysis. For

example, one common operational setting is a call center in which there is a single type of inbound
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call (which we refer to as the Single Queue model). In this setting, a key operational challenge

is the determination of how many agents to staff in order to achieve a target mean waiting time

(which is often referred to as Average Speed of Answer or ASA) or waiting time distribution (which

is typically represented by an objective of at least some fixed percentage of calls within some target

time period and referred to as Service Level.

For models in which there are multiple types of inbound calls, on the other hand, the perfor-

mance analysis and staffing problems become significantly more challenging when some or all of

the agents are able to handle more than one type of call. This latter setting is often referred to as

Skill-Based Routing, because calls are routed to different agents (or groups of agents) based on logic

that takes into account which agents are capable of handling which types of calls. The challenge

in this setting is to simultaneously determine how many agents should be staffed and which skills

and priorities each agent should be assigned in order to achieve particular ASA or Service Level

targets for each queue.

Historically, the vast majority of the research literature has used either ASA and Service Level

as the primary performance metric with which to judge a particular staffing configuration for both

the Single Queue and the Skill-Based Routing settings. This is because customer waiting time has

historically been viewed as a proxy for a customer’s satisfaction with the service delivered by the

call center, since it is widely agreed that customers prefer to spent little or no time waiting for

service.

More recently, some researchers have begun to model customer reneging, which in the call center

context is typically referred to as Abandonment, and to include the customer Abandonment Rate as

an important metric in evaluating operational performance (see Mandelbaum and Zeltyn [15] for a

good survey of the state of the art in this area). There are two main reasons for including customer

abandonment in call center models. First of all, customers who abandon the queue are quite likely

dissatisfied with the service encounter, and therefore this metric is an important one for call center

managers who are focused on delivering high-quality customer service. Secondly, the effect of

customer abandonment is to reduce the total traffic in the call center, and thus abandonment can

have a significant impact on staffing needs and on customer waiting times.

It is important to note that ASA, Service Level, and Abandonment Rates are all metrics that

are based on a customer’s waiting experience prior to service. However, it is well known in the

marketing and customer satisfaction literature that the customer’s experience during service is also

a very strong determinant of customer satisfaction and loyalty. In particular, a second call from
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a customer about a specific issue is a clear sign that the issue had not been resolved during the

previous service encounter, and this lack of resolution is a strong sign of customer dissatisfaction.

Thus, the Call Resolution (CR) rate and the First Call Resolution (FCR) rate1 are very important

customer-centric metrics that have been largely ignored in the operations management literature.

In many call centers, agents have been trained to handle all calls within a particular queue

but nevertheless exhibit very different performance across specific types of calls within that queue,

where performance is defined by average call handling time (AHT) and first call resolution rate

(FCR). A good overview of routing in multi-skill environments is found in [14], with efficient policies

described in [3]. Worker cross-training is known to improve those performance measures [16], but

here we assume rates to be fixed for the period of routing decisions.

In this paper, we explore strategies for determining which calls within a queue should be handled

by which agents, where these assignments are made dynamically based on the specific attributes of

the agents and/or the current state of the system. In particular, each call type may be handled by

different agent types with different AHT and CR rate; and each agent type may handle different call

types with different AHT and CR. In practice one can find cases where AHT and CR are positively

correlated (the faster one works, the sloppier the job) or negatively correlated (more experienced

and better trained agents can handle calls both faster and better). For more discussions on this

please refer to de Véricourt and Zhou [7]. In our paper we do not assume any specific form of

correlation between the two; any relation is possible.

We believe that this paper makes several important contributions to the call center operations

management literature. First of all, we present a richer framework for call routing than the tradi-

tional FIFO call center model while using actual performance data in two very important dimensions

(AHT and CR) as the basis for call assignment decisions. Secondly, we formulate a mathematical

program that provides a quick analytic measure of the maximum First Call Resolution rate under

very reasonable constraints on agent utilization. Thirdly, we develop a variety of intelligent routing

rules that are intended to deliver both low ASA values and high CR rates, where several of these

routing rules are based on outputs from our optimization model. Finally, we conduct empirical

tests of these rules against operational data from a large financial service firm’s customer service

call centers.
1Our model uses the CR measure since we don’t track the number of time the customer has sought help with the

same problem before, for analytical tractability. FCR is the term most practitioners use, however. In this paper we

will use CR when describing our model, and FCR when referring to its usage in practice and in the literature.
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The remainder of this paper is organized as follows. In Section 2, we present a survey of the

research literature on models that take into account call resolution rates and customer callbacks. In

Section 3, we then formulate a mathematical program that can be solved to determine the optimal

long-term proportion of calls of each type that should be handled by each group of agents in order

to maximize the overall CR rate. In Section 4, we develop several routing strategies designed to

deliver a higher CR rate than the traditional FIFO model while also seeking to keep customer

waiting times as low as possible, where some of these proposed routing strategies are based on the

optimal long-term proportion determined in the previous section. In Section 5, we empirically test

several routing strategies using agent data obtained from a large financial service firm’s customer

service call centers and present results under varying system load conditions. Finally, in Section 6,

we provide a summary of the paper along with conclusions and directions for future research.

2 Literature Review

There are several definitions of first call resolution (FCR) in the literature, but in essence it means

the proportion of inquires that are successfully addressed after one call. FCR has been getting

increasingly more attention in call center management, but our literature survey reveals that most

of the interest has come from the practitioners (call center managers, consultants, etc.). We can

only find a few research reports on FCR.

For a complete literature review of first call resolution, see Hart et al. [13]. They point out the

importance of measuring and using FCR. They also point out the existence of different definition

of FCR in the call center context. The lack of a standard FCR definition implies that it is not as

useful a benchmarking tool as an internal performance measure. The paper states the cost savings

that may result from a high FCR (less escalation, less repeat traffic, etc. all leading to lower labor

cost), and lists various factors that impact FCR (training, empowerment, technology).

In the literature, there is healthy debate over the merits of measuring satisfaction based on

FCR. For example, Read [17] states that surveys reveal that first call resolution drives customer

satisfaction, whereas Feinberg et al. [8] states that first call resolution (percentage of calls closed

on first contact) is not a significant determinant of customer satisfaction in the banking/financial

services sector. As the authors admit, due to limitation on data availability, the measure for

customer satisfaction (percentage of customers who give “top box” evaluation) is a weak measure

and may have accounted for the weakness in the results. Cross [5] warns against using first call
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resolution as the only performance measure. He argues that by focusing only on FCR, the manager

may overlook opportunities to reduce the volume of non-value-added but simple-to-answer calls.

S/he may also overlook opportunities to use call-back or fax-back options to smooth demand.

Early work on routing in call centers considered either a homogenous customer/call population

or a homogenous population of servers. Under those conditions, several important results are known

about optimal allocation policies or maximal throughput policies under heavy traffic conditions.

Most of these use queue backlog rather than waiting time as the control for deciding service alloca-

tion. A commonly accepted terminology differentiates between quality driven (QD) and efficiency

driven (ED) regimes, emphasizing either utilization of servers or service quality. The balance is

described as a Quality and Efficiency driven (QED), which leads to the square root staffing rules.

See Halfin and Whitt [12], Borst et al. [4].

More recently several researchers have extended call center routing models to consider a hetero-

geneous population of service agents. The general field of policies incorporating the service ability

of agents is called skills-based-routing. In this context, the maximum feasible arrival rate has been

characterized [2, 6, 19], and policies known as maximum pressure or cone policies are known to

keep all queues stable whenever that is achievable. These policies is to essentially maximize the

inner product (sum of products) of service rate with backlog in the queues - routing calls with large

backlogs to servers with high service rates. In [19], these policies are shown to optimize certain

backlog-driven performance measures over time.

Another policy proposed in multiskill servers is the Fastest-Servers-First (FSF) policy in [3].

The policy is described as a QED policy with heterogenous servers, and performs better than the

homogeneous counterpart for the dynamics described.

The related issue heterogeneous customer value is studied in [10]. The authors analyze the

situation where customers differentiated in terms of revenue potential and delay sensitivity. They

study staffing, call routing and cross-selling of a heterogeneous customer population, deriving op-

timal controls. The focus is on how to segment the population itself, and what effect this has on

overall profit. Similarly [11] addresses the issue of how many servers are required and how to match

them with customers in order to minimize staffing cost, subject to class level QoS constraints. They

characterize asymptotically optimal policies as service load grows to infinity. They also show good

performance on relatively small systems. Their policy is an idle server based threshold-priority

control.

Related to skills based routing is the idea of preference-based routing presented in [18]. Tra-
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ditional skills based routing algorithms try to match call types with agent skills subject to service

constraints. They do not consider agents’ preferences for call types. Given the high turnover

(churn) at call centers and the associated high costs, they propose routing algorithms that account

for agent skills and preferences. They do so by assigning values to call-agent combinations that

incorporate management’s judgment of the value of such pairings and each agent’s preferences for

the call types. Moreover, by letting the values be based on call resolution rates, this framework

also applies to the problem we consider in this paper.

More closely related to our study here is [7]. This paper considers call resolution probabilities in

making call routing decisions. There is only one call type, but many agent classes. The agent classes

are differentiated by their call handle time (service rate) and call resolution probabilities. They show

that agent classes can be ranked by their call resolution rate (call resolution probability times service

rate), the so-called pµ policy. To minimize the average total time to resolve a call, they show that

there is always a preferred agent class, the one with the highest pµ, to route the calls to, and when

all agents in that class are busy, it is optimal to route to other classes following a state-dependent

threshold policy. Using numerical tests, the authors show that a routing policy that overlooks

the call resolution probability differences can perform poorly, which illustrates the importance of

routing based on call resolution. To simplify the routing policy, they show numerically that the

optimal state-independent policy already captures almost all the benefits of the state-dependent

threshold policy. Moreover, routing solely based on the pµ index, without the use of thresholds,

allows the call center to get most of the benefits.

3 Model and Problem Formulation

A customer’s experience during a service encounter consists of two parts: the wait and the service

itself. The wait-related measures such as ASA deal with the first aspect while resolution related

measures such as CR deal with the second. Given the heterogeneity of the agents – some may be

faster while others may yield better customer resolution – oftentimes there is an inherent tradeoff

in the routing decisions. If the aim is to reduce overall wait, then the system should route calls to

agents in such a way to maximize the effective rate (accounting for re-service of those un-resolved

calls) at which calls leave the system. If the aim is to increase resolution, then the system should

route calls to agents in such a way to maximize the overall CR.

To achieve the first, one would think it best to route calls to agents who can handle it the

6



fastest, sometimes even withholding a call in queue to wait for that agent to free up, but that

doesn’t account for the re-service of calls that were not resolved. A more effective way is to route

calls to the agents with the highest “resolution rate” which is the product of service rate and CR

(see de Véricourt and Zhou [7] for details). To achieve the second, it is clearly optimal to route

each call type to the agent group who can handle it the best (highest CR rate), sometimes even

withholding a call in queue to wait for that agent to free up. However, this may put undue burden

on some agent groups (even overloading them) while some other agent groups may become idle –

a very inefficient use of resources.

In this paper we aim to find routing policies that achieve a balance between the two goals of

short wait and high resolution. One policy we will test comes from de Véricourt and Zhou [7]:

routing calls to available agents with the highest resolution rate, or the so called “pµ rule”. On the

“wait-resolution” spectrum, this policy resides close to the “wait” end because it is derived with

the aim to reduce overall wait time, accounting for re-service of resolved calls. At the other end of

the spectrum, we will derive a policy that aims to maximize CR but with constraints on minimum

and maximum utilization targets for each of the agent groups and each call type. Then we propose

a policy that “continualize” the spectrum. With different parameter values it can move between

the two ends of the spectrum. This way, a call center manager can pick the parameter to achieve

the wait-resolution combination that is right for his/her call center.

Next, we present a model that calculates the maximal call resolution rate that can be achieved

by any stationary Markovian policy given agent utilization bounds. This gives us a sense of how far

the “resolution” end of the “wait-resolution” spectrum stretches out. After that we will present a

model that analyzes the naive first-come-first-served policy, to serve as a benchmark of how much

benefit can be gained. In Section 3.3, we will describe the policies we test in the numerical analysis

that are based on the pµ rule in de Véricourt and Zhou [7], the xijs derived in Section 3.1, the

FCFS policy in Section 3.2.

3.1 Max-CR Problem Formulation

Here we formulate the problem of maximizing the overall expected CR rate, subject to minimum

and maximum utilization targets for each of the agent groups and each call type. We assume that

for each agent group, performance parameters are known.

Let i = 1, 2, ...I index the different queues and j = 1, 2, ...J index the different groups of agents,

with nj agents in group j. Clearly routing decision must be made dependent on the state, as
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calls come in and as the agents become available. But any stationary Markovian policy will result

in a continuous time Markov chain (CTMC). We can analyze the CTMC to find the stationary

distribution of the system in order to study the system’s performance. For a CTMC that’s the

result of a stationary Markovian policy, there is a corresponding set of variables xij that represent

the percentage of calls from queue i to be handled by agents from class j in the steady state. This

is all we need to figure out the CR that the policy will achieve. Therefore, the xijs are our decision

variables. We will formulate a mathematical program below to find the xij that maximizes the

CR subject to utilization constraints. To ascertain the feasibility of such xij we only need to note

that a naive policy of routing a type i call to type j agent with probability xij (and letting the call

stay there even all type-j agents are busy and other agents are idle) achieves this xij , and thus the

maximum CR.

We formalize the optimization model below, but first consider the effective arrival rate to each

queue, taking into account callbacks due to unresolved earlier calls. We assume for this study

that customers have no alternative to resolving their call through the call center, and hence all

unresolved calls will return as future arrivals. For each agent group j, they serve type-i calls at rate

µij and successfully resolve each call with probability pij . Denote λi to be the arrival rate of first

time type-i customers. The effective arrival rate λ̄i, accounting for all the re-services, explicitly

depends on the choice of the xij values, as the xij values determine the percentage of customers

who call back. In particular, we have:

λ̄i = λi + λi(
∑

j

(1− pij)xij) + λi(
∑

j

(1− pij)xij)2 + λi(
∑

j

(1− pij)xij)3 . . .

The kth term on the right hand side of the equation corresponds to the expected number of

customer who make a total of k calls before getting resolved, k = 2, 3, .... Now since
∑

j(1−pij)xij <

1, we have:

λ̄i =
λi

1−∑
j(1− pij)xij

(1)

For an agent of type j, their total arrival rate for jobs of type i is λ̄ij = 1
nj

λ̄ixij , and hence their

total utilization is
∑

i
λ̄ij

µij
=

∑
i

λ̄ixij

njµij
. For our routing assignments, we require that each agent in

group j be utilized between a lower bound ρ−j and upper bound ρ+
j .

To maximize the overall CR rate, we formulate the following optimization problem:
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maximize
∑

i,j λ̄ipijxij (max total rate of resolution)

subject to

0 ≤ xij ≤ 1 ∀i, j (fraction of calls bound)∑
j xij = 1 ∀i (total calls routed to different agent groups)

ρ−j ≤ ∑
i

λ̄ixij

njµij
≤ ρ+

j ∀j (utilization of each agent)

If we substituting λ̄i by (1), then we change the objective function and the agent utilization

constraint, respectively, to:

max
xij

∑

i,j

λipijxij

1−∑
j(1− pij)xij

(2)

and

ρ−j ≤
∑

i

(λi/njµij) xij

1−∑
j(1− pij)xij

≤ ρ+
j ∀j. (3)

Both are quadratic so the problem can be efficiently solved with any good commercial solver.

Note that this formulation has the advantage of allowing a call center to solve the closely related

problem of maximizing first call resolution (FCR), by simply replacing the above objective function

with
∑

i,j λipijxij (which also makes the objective function linear). In a traditional Markov Decision

Process (MDP) based approach, this is hard to do because one needs to keep separate track of new

arrivals and returned jobs. This enlarges the state space, oftentimes yielding the MDP problem

intractable. With this optimization approach, we can easily find the xijs that optimize FCR and

then seek policies that achieve (or approach) the optimal xijs, as we will do in Section 3.3.

It is possible that the solution to the optimization problem above may unfairly affect some job

types more than others. One way to protect against this is to constrain the effective utilization of

each job type i. That is, each job type i must be served at total utilization between τ−i and τ+
i .

To do that, we must first define what we mean by utilization of call type i. This can be done by

calculating the effective service attention from all agent types.

For an agent of type j, their total fraction of time spent serving queue i is
λ̄ij
µij

∑
i′

λ̄i′j
µi′j

. Therefore

the total service rate to jobs of type i is µ̄i =
∑J

j=1 njµij

λ̄ij
µij

∑
i′

λ̄i′j
µi′j

. The total effective utilization of

queue i is then seen to be
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λ̄i

µ̄i
=

λ̄i∑J
j=1

nj λ̄ij

∑
i′

λ̄i′j
µi′j

=
λ̄i∑J

j=1
λ̄ixij

∑
i′

λ̄i′xi′j
njµi′j

=
1∑J

j=1
njxij

∑
i′

λ̄i′xi′j
µi′j

(4)

Now, given upper and lower bounds on utilization per queue, we can write:

τ−i ≤ 1∑J
j=1

njxij

∑
i′

λ̄i′xi′j
µi′j

≤ τ+
i , ∀i. (5)

The right hand inequality, for example, can be rewritten as

J∑

j=1

njxij
∑

i′
λ̄i′xi′j
µi′j

≥ 1
τ+
i

(6)

Again, this is a quadratic constraint and can be easily handled by good solvers.

3.2 First Come First Served

As a benchmark, we will study the First Come First Served (FCFS) policy. In this case, different

types of calls arrive to the same queue and are taken FCFS. If a call arrives to find several agents

available, it is randomly assigned to one of them. Otherwise, it is queued. When agents become

idle, they take from the head of the queue. In such a system, each agent will have the same

utilization in the long run. Therefore, we must have

∑

i

xijλ̄i

njµij
=

∑

i

xikλ̄i

nkµik
, ∀j, k. (7)

Also, we have
∑

j

xij = 1, ∀i. (8)

Given that calls are randomly assigned, the call type distribution among all the calls taken by

different agent classes should be the same. So we must also have:

xijλ̄i∑
i′ xi′j λ̄i′

=
xikλ̄i∑
i′ xi′kλ̄i′

, ∀i, j, k. (9)

These equations should uniquely determine the solution. However, it’s too complicated and not

as intuitive as the alternative approach we give below: Let there be only one type of call, with

total arrival rate of
∑

i λ̄i. If a call arrives to find several agents available, it is randomly assigned

to one of them. Otherwise, it is queued. Calls are queued and taken FCFS. When agents become
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idle, they take from the head of the queue. Moreover, when a call is taken by a type-j agent, its

service time is exponential with rate µij with probability λ̄i∑
i′ λ̄i′

.

Let zj be the percentage of calls that are taken by agent type j. Then, we must have
∑

j zj = 1.

Moreover, because of the FCFS and random assignment policy, we must have equal utilization

among all the agent types. For type j the effective arrival rate is zj

(∑
i λ̄i

)
, and the average

service time is
∑

i

λ̄i∑
i′ λ̄i′
µij

. Therefore,

zj

(∑
i λ̄i

) ∑
i

λ̄i∑
i′ λ̄i′
µij

nj
=

zk

(∑
i λ̄i

) ∑
i

λ̄i∑
i′ λ̄i′
µik

nk
∀j, k (10)

which simplifies to

zj

∑
i

(
λ̄i
µij

)

nj
= zk

∑
i

(
λ̄i
µik

)

nk
∀j, k. (11)

Along with
∑

j zj = 1, these equations uniquely determine all the zjs. Then the xijs can be derived

as follows:

xij = zj , ∀i. (12)

Now, note that the λ̄is are determined by the xijs, so we still need to solve a system of equations

to determine all the xij and λ̄i jointly.

3.3 Routing Policies

If we denote the target xij proportions derived in Section 3.1 by x∗ij , then two simple rules will

guarantee the x∗ijs are used. These rules are randomized and round robin routing, with exactly x∗ij

of calls of type i sent to agent group j. This can be achieved by a coin-flip operation (randomized)

or a set schedule with the appropriate proportions used. These are non-dynamic in that no backlog

information is taken into account, so one would expect them to be relatively poor in terms of wait

time performance.

Several natural routing rules do consider x∗ij but route according to other system conditions

such as backlog and utilization levels. Given fixed arrival and service rates, these will lead to long

term x̂ij values, and we are interested to see how these values, and particularly the corresponding

objective values compare to the optimal solution.

Unfortunately general closed form expressions for wait time are impossible to calculate for most

of these rules, but the existence of long term averages is guaranteed by the Markovian dynamics

of the system. Hence estimations from simulation can give a great deal of insight into the relative

performance levels of various routing algorithms.
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Let Qi(t) be the number of waiting calls of type i at time t.

The following routing rules were tested in our experiments:

1. FCFS When agent j becomes free, select the call that has been waiting the longest.

2. minAAHT: When agent j becomes free, select arg maxi:Qi(t)>0{pijµij}. This selects the call

type where the agent has the highest effective service rate.

3. minDiffAHT: When agent j becomes free, select arg maxi:Qi(t)>0{pijµij − maxk 6=j pikµik}.
This selects the call type where the agent has the highest relatively effective service rate.

4. maxCR When agent j becomes free, select arg maxi:Qi(t)>0{pij}. This selects the call type

where the agent is most likely to resolve.

5. maxDiffCR: When agent j becomes free, select arg maxi:Qi(t)>0{pij − maxk 6=j pik}. This

selects the call type where the agent is relatively most likely to resolve.

6. OptXRand Upon arrival, each call that arrives is assigned to agent j with probability x∗ij

values. Calls wait in agent-specific queues.

7. OptMaxDev Let x̂ij(t) be the proportion of calls of type i that have been handled by agents

in group j up to time t.

(a) When there is more than one agent waiting when a call of type i arrives, select agent

from the group with the maximum arg maxj:j free{x∗ij − x̂ij(t)}. Here we are choosing

the agent who is farthest behind on calls of type i relative to the optimal values.

(b) When an agent from group j comes free and there is more than one type of call waiting,

select the call from arg maxi:Qi(t)>0 x∗ij − x̂ij(t). Here the agent is selecting the call for

which he/she is farthest behind relative to the optimal values

Note that if all agents are under-utilized (and hence usually available on call arrival), then

this would perform similar to a round-robin policy.

8. OptMaxCallDev This is the same as Policy OptMaxDev except that it does not allow for

calls to be chosen by agents.

9. CallSwap1 Calls are routed to agent groups according to Policy OptXRand. When an

agent comes free, the queue for that agent group is checked to see if it is empty. If not, then
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take the call at the head of the queue. If the queue is empty, then all queues are checked to

see if any are full (defined as more than a certain number of calls waiting). If more than one

evaluates to “full”, then the first call in queue for the first queue evaluating to full is removed

and reassigned to the empty queue. If no queue is “full”, then no swapping.

10. CallSwap2 Calls are routed to agent groups according to Policy OptXRand. But agents

are allowed to swap calls up to an upper limit. When an agent comes free, the queue for that

agent group is checked to see if it is empty. If not, then take the call at the head of the queue.

If the queue is empty, then check the other agent queues to “take back” any calls that have

been “lent” before. If there are no such calls, then check the non-empty queues to “borrow”

calls from other agent groups, as long as the upper limit has not been reached. Update the

“borrow-lend” list accordingly.

For benchmark purposes we start with the Policy FCFS. This is greedy in the short term with

respect to ASA, so should perform reasonably well on that dimension, and is also one of the easiest

policies to implement in practice.

Policies minAAHT and minDiffAHT are motivated by de Véricourt and Zhou [7]. Calls

are routed to agents who have the highest absolute and relative resolution rate, or the pµ index,

respectively. We expect this to do very well in terms of the ASA performance metric, because the

effectiveness of pµ rule is established under the objective of overall minimum wait. It is not obvious

how it should perform on the CR dimension.

Policies maxCR and maxDiffCR are greedy and myopic. They aim to route calls to the agent

who can has the highest resolution rate for this call type. However, it does not account for the

service rate. If an agent group works very slow but has high resolution rates, then it will be heavily

loaded. That the agents are slow clearly will result in long waits. So we expect these two policies to

perform poorly on the ASA metric. In terms of the CR metric, because of the myopia of the policy

(it routes to the agent with the highest p index at the moment, we expect the CR performance to

be worse than that of Policy OptXRand, which should maximize the overall total CR rate. Under

Policy OptXRand, once a type-i call is routed according to x∗ij it stays in the queue specific to

agent group j and become inaccessible to other agents. Thus, it completely loses the pooling effect

so important in large call centers. Consequently, while Policy OptXRand should perform the best

on the CR metric, one would expect it to perform poorly on the ASA metric.

On the ASA-CR performance spectrum, Policies minAAHT and OptXRand lie on the two
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ends. A call center manager may want to find a policy that locates somewhere between the two.

The rest of the policies aim to do that.

Policy OptMaxDev aims to mitigate the loss of pooling effect under Policy OptXRand by

not idling some agent groups while other agent groups are swamped. All the agents share the same

pool of calls, but when calls are routed, the aim is to minimize the deviation of realized xij from

the x∗ij . The policy specifies the rules to use when agents become idle (which call to take next)

and when calls arrive (which agent to route to). Policy OptMaxCallDev is a slight variation of

Policy OptMaxDev. It simplifies Policy OptMaxDev by allowing the selection only when calls

arrive (that is, calls can select agents, but not vice versa).

Policies CallSwap1 and CallSwap2 also aims to improve Policy OptXRand by trying to

stay close to the target x∗ij but at the same time allowing pooling across call types and agent types.

Policy CallSwap1 does that by allowing agents to “borrow” calls from each other (this restores the

pooling effect). However, to prevent the realized xij straying too far from the target x∗ij , agents can

only borrow from another agent group only if that group has more than a threshold number calls

waiting in queue. Clearly the lower this threshold, the more pooling is restored (when threshold

is zero, there is complete pooling), but at the same time the farther the realized xijs stray from

the target x∗ijs. Similarly, Policy CallSwap2 allows agents to “borrow” calls from each other to

restore the pooling effect. Similarly, to stay close to the target x∗ij , the number of calls each agent

group can borrow is limited by a fixed number. Clearly, the higher this threshold, the more pooling

is restored, but at the same time the farther the realized xijs stray from the target x∗ijs. In the

limit, because the upper limit is fixed, the realized long-run average proportions xijs are the same

as x∗ij . As we have already pointed out, one advantage of these two policies is that they each have

a parameter (the threshold) that can be varied so that call center can achieve performances close

to either end of the ASA-CR spectrum. The choice of the threshold in both policy is therefore

essential in determining the balance of the ASA-CR tradeoff.

4 Numerical Analysis

The optimal x∗ij routing probabilities for policy OptXRand can be calculated using the mathe-

matical program in Section 3.1, from which we can calculate the resultant CR. Moreover, the CR

for policy FCFS can be calculated using the procedure in Section 3.2. The CR for the rest of

the policies in Sections 3.3, as well as the ASA for all the policies, are analytically intractable.
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Agent Type Call Type CR (%) AHT (seconds)
1 1 92.94 230.76
2 1 93.69 229.10
3 1 91.84 263.33
4 1 93.16 231.56
1 2 95.15 232.17
2 2 96.50 322.27
3 2 95.37 246.16
4 2 95.40 238.10
1 3 97.43 138.94
2 3 97.61 166.19
3 3 97.23 170.11
4 3 97.80 160.62
1 4 98.68 192.02
2 4 98.76 177.23
3 4 99.13 182.39
4 4 99.01 199.31

Table 1: Service and Resolution Rates

To evaluate their performance for comparison, we conduct extensive simulation tests. Below we

describe the parameters first, then we talk about the simulation setup. Finally we present and

discuss the simulation results.

We assume four agent groups. And in three sets of tests, we let the number of agents per group

be 15, 60, and 120 respectively. There are also four job types. The arrival rates for the first set of

experiments (15 agents/group) are (4.02, 3.24, 2.63, 2.11) jobs per minute for the four call types

respectively. We multiply these rates by 4 and 8 respectively to get the arrival rates for the second

and third sets of tests. Table 1 lists call type - agent type specific resolution rate (CR) and average

service time (AHT). Note that these service and resolution rates come from a real call center.

To simulate each policy, we use the events corresponding to the first 3 hours in real time as

warm up. After that, each replication length corresponds to one hour in real time. For the three

sets of simulations, the number of replications are 450, 125, and 65 respectively. Once all the

simulations are completed, we collect output statistics and then calculate the grand average over

all the replications and all the sets to find steady-state performance of all the policies. We also

calculate the standard deviations of the performances. The results are summarized in Figure 1.

The results in Figure 1 confirm some of our intuitions, and they provide additional insights:
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Figure 1: FCR vs. average speed of answer for various rules.
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• The “efficient frontier” lies in the lower right-hand corner of the graph (high CR, low ASA),

and the FCFS, as expected is not on the frontier. It is clearly dominated by Policy mi-

nAAHT. Also Policy minDiffAHT, which uses the relative pµ index in routing, is domi-

nated by Policy minAAHT), which uses the absolute pµ index.

• Policy minAAHT does represent one end of the ASA-CR spectrum (which is the “efficient

frontier” on Figure 1) – it has extremely low ASA, as expected, but medium CR.

• Policy OptXRand also seems to represent the other end of the ASA-CR spectrum (it has

the second highest CR and the small differences can be attributed to the simulation error).

• All the other Policies lie between the two ends of the spectrum. But Policy CallSwap2,

which uses a threshold of 5 to make sure that realized xij approaches x∗ij in the long run),

seems to dominate Policies OptMaxCallDev and OptMaxDev, which only uses x∗ij as

guidance in call routing.

• Policies maxCR and maxDiffCR, which are based on just the pij parameters, result in lower

CR than Policies CallSwap1 and CallSwap2 which are based on x∗ij . This is reassuring

because we know Policies maxCR and maxDiffCR have full pooling while Policies Call-

Swap1 and CallSwap2 do not completely take advantage of pooling. On the other hand,

it reveals that routing to maximize CR in a greedy and myopic fashion (as Policies maxCR

and maxDiffCR do) does not work as well as Policies CallSwap1 and CallSwap2, which

maximize CR in the long run, accounting for all the re-services.

• We believe that by varying the threshold value in Policies CallSwap1 and CallSwap2 we

can move their corresponding points on the graph along the frontier. We are conducting

further studies to see this effect.

5 Conclusions

Call resolution has received great attention in call center management, but there are very little

analytical models and insights to guide call center managers in practice. Our paper is among the

first to present an analytical model where call resolution not only is modeled but also plays an

critical role in deciding the optimal policy and the resultant performance in terms of wait time

(ASA) and customer satisfaction (CR). The insights we generated through analytical modeling and
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simulation are useful to call center managers in analyzing the ASA-CR tradeoff and deciding where

on the efficient frontier to be, and how to get there. The policies we propose are intuitive, based on

sound scientific analysis, and implementable. We think this is just the first step in a very promising

research direction.
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