
Average Reward Timed Games⋆

Bo Adler1, Luca de Alfaro1, and Marco Faella1,2

1 School of Engineering, Universitity of California, Santa Cruz, USA
2 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Italy

Technical Report UCSC-CRL-05-03
University of California, Santa Cruz

Abstract. We consider real-time games where the goal consists, for each player,
in maximizing the average amount of reward he or she receivesper time unit. We
consider zero-sum rewards, so that a reward of+r to one player corresponds to
a reward of−r to the other player. The games are played on discrete-time game
structures which can be specified using a two-player versionof timed automata
whose locations are labeled by rewards. Even though the rewards themselves are
zero-sum, the games are not, due to the requirement that timemust progress along
a play of the game.
Since we focus on control applications, we define the value ofthe game to a
player to be the maximal average reward per time unit that theplayer can ensure.
We show that in general the values to players 1 and 2 do not sum to zero. We
provide algorithms for computing the value of the game for either player; the al-
gorithms are based on the relationship between the original, infinite-round, game,
and a derived game that is played for only finitely many rounds. As positional op-
timal strategies exist for both players in both games, we show that the problem of
computing the value of the game is in NP∩coNP.

1 Introduction

Games provide a setting for the study of control problems. Itis natural to view a system
and its controller as two players in a game; the problem of synthesizing a controller
given a control goal can be phrased as the problem of finding a controller strategy
that enforces the goal, regardless of how the system behaves[Chu63,RW89,PR89]. In
the control of real-time systems, the games must not only model the interaction steps
between the system and the controller, but also the amount oftime that elapses between
these steps. This leads totimed games,a model that was first applied to the synthesis of
controllers for safety, reachability, and otherω-regular goals. The aim was the synthesis
of controllers that guarantee thecorrectnessof the behavior of the resulting controlled
system [MPS95,AH97,AMAS98,HHM99,dAFH+03].

More recently, the problem of designingefficient controllers for real-time sys-
tems has been addressed, via the consideration ofpriced versions of timed games
[BCFL04,ABM04]. In such priced versions of timed games, price rates (or, symmet-
rically, reward rates) are associated with the states of thegame, and prices (or rewards)
with its transitions. The problem that has so far been addressed is the synthesis of

⋆ This research was partly supported by the NSF CAREER grant CCR-0132780, by the ONR
grant N00014-02-1-0671, and by an ARP award.

Inv2 : true
Inv1 : x≤2 a1

r = 1r = 2
Inv1 : true
Inv2 : true

q0

Fig. 1. A game automaton where player 1 can freeze time to achieve a higher average reward.

minimum-cost controllers for reachability goals [BCFL04,ABM04]. In this paper, we
focus instead on the problem of synthesizing controllers that maximize the average re-
ward1 per time unit accrued along an infinite play of the game. This is an expressive
and widely applicable efficiency goal, since many real-timesystems are modeled as
non-terminating systems which exhibit infinite behaviors.Moreover, the synthesis of
controllers that maximize the long-run average reward is a natural complement to the
synthesis of controllers for safety goals. In fact, a controller for a safety goal leaves the
system free to roam in a controllable and safe region of its state space. By solving a
control problem for long-run average reward restricted to this controllable, safe region,
we can design controllers that are both safe and efficient.

We consider timed games played between two players overdiscrete-time game
structureswith finite state space. At each round, both players independently choose
a move. We distinguish betweenimmediate moves, which correspond to control actions
or system transitions and take 0 time, andtimed moves. There are two timed moves:
the move∆0, which signifies the intention to wait for 0 time, and the move∆1, which
signifies the intention of waiting for 1 time unit. While the move∆0 is always available,
the move∆1 may not be: if unavailable, the player is forced to either stutter (move∆0),
or take an immediate move. The two moves chosen by the playersjointly determine the
successor state: roughly, immediate moves take the precedence over timed ones, and
unit-length time steps occur only when both players play∆1. These game structures can
be specified using a notation similar to that of timed automata. Each location is labeled
by two invariants (rather than one), which specify how long the two players can stay at
the location. The actions labeling the edges correspond to immediate moves, and each
one of them belongs to one of the two players.

With each state of a discrete-time game structure is associated a reward rate, which
specifies the reward obtained when staying at the state for one time unit. We consider
zero-sum rewards, so that a reward of+r to one player corresponds to a reward of
−r to the other player. The goal of a player in the game is to maximize the long-run
average reward it receives per time unit. However, the goal of maximizing the reward is
subordinate to the requirement that players should not “block” the progress of time by
playing forever zero-delay moves (immediate moves, or∆0). As an example, consider
the game of Figure 1. The strategy that maximizes the reward per time unit calls for
player 1 staying forever atq0: this yields an average reward per time unit of 4. However,
such a strategy would block time, since the clockx would not be able to increase beyond
the value 2, due to the player-1 invariantx ≤ 2 at q0. If player 1 plays movea1, time
can progress, but the average reward per time unit is 1.

To prevent players from blocking time in their pursuit of higher average reward,
we define the value of a play of the game in a way that enforces time progress. If
time diverges along the play, the value of the play is the average reward per time unit

1 With a sign change, this is obviously equivalent to minimizing the average cost.

2

obtained along it. If time does not diverge along the play, there are two cases. If a
player contributes to blocking the progress of time, then the value of the play to the
player is−∞; if the progress of time is blocked entirely by the other player, then the
value of the play to the player is+∞. These definitions are based on the treatment of
time divergence in timed games of [dAFH+03,dAHS02]. Thus, even though the reward
rate is zero-sum, and time-divergent plays have zero-sum values (if the average reward
is +r̄ for one player, it is−r̄ for the other one), the games are not zero-sum, due to
the treatment of time divergence. Since we are interested inthe problem of controller
design, we define the value of a game to a player to be the maximal play value that the
player is able to secure, regardless of how the adversary plays. Perhaps unsurprisingly,
these games are not determined, in the sense that the values that the two players can
secure do not sum to zero. We show that this is intrinsic in thenature of the games:
there is no formulation that can at the same time enforce timeprogress, and lead to a
determined setting.

We provide algorithms for computing the value of the game foreither player. The
algorithms are based on the relationship between the original, infinite-round, game, and
a derived game that is played on the same discrete-time game structure, but for only
finitely many rounds. As in [EM79], the derived game terminates whenever one of the
two players closes a loop; our construction however differsfrom [EM79] in how it
assigns a value to the loops, due to our different notion of value of a play. We show that
a player can achieve the same value in the finite game, as in theoriginal infinite-round
game. Our proof is inspired by the argument in [EM79], but it is more complex, as our
games are not zero-sum; the proof also closes some small gapsin the proof of [EM79].

The equivalence between finite and infinite games provides a PSPACE algorithm
for computing the value of average reward discrete-time games. We improve this re-
sult by showing that both finite and infinite games admit positional optimal strategies
for each player. Once we fix a positional strategy for a player, the game is reduced
to a graph. We provide a polynomial-time algorithm that enables the computaton of
the value of the graph for the other player. The algorithm is based on polynomial-time
graph transformations, followed by the application of Karp’s algorithm for computing
the minimum/maximal average cost of a cycle [Kar78]. The positional strategies, and
this algorithm, provide us with a polynomial witness, and with a polynomial-time al-
gorithm for checking the witness. Since this analysis can bedone both for the winning
strategies of a player, and for the “spoiling” strategies ofthe opponent, we conclude that
the problem of computing the value of an average-reward timed game, for both play-
ers, is in NP∩coNP. This matches the best known bounds for several other classes of
games, among which are turn-based deterministic parity games [EJ91] and turn-based
stochastic reachability games [Con92].

Compared to other work on priced timed games [BCFL04,ABM04], our models for
timed games are simplified in two ways. First, rewards can only be accrued by staying at
a state, and not by taking transitions. Second, we study the problem in discrete time. On
the other hand, our models are more general in that unlike [BCFL04,ABM04] we do not
impose structural constraints on the game structures that ensure the progress of time.
There is a tradeoff between imposing structural constraints and allowing rewards for
transitions: had we introduced constraints that ensure time progress, we could have eas-

3

ily accommodated for rewards on the transitions. The restriction to discrete-time limits
somewhat the expressiveness of the models. Nevertheless, control problems where the
control actions can be issued only at discrete points in timeare very common: most
real controllers are driven by a periodic clock; hence, the discrete-time restriction is not
unduly limiting as far as the controller actions are concerned. We note that there are
also many cases where also the system actions can be considered to occur in discrete-
time: this is the case, for instance, whenever the state of the controller is also sampled
regularly in time.

2 Discrete-Time Game Structures

We definediscrete-time game structuresas a discrete-time version of the timed
game structures of [dAFH+03]. A discrete-time game structure represents a game
between two players, which we denote by 1, 2; we indicate by∼i the opponent
of i ∈ {1,2} (that is, player 3− i). A discrete-time game structureis a tupleG =
(S,Acts1,Acts2,Γ1,Γ2,δ , r), where:

– S is a finite set of states.
– Acts1 andActs2 are two disjoint sets of actions for player 1 and player 2, respec-

tively. We assume that∆0,∆1 /∈ Actsi and writeMi = Actsi ∪{∆0,∆1} for the sets
of moves of playeri ∈ {0,1}.

– For i = 1,2, the functionΓi : S 7→ 2Mi \ /0 is an enabling condition, which assigns to
each statesa setΓi(s) of moves available to playeri in that state.

– δ : S× (M1∪M2) 7→ S is a destination function that, given a state and a move of
either player, determines the next state in the game.

– r : S 7→ Z is a function that associates with each states∈ Sthereward rateof s: this
is the reward that player 1 earns for staying for one time unitat s.

The move∆0 represents a stuttering move that takes 0 time. We require that ∆0 is
always enabled: fors∈ S and i ∈ {1,2}, we have∆0 ∈ Γi(s). When taken, the move
∆0 does not cause a state change: for alls∈ S, we haveδ (s,∆0) = s. The moves in
{∆0}∪Acts1 ∪Acts2 are known as thezero-timemoves. The move∆1 represents the
decision of waiting for 1 time units. We do not require that∆1 be always enabled: if
we have∆1 6∈ Γi(s) for playeri ∈ {1,2} at a states∈ S, then playeri cannot wait, but
must immediately play a zero-time move. We define thesizeof a discrete-time game
structure by|G | = ∑s∈S(|Γ1(s)+Γ2(s)).

2.1 Move Outcomes and Runs

A timed game proceeds as follows. At each states∈ S, player 1 chooses a movea1 ∈
Γ1(s), and simultaneously and independently, player 2 chooses a movea2 ∈ Γ2(s). The

successor statẽδ (s,a1,a2) is then determined according to the following rules.

– Actions take precedence over stutter steps and time steps.If a1 ∈ Acts1 or a2 ∈
Acts2, then the game takes an actiona selected nondeterministically from{a1,a2}∩

(Acts1∪Acts2), and the game proceeds to locationδ̃ (s,a1,a2)
def
= δ (s,a).

– Stutter steps take precedence over time steps.If a1,a2 ∈ {∆0,∆1}, there are two
cases.

4

• If a1 = ∆0 or a2 = ∆0, the game performs a stutter step, andδ̃ (s,a1,a2)
def
= s.

• If a1 = a2 = ∆1, then the game performs a time step of duration 1, and the game

proceeds tõδ (s,a1,a2)
def
= δ (s,∆1).

An infinite run (or simply run) of the discrete-time game structureG is a sequence
s0,〈a1

1,a
2
1〉,s1,〈a1

2,a
2
2〉,s2, . . . such thatsk ∈S, a1

k+1 ∈M1(sk), a2
k+1 ∈M2(sk), andsk+1 ∈

δ̃ (sk,a1
k+1,a

2
k+1) for all k ≥ 0. A finite runσ is a finite prefix of a run that terminates

at a states, we then setlast(σ) = s. We denote byFRunsthe set of all finite runs of
the game structure, and byRunsthe set of its infinite runs. For a finite or infinite runσ ,
and a numberk < |σ |, we denote byσ≤k the prefix ofσ up to and including stateσk. A
states′ is reachablefrom another states if there exists a finite runs0,〈a1

1,a
2
1〉,s1, . . . ,sn

such thats0 = sandsn = s′.

2.2 Strategies and Game Outcomes

A strategyπi for playeri ∈{1,2} is a mappingπi : FRuns7→Mi that associates with each
finite runs0,〈a1

1,a
2
1〉,s1, . . . ,sn the moveπi(s0,〈a1

1,a
2
1〉,s1, . . . ,sn) to be played atsn. We

require that the strategy only selects enabled moves, that is,πi(σ) ∈ Mi(last(σ)) for all
σ ∈ FRuns. For i ∈ {1,2}, let Πi denote the set of all playeri strategies. For strategies
π1 ∈ Π1 andπ2 ∈ Π2, we say that a runs0,〈a1

1,a
2
1〉,s1, . . . is consistentwith π1 andπ2

if, for all n ≥ 0 andi = 1,2, we haveπi(s0,〈a1
1,a

2
1〉,s1, . . . ,sn) = ai

n+1. We denote by
Outcomes(s,π1,π2) the set of all runs that start insand are consistent withπ1,π2. Note
that in our timed games, two strategies and a start state yield asetof outcomes, because
if the players both propose actions, a nondeterministic choice between the two moves is
made. According to this definition, strategies can base their choices on the entire history
of the game, consisting of both past states and moves.

2.3 Discrete-Time Game Automata

We specify discrete-time game structures viadiscrete-time game automata,which are
a discrete-time version of thetimed automaton gamesof [dAFH+03]; both models are
two-player versions of timed automata [AD94]. Aclock conditionover a setC of clocks
is a boolean combination of formulas of the formx� cor x−y� c, wherec is an integer,
x,y ∈ C, and� is either< or ≤. We denote the set of all clock conditions overC by
ClkConds(C). A clock valuationis a functionκ : C 7→ IR≥0, and we denote byK(C) the
set of all clock valuations forC.

A discrete-time game automaton is a tuple A =
(Q,C,Acts1,Acts2,E,θ ,ρ , Inv1, Inv2,Rew), where:

– Q is a finite set of locations.
– C is a finite set of clocks.
– Acts1 andActs2 are two disjoint, finite sets of actions for player 1 and player 2,

respectively.
– E ⊆ Q× (Acts1∪Acts2)×Q is an edge relation.
– θ : E 7→ ClkConds(C) is a mapping that associates with each edge a clock con-

dition that specifies when the edge can be traversed. We require that for all
(q,a,q1),(q,a,q2) ∈ E with q1 6= q2, the conjunctionθ (q,a,q1)∧θ (q,a,q2) is un-
satisfiable. In other words, the game move and clock values determine uniquely the
successor location.

5

– ρ : E 7→ 2C is a mapping that associates with each edge the set of clocks to be reset
when the edge is traversed.

– Inv1, Inv2 : Q 7→ ClkConds(C) are two functions that associate with each location
an invariant for player 1 and 2, respectively.

– Rew: Q 7→ Z is a function that assignes a rewardRew(q) ∈ Z with eachq∈ Q.

Given a clock valuationκ : C 7→ IR≥0, we denote byκ + 1 the valuation defined by
(κ + 1)(x) = κ(x)+ 1 for all clocksx∈ C. The clock valuationκ : C 7→ IR≥0 satisfies
the clock constraintα ∈ ClkConds(C), writtenκ |= α, if α holds when the clocks have
the values specified byκ . For a subsetC′ ⊆C of clocks,κ [C′ := 0] denotes the valuation
defined byκ [C′ := 0](x) = 0 if x∈C′, and byκ [C′ := 0](x) = κ(x) otherwise.

The discrete-time game automatonA induces a discrete-time game structure[[A]],
whose states consist of a location ofA and a clock valuation overC. The idea is the
following. The move∆0 is always enabled at all states〈q,κ〉, and leads again to〈q,κ〉.
The move∆1 is enabled for playeri ∈ {1,2} at state〈q,κ〉 if κ +1 |= Invi(q); the move
leads to state〈q,κ + 1〉. For playeri ∈ {1,2} anda ∈ Actsi , the movea is enabled at
a state〈q,κ〉 if there is a transition(q,a,q′) in E which is enabled at〈q,κ〉, and if the
invariantInvi(q′) holds for the destination state〈q′,κ [ρ(q,a,q′) := 0]〉. If the values of
the clocks can grow unboundedly, this translation would yield an infinite-state discrete-
time game structure. However, we can defineclock regionssimilarly to timed automata
[AD94], and we can include in the discrete-time game structure only one state per clock
region; as usual, this leads to a finite state space.

3 The Average Reward Condition

In this section, we consider a discrete-time game structureG =
(S,Acts1,Acts2,Γ1,Γ2,δ , r), unless otherwise noted.

3.1 Long-Run Average Reward of a Run

We consider games where the goal for player 1 consists in maximizing the aver-
age reward per time unit obtained along a game outcome. The goal for player 2
is symmetrical, and it consists in minimizing the average reward per time unit ob-
tained along a game outcome. To make these goals precise, consider a finite run
σ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn, and for allk = 0, . . .n, denote byσk its k-th statesk, and by

σ1
k , σ2

k the movesa1
k anda2

k played by players 1 and 2 at thek-th position ofσ . The time
Dk elapsed at stepk of the run is defined byDk(σ) = 1 if σ1

k = σ2
k = ∆1, andDk(σ) = 0

otherwise; the rewardRk accrued at stepk of the run is given byRk(σ) = r(σk) ·Dk.
The time elapsed duringσ and the reward achieved duringσ are defined in the obvious
way, byD(σ) = ∑n

k=0Dk(σ) andR(σ) = ∑n
k=0 Rk(σ). Finally, we define the long-run

average reward of an infinite runσ ′ by:

r(σ ′) = lim inf
n→∞

R(σ ′
≤n)

D(σ ′
≤n)

.

3.2 The Value of the Game

A first attempt to define the goal of the game consists in askingfor the maximum value
of this long-run average reward that player 1 can secure. According to this approach,

6

the value for player 1 of the game at a stateswould be defined by

ṽ(s) = sup
π1∈Π1

inf
π2∈Π2

inf{r(σ) | σ ∈ Outcomes(s,π1,π2)}.

However, this approach fails to take into account the fact that, in timed games, players
must not only play in order to achieve the goal, but must also play realistic strategies
that guarantee the advancement of time. As an example, consider the game of Figure 1.
We havẽv(〈q0, [x := 0]〉) = 4, and the optimal strategy of player 1 consists in staying
at q0 forever, never playing the movea1. Due to the invariantx ≤ 2, such a strategy
blocks the progress of time: oncex= 2, the only move player 1 can play is∆0. It is easy
to see that the only strategies of player 1 that do not block time eventually play move
a1, and have value 1. Note that the game does not contain any blocked states, i.e., from
every reachable state there is a run that is time-divergent:the lack of time progress of
the above-mentioned strategy is due to the fact that player 1values more obtaining high
average reward, than letting time progress.

To ensure that winning strategies do not block the progress of time, we modify the
definition of value of a run, so that ensuring time divergencehas higher priority than
maximizing the average reward. Following [dAFH+03], we introduce the following
predicates:

– For i ∈ {1,2}, we denote byblamelessi(σ) (“blameless i”) the predicate defined
by ∃n ≥ 0.∀k ≥ n.σ i

k = ∆1. Intuitively, blamelessi(σ) holds if, alongσ , player i
beyond a certain point does not play any moves that block the progress of time.

– We denote bytd(σ) (‘ ‘time-divergence”) the predicate defined by∀n ≥ 0 . ∃k ≥
n . [(σ1

k = ∆1)∧ (σ2
k = ∆1)].

We define the value of a runσ ∈ Runsfor playeri ∈ {1,2} by:

wi(σ) =






+∞ if blamelessi(σ)∧¬td(σ);

(−1)(i+1) r(σ) if td(σ);

−∞ if ¬blamelessi(σ)∧¬td(σ).

(1)

It is easy to check that, for each run, exactly one of the threecases of the above definition
applies. Notice that iftd(σ) holds, thenw1(σ) = −w2(σ), so that the value of time-
divergent runs is defined in a zero-sum fashion. We define the value of the game for
playeri at s∈ Sas follows:

vi(G ,s) = sup
πi∈Πi

inf
π∼i∈Π∼i

inf{wi(σ) | σ ∈ Outcomes(s,π1,π2)}. (2)

We omit the argumentG from vi(G ,s) when clear from the context.
♣ note: dropped well-formedness ♣ Since we desire games where time progresses,

we consider only games wherevi(s) > −∞. Notice that this impliesv∼i(s) < +∞, so
time must diverge when both players use their optimal strategy.

3.3 Determinacy

A game isdeterminedif, for all s∈S, we havev1(s)+v2(s) = 0: this means that if player
i ∈ {1,2} cannot enforce a rewardc∈ IR, then player∼i can enforce at least reward−c.
The following theorem provides a strong non-determinacy result for average-reward
discrete-time games.

7

x := 0x := 0

a1

x≥1 x≥1

Inv1 : x≤0
Inv2 : x≤0

r = −c r = +ca1

a2

a2

q0

Fig. 2. A game automaton. Unspecified guards and invariants are “true”.

Theorem 1. (non-determinacy) For all c> 0, there exists a game structureG =
(S,Acts1,Acts2,Γ1,Γ2,δ , r) with a state s∈ S, and two “spoiling” strategiesπ∗

1 ∈ Π1,
π∗

2 ∈ Π2, such that the following holds:

sup
π1∈Π1

sup{w1(σ) | σ ∈ Outcomes(s,π1,π∗
2)} ≤ −c

sup
π2∈Π2

sup{w2(σ) | σ ∈ Outcomes(s,π∗
1 ,π2)} ≤ −c.

As a consequence, v1(s) ≤−c and v2(s) ≤−c.

Note that in the theorem we take sup, rather than inf as in (2),over the set of outcomes
arising from the strategies. Hence, the theorem states that, even if the chose among
actions is resolved in favor of the player trying to achieve the value, there is a game
with a states wherev1(s) + v2(s) ≤ 2c < 0. Moreover, in the theorem, the adversary
strategies are fixed, again providing an advantage to the player trying to achieve the
value.

Proof. Consider the game of Figure 2. We take forπ∗
1 ∈ Π1 andπ∗

2 ∈ Π2 the strategies
that play always∆0. Let s0 = 〈q0, [x := 0]〉, and consider the value

v̂1(s0) = sup
π1∈Π1

sup{w1(σ) | σ ∈ Outcomes(s0,π1,π∗
2)}.

There are two cases. If eventually player 1 plays forever∆0 in s0, player 1 obtains the
value−∞, as time does not progress, and player 1 is not blameless. If player 1, whenever
at s0, eventually playsa1, then the value of the game to player 1 is−c. Hence, we have
v̂1(s0) = −c. The analysis for player 2 is symmetrical.

The example of Figure 2, together with the above analysis, indicates that we cannot
define the value of an average reward discrete-time game in a way that leads to deter-
minacy, and enforces time progress. In fact, consider againthe case in which player 2
plays always∆0 at s0. If, beyond some point, player 1 plays forever∆0 in s0, time does
not progress, and the situation is symmetrical wrt. players1 and 2: they both play for-
ever∆0. Hence, we must rule out this combination of strategies (either by assigning
value−∞ to the outcome, as we do, or by some other device). Once this isruled out,
the other possibility is that player 1, whenever ins0, eventually playsa1. In this case,
time diverges, and the average value to player 1 is−c. As the analysis is symmetrical,
the value to both players is−c, contradicting determinacy.

4 Solution of Average Reward Timed Games

In this section, we solve the problem of computing the value of an average reward
timed game with respect to both players. First, we define a turn-based version of the

8

timed game. Such version is equivalent to the first one when one is concerned with the
value achieved by a specific player. Then, following [EM79],we define a finite game
and we prove that it has the same value as the turn-based infinite game. This will lead
to a PSPACE algorithm for computing the value of the game. We then show that the
finite and, consequently, the infinite game admit positionaloptimal strategies for both
players; as mentioned in the introduction, this will enableus to show that the problem
of computing the value of the game is in NP∩coNP.

♣ note: dropped well-formedness. Next sentence requires use of optimal strate-

gies, instead. ♣ In the remainder of this section, we consider a fixed discrete-time
game structureG = (S,Acts1,Acts2,Γ1,Γ2,δ , r), and we assume that there are optimal
strategies for each player such that time must diverge. We focus on the problem of
computingv1(s), as the problem of computingv2(s) is symmetrical. For a finite runσ
and a finite or infinite runσ ′ such thatlast(σ) = first(σ ′), we denote byσ ·σ ′ their
concatenation, where the common state is included only once.

4.1 Turn-based Timed Game

We describe a turn-based version of the timed game, where at each round player 1
chooses his move before player 2. Player 2 can thus use her knowledge of player 1’s
move to choose her own. Moreover, when both players choose anaction, the action
chosen by player 2 is carried out. This accounts for the fact that in the definition of
v1(s), nondeterminism is resolved in favor of player 2 (see (2)). Notice that if player 2
prefers to carry out the action chosen by player 1, she can reply with the stuttering move
∆0. Definitions pertaining this game have a “t∞” superscript that stands for “turn-based
infinite”.

We define theturn-based joint destination functioñδ t : S×M1×M2 7→ Sby

δ̃ t(s,a1,a2) =





δ (s,∆1) if a1 = a2 = ∆1

δ (s,∆0) if {a1,a2} ⊆ {∆0,∆1} anda1 = ∆0 or a2 = ∆0

δ (s,a1) if a1 ∈ Acts1 anda2 ∈ {∆0,∆1}

δ (s,a2) if a2 ∈ Acts2

As before, a run is an infinite sequences0,〈a1
1,a

2
1〉,s1,〈a1

2,a
2
2〉,s2, . . . such thatsk ∈ S,

a1
k+1 ∈ M1(sk), a2

k+1 ∈ M2(sk), andsk+1 ∈ δ̃ t(sk,a1
k+1,a

2
k+1) for all k ≥ 0. A 1-run is a

finite prefix of a run ending in a statesk, while a 2-run is a finite prefix of run ending
in a movea ∈ M1, so it is a sequence of the types0,〈a1

1,a
2
1〉,s1, . . . ,sn,〈a1

n+1〉. We set
last(s0,〈a1

1,a
2
1〉,s1, . . . ,sn,〈a1

n+1〉) = sn. For i ∈ {1,2}, we denote byFRunsi the set of
all i-runs. Intuitively,i-runs are runs where it is playeri’s turn to move.

In the turn-based game, astrategyπi for playeri ∈ {1,2} is a mappingπi : FRunsi 7→
Mi . As before, we require that the strategy only selects enabled moves, that is,πi(σ) ∈
Mi(last(σ)) for all σ ∈ FRunsi . For i ∈ {1,2}, let Π t

i denote the set of all playeri
strategies. Notice thatΠ t

1 = Π1.
For strategiesπ1 ∈ Π t

1 andπ2 ∈ Π t
2, we say that a runs0,〈a1

1,a
2
1〉,s1, . . . is consistent

with π1 andπ2 if, for all n ≥ 0 andi = 1,2, we haveπ1(s0,〈a1
1,a

2
1〉,s1, . . . ,sn) = a1

n+1

and π2(s0,〈a1
1,a

2
1〉,s1, . . . ,sn,〈a1

n+1〉) = a2
n+1. Since δ̃ t is deterministic, for alls∈ S,

9

there is a unique run that starts insand is consistent withπ1 andπ2. We denote this run
by outcomet∞(s,π1,π2).

The value assigned to a run, to a strategy and to the whole gameare defined as
follows. We setwt∞

1 (σ) = w1(σ), and

vt∞
1 (s,π1) = inf

π2∈Π t
2

wt∞
1 (outcomet∞(s,π1,π2)); vt∞

1 (s) = sup
π1∈Π t

1

vt∞
1 (s,π1).

The following theorem is proved in the appendix.

Theorem 2. For all s∈ S, it holds v1(s) = vt∞
1 (s).

4.2 Turn-based Finite Game

We now define a finite turn-based game that can be played on a discrete-time game
structure. Definitions pertaining this game have a “tf” superscript that stands for “turn-
based finite”. The finite game ends as soon as a loop is closed. Amaximal runin the
finite game is a 1-runσ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn such thatsn is the first state that is

repeated inσ . Formally,n is the least number such thatsn = sj , for some j < n. We
set loop(σ) to be the suffix ofσ : sj ,〈a1

j+1,a
2
j+1〉, . . . ,sn. For π1 ∈ Π t

1, π2 ∈ Π t
2, and

s∈ S, we denote byoutcometf(s,π1,π2) the unique maximal run that starts ins and is
consistent withπ1 andπ2.

In the finite game, a maximal runσ ending with the loopλ is assigned the value of
the infinite run obtained by repeatingλ forever. Formally,wtf

1(σ) = w1(σ ·λ ω), where
λ ω denotes the concatenation of numerably many copies ofλ . The value assigned to a
strategyπ1 ∈ Π t

1 and the value assigned to the whole game are defined as follows.

vtf
1(s,π1) = inf

π2∈Π t
2

wtf
1(outcometf(s,π1,π2)); vtf

1(s) = sup
π1∈Π t

1

vtf
1(s,π1).

Notice that since this game is finite and turn-based, for alls∈ S, it holds:

sup
π1∈Π1

inf
π2∈Π2

wtf
1(outcometf(s,π1,π2)) = inf

π2∈Π2
sup

π1∈Π1

wtf
1(outcometf(s,π1,π2)). (3)

4.3 Mapping Strategies

In this section, we introduce definitions that allow us to relate the finite game to the
infinite one. For a 1-runσ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn, let firstloop(σ) be the operator that

returns the first simple loop (if any) occurring inσ . Similarly, let loopcut(σ) be the
operator that removes the first simple loop (if any) fromσ . Formally, if σ is a sim-
ple run (i.e. it contains no loops) we setfirstloop(σ) = ε (the empty sequence), and
loopcut(σ) = σ . Otherwise, letk ≥ 0 be the smallest number such thatσ j = σk, for
somej < k; we set

firstloop(σ) = σ j ,〈a
1
j+1,a

2
j+1〉, . . . ,〈a

1
k,a

2
k〉,σk;

loopcut(σ) = σ0,〈a
1
1,a

2
1〉, . . . ,σ j ,〈a

1
k+1,a

2
k+1〉, . . . ,σn.

10

σ jσi
σ j−1

λ1

Fig. 3. Nodes linked by dashed lines represent the same state of the game.

We now define thequasi-segmentation QSeg(σ) to be the sequence of simple loops
obtained by applyingfirstlooprepeatedly toσ .

QSeg(σ) =

{
ε if firstloop(σ) = ε
firstloop(σ) ·QSeg(loopcut(σ)) otherwise

For an infinite runσ , we setQSeg(σ) = limn→∞ QSeg(σ≤n). Given a finite runσ ,
loopcutcan only be applied a finite number of times before it converges to a fixpoint.
We call this fixpointresidual(σ). Notice that for all runsσ , residual(σ) is a simple path
and therefore its length is bounded by|S|.

For simplicity, we developed the above definitions for 1-runs. The corresponding
definitions ofresidual(σ) andQSeg(σ) for 2-runsσ are similar.

For all i ∈ {1,2} and all strategiesπ ∈ Π t
i , we define the strategỹπ as π̃(σ) =

π(residual(σ)) for all σ ∈ FRunsi . Intuitively, π̃ behaves likeπ until a loop is formed.
At that point,π̃ forgetsthe loop, behaving as if the whole loop had not occurred. We
now give two technical lemmas.

Lemma 1. Let π1 ∈ Π t
1, π2 ∈ Π t

2, and σ = outcomet∞(s, π̃1,π2). For all k > 0,
residual(σ≤k) is a prefix of a finite run consistent withπ1. Formally, there isπ ′

2 ∈ Π t
2

andσ ′ = outcometf(s,π1,π ′
2) such thatσ ′ = residual(σ≤k) ·ρ .

Similarly, let σ = outcomet∞(s,π1, π̃2). For all k > 0, there isπ ′
1 ∈ Π t

1 and σ ′ =
outcometf(s,π ′

1,π2) such thatσ ′ = residual(σ≤k) ·ρ .

Proof. We prove the first statement, as the second one is analogous. We proceed by
induction on the length ofQSeg(σ≤k). If QSeg(σ≤k) is the empty sequence (i.e.σ≤k

contains no loops), the result is easily obtained, asπ̃1 coincides withπ1 until a loop is
formed. So, we can takeπ ′

2 = π2 and obtain the conclusion.
On the other hand, supposeQSeg(σ≤k) = λ1, . . . ,λn. For simplicity, supposeλ1 6=

λ2. As illustrated in Figure 3, letσ j be the first state afterλ1 that does not belong toλ1.
Then,σ j−1 belongs toλ1 and there is another indexi < j −1 such thatσi = σ j−1. So,
the game went twice throughσ j−1 and two different successors were taken. However,
player 1 must have chosen the same move inσi andσ j−1, as by constructioñπ1(σ≤i) =
π̃1(σ≤ j−1). Therefore, the change must be due to a different choice ofπ2. It is easy to
deviseπ ′

2 that coincides withπ2, except thatλ1 may be skipped when playing against
π̃1. We can then obtain a runρ = outcomet∞(s, π̃1,π ′

2) and an integerk′ ≥ 0 such that
QSeg(ρ≤k′) = λ2, . . . ,λn and residual(ρ≤k′) = residual(ρ). The thesis is obtained by
applying the inductive hypothesis toρ andk′.

11

The next lemma shows that, for a strategyπ1 ∈ Π1, each loop occurring in the
infinite game under̃π1 can also occur in the finite game underπ1. The proof can be
found in the appendix.

Lemma 2. Let π1 ∈ Π t
1, π2 ∈ Π t

2, andσ = outcomet∞(s, π̃1,π2). For all λ ∈ QSeg(σ),
λ can occur as the final loop in a maximal run of the finite game. Formally, there is
π ′

2 ∈ Π t
2 andσ ′ = outcometf(s,π1,π ′

2) such thatλ = loop(σ ′).
Similarly, letσ = outcomet∞(s,π1, π̃2). For all λ ∈ QSeg(σ), there isπ ′

1 ∈ Π t
1 and

σ ′ = outcometf(s,π ′
1,π2) such thatλ = loop(σ ′).

The next theorem states that if the strategyπ1 of player 1 achieves valueν in the
finite turn-based game, the strategyπ̃1 achieves at least as much in the infinite turn-
based game.

Theorem 3. For all s∈ S andπ1 ∈ Π t
1, it holds vt∞

1 (s, π̃1) ≥ vtf
1(s,π1).

Proof. Let ν = vtf
1(s,π1). We show that̃π1 can ensure rewardν in the infinite game. The

result is trivially true ifν = −∞. So, in the following we assume thatν > −∞.
Fix a player 2 strategyπ2, and let σ = outcomet∞(s, π̃1,π2). Let QSeg(σ) =

λ1,λ2 We distinguish two cases, according to whether time diverges or not inσ .
If time diverges, all loopsλ j that contain no tick give no contribution to the value ofσ
and can therefore be ignored.

For allλ j containing (at least) a time step, by Lemma 2,λ j is a possible terminating
loop for the finite game underπ1. Thus,R(λ j) ≥ ν ·D(λ j). Now, the value ofσ can be
split as the value due to loops containing time steps, plus the value due to the residual.
For all n≥ 0, letmn be the number of loops inQSeg(σ≤n). We obtain:

wt∞
1 (σ)= lim inf

n→∞

R(σ≤n)

D(σ≤n)
= lim

n→∞

R(residual(σ≤n))+ ∑mn
j=1R(λ j)

D(residual(σ≤n))+ ∑mn
j=1D(λ j)

= lim
n→∞

∑mn
j=1R(λ j)

∑mn
j=1D(λ j)

≥ ν.

Consider now the case whenσ contains only finitely many time steps. Letk≥ 0 be
such that no time steps occur inσ afterσk. Consider a loopλ j entirely occurring after
σk. Obviouslyλ j contains no time steps. Moreover, by Lemma 2,λ j is a terminating
loop for a maximal runρ in the finite game underπ1. Sincevtf

1(s,π1) > −∞, it must
be wtf

1(ρ) = +∞. Consequently, it holdsblameless1(ρ) and in particular player 1 is
blameless in all edges inλ j .

Now, let k′ ≥ 0 be such that each state (and edge) afterσk′ will eventually be part
of a loop ofQSeg(σ). Let k′′ = max{k,k′}. Then, all edges that occur afterk′′ will
eventually be part of a loop where player 1 is blameless. Consequently,k′′ is a witness
to the fact thatblameless1(σ), and thereforewt∞

1 (σ) = +∞ ≥ ν.

Theorem 4. For all s∈ S andπ2 ∈ Π t
2, it holds vt∞

1 (s, π̃2) ≤ vtf
1(s,π2).

Proof. Let ν = vtf
1(s,π2). Similarly to Theorem 3, we can rule out the caseν = +∞ as

trivial.
Fix a player 1 strategyπ1, and letσ = outcomet∞(s,π1, π̃2). We show thatwt∞

1 (σ)≤
ν. If time diverges onσ , the proof is similar to the analogous case in Theorem 3.

Otherwise, letk ≥ 0 be such that no time steps occur inσ after σk. Consider a
loop λ ∈ QSeg(σ), entirely occurring afterσk. Obviouslyλ contains no time steps.

12

Moreover, by Lemma 2,λ is a terminating loop for a maximal runρ in the finite
game underπ1. Sincevtf

1(s,π1) < +∞, it must bewtf
1(ρ) = −∞. Consequently, it holds

¬blameless1(ρ) and in particular player 1 is blamed in some edge ofλ . This shows that
¬blameless1(σ), and consequentlywt∞

1 (σ) = −∞ ≤ ν.

Theorems 3 and 4 show that the infinite game is no harder than the finite one, for
both players. Considering also (3), we obtain the followingresult.

Theorem 5. For all s∈ S, vt∞
1 (s) = vtf

1(s).

Theorems 2 and 5 allow us to use the finite game to compute the value of the original
timed game. The length of the finite game is bounded by|S|. It is well-known that a
recursive, backtracking algorithm can compute the value ofsuch game in PSPACE.

Theorem 6. For all s∈ S, v1(s) can be computed in PSPACE.

4.4 Memory

We show that memoryless strategies suffice for both players to reach their value. Notice
that it is sufficient to show that the finite game has memoryless optimal strategies, as
the result follows from Theorems 3 and 4. To this end, following [EM79] we define
a modified version of the finite game, which is still played on the same discrete-time
game structure. For a states∈S, thes-forgetful game is played as the finite game, except
that the first times is encountered while playing, the history up tos is forgotten for the
purpose of checking game termination. Formally, a maximal run in thes-forgetful game
is a finite runσ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn such that:

– eithersdoes not occur inσ andsn is the first state that is repeated inσ ,
– or σk is the first occurrence ofs in σ , andsn is the first state that is repeated inσ≥k.

We defineloop(σ) to be the final loopλ of σ , and we setwtf,s
1 (σ) = w1(σ ·λ ω). We

denote byoutcometf,s(t,π1,π2) the unique maximal run in thes-forgetful game that
starts int and is consistent withπ1,π2. The value assigned to a strategyπ1 ∈ Π t

1 and the
value assigned to the whole game are defined as usual:

vtf,s
1 (t,π1) = inf

π2∈Π t
2

wtf,s
1 (outcometf,s(t,π1,π2)); vtf,s

1 (t) = sup
π1∈Π t

1

vtf,s
1 (t,π1).

Lemma 3. For all s,t ∈ S, vtf1(t) = vtf,s
1 (t).

Proof. Let π1 ∈ Π t
1 be a strategy for player 1 such thatvtf

1(t,π1) = vtf
1(t) = ν. We use

strategyπ̃1 to play thes-forgetful game. Clearly, runs of the forgetful game that donot
containsmay also have occurred in the normal finite game, so those runshave value at
leastν.

Consider now a runσ = outcometf,s(t, π̃1,π2) which contains states. The value
wtf,s

1 (σ) is entirely determined by the final loopλ = loop(σ). One can check that there
is π ′

2 ∈ Π t
2 such that the runσ ′ = outcomet∞(t, π̃1,π ′

2) ends with the sequenceλ ω . By
Theorem 5, we havewtf,s

1 (σ) = w1(σ ′) ≥ v1(t) = vtf
1(t) = ν. This proves thatvtf

1(t) ≥
vtf,s

1 (t). The converse inequality is proved by a symmetrical argument, exchanging the
roles of the two players.

13

The next theorem states that memoryless optimal strategiesexist for both players.
The proof, based on Lemma 3, can be found in the appendix.

Theorem 7. For all i ∈ {1,2}, and t∈S, there exists a memoryless optimal strategy for
player i. Formally, there existsπi ∈ Πi such that v1(t,πi) = v1(t).

4.5 Improved Algorithms

We show that, givens∈ S, ν ∈ Q and i ∈ {1,2}, the problem of checking whether
vtf

i (s) ≥ ν is in NP∩coNP. We exploit the existence of positional optimal strategies
for both players, as such strategies can be “guessed” in polynomial time. Consider the
problem of checking whethervtf

1(s)≥ ν. The problem is in NP because, once the optimal
strategy of player 1 has been guessed, we can compute in polynomial time the value
vtf

1(s,π1). The problem is also in coNP because, once a strategy of player 2 is fixed, we
can compute in polynomial time the valuevtf

1(s,π2).
Once we fix a positional strategy for playeri, the finite game is reduced to a graph,

where all the choices belong to player∼i. Each edgee in this graph can be labeled with
a pair of moves(a1,a2) ∈ M1×M2. Then,e is labeled withtick whenevera1 = a2 = ∆1,
and withbli wheneverai ∈ Actsi ∪{∆0}. To determine the value of this graph, we first
transform the graph into a graph where all edges are labeled with tick; we then apply the
algorithm of [Kar78] for finding miminum average cost cyclesin a graph. We proceed
depending on whether player 1, or player 2, fixes a positionalstrategy. When player 1
fixes a positional strategy:

1. Find all the loopsλ in the graph where all the edges are labeled with¬tick and
¬bl1. Since player 2 will want to avoidλ , collapse it into a single graph vertex,
without self-loop, and with incoming and outgoing edges that correspond to all
edges incoming and outgoing from the loop.
Some of these collapsed vertices may have no outgoing edges.Then their value,
and the value of all vertices from which one cannot avoid entering them, is+∞;
remove all such vertices from the graph.

2. Find all the loops where all the edges are labeled with¬tick. Due to the collapsing
in the above step, each of these loops contains at least one edge labeledbl1, so its
value is−∞. These loops, and all vertices that can reach them, have value −∞.
Remove them from the graph.

3. From the resulting graphG, construct a multigraphG′ with the same vertices
as G. For each simple path inG of the from u0, . . . ,un,un+1 where the edges
(u0,u1), . . . ,(un−1,un) are labeled by¬tick, and the edge(un,un+1) is labeled by
tick, we insert inG′ an edge(u0,un+1) labeled by the same reward as(un,un+1).

4. Use the algorithm of [Kar78] to find the loop with minimal average reward inG′

(the algorithm of [Kar78] is phrased for graphs, but it can betrivially adapted to
multigraphs). Ifr is the ratio of the loop thus found, all the vertices of the loop, and
all the vertices that can reach the loop, have valuer. Remove them fromG′. Repeat
this step untils is removed from the graph.

Clearly, the stage at whichs is removed from the graph determines the value of the
game ats. Similarly (but not symmetrically), if player 2 fixes a positional strategy, we
can compute the value for player 1 as follows:

14

1. Find all the loops where all the edges are labeled with¬tick and¬bl1. These loops,
and all vertices that can reach them, have value+∞. Remove them from the graph.

2. Find all the loopsλ where all the edges are labeled with¬tick. Due to the previous
step,λ contains at least one edge labeledbl1, so player 1 will want to avoid it.
Collapseλ into a single graph vertex, without self-loop, and with incoming and
outgoing edges that correspond to all edges incoming and outgoing fromλ .
Some of these collapsed vertices may have no outgoing edges.Then their value,
and the value of all vertices from which one cannot avoid entering them, is−∞;
remove all such vertices from the graph.

3. From the resulting graphG, construct a graphG′ as in step 3 of the previous case.
4. This step is the same as step 4 of the previous case, except that in each iteration we

find the loop withmaximalaverage reward.

Since the algorithm of [Kar78], as well as the above graph manipulations, can all be
done in polynomial time, we have the following result.

Theorem 8. The problem of computing the value to player i∈ {1,2} of a discrete-time
average reward game is in NP∩coNP.

References

[ABM04] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed
games. InProc. 31st Int. Colloq. Aut. Lang. Prog., volume 3142 ofLect. Notes in
Comp. Sci.Springer-Verlag, 2004.

[AD94] R. Alur and D.L. Dill. A theory of timed automata.Theor. Comp. Sci., 126:183–235,
1994.

[AH97] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. InCONCUR
97: Concurrency Theory. 8th Int. Conf., volume 1243 ofLect. Notes in Comp. Sci.,
pages 74–88. Springer-Verlag, 1997.

[AMAS98] E. Asarin, O. Maler, A.Pnueli, and J. Sifakis. Controller synthesis for timed auto-
mata. InProc. IFAC Symposium on System Structure and Control, pages 469–474.
Elsevier, 1998.

[BCFL04] P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced timed
game automata. InFound. of Software Technology and Theoretical Comp. Sci., vol-
ume 3328 ofLect. Notes in Comp. Sci., pages 148–160. Springer-Verlag, 2004.

[Chu63] A. Church. Logic, arithmetics, and automata. InProc. International Congress of
Mathematicians, 1962, pages 23–35. Institut Mittag-Leffler, 1963.

[Con92] A. Condon. The complexity of stochastic games.Information and Computation,
96:203–224, 1992.

[dAFH+03] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, andM. Stoelinga. The
element of surprise in timed games. InCONCUR 03: Concurrency Theory. 14th Int.
Conf., volume 2761 ofLect. Notes in Comp. Sci., pages 144–158. Springer-Verlag,
2003.

[dAHS02] L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Timed interfaces. InProceedings of
the Second International Workshop on Embedded Software (EMSOFT 2002), Lect.
Notes in Comp. Sci., pages 108–122. Springer-Verlag, 2002.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). InProc. 32nd IEEE Symp. Found. of Comp. Sci., pages 368–377. IEEE
Computer Society Press, 1991.

15

[EM79] A. Ehrenfeucht and J. Mycielsky. Positional strategies for mean payoff games.Int.
Journal of Game Theory, 8(2):109–113, 1979.

[HHM99] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games. In
CONCUR’99: Concurrency Theory. 10th Int. Conf., volume 1664 ofLect. Notes in
Comp. Sci., pages 320–335. Springer-Verlag, 1999.

[Kar78] R.M. Karp. A characterization of the minimum cycle mean in a digraph.Discrete
Mathematics, 23:309–311, 1978.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesisof discrete controllers for timed
systems. InProc. of 12th Annual Symp. on Theor. Asp. of Comp. Sci., volume 900 of
Lect. Notes in Comp. Sci., pages 229–242. Springer-Verlag, 1995.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactivemodule. InProceedings of the
16th Annual Symposium on Principles of Programming Languages, pages 179–190.
ACM Press, 1989.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems.IEEE
Transactions on Control Theory, 77:81–98, 1989.

16

A Additional Proofs

A.1 Proof of Theorem 2

Consider anyπ1 ∈ Π1. SinceΠ1 = Π t
1, player 1 can employπ1 in both the original

timed game and in the turn-based game. We show that in the turn-based gameπ1 can
achieve at least the same value as in the original timed game.Consider anyπ2 ∈ Π t

2 and
σ ∈ outcomet∞(s,π1,π2). Player 2 cannot directly useπ2 in the original timed game,
because in that game she cannot base her decisions on the current move of player 1.
However, sinceπ1 is fixed, we can findπ2 ∈ Π2 that guessesthe move of player 1 at
each step, effectively simulating the behavior ofπ2 when played againstπ1. It then holds
thatσ ∈ Outcomes(s,π1,π ′

2). Since this holds for anyπ1, we have thatv1(s) ≤ vt∞
1 (s).

The inequalityv1(s) ≥ vt∞
1 (s) is immediate, since it is clearly an advantage for

player 1 to conceal his move from player 2 at each round.

A.2 Proof of Lemma 2

We prove the first statement, regarding the comparison betweenπ1 andπ̃1, as the other
statement is analogous. LetQSeg(σ) = λ1,λ2, . . ., andλ = λ j . Let k be the largest
integer such thatQSeg(σ≤k) = λ1, . . . ,λ j−1. Clearly, this means that the last edge of
λ j is σk,〈a1

k+1,a
2
k+1〉,σk+1. Also, residual(σ≤k) contains at the end all the edges of

λ j , except the last one. By applying Lemma 1 toσ≤k, we obtainπ ′
2 ∈ Π t

2 andσ ′ =
outcometf(s,π1,π ′

2) such thatσ ′ = residual(σ≤k) · ρ . It remains to prove that, under
π1, the suffixρ of σ ′ can be replaced by the edgeσk,〈a1

k+1,a
2
k+1〉,σk+1. This is easily

obtained by definingπ ′′
2 to coincide withπ ′

2, except forπ ′′
2 (residual(σ≤k) · 〈a1

k+1〉) =

a2
k+1.

A.3 Proof of Theorem 7

We prove the statement fori = 1, as the other case is symmetrical. We develop our argu-
ments for the finite turn-based game, as the conclusion for the original timed game fol-
lows from from Theorem 3. We proceed by complete induction onn= ∑s∈S|Γ1(s)|−|S|.
Whenn = 0, only one move is available to player 1 at each state and there is obviously
a memoryless optimal strategy.

Suppose that the statement is true for all integers up ton ≥ 0, and consider the
situation where∑s∈S|Γ1(s)| − |S| = n+ 1; in this case, there is at least one state,s,
where|Γ1(s)| > 1. In this game structure (call itG), we can play thes-forgetful game,
and Lemma 3 states that the game value will be the same as that of the normal turn-
based finite game,vtf,s

1 (G ,t) = vtf
1(G ,t), which can be ensured by some strategy,π1.

By Theorems 2 and 5,vtf
1(G ,t) = vt∞

1 (G ,t) = v1(G ,t), so strategyπ1 is able to ensure
v1(G ,t) in thes-forgetful game. Letν = v1(G ,t).

Clearly,π1 only plays one move at states in thes-forgetful game (call this movea∈
Γ1(s)), because any return tos would end the game. Therefore, we can setΓ ′

1 (s) = {a}
(and leave the enabled moves for all other states the same) aspart of a new discrete-
time game structureG ′ = (S,Acts1,Acts2,Γ ′

1 ,Γ2,δ , r), and still be consistent with how
π1 desires to play thes-forgetful game.

SinceG ′ is consistent withπ1 in thes-forgetful game,π1 is able to ensure at least the
same value as inG , namelyν. Moreover, sinceG ′ contains less choices for player 1,

17

no player 1 strategy can achieve a value greater thanν. So,vtf,s
1 (G ′,t) = ν. By again

appealing to Lemma 3 and Theorems 2 and 5, we find thatν = vtf,s
1 (G ′,t) = vtf

1(G
′,t) =

vt∞
1 (G ′,t) = v1(G

′,t).
To summarize, we have constructed a reduced game structure,G ′, with value

v1(G
′,t) = ν. Notice that our inductive hypothesis applies toG ′, since∑s∈S|Γ ′

1 (s)|−
|S| ≤ n. Therefore, there exists some memoryless strategy,π⋆

1, which is able to ensureν
when played onG ′. But thenπ⋆

1 is also able to ensureν in the originalG since all moves
thatπ⋆

1 might play exist inG . This demonstrates the desired conclusion for player 1.

18

