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abstract

While current on-demand routing protocols are optimized to take into
account unique features of mobile ad hoc networks (MANETs) such as fre-
quent topology changes and limited battery life, they often do not consider
the possibility of intermittent connectivity that may lead to temporary
partitions. In this work, we introduce the Space-Content-adaptive-Time
Routing (SCaTR) framework, which enables data delivery in the face of
both temporary and long-lived MANET partitions. SCaTR takes advan-
tage of past connectivity information to effectively route traffic towards
destinations when no direct route from the source exists. We show through
simulations that, when compared to traditional on-demand protocols, as
well as Epidemic routing, SCaTR increases delivery ratio with lower sig-
naling overhead in a variety of network scenarios with intermittent connec-
tivity. We also show that SCaTR performs as well as on-demand routing in
scenarios that are well-connected, and/or have no mobility predictability
(e.g., scenarios with random mobility).
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1. Introduction

The price, performance, and form factors of sensors, processors, storage el-
ements, and radios today are enabling the development of network-supported
applications in very disrupted environments, i.e., environments where end-to-end
connectivity is not guaranteed at all times because of either the characteristics of
the environment or the normal operation of the network nodes. Examples of such
applications and environments include monitoring of disrupted phenomena (e.g.,
wild fires), object tracking, establishment of on-demand network infrastructure
for disaster relief or military purposes (in which case, the ad hoc network can
be disrupted by terrain, weather, and other natural phenomena, as well as jam-
ming, interference, etc.), peer-to-peer vehicular or interpersonal networks [4] with
very sparse connectivity, and mobile ad hoc networks (MANETs) that need not
be connected at all times in order to limit interference and contention. In these
scenarios, network disconnection is the normal state of operation rather than an
exception.

The demand for networking in environments prone to intermittent connectiv-
ity poses a challenge because the architects of the IP Internet and even MANETs
have assumed that physical connectivity exists on an end-to-end basis between
sources and destinations for extended periods of time, or at least for the duration
of a transaction among communicating parties. This assumption has had pro-
found implications on how communication bandwidth is shared, how routing is
accomplished, and how messages are disseminated across computer networks. In
particular, routing in packet-switching networks has been based on routing tables
that specify the next hop to one or more destinations. Such routing information is
derived entirely from topology (or connectivity) information that represents only
a snapshot of the state and characteristics of network links at particular instants.

Regardless of the specific mechanisms used in a routing protocol today (e.g.,
proactive or on-demand routing), computing the routing table entry for a given
destination can be viewed as a particular form of searching a database. The
routing database can be replicated (as it is done in such topology broadcast
approaches as TBRPF [15] and OLSR [3]) or distributed, as in AODV [17] or
DSR [9]. Depending on whether the routing database is replicated or distributed,
the search algorithm can be centralized (e.g., using Dijkstra’s shortest path first
algorithm) or distributed (e.g., using a flood search based on route requests
and route replies). The routing databases constructed by traditional routing
algorithms specify the instantaneous status of a link (up or down), and the value
of its parameters such as delay and bandwidth at some specific point in time. The
search for routes in such databases produces snapshot paths that have no temporal
dimension. Hence, if the network connectivity or link parameters change, multiple
paths to destinations may be affected; the only way most current routing protocol
can recover is to search for new paths. This time-independent, reactive approach
to changes in network connectivity and link parameters works well as long as the
disruptions in network connectivity due to environmental or operational reasons
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are not so frequent and/or long-lived that they prevent the routing protocol from
obtaining time-independent paths to intended destinations.

Starting with the work in the Interplanetary Internet Research Group (IP-
NRG) [2] of the IRTF (Internet Research Task Force), considerable effort has
recently been devoted to the study of networks with intermittent connectivity
or very long latencies. Perhaps most prominent in this area is the work by the
DTNRG (Delay Tolerant Networking Research Group) [6], which started in 2002
under the IRTF. Section 2 summarizes prior related work on routing in disrupted
environments. From our summary of related work, it becomes apparent that no
complete solution exists for on-demand routing that incorporates the network
topology’s time dependency.

In this paper we describe the SCaTR (Space-Content-adaptive-Time Routing)
framework to enable on-demand routing in MANETs with intermittent connec-
tivity. Section 3 describes SCaTR which we currently implement by extending the
On Demand Ad Hoc Distance Vector Routing Protocol [17] (AODV). Our cur-
rent instantiation of SCaTR is such that, if the network is connected, it operates
exactly as regular on-demand routing, in this case AODV. However, if no direct
route is available from source to destination, a node that is deemed closer to the
destination than the source will advertise itself as a proxy. In this manner, we
are assured that the resulting protocol will do no worse than standard AODV in
well-connected environments, and better in partitioned networks.

Section 5 addresses the performance of SCaTR compared to on-demand and
Epidemic routing. Scenarios involving both random and predictable node mobility
are investigated. In predictable mobility scenarios, node schedules or trajectories
are not assumed to be global knowledge. Instead, the routing algorithm in
SCaTR uses mobility histories to improve performance. Our simulation results
show that the added functionality of proxies in SCaTR improves delivery rates in
both predictable and random mobility situations, while incurring lower signalling
overhead. Given enough time, the protocol delivers all possible packets to their
intended destinations, achieving optimal reliability. Section 6 summarizes our
contributions and discusses ideas for future work.
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2. Related Work

Many routing protocols [9, 16] exist for ad hoc and sensor networks. Most
traditional protocols do not account for networks that are frequently disconnected,
and thus do not exhibit adequate performance in such scenarios. For instance,
AODV [17] uses a feature called local repair, which allows intermediate nodes to
buffer data packets in the event that a route is lost. However, this feature is only
activated if a route existed at one point in time, which is unlikely in a highly
partitioned network.

Recently, Message Ferrying [22] has been investigated for use in highly parti-
tioned networks. The approach utilizes special nodes called ferries whose mobility
can be controlled to maintain communication between partitions. Much of the
work has focused on route scheduling of the ferries, and synchronization between
their routes, since a well-chosen schedule will have a great impact on timely and
reliable message delivery. It has also been shown that the ferries can be used as an
energy saving device for other nodes in the network; if there are no ferries nearby,
nodes can be turned off to conserve energy. This work makes the assumption that
controllable nodes exist in the network, however, there are situations in which
these nodes are not available. Our work addresses these situations.

Data MULES [18] address data delivery in static sensor networks. Like ferries,
MULES are also controllable mobile devices that move throughout the sensor
network to receive and deliver data where appropriate. They are a solution to data
delivery in a sparse sensor network whose data could otherwise not be reported.
Their motion is assumed to be controllable as well.

In the Epidemic routing [14] approach, data are transmitted through message
exchanges between neighboring nodes. The premise behind the work is that by
duplicating a message and sending it to all neighbors, it can quickly and reliably
reach its destination. Similar work [11] has been done to improve Epidemic routing
by limiting the number of nodes to which messages are sent. Epidemic routing,
however, relies on data duplication to deliver messages which can be prohibitively
expensive in terms of energy consumption.

Delay Tolerant Networking [6] has attracted considerable interest from the
network research community for several years now. Additional layers atop the
routing and transport layers have been proposed to provide store and forward
capabilities, as well as interoperability services to partitioned networks. This
work has also examined the idea of custody [7], which is a hop-by-hop method of
reliability for disconnected networks. This is a much-needed approach to the issue
of reliability, as end-to-end reliability is unmanageable in these scenarios.

A more general framework for routing using knowledge of network mobility
has also been proposed [12]. This approach adds the time dimension to routing
tables, and selects routes based on a combination of the data’s destination and
the time of message arrival. It uses global knowledge of node mobility schedules
to construct these routing tables. In some scenarios, these schedules may not be
available, or too expensive to maintain.
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Spray and Wait [20] is a recent improvement over a pure flooding protocol such
as Epidemic routing. In this work, only the source can replicate a message, and
the amount of replication is proportional to the number of nodes in the network.
It is shown that the method can bound delay proportional to the optimal delay.
After ’spraying’ several copies of a message, the host ’waits’ until one is delivered.

Location information is a useful tool for routing in disrupted networks. Both
MobySpace [10] and MV routing [1] are methods that use location information
to aid routing decisions. They assume that a node who has visited a particular
location is likely to revisit it, and therefore is a good candidate to carry mes-
sages to that location. MV routing uses location information to facilitate buffer
management, while MobySpace is a framework for generating probabilities that
a nodes will move to specific locations in the future. Both methods require some
sort of localization method such as GPS.

Work has also been done to predict the future topology of a network based
on the current properties of nodes [21]. The main motivation behind this work
is to determine for how long nodes that are connected will remain connected.
This allows routing protocols to pro-actively search for a new route when a
link is expected to break. Metrics such as node speed, direction, and radio
propagation range are factored into the estimate, and these metrics could also
be good indications of future node meetings.

While there has been significant prior work on the topic of partitioned net-
works, most of the approaches have made one of three assumptions. One assump-
tion is global topology knowledge, which has proved to be useful in determining
future connectivity. Another assumption is the existence of controllable nodes,
which can be extremely useful in aiding delivery in sparse networks. The third
assumption is that data can be duplicated freely among nodes, which can lead
to excellent delivery ratios. Our work is an attempt to do away with these as-
sumptions, yielding a more general framework applicable to any network scenario
where any such assumption may be unrealistic.
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3. SCaTR

The SCaTR framework extends on-demand routing, taking action only when
direct routes cannot be established by the underlying protocol. In the case of a
route discovery failure, i.e., the source and destination are in separate partitions,
SCaTR tries to route data to the node or nodes in the source’s partition that
are likely to have a route to the destination in the near future. These nodes
act as proxies for the destination and buffer messages until either the destination
is discovered, or another node is selected as a better proxy for those messages.
Messages are replicated at most one time, resulting in minimal data replication
and duplicate message filtering overhead.

Proxies are selected based on past connectivity information which nodes keep
in content-adaptive contact tables. As it will become clear, contact tables, which
are the equivalent of traditional routing tables, use time-dependent and space-
dependent routing metrics. These metrics differ for different types of content or
local constraints such as buffer size. For instance, if a proxy is running low on
buffer space, it may decide to select as the next proxy for that destination the
first node it hears from that has been in contact with the destination; this is done
even if the node’s contact value is lower that its own; however, if the node has
higher buffer availability, it can carry the data for a longer interval.

Because SCaTR takes no action if routes are successfully established, we are
guaranteed that it will perform no worse than the underlying on-demand routing
protocol in any situation. This diversity makes it well suited for adoption in any
network scenario. SCaTR consists of several phases: contact table maintenance,
route discovery, route selection, and proxy rediscovery. The general behavior of
the SCaTR framework is shown in Figure 3.1. Each phase is described in detail
below.

3.1 Contact Table Maintenance

Each node in the network maintains a contact table containing a measure of
time-dependent distances to other nodes in the network. Each entry in the table
consists of a destination address and its current contact value. Nodes maintain
these tables with information that is piggybacked onto hello messages; when a
node receives a hello message from a neighbor, it also receives that node’s contact
table. It uses this table to make changes to its own contact table.

Because it can be very expensive to maintain contact information about all
nodes in a network, SCaTR initializes its contact tables on-demand. Each node
starts with an empty table, and adds destinations only when it receives a request
for that destination, or meets another node who has an entry in its table for that
destination. This method of initialization results in a delay for the first messages
introduced into the network because the contact table request must propagate to
the destination and then back to the source before proxies are advertised. In large
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Figure 3.1: An overview of the SCaTR framework. The source node,
at top left, has data (indicated by shading) to send to the destination,
at bottom right. The source node first initiates proxy discovery in its
local partition. After finding the two nodes with the best contact values
for the given destination, the source selects them as proxies and sends
them data to be buffered. When one of the proxies joins a new partition,
it initiates the proxy discovery process, and selects the best available
proxy. Finally, a proxy reaches the partition containing the destination
and delivers the data.
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Figure 3.2: The value for a hello period is found by averaging τ successive
hello intervals.

networks with predefined sinks or a limited number of destinations, however, this
method saves significant computational and communication overhead.

The mechanisms used to maintain and update contact values have several
important characteristics that must be addressed:

• Ordering : The highest contact value advertised for any node must be ad-
vertised by the node itself. A node that will reach a destination sooner than
another node should have a higher contact value for that destination.

• Stability : Contact values should not fluctuate greatly over time in order to
minimize ’leapfrogging’ of contact values (the case in which nodes alternately
select each other as proxies due to asynchronous contact value updates).

• Simplicity : Contact value calculation should not be computationally com-
plex, as it must be frequently invoked.

To address these issues, we propose an algorithm that is initiated with a
maximum contact value advertised by destinations themselves. Time is broken
into hello intervals. During a hello interval, nodes maximize their neighbors’
advertised contact values for each destination. These values are averaged over a
hello period, and each node maintain a window of periods, used to generate the
next interval’s contact value for each destination. A more detailed description of
contact value maintenance follows.

3.1.1 Hello Intervals and Periods

The length of a hello interval is the amount of time between hello message
advertisements. During each hello interval, a node maintains the maximum
contact value it receives from its neighbors for each destination. The hello period
consists of a sequential group of hello intervals as defined by the parameter τ .
At the end of a hello period, a node averages the values obtained during each
hello interval to obtain a single value for the entire period for each destination.
Figure 3.2 illustrates a hello period with τ = 4; the center node averages its hello
values for each interval to determine its value for the entire period. The selection
of τ is discussed in Section 3.6.
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Figure 3.3: A node’s current contact value is determined by averaging
its values for the past κ hello windows.

3.1.2 Period Window

The length of time for which a node retains contact information is specified by
the period window κ. At the end of each hello period, the value obtained during
the most recent period is added to a queue, and the oldest value is removed. Each
node’s contact values are recalculated at the end of each period by averaging the
most recent κ periods. Until the node’s contact value is updated again, it will
advertise this value to its neighbors. Figure 3.3 illustrates a node’s contact value
when calculated at the end of a hello period with κ = 7. Section 3.6 discusses the
selection of κ.

3.2 Route Discovery

The main mechanisms for route discovery in the SCaTR framework are the
Proxy Request (PREQ) and Proxy Reply (PREP) messages. When the underlying
routing protocol is unable to establish a route to a destination, the source node
will issue a PREQ to its current partition. This is a request for a candidate node
or nodes in the source’s partition to buffer messages and carry them towards their
destination.

The PREQ can request one or more destinations to reduce signaling overhead.
Instead of sending out an individual PREQ for each destination, the node will send
a single PREQ with all destinations for which it has buffered data. The PREQ
also contains the source node’s contact value for each destination that is being
requested. The contact value is included so that only nodes with a significantly
better value reply to the request. In our implementation, we have used a threshold
of 5% to determine whether or not a proxy is better; a proxy is only selected if its
contact value is 5% higher than the node at which the messages currently reside.
Different threshold values could be used and will determine how selective a node
is in choosing proxies. In preliminary experiments, we found 5% to be an effective
threshold to balance overhead and delivery ratios.

The PREP is a message that advertises the responding node as a possible
proxy for one or more of the destinations in the PREQ. The source can then
decide which proxy or proxies to use for each destination. The PREP contains
the proxy’s contact value for the destination, as well as its remaining buffer space,
and the number of messages it has already buffered for the source-destination pair.
It is important to note that the PREP specifies the destination, not the proxy
itself. The source need not know the address of the proxy; it must only know the
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next hop towards the destination. The source-destination pair obtained from the
PREQ packet is entered into a buffering table at the proxy, and any packets that
are later received by the proxy with this source-destination pair are buffered.

Each node receiving a PREQ takes action based on its contact values for the
requested destinations and the source’s contact values that are included in the
request. For each destination included in the PREQ, there are several possible
actions that can be taken by a receiving node. These are outlined below:

3.2.1 PREQ Case 1

The receiver has no entry for the destination in its contact table. If a receiving
node has no contact information for a destination, the destination is added to
the receiver’s contact table. The receiver will now begin to maintain contact
information for that destination. The PREQ is rebroadcast as received.

3.2.2 PREQ Case 2

The receiver’s contact value for the destination is not better than the source’s
by the specified threshold. In this situation, the receiver does not reply to the
request and rebroadcasts the PREQ as received. It is not a valid proxy for the
destination.

3.2.3 PREQ Case 3

The receiver has an improved contact value for the destination. In this case,
the receiver responds to the source as a possible proxy for that destination. It
adds the destination to its buffer table, and any subsequent data packets that are
received are buffered. It is possible that there are other proxies for this destination
in the partition, so the PREQ must be rebroadcast. It is rebroadcast with the
receiver’s contact value for the destination to reduce the number of nodes that
reply to the request.

3.2.4 PREQ Case 4

The receiver has an active route to the destination. In the case that the receiver
has an existing route to the destination, it advertises the route to the source. This
indicates that the destination is in the same partition as the source, and SCaTR
functionality is not needed. The source will add this destination to its routing
table as an ordinary route. Because there is no need to find proxies for the
destination, the PREQ is not rebroadcast.
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3.2.5 PREQ Case 5

The receiver has already processed a PREQ for the given destinations in the
recent past. In this case, the receiver takes no action, and the PREQ is not
rebroadcast. To suppress duplicate requests, we use the same timer value as
AODV and uniquely identify PREQs with the time at which they were issued as
well as the included source-destination pairs.

3.3 Route Selection

As the source collects PREPs from the nodes in its partition, it compares
contact values for each of the destinations. If a new PREP has a higher contact
value than the one currently in its routing table, it replaces the entry. Routing
tables may now contain two types of routes. One is an active, connected route,
while the other is a route to a destination that was advertised by a proxy. These
are distinguished only because a reply that advertises a direct route will always
take precedence over a proxy route.

3.4 Proxy Rediscovery

After a proxy buffers packets, it must ensure that those packets reach their
destination. Proxies have several methods of initiating the route discovery process
for buffered messages. One method is ’listening’ as updates to its contact table
are received. If it receives an improved contact value for a destination for whom
it has buffered packets, the node assumes that a better route to the destination is
available in its partition, or that the destination itself is nearby. This information
initiates route discovery behavior in the proxy. The proxy sends out a single
PREQ for all nodes for which it has buffered packets. In the same manner as
the route discovery process described above, nodes reply to this request, and the
proxy selects the best next destination for the data. The proxy also listens to any
relevant RREPs or PREPs that it relays, and if route information for destinations
in its buffer is relayed, a route is established along the advertised path. In the
case that a proxy does not make any updates to the contact value for a buffered
destination, or relay a reply for that destination, it sends a PREQ periodically.
The length of time used for this timeout is explored further in Section 3.6.

3.5 Message Replication

There are many approaches to message replication, ranging from the minimal
approach of a single copy of each message, to the unlimited duplication (up
to the number of nodes in the network) of Epidemic routing. More message
redundancy requires increased overhead in the form of replicated data, as well
as the computational and memory requirements required to maintain buffers and
detect duplicate messages.
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One approach to the problem is to allow each proxy to replicate a message
a certain number of times. However, as the network scales, it is clear that this
number will grow exponentially. In addition, a proxy holding a message has
no indication of whether another proxy has successfully delivered the message
already. Thus, any replicas made by this proxy are in waste. This clearly is not a
feasible solution. It is also possible to control replication in a tree fashion with the
message source as the root of the tree. There can be a defined branching factor
or replication degree that each level of the tree is permitted to use. Using the
depth of a message in the tree and the branching factor, one can specify an exact
number of duplications for each message. This reduces message duplication, but
has the same problem of communicating message deliveries as mentioned above.

In SCaTR, we have decided to minimize the amount of message replication.
Prior work by one of the authors [5] has indicated analytically that under con-
strained conditions, the optimal number of message duplications is one. The
overhead resulting in any further duplication is not justified by the increase in
delivery ratio. For these reasons, the source can select at most two initial proxies
for message transmission, and proxies may not duplicate messages.

In addition, it is possible to introduce messages into the system that request
the deletion of packets that have already been delivered, sometimes referred to as
antipackets [19]. While these are useful with a high degree of message replication,
they are not necessary in SCaTR.

3.6 Parameter Selection

As in any protocol, parameter selection in SCaTR can have significant per-
formance implications. In particular, the parameters τ (the length of the hello
period), κ (the length of the period window), and the PREQ frequency should
be set such that the protocol retains only useful history information, avoids the
leapfrogging problem, and minimizes transmission overhead, computation, and
memory requirements.

A larger value of τ indicates more coarsely-grained time periods, while a
smaller value of τ maintains finer time periods. Shorter periods have the advantage
of increased sensitivity to topology changes, since each hello period represents
fewer time-based snapshots of the surrounding topology. However, shorter periods
also result in more computation and a higher chance of leapfrogging. For the
experiments we present in this paper, we use τ = 10, which we found to be
an effective value through preliminary simulations. Of course, depending on the
network and target application, the value of tau can be tuned accordingly.

Similarly, a larger value of κ will maintain more mobility history, resulting in
routing decisions based on behavior further into the past. While more history has
the advantage of increased information, it requires more memory and may result
in the use of outdated information for route selection. Thus, it is important
to approximate for how long information should be maintained, and use this
approximation, combined with the available memory resources at the node to
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define κ. It is difficult to determine, from the contents of the history queue itself,
how much history is necessary. For the simulations presented here, we set the
queue size to 1000.

The amount of time a proxy waits before sending a PREQ is also an important
feature in the protocol. A wait time that is too short will result in wasted request
messages being flooded to the proxy’s partition. If the wait time is too long,
however, a node risks missing a particularly transient route. We propose an
adaptive timeout similar to that of Ethernet’s binary exponential backoff [13].
Each node is seeded with an initial time to wait before initiating a request, and
if the request fails, it waits for twice that amount of time. For example, if a node
is seeded with a 5 second timer, it will successively wait 5, 10, 20, 40, 80, etc.
seconds until its buffer is empty. This timer is reset once a proxy has no messages
remaining in its buffer.
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4. Simulation Setup and Mobility Models

The SCaTR framework is implemented as an extension to the AODV routing
protocol and simulated in GloMoSim [8] with several mobility scenarios and con-
nectivity models. Epidemic routing was implemented for comparison to SCaTR,
in which messages are passed to all neighbors. Throughout the experiments, 18
CBR data flows generate messages at ten second intervals for the first 400 seconds
of the simulation. The experiments run for 2000 seconds to give messages time
to propagate to their destination, and use an 802.11 MAC layer. All experiments
were run with 5 seed values and the results averaged. The two mobility scenarios
described below, in addition to the random waypoint model, show the effectiveness
of the protocol over varied topologies and connectivity models.

4.1 Gridded Random Waypoint Setup

The gridded random waypoint scenario has been included to illustrate a net-
work in which nodes move randomly but in predefined areas. The scenario pro-
vides a situation in which connectivity is limited, and nodes must be selected as
proxies due to their distance to the destination.

Nodes are arranged in a square field with a 377m radio propagation range.
Within each square, a fixed number of nodes move according to the random
waypoint mobility model; random locations are selected within the square, and
a node moves there at a rate of between 5m/s and 10m/s. After reaching its
destination, a node pauses for 20s. The flows exist between nodes on opposite
ends of the grid to provide maximum route lengths. Throughout the experiments
with this mobility model, the number of nodes and flows are fixed, while the
dimensions of the scenario are varied to provide more or less connectivity in the
network. A sample topology is shown in Figure 4.1.

4.2 Scheduled Routes Setup

The scheduled routes scenario was generated to illustrate predictable motion
in a network. Because each node follows a predefined path, it provides a situation
where past topologies are a good indication of future connectivity. In this case,
the contact tables of SCaTR can accurately represent the distance to destinations.

For this setup, 50 nodes are arranged in a square field with a radio propagation
range of 377m. Ten nodes are positioned around the perimeter of the network,
and act as sources and destinations. All other nodes are assigned a randomly sized
and positioned rectangle over which to travel at a random speed of between 5m/s
and 20m/s. Using these parameters, links will be somewhat predictable, although
they will not always occur at the same interval. Throughout the experiments, the
size of the scenario is increased to provide less connectivity in the network. A
sample topology is shown in Figure 4.2.
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Figure 4.1: The gridded random waypoint mobility model: each node
moves randomly within its square in a grid. The dotted circles indicate
the radio propagation limits. Source and destination nodes are all at the
edges.

Figure 4.2: Scheduled routes mobility model: the rectangles indicate
scheduled node mobilities and the dotted circles indicate their radio
propagation limits. Source and destination nodes are placed around the
perimeter. The network shown is very sparse for clarity.
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4.3 Random Waypoint Setup

We also run simulations with the random waypoint mobility model to illustrate
the performance of SCaTR in a purely random network; in this case, past mobility
information gives no indication of future topologies. This scenario is especially
interesting as it is not favorable to SCaTR. 40 nodes move according to the
random waypoint mobility model within a square area 3000m x 3000m. Due
to the sparseness of the network, the connectivity is poor. The experiments vary
the speed of each node to change the duration of connected paths in the network.
Pause time remains a constant 30s throughout the simulations.
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5. Performance Comparison

In this section we show that the addition of SCaTR to an on-demand routing
protocol results in significantly improved performance in terms of delivery ratio
and signaling overhead in all mobility scenarios that were tested. In these exper-
iments, signaling overhead includes control messages such as route requests and
replies, as well as data packet replicas. Because the networks simulated are sparse,
it is often not possible to deliver all messages in the allotted time. All simulations
were run for 2000 seconds, and it should be noted that undelivered packets after
this time were not lost; they have not yet reached their destination. It would be
possible to run much longer simulations, and have much higher delivery ratios,
but the time selected gives a good indication of the relative performance between
protocols. In a subsequent experiment, we show how lengthening simulation time
affects performance.

5.1 Scheduled Routes Results

We first compare routing methods in the scheduled routes mobility scenario.
Connectivity is varied by increasing the size of the scenario; clearly a larger
scenario size results in less connectivity. Experiments with scheduled routes
show that SCaTR takes advantage of predictability to provide high delivery ratios
with low signaling overhead. Figure 5.1 illustrates delivery rates for the various
protocols. At small scenario sizes with good network connectivity, all protocols
successfully deliver some messages. Epidemic routing delivers, as expected, 100%
of messages, while SCaTR delivers approximately 96%. AODV, due to frequent
route disruptions, delivers only 6% of messages. Epidemic routing maintains
a 100% delivery ratio until the scenario size reaches 2500m x 2500m. Most
notably, SCaTR sustains similar delivery ratio to Epidemic routing throughout
the experiment. At 4500m x 4500m, connectivity is extremely poor, and none of
the protocols deliver more than 40% of messages.

The plot of signaling overhead in Figure 5.2 shows that SCaTR maintains
its high delivery rates with little overhead. Since those packets that reach their
destination with Epidemic routing likely reach all nodes in the network, overhead
remains at nearly 50 messages per delivery. The addition of SCaTR enables
AODV to maintain fairly constant overhead, much lower than that of Epidemic
routing. The ’hump’ in the plot for AODV occurred because partitions at the start
of the simulations surrounding the sources were large. Thus, as AODV tried its
route establishment attempts, they reached a high number of nodes (but not the
destination). This behavior had a large impact on overhead since so few packets
were delivered.
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Figure 5.1: Delivery ratio for the scheduled routes mobility model with
varied network connectivity.
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Figure 5.2: Signaling overhead for the scheduled routes mobility model
with varied network connectivity.

5.2 Gridded Random Waypoint Results

The results for the gridded random waypoint model, shown in Figure 5.3, are
similar to that of the scheduled routes scenario. AODV’s performance decreases
sharply as connectivity diminishes, while SCaTR maintains delivery ratios similar
to Epidemic routing. In addition, Epidemic routing and SCaTR both show very
high delivery ratios until the network is extremely disconnected. Notably, in both
scenarios, the results show that adding a second proxy to SCaTR does not have a
significant impact on its delivery ratio, although it does incur additional overhead.
It is likely that a network with many more nodes would show the benefit of the
second proxy more clearly, however these results indicate that it is not a significant
factor.
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Figure 5.3: Delivery ratio for the gridded random waypoint mobility
model with varied network connectivity.
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Figure 5.4: Delivery ratio for scheduled routes mobility model with
limited buffer space.

5.3 Limited Buffer Results

When buffer limitations are introduced, SCaTR’s performance significantly
improves compared to that of Epidemic routing. All protocols employed a FIFO
drop strategy for buffered messages. As shown in Figure 5.4, the duplicate
messages in Epidemic routing have a detrimental effect with a small buffer. Only
once the size of the buffer reaches approximately 25% of the number of messages
originated in the network does Epidemic routing’s delivery ratio surpass that
of SCaTR. This improvement, however, is still offset by the high overhead of
Epidemic routing. We can also see that with a very constrained buffer of 5% to
10%, it is beneficial to select only one proxy for each message.
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Figure 5.5: Delivery ratio for random waypoint mobility model with
varied node speeds.

5.4 Random Mobility Results

SCaTR, because it utilizes mobility predictability, was not designed with
random mobility in mind, but we include this scenario to illustrate that it will
perform at least as well as the underlying on-demand protocol in any situation.
Figure 5.5 illustrates performance when node speeds were varied to provide more
or less connectivity in the network. SCaTR shows a higher delivery ratio than
standard AODV despite the fact that it is unable to take advantage of historical
information to predict future topologies. In addition, this experiment shows
the benefit of additional message replication that can be provided with SCaTR.
Epidemic routing has excellent delivery ratios at the expense of very high overhead.
In power constrained environments, this would likely not be acceptable. It should
be noted that the overhead of AODV is extremely high because it delivers so few
messages.

5.5 Performance Over Time

Figure 6.1 shows that SCaTR’s performance improves as the length of simula-
tion increases. As the scenario time increases, delivery rates increase and signaling
overhead remains constant after an initial drop. Epidemic routing quickly achieves
nearly a 100% delivery rate, while SCaTR is able to achieve better than 80% af-
ter approximately 2000 seconds. Despite the fact that SCaTR takes longer than
Epidemic routing to deliver messages, it does so with far less signaling. After
an initial drop in signaling overhead due to low delivery rates (most packets are
en route to their destination at this point), SCaTR settles at approximately 10-
20 messages per delivered packet. Epidemic routing settles at approximately 38
messages per delivered packet, since each message reaches a large portion of the
network.
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Figure 5.6: Signaling overhead for random waypoint mobility model with
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6. Discussion and Future Work

We have introduced the Space-Content-adaptive-Time Routing (SCaTR) frame-
work to efficiently and effectively route data in networked environments where
connectivity is intermittent. SCaTR extends on-demand routing to operate in
environments where, often times, there may not be a direct route between source
and destination. Thus, if the network is connected, SCaTR operates exactly as
regular on-demand routing. However, if source and destination do not have a con-
nected route, SCaTR chooses a node that is deemed closer to the destination than
the source as a proxy for that destination. The proxy will either deliver the data
to the destination directly, or choose another proxy closer to the destination than
itself. In summary, the resulting protocol will do no worse than standard AODV
in well-connected environments, and far better in partitioned networks. Through
extensive simulations in environments with varying connectivity and mobility pat-
terns, we showed that SCaTR can yield considerably higher delivery ratio with
lower signaling overhead than traditional on-demand routing.

In this paper, we have made no assumptions regarding nodes that can broad-
cast schedules; our routing decisions are based solely on information gleaned from
past topologies. It is conceivable, however, that a heterogeneous network may be
able to provide different routing information depending on the type of device. It
would be useful to combine a-priori mobility knowledge with our predicted model
to improve routing decisions; when no definite schedule information is available,
a node will fall back to forwarding data based on predicted mobility. In addition,
nodes could broadcast trajectory or location information if it is available. We
have explored routing without these assumptions, with the possibility of adding
them later to improve performance.

In our approach to on-demand routing in disrupted networks, we first attempt
to establish an active route with the underlying protocol, and, as an alternative,
forward messages towards the destination. Depending on the scenario, it may be
more efficient to first try forwarding data, and if a connected route is found to
exist between the source and destination, establish the route. In this manner, we
would effectively be using the data as route request messages.

These ideas we leave as future work, along with the refinement of the contact
heuristic and further scenario experimentation.
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Figure 6.1: Delivery ratio for scheduled routes mobility model with varied
scenario length.
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