
Technical Report UCSC-CRL-07-03:
Optimizing Capacity in Interconnection Networks with Finite Buffers

Kevin Ross1 and Nicholas Bambos2

Abstract

A great deal of recent research attention has been given to the throughput maximization of intercon-
nection networks. These networks connect computer processing and routing resources via both physical
and wireless links, where the resources are reconfigurable in a dynamic fashion. Jobs move through
several processing stations and can be buffered between each stage. Most theoretical work assumes that
the capacity for buffering at each stage is infinite, and general classes of scheduling policies have shown
how to maximize the capacity under those conditions. Here we consider the case when such buffers are
finite, and analyze the effect on network stability.

We find that for very general arrival processes and an arbitrary fixed network topology, the stability
region with finite buffers is a subset of that for the corresponding network with infinite buffers. As the
capacity of buffers increases, the stability region eventually becomes equivalent to that for infinite buffer
networks3.

1 Introduction

In this paper, we develop a model for general interconnection networks, with service modes describing the
routing options of the network. An interconnection network can be modeled as a globally controlled set of
queues, and most analysis of the throughput properties of such networks has assumed infinite buffer sizes,
which are not available in practice.

It has recently been proved [4, 5] that the throughput region of a certain class of networks maintain the
same capacity under finite buffers as for the infinite case. There it was shown that for bernoulli iid traffic
arrivals, a network with finite per-class buffers will guarantee to maintain maximal throughput for buffers of
equal size per traffic class. It has remained an open question what effect finite buffers have on more general
network topologies and traffic patterns.

We propose a new class of algorithms that is throughput maximizing for interconnection networks in the
presence of finite internal buffers on a very general network model. We show that the throughput capacity of
networks is nondecreasing in the size of any individual buffer, and that there exists a threshold above which
the throughput capacity is equivalent to that for the same network topology with infinite buffers.

We consider the case where general arrival processes arrive following arbitrary distributions, but must
enter the network through infinite-buffer ingress queues. Without such a restriction, there is always a nonzero
probability of arrivals overflowing a finite ingress buffer. We permit different buffer sizes over the network.

We extend the class of cone or max-pressure policies that have previously been known to have favorable
properties for throughput maximization, quality of service control and complexity reduction in switches [11]
and networks [13] with infinite queue sizes. Cone algorithms are weighting-based policies in a similar style
to [17] for networks and [8] for crossbar packet switches.

Previous work describing network stabilization has been presented, most notably [17]. Several exten-
sions have shown related stability maximization results [1, 7, 9, 10, 16], however all of these assume that we

1kross@soe.ucsc.edu.edu; Baskin School of Engineering, University of California, Santa Cruz, CA 95064.
2bambos@stanford.edu; Department of Management Science & Engineering, and Department of Electrical Engineering, Stan-

ford University, Stanford, CA 94305.
3Preliminary results were presented in [12]

1

have infinite buffers throughout the network. More detailed descriptions of interconnection networks and
associated scheduling issues are addressed in [2, 3, 6].

Switches with finite internal buffers have recently been proposed [18] and their stability analyzed in
[4, 5]. The related issue of allocating finite shared buffer capacity over a network is studied in [15] The case
analyzed in this paper allows routing decisions, encoded in service modes, where arriving packets need not
follow a pre-determined path through the network. Data packets may split or merge throughout the network.

The remainder of the paper proceeds as follows. In section 2, we describe the system model for intercon-
nection networks with finite and infinite buffers. In section 3 we discuss network stability and throughput
maximization, section 4 introduces batch-mode policies and in section 5 we describe the cone algorithms.
We discuss conclusions and future work in section 6.

2 Model and Network Structure

In this paper, we model a fixed topology interconnection network with Q different job stations, each station
includ ing a queue labeled q ∈ Q = {1, 2, ..., Q}. Jobs arrive to ingress queues in the form of packets that
can be divided into equal sized cells. Upon completion at one station they may be forwarded to another
station, or exit the network. The networks we consider are feed-forward, where cells cannot return to the
same queue. They may, however, return to the same processor via a different queue4. Figure 1 illustrates
many of the important features of the queueing networks considered here, particularly

• different buffer sizes for different queues,

• arrivals only to the infinite-buffer queues,

• routing decisions at various nodes, eg. cells in queue 3 can be forwarded to queues 4, 5 or 6,

• both merging and splitting, where cells can enter and depart each buffer via multiple different paths,

• feed-forward topology, where cells do not return to the same queue and

• forwarding both to and from both finite and infinite buffer queues.

Time is slotted in discrete, even time increments, labeled t ∈ {0, 1, 2, ...}. At each timeslot, a global
network scheduler can align the service resources and routing rules according to the backlog observed
throughout the network. Cells arrive and depart from each queue according to external arrivals and internal
forwarding between queues as controlled by a mode-selection algorithm.

Let Xq(t) denote the number of cells stored in queue q at the start of timeslot t, for each queue q. The
capacity of queue q is labeled Bq, so we will require the scheduling algorithm to ensure Xq(t) ≤ Bq for all
timeslots t in each queue. For infinite-buffer queues, we set Bq = ∞ to allow for consistent notation.

We investigate loss-less networks where no packets are allowed to be dropped. Further, we will allow
general arrival processes, and as such it is necessary to exclude external arrivals to any queue q for which
with Bq 6= ∞5. Therefore we have in general a network of inifinite buffer ingress queues and finite-buffer
internal queues. The internal queues only receive arrivals from forwarded jobs, hence we are able to restrict
the arrivals to those queues via the chosen scheduling rules.

At the beginning of each timeslot, a scheduling algorithm selects the service mode for the network. The
mode corresponds to a feasible allocation of network resources and is based in general on the backlog state
encoded in the vector X(t) = (X1(t), X2(t), ..., XQ(t)). When mode m is selected, cells are processed

4We utilize per-class or per-flow queues where each unique packet type is stored in a single virtual buffer.
5Under most arrival processes it is simple to create an adversarial arrival trace that would overflow an ingress buffer

2

1

2

4

3

5

6

Figure 1: A sample network topology with Q = 6 different queues in the above network, where queues
q ∈ {1, 2, 4} each has an infinite buffer and may receive incoming requests from outside the network,
and q ∈ {3, 5, 6} each has a finite buffer, and can receive forwarded cells from the other queues. In this
illustration, some of the cell slots are taken by the shaded cells, and the finite queues have a fixed number of
available slots in the buffer space. The backlog illustrated above would be described as X = (2, 1, 2, 2, 4, 0),
with buffer limits B = (∞,∞, 5,∞, 4, 2). The service modes available would reflect the combinations of
service and forwarding that could be applied in each timeslot. For example a mode m with Tm

13 = 4,Tm
36 =

2, Lm
5 = 3 and all other elements zero would forward 4 cells from queue 1 to queue 3, 2 cells from queue 3

to queue 6 and 3 cells from queue 5 out of the network. This would be reflected by the total departure and
entering vectors Dm = (4, 0, 2, 0, 3, 0) and Em = (0, 0, 4, 0, 0, 2).

at their stations and forwarded either to another queue or out of the network, depending on the mode. We
denote Tm

pq to be the number of cells transferred from queue p into queue q under mode m. In addition to
the transferred cells, Lm

q cells leave the network directly from queue q under mode m. When mode m is
selected at time t, we use the notation L(t) = Lm(t),T(t) = Tm(t), and similarly for other mode-related
statistics we define below.

Consider the total change in backlog in a given queue for each timeslot when mode m is selected. The
total number of cells entering q from forwarding is given by Em

q =
∑

p∈QTm
pq. Similarly, the total number

of cells departing queue q is Dm
q =

∑
p∈QTm

qp + Lm
q .

There is a finite (but possibly large) set of modes M from which mode m(t) must be selected at each
timeslot t corresponding to all of the forwarding and exiting combinations. We assume that in each timeslot,
the mode m(t) is in fact selected from the subset of modes M(t) that are feasible for the current backlog
level X(t). In particular, if a mode corresponds to either more departures to a queue than are currently
waiting or more arrivals to a queue than a receiving buffer will allow, then that mode is infeasible, and not
included in the set M(t).

M(t) = {m ∈M : Dm
q ≤ Xq(t), and Em

q −Dm
q ≤ Bq −Xq(t) for all q ∈ Q} (2.1)

Notice that this corresponds to a restriction of arrivals and departures based on cells waiting at the
beginning of a timeslot. This corresponds to a store-and-forward network, as opposed to cut-through where
cells can both arrive and depart in the same timeslot. It does, however allow for cells departing a queue to
be replaced in the same timeslot.

We make an assertion on the set of modes that allows us to always select an exact mode corresponding
to real arrivals and departures. We assume that the set of modes is complete in the sense that any forwarding
or departing cell can be canceled to give a new mode. Formally, if m ∈M, then m̂ ∈M, where

Tm̂
pq = Tm

pq − 1 ≥ 0, or Lm̂
q = Lm

q − 1 ≥ 0 (2.2)

3

for any p, q ∈ Q. In general it is possible to make any initial mode set complete by adding the appropriate
modes to the set. These additional modes correspond to actual cell transfers, avoiding the potential of
applying service to empty queues6.

Correspondingly, for any mode m and backlog sate X such that mode m would be infeasible for backlog
X , we define the function mf (m,X) to be one which selects a feasible mode mf ∈M such that

D
mf
q ≤ Xq ≤ Bq −E

mf
q (2.3)

with
T

mf
pq ≤ Tm

pq and L
mf
q ≤ Lm (2.4)

for every p, q ∈ Q. Further, we require that it select a maximal feasible such mode in the sense that
if any other m′ satisfies (2.3) then T

mf
pq ≥ Tm′

pq and L
mf
q ≥ Lm′

. Notice that the function mf (m,X) is
equivalent to canceling transmissions until the mode becomes feasible. If more than one maximal mode
satisfies (2.3) then one can be selected arbitrarily.

We also differentiate between modes which forward into finite-buffer queues and those which do not.

M+ = {m ∈M : Eq = 0 for all q with Bq < ∞} (2.5)

In addition to transferred cells, let Aq(t) be the number of cells arriving to queue q from outside the
network. All of the key terms have been described with subscripts q according to each queue. We will omit
the subscripts except where necessary, and consider the Q-length vector of components corresponding to
the queues in Q. The backlog evolution in the system is described by

X(t) = X(t− 1) + A(t− 1) + E(t− 1)−D(t− 1) (2.6)

for t ∈ {1, 2, ...}, where X(0) is the initial backlog, A(t) the vector of external arrivals and both E(t)
and D(t) are determined by the mode selected via the scheduling algorithm. We are particularly interested
in the behavior of backlog X(t) as modes are selected and arrivals processed.

Consider for example a network that is a simple series of connected feed-forward stations, each with
capacity to store one cell. Suppose that in a single timeslot exactly one cell can be forwarded from its queue
to the next, or out of the network at the final station. In this case, the modes correspond to each queue-
forwarding option, and are of the form Tm

pq = 1 for the mode m forwarding queue p to q, and zero for all
other (p, q) pairs. For the mode m processing a cell from a queue q with no down downstream one, Lm

q = 1
for that queue and zero for all other queues. Each mode is available in M(t) whenever that buffer contains
a cell, and its downstream buffer is empty.

A more general interconnection would be one with P processors to be allocated over all Q queues. If
each processor still forwards a single cell per slot, the modes available would be those satisfying

∑
p Tm

qp +
Lm

q ≤ P , with Tm
pq, L

m
q ∈ (0, 1) and Lm

q = 1 only in the most down-stream queues.
Far more general processor sharing and routing situations can be captured in this model by developing

the appropriate set of service modes. In the context of this model, finite buffers have the primary effect
of making certain modes infeasible for a given backlog state, and we will concentrate on how this can
influence the capacity of an interconnected network. We will assume that every mode in M is feasible for
some backlog state X , since otherwise it could be dropped from the set M.

6In doing this, we may require a large number of modes to be in M(t). However, it is not necessary to consider all modes
available at a given timeslot, since in practice we can ignore modes that are strictly dominated by others.

4

3 Stability: The Infinite Buffer Case

Let

ρq = lim
T→∞

∑T−1
t=0 Aq(t)

T
≥ 0 (3.1)

be the long-term average external arrival rate to queue q for all q ∈ Q. We assume that this is finite but
perhaps unknown to the network scheduler. Arrivals can follow arbitrary dynamics, including dependence
between queues. For queues with finite buffers, we note that ρq = 0 (since Aq(t) = 0), and consider the
vector ρ ≥ 0 of the arrival rates to all queues.

In this work we consider a general notion of stability, known as rate-stability. A queue is rate-stable if
the average rate of arrivals is equal to the average rate of departures. Formally, the network of queues is
rate-stable if

lim
T→∞

∑T−1
t=0 [A(t) + E(t)]

T
= lim

T→∞

∑T−1
t=0 D(t)

T
(3.2)

A natural question is to evaluate the arrival rates ρ for which it is possible to maintain rate-stability given
a set M of feasible modes. We refer to this set as the stability region. For infinite buffer networks, this is
know to be

R∞ = {ρ ∈ <Q
0+ : ρ ≤

∑

m∈M
φm(Dm −Em) for some φm ≥ 0,

∑

m∈M
φm = 1} (3.3)

where <Q
0+ denotes the non-negative real Q-vectors, and the inequality holds componentwise for all

q ∈ Q. Note that R∞ is defined only over modes which are available for some feasible backlog, but it is
not necessarily true that each of these modes can be utilized whenever desired, as noted by the possibility of
empty and full buffers. The geometry of the stability region is illustrated in Fig. 2. The stability region can
be seen as the positive quadrant of the convex hull of possible (Dm −Em) vectors in Q dimensions.

Consider any arrival process with ρ 6∈ R according to (4.6). It is clear that rate stability (3.2) can
not hold, and at least one queue will have linear growth in backlog level. Therefore this characterizes an
upper bound on the maximum possible set of arrival vectors ρ for which rate-stability may conceivably be
achieved. It has been known that this region can be achieved for infinite internal buffers, but with finite
internal buffers it remains to show that some algorithms do necessarily guarantee rate stability as in (3.2).
We say that a mode-selection algorithm is throughput maximizing if it guarantees rate stability (3.2) for any
ρ ∈ R without prior knowledge of ρ.

In [4, 5], the scheduling policy itself ensured that forwarding to full buffers was never selected. Here,
we take a different approach, explicitly defining batch-modes to forward cells through the network through
sequences of feasible modes.

It has been known that a class of policies known as max-pressure. maximum weighted matching or cone
scheduling policies will achieve the maximum possible throughput in these networks if Bq = ∞ for all
queues q ∈ Q (see for example [1, 14, 17]). The policies select a mode at time t as follows:

m(t) ∈ arg max
m∈M(t)

{
Q∑

q=1

(Dm
q −Em

q)Xq(t)} (3.4)

These policies, and weighted versions with prioritized queues can be shown to maximize throughput to
the network. The difficulty for mode selection in interconnection networks with finite buffers is that the best
modes may become unavailable. For example, if the backlog in one queue becomes large, the scheduler

5

ρ1

ρ2

R
(D - E)66

(D - E)55

(D - E)44

(D - E)33

(D - E)22

(D - E)11

8

Figure 2: The stability region. The stability region with infinite buffers R∞ can be illustrated geometri-
cally as the positive quadrant of the convex hull of change vectors (Dm−Em) for all modes m. We will see
in this work that the extreme points of R∞ are important for the analysis, and one can see above that these
correspond to both true service modes and convex combinations of actual service rates from chosen modes.

would like to allocate service to that queue at a high rate. However, if that queue forwards to another queue
that is full, the modes serving the large queue are not feasible. The scheduler should then remove cells from
the downstream queue before serving the large queue. More generally there may be a whole sequence of
modes required to clear the path for service to the large queue, which we call a batch-mode, as developed in
the next section.

4 Batch-Modes Under Full Buffers

The intuition for these batch modes can be seen from the simplest network of two tandem queues in figure
3. There are two modes available, m1 forwards a single cell from queue 1 to 2, and m2 forwards from queue
2 out of the network. Whenever queue 2 is full, the selection algorithm should ideally utilize the two modes
consecutively. The net effect of this is serving queue 1 at rate 0.5 and queue 2 at rate 0. We call this a
batch-mode m̂ = 0.5m1 +0.5m2. This concept of batch-modes is developed more generally in this section.

Notice that the definition (4.6) of the stability region R∞ can be interpreted as the positive quadrant
of the convex hull of a set of vectors. Those vectors, Dm − Em, reflect the total change of backlog under
each mode. Consider the extreme points of the stability region R∞. From the stability region definition,
the boundary must be a convex combination of Dm − Em vectors, and the extreme points either equal to
Dm−Em for some mode m, or the intersection of convex combination of these vectors with the boundaries
of the positive quadrant. For any extreme point of the stability region that is not an original mode, we define
a batch mode to be the convex combination of modes that gives rise to that combination or original modes.

A batch-mode m̂ is an ordered sequence {m̂1, m̂2, ..., m̂tm̂} of tm̂ (perhaps repeated) regular modes
m ∈M. Associated with m̂ we define

Tm̂ =
1
tm̂

tm̂∑

i=1

T m̂i and Lm̂ =
1
tm̂

tm̂∑

i=1

Lm̂i (4.1)

6

1 2

B = 32

X1

X2

R

(D - E)
mm

(D - E)22

(D - E)11

^ ^

m = 0.5m + 0.5m
^

21

Figure 3: Two tandem queues with 2nd finite buffer. The figure above depicts a two-queue tandem network
with finite second buffer, in this case B2 = 3. The batch-mode corresponding to the extreme point of
the feasibility region is indicated by the mode m̂. This corresponds to a combination of true modes being
utilized.

This corresponds to the effective service rates that would correspond to using the sequence of modes
defined in the batch as long as all modes remained feasible. Batch modes are only defined for sequences on
which

Dm̂ −Em̂ =
1
tm̂

tm̂∑

i=1

Em̂i − 1
tm̂

tm̂∑

i=1

Dm̂i ≥ 0 (4.2)

to be the corresponding departure vector under the rates in batch mode m̂.
Batch-modes are utilized as follows. If at time t0 batch mode m̂ is selected to begin, then for timeslots

t0 until t0 + tm̂ − 1 the mode selected at time t is m̂i where i = t− t0 + 1. Since it is possible that some of
the nodes are infeasible, we use mf (X(t), m̂i).

We impose the following condition on the modes in the batch, which we later show leads to feasible
sequences of modes.

−Bq ≤
k∑

i=1

D
m

i(modtm̂)
q − E

m
i(modtm̂)

q ≤ Bq (4.3)

for all q ∈ Q with Bq < ∞, and for all 1 ≤ k ≤ tm̂. These conditions imply that if the batch mode repeated
in cycles, the queue would never more than completely fill or completely empty a buffer. We denote the set
of all batch-modes satisfying (4.2) and (4.3) to be M̂.

4.1 Stability/Feasibility of Batch Modes

Having defined batch modes we turn our attention to the implications for stability. We argue that if a batch
mode is buffer-feasible, in the sense that it satisfies (4.3), then if queue q is nonempty from time t0 and batch
mode m̂ is selected repeatedly at times t0, t0 + tm̂, t0 + 2tm̂, ... then

lim
T→∞

∑T
t=t0

Tpq(t)
T − t0

= T m̂
pq (4.4)

7

for all p, q and

lim
T→∞

∑T
t=t0

Lpq(t)
T − t0

= Lm̂
pq (4.5)

for all q. This means that the effective long term service rates to every queue are precisely given by
T m̂, Lm̂, Em̂ and Dm̂.

This leads to the following definition of the stability region for finite-buffer networks.

R = {ρ ∈ <Q
0+ : ρ ≤

∑

m∈M+∪M̂
φm(Dm −Em) for some φm ≥ 0,

∑

m∈M
φm = 1} (4.6)

Observe that R ⊆ R∞. This follows from the fact that M+ is a subset of M and M̂ is defined by
vectors which are convex combinations of ones in M.

We also observe that R is dependent on Bq values through (4.3), and is in fact nondecreasing in each
Bq value. That is, if B1

q ≤ B2
q for all q, then the associatedR1 (based on buffer sizes B1

q) andR2 (based on
buffer sizes B2

q) will satisfy R1 ⊆ R2 ⊆ R∞. This means that the stability region may grow as the buffers
grow. Finally, we show that there is a sufficiently large buffer such that in fact R = R∞.

The core concept can be illustrated by returning to the earlier tandem example. In this case, mode m̂
corresponds to spending half the time in each of the two available modes. If the batch mode uses a strictly
alternating sequence, (4.3)implies that the 2nd queue must satisfy B2 geq1. However, if the batch-mode
were to repeat each mode r times before switching, it would require B2 ≥ r. Therefore we see that (4.3) is
critical in evaluating the necessary buffer levels.

This follows from theorem 5.1 (detailed later), and gives a sufficient condition for the buffer sizes Bq in
each finite queue.

An important observation, reflected in proposition 4.1 is that if a batch-mode is utilized long enough,
eventually the entire sequence of original modes corresponds to a feasible sequence of modes.

Proposition 4.1 Consider any batch-mode m̂ corresponding to a sequence of actual modes satisfying (4.3)
. Then there exists a finite number N the entire sequence of original modes must become feasible after N
repeated batch-modes, as long as Xq remains nonempty for any queue with Dm̂

q −Em̂ > 0.

Proposition is important since it assures that if one batch-mode is used long enough, the actual effective
service to each of the queues is reflected by the rates Em̂ and Dm̂ from (4.1), even if initial batches have to
cancel some cell transfers.
Proof: (of proposition 4.1) This proof relies on the topology of the network we have described. Notice
that m̂ corresponds to a sequence of forwarding between queues in Q, corresponding to a network of feed-
forward queues. That is, we can label the queues Q = {1, 2, ..., Q} whereby queue p forwards to q only if
p < q.

There are two cases when mode m may be selected in m̂ but not fully utilized: (i) mode m is trying to
forward to a full buffer (corresponding to Em

q −Dm
q > Bq −Xq), or (ii)m is trying to serve cells out of an

empty queue (corresponding to Dq > Xq). This proof argues that after batch-mode m̂ has been used for tm̂

batches, (i) cannot be the case, and after a further tm̂ batches, (ii) cannot be the case. Hence after N = 2tm̂

batches, the actual service modes are all feasible.
Consider the most downstream queue q ∈ Q for which Dm

q > 0 for one of the modes in m̂. Since it
is the most downstream queue, in the first batch it cannot be blocked by a full buffer downstream from it.
Therefore if there is positive backlog in q then it will all be forwarded in the first batch. Further, it will be
able to receive up to Bq cells in the next batch.

Now consider the nth batch, and assume that the last n− 1 queues with αmDm
q > 0 are not blocked by

a full downstream buffer, and are all able to receive up to Bq cells in that batch. Then the nth queue from

8

the end must be able to forward all cells in that batch. Further, if there are cells waiting in that queue, then
they will not block any entering cells in the following batch.

By induction, it follows that after at most tm̂ batches of m̂, there can be no blocking due to full down-
stream buffers.

We now consider the next Q batches, by considering first the most upstream queue to receive service.
Since this corresponds to a queue with only departures in the batch, it must correspond to a queue with
Dm̂

q > 0, and Em̂
q = 0. We have asserted that Xq is large enough that there will always be waiting cells in

such a queue q.
In the (Q + 1)st batch, the first queue must have at least Dm̂

q − Em̂
q cells waiting, and not be blocked

from forwarding. Hence that queue can always forward all cells that are scheduled in the batch. Further, the
next down-stream queue now has received the total arrivals for the batch.

Generally, suppose that after tm̂ + n batches, the first n − 1 queues in the feed-forward network have
forwarded Dm̂

q and the first n have received at least Em̂
q . Then in the nth queue must be able to forward all

Dm̂
q cells. It further follows that the n + 1st queue must have received all Em̂

q entering cells in that batch.
We now see by induction, that after at most 2tm̂ batches, all cell forwarding and receiving exactly follows

the schedule according to the batch-mode m̂, and this completes the proof of proposition 4.1.
In our example, the batch-mode uses modes m1 and m2 by cycling from one to the other. Hence, the

first time the batch-mode is used, it may try to do m1 before m2, and forward a cell from queue 1 to queue
2. If the second queue is full, this is canceled by selecting a mode dominated by m1 that is feasible, in this
case the zero service mode. However, if the batch-mode is repeated again, the cell transfers become feasible
since the first cycle clears the 2nd buffer, and after that the sequence of m1 followed by m2 could be used
repeatedly. Proposition 4.1 generalizes this property for feed-forward networks. Operationally, when mode
m̂ is selected, the mode is utilized for (at least) tm̂ consecutive timeslots. We denote M̂ to be the be the set
of batch-modes.

5 Stable Policies

We show here that the class of cone policies will maximize throughput in the interconnection networks
described. These algorithms select either a mode from M(t) or a batch-mode from M̂ based the backlog
vector X(t) at time t, and effective service to the set of queues, as reflected in the vector (Dm − Em) for
each mode m.

We restrict the modes considered in time t to those which do not forward any cells to finite buffer queues.
Instead we capture them in the batch-modes. Let

M̂(t) = {m ∈M(t) : (Dm
q − Em

q) ≥ 0 for all q with Bq < ∞} (5.1)

be the original modes available in time t that have no net forwarding to finite buffer queues.
If the backlog at time t is given by X(t), and there is no batch-mode already operating, the cone algo-

rithm with positive weight parameters {w1, w2, ..., wQ} selects the mode m from the union of sets M(t)
and M̂ so as to maximize the weighted sum of backlog multiplied by effective change to queues. That is,
the cone algorithms select m(t) to satisfy

max
m∈M̂(t)∪M̂

∑

q∈Q
wqXq(t)(Dm

q −Em
q) (5.2)

If more than one mode maximizes (5.2), then ties are broken by using the same mode as in the previous
timeslot (or same batch-mode as previous batch). Beyond that, one can be chosen arbitrarily.

9

Cone algorithms correspond to backlog differential policies [17, 1] in that they favor the modes which
forward from larger upstream to smaller downstream buffers. As the difference between a served queue and
its immediate downstream neighbor increases, the weighting to that mode increases.

The backlog differential policy has the effect of load balancing the network, and the wq weights corre-
spond to relative balancing levels. For example, increasing a particular wq value while keeping others fixed
will give greater weight to modes that forward from that queue, and lower weight to those forwarding to that
queue.

The geometric intuition of backlog evolution also exposes a structure to the mode selection algorithm.
In particular, there is a neighborhood relationship between modes in that certain modes share boundaries
backlog space division described in detail in [11]. As the backlog changes, it moves from one region to
another, utilizing different modes for each region. In particular, for large backlog values, one could consider
only nearby regions rather than all available modes in each timeslot. This could lead to lower complexity
and distributed implementations of cone algorithms, as discussed further for the case of single-pass networks
in [11].

It is important to notice that cone algorithms will only select a batch-mode if some ’better’ true node
has become infeasible. This can be seen from the definition of a batch mode.

If ties are broken by selecting a true mode over a batch-mode, this means that the reason m∗ isn’t selected
must be due to m∗ 6∈ M(t). For example, this corresponds to the case where the algorithm would like to
forward a cell between two queues, but the downstream buffer is full.

Theorem 5.1 For an interconnection network with external arrival rate ρ ∈ R from (4.6) and buffer sizes
satisfying (4.3) defined over all feasible modes, the cone algorithms (5.2) guarantee maximal throughput for
any set of weighting factors {w1, w2, ..., wQ} with wq > 0.

Proof: Theorem theorem 5.1 follows from theorem 7.1 in [14]. There, it is shown that K-delayed cone
schedules guarantee maximal throughput. The argument in proposition 4.1 shows that eventually the service
vectors Dm̂ and Em̂ fully respresent the service rates. This will happen after a finite number of timeslots
selecting the same batch-mode, which is sufficient to show that the policy is delayed PCS. The argument in
[14] actually applies only to single stage switches, but the extension to feed-forward networks is found in
[12].

6 Conclusions and Future Research

We have established a definition of the stability capacity for interconnection networks with finite internal
buffers. These buffers can reduce the potential throughput region of such a network, but as buffers grow, the
stability region approaches and eventually reaches the same as that for the related infinite-buffer network.

In order to achieve the maximum possible throughput, we have shown that cone schedules can be in-
tegrated with batch-modes, which apply a sequence of modes and manage the buffer levels throughout the
network. This work establishes an analytical framework for allocating buffer sizes throughout a network,
and indicates that the finite internal buffers do not need to be large to maintain the same throughput rate as
the infinite-buffer analysis would indicate.

It remains for further consideration how one can efficiently calculate the best batch-mode sequences.
We have seen that ordering indeed matters for stability, and this is the subject of ongoing investigation. This
also allows one to consider many extensions, such as the optimal distribution of finite buffer capacity in
shared networks, and the value added of increasing buffer size at different network stations.

10

References

[1] J. G. Dai and W. Lin. Maximum pressure policies in stochastic processing networks. Operations
Research, 53(2):197–218, 2005.

[2] W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor interconnection networks.
IEEE Transactions on Computers, 36(5):547–553, 1987.

[3] W.J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann,
2003.

[4] P. Giaccone, E. Leonardi, and D. Shah. On the maximal throughput of networks with finite buffers and
its application to buffered crossbars. IEEE INFOCOM, 2005.

[5] P. Giaccone, E. Leonardi, and D. Shah. Throughput region of finite-buffered networks. IEEE Trans-
actions on Parallel and Distributed Systems, 18(2):251–263, 2007.

[6] N. Kahale and P. Wright. Dynamic global packet routing in wireless networks. IEEE INFOCOM,
pages 1414–1421, 1997.

[7] E. Leonardi, M. Mellia, M.A. Marsan, and F. Neri. On the throughput achievable by isolated and
interconnected input-queueing switches under multiclass traffic. In IEEE INFOCOM, 2002.

[8] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100% throughput in an
input-queued switch. IEEE Transactions on Communications, 47(8):1260–1267, 1999.

[9] M.J. Neely, E. Modiano, and C.E. Rohrs. Power allocation and routing in multibeam sattelites with
time-varying channels. IEEE/ACM Transactions on Networking, 11(1):138–152, 2003.

[10] M.J. Neely, E. Modiano, and C.E. Rohrs. Dynamic power allocation and routing for time varying
wireless networks. IEEE JSAC, 2005.

[11] K. Ross and N. Bambos. Local search scheduling algorithms for maximal throughput in packet
switches. In IEEE INFOCOM, 2004.

[12] K. Ross and N. Bambos. Capacity maximizing packet scheduling algorithms for interconnection net-
works with finite buffers. In IEEE GLOBECOM, 2006.

[13] K. Ross and N. Bambos. Job scheduling for maximal throughput in autonomic computing systems. In
International Workshop on Self-Organizing Systems, 2006.

[14] K. Ross and N. Bambos. Capacity maximizing packet scheduling algorithms for interconnection net-
works with finite buffers. To appear in IEEE Transactions on Networking, 2007.

[15] J. MacGregor Smith and F.R.B.Cruz. The buffer allocation problem for general finite buffer queueing
networks. IIE Transactions, 37:343–365, 2005.

[16] L. Tassiulas and P.P. Bhattacharya. Allocation of interdependent resources for maximal throughput.
Stochastic Models, 16(1), 1999.

[17] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and schedul-
ing policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic
Control, 37(12):1936–1948, 1992.

11

[18] K. Yoshigoe and K.J. Christensen. An evolution to crossbar switches with virtual output queueing and
buffered crosspoint. IEEE Network, pages 48–56, September 2003.

12

