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Abstract. We consider real-time games where the goal consists, forgager,

in maximizing the average amount of reward he or she rec@gesme unit. We
consider zero-sum rewards, so that a reward-ofto one player corresponds to
a reward of—r to the other player. The games are played on discrete-tinmega
structures which can be specified using a two-player versfdimed automata
whose locations are labeled by rewards. Even though therdewhemselves are
zero-sum, the games are not, due to the requirement thahtimeprogress along
a play of the game.

Since we focus on control applications, we define the valuthefgame to a
player to be the maximal average reward per time unit thaplfger can ensure.
We show that in general the values to players 1 and 2 do not suzrerb. We
provide algorithms for computing the value of the game fainezi player; the al-
gorithms are based on the relationship between the originfalite-round, game,
and a derived game that is played for only finitely many roudspositional op-
timal strategies exist for both players in both games, wevghat the problem of
computing the value of the game is in NEoNP.

1 Introduction

Games provide a setting for the study of control problenis.ngtural to view a system
and its controller as two players in a game; the problem oftmsgizing a controller
given a control goal can be phrased as the problem of findingréraller strategy
that enforces the goal, regardless of how the system belf@he$3,RW89,PR89]. In
the control of real-time systems, the games must not onlyahibe interaction steps
between the system and the controller, but also the amoudimethat elapses between
these steps. This leadsttmed gamesa model that was first applied to the synthesis of
controllers for safety, reachability, and ottieiregular goals. The aim was the synthesis
of controllers that guarantee ticerrectnesof the behavior of the resulting controlled
system [MPS95,AH97, AMAS98,HHM99,dAFHD3].

More recently, the problem of designirgfficient controllers for real-time sys-
tems has been addressed, via the consideratigorioéd versions of timed games
[BCFL04,ABMO04]. In such priced versions of timed gamesceriates (or, symmet-
rically, reward rates) are associated with the states ofiime, and prices (or rewards)
with its transitions. The problem that has so far been adeckss the synthesis of
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Invy : x<2 Invy : true
Invs, : true Invs : true

Fig. 1. A game automaton where player 1 can freeze time to achievgh@haverage reward.

minimum-cost controllers for reachability goals [BCFLABMO4]. In this paper, we
focus instead on the problem of synthesizing controlleas thaximize the average re-
ward! per time unit accrued along an infinite play of the game. Thiari expressive
and widely applicable efficiency goal, since many real-tisgstems are modeled as
non-terminating systems which exhibit infinite behavidviareover, the synthesis of
controllers that maximize the long-run average reward ist@nmal complement to the
synthesis of controllers for safety goals. In fact, a cdigrdor a safety goal leaves the
system free to roam in a controllable and safe region of @gesspace. By solving a
control problem for long-run average reward restrictechie tontrollable, safe region,
we can design controllers that are both safe and efficient.

We consider timed games played between two players digerete-time game
structureswith finite state space. At each round, both players indepethyl choose
a move. We distinguish betwe@nmediate movesvhich correspond to control actions
or system transitions and take 0 time, aimded movesThere are two timed moves:
the movedy, which signifies the intention to wait for 0 time, and the madyg which
signifies the intention of waiting for 1 time unit. While theore 4y is always available,
the moveA; may not be: if unavailable, the player is forced to eithettst(movedy),
or take an immediate move. The two moves chosen by the plajetly determine the
successor state: roughly, immediate moves take the precedwer timed ones, and
unit-length time steps occur only when both players glayThese game structures can
be specified using a notation similar to that of timed aut@maach location is labeled
by two invariants (rather than one), which specify how lohg two players can stay at
the location. The actions labeling the edges corresponthhoeidiate moves, and each
one of them belongs to one of the two players.

With each state of a discrete-time game structure is agsalcéareward rate, which
specifies the reward obtained when staying at the state ftiore unit. We consider
zero-sum rewards, so that a reward-of to one player corresponds to a reward of
—r to the other player. The goal of a player in the game is to medrthe long-run
average reward it receives per time unit. However, the gbadaximizing the reward is
subordinate to the requirement that players should notciilthe progress of time by
playing forever zero-delay moves (immediate movesig)t As an example, consider
the game of Figure 1. The strategy that maximizes the rewerdime unit calls for
player 1 staying forever ajy: this yields an average reward per time unit of 4. However,
such a strategy would block time, since the clagekould not be able to increase beyond
the value 2, due to the player-1 invarian 2 atqo. If player 1 plays move!, time
can progress, but the average reward per time unit is 1.

To prevent players from blocking time in their pursuit of hag average reward,
we define the value of a play of the game in a way that enforees pirogress. If
time diverges along the play, the value of the play is theayereward per time unit

1 with a sign change, this is obviously equivalent to minimégthe average cost.



obtained along it. If time does not diverge along the plagr¢hare two cases. If a
player contributes to blocking the progress of time, themhlue of the play to the
player is—oo; if the progress of time is blocked entirely by the other gaythen the
value of the play to the player iso. These definitions are based on the treatment of
time divergence in timed games of [dAFE3,dAHS02]. Thus, even though the reward
rate is zero-sum, and time-divergent plays have zero-sunesdif the average reward
is +r for one player, it is—r for the other one), the games are not zero-sum, due to
the treatment of time divergence. Since we are interestéideiproblem of controller
design, we define the value of a game to a player to be the mbglenyavalue that the
player is able to secure, regardless of how the adversayg pRerhaps unsurprisingly,
these games are not determined, in the sense that the vahtebé¢ two players can
secure do not sum to zero. We show that this is intrinsic inrthieire of the games:
there is no formulation that can at the same time enforce firogress, and lead to a
determined setting.

We provide algorithms for computing the value of the gameditiner player. The
algorithms are based on the relationship between the alfiginfinite-round, game, and
a derived game that is played on the same discrete-time gaowuse, but for only
finitely many rounds. As in [EM79], the derived game terma@satvhenever one of the
two players closes a loop; our construction however diffeosn [EM79] in how it
assigns a value to the loops, due to our different notion hfevaf a play. We show that
a player can achieve the same value in the finite game, as oritfieal infinite-round
game. Our proof is inspired by the argumentin [EM79], busitriore complex, as our
games are not zero-sum; the proof also closes some smalirgégesproof of [EM79].

The equivalence between finite and infinite games provideSRARE algorithm
for computing the value of average reward discrete-time egriVe improve this re-
sult by showing that both finite and infinite games admit posél optimal strategies
for each player. Once we fix a positional strategy for a platres game is reduced
to a graph. We provide a polynomial-time algorithm that deslthe computaton of
the value of the graph for the other player. The algorithmasdal on polynomial-time
graph transformations, followed by the application of Kagdgorithm for computing
the minimum/maximal average cost of a cycle [Kar78]. Theitpmsal strategies, and
this algorithm, provide us with a polynomial witness, andhaa polynomial-time al-
gorithm for checking the witness. Since this analysis caddree both for the winning
strategies of a player, and for the “spoiling” strategiethefopponent, we conclude that
the problem of computing the value of an average-rewarddigeme, for both play-
ers, is in NP \coNP. This matches the best known bounds for several otheses of
games, among which are turn-based deterministic parityegd®J91] and turn-based
stochastic reachability games [Con92].

Compared to other work on priced timed games [BCFL04,ABM®@4} models for
timed games are simplified in two ways. First, rewards cag balaccrued by staying at
a state, and not by taking transitions. Second, we studyrtitdlgm in discrete time. On
the other hand, our models are more general in that unliké-|®@,ABM04] we do not
impose structural constraints on the game structures tigtre the progress of time.
There is a tradeoff between imposing structural constsaamtd allowing rewards for
transitions: had we introduced constraints that ensure girogress, we could have eas-



ily accommodated for rewards on the transitions. The ret&in to discrete-time limits
somewhat the expressiveness of the models. Neverthetegsolproblems where the
control actions can be issued only at discrete points in @mgevery common: most
real controllers are driven by a periodic clock; hence, tisergte-time restriction is not
unduly limiting as far as the controller actions are coneeiWe note that there are
also many cases where also the system actions can be ceusidayccur in discrete-
time: this is the case, for instance, whenever the stateso€dimtroller is also sampled
regularly in time.

2 Discrete-Time Game Structures

We definediscrete-time game structuress a discrete-time version of the timed
game structures of [dAFHD3]. A discrete-time game structure represents a game
between two players, which we denote by 1, 2; we indicate~lbythe opponent

of i € {1,2} (that is, player 3-i). A discrete-time game structuie a tuple¥ =

(S Acts,Actg, 1,1,0,r), where:

— Sis afinite set of states.

— Actg andActs are two disjoint sets of actions for player 1 and player 2pees
tively. We assume thalg,A; ¢ Acts and writeM; = Acts U {4, A} for the sets
of moves of player € {0,1}.

— Fori = 1,2, the function; : S— 2Mi\ 0 is an enabling condition, which assigns to
each stats a setfi(s) of moves available to playgin that state.

— 0:Sx (M1UM,) — Sis a destination function that, given a state and a move of
either player, determines the next state in the game.

— r: S Zis afunction that associates with each stteSthereward rateof s: this
is the reward that player 1 earns for staying for one time airst

The movel, represents a stuttering move that takes 0 time. We requaredif is
always enabled: fos € Sandi € {1,2}, we haveA € [;(s). When taken, the move
Ao does not cause a state change: forsal S, we haved(s,Ag) = s. The moves in
{Ap} UActg UActs are known as theero-timemoves. The mové\; represents the
decision of waiting for 1 time units. We do not require tiatbe always enabled: if
we haved; ¢ I5(s) for playeri € {1,2} at a states € S then playeii cannot wait, but
must immediately play a zero-time move. We define glzeof a discrete-time game
structure by | = S ocs(|M1(s) + I2(9)).

2.1 Move Outcomes and Runs

A timed game proceeds as follows. At each s&¢eS, player 1 chooses a moee
I1(s), and simultaneously and independently, player 2 choosesva @i < I,(s). The

successor staﬁ(s, a',a?) is then determined according to the following rules.

— Actions take precedence over stutter steps and time dfep$.c Actg or a° €

Actg, then the game takes an actmselected nondeterministically frofa!, a?} N

(Actg UActs), and the game proceeds to Iocatﬁ)(rs, at,a?) d:Efé(s, a).

— Stutter steps take precedence over time stépst,a’ € {4, 41}, there are two
cases.



o If al = Ag or a2 = A, the game performs a stutter step, @id al,a?) £'s.

e If al =a? = A, then the game performs a time step of duration 1, and the game

proceeds td (s, at, a2) %' 5(s,4y).
An infinite run (or simply run) of the discrete-time game structutgis a sequence
S0, (af,a2), 51, (3,83),%, ... such thasy € S, ai, ; € Ma(sk), @2, 1 € Ma(Sk), andsy 1 €
3(sc,a, 1,84, ,) for all k> 0. A finite run o is a finite prefix of a run that terminates
at a states, we then setast(o) = s. We denote byFRunsthe set of all finite runs of
the game structure, and IRunsthe set of its infinite runs. For a finite or infinite run
and a numbek < |o|, we denote by the prefix ofo up to and including statey. A
states is reachablefrom another statsiif there exists a finite rus, <a%, a§>,sl, e S
such thay = sands, =s.

2.2 Strategies and Game Outcomes

A strategyrs for playeri € {1,2} is a mappings : FRuns— M; that associates with each
finite runso, (a},a?),s, ..., s, the moverg(so, (al,a2),sy, ..., to be played as,. We
require that the strategy only selects enabled moves,shato) € M;(last(o)) for all

o € FRuns Fori € {1,2}, let [1; denote the set of all playesstrategies. For strategies
™ € M, and1p € T,, we say that a rus, <a%,a§>,sl, ... Is consistentwith i and®

if, for all n > 0 andi = 1,2, we haveri(so, (a},a2),s,...,%) = &, ;. We denote by
Outcomess, 1, TB) the set of all runs that start and are consistent withy, 75. Note
that in our timed games, two strategies and a start state #sgtof outcomes, because
if the players both propose actions, a nondeterministicaehioetween the two moves is
made. According to this definition, strategies can base theiices on the entire history

of the game, consisting of both past states and moves.

2.3 Discrete-Time Game Automata

We specify discrete-time game structures discrete-time game automatahich are
a discrete-time version of themed automaton gamexd [dAFH03]; both models are
two-player versions of timed automata [AD94].cfock conditiorover a se€ of clocks
is a boolean combination of formulas of the foxm cor x—y < ¢, wherecis an integer,
X,y € C, and= is either< or <. We denote the set of all clock conditions oby
ClkCondgC). A clock valuationis a functionk : C — IR>o, and we denote bl¢(C) the
set of all clock valuations fdC.

A discrete-time game automaton is a tuple & =
(Q,C,Acts,Acts, E, 8, p, Invy, Invy, Rew), where:

— Qis afinite set of locations.

— Cis afinite set of clocks.

— Actg andActs are two disjoint, finite sets of actions for player 1 and ptagge
respectively.

— ECQx (Actg UActg) x Qis an edge relation.

— 6: E — ClkCondg$C) is a mapping that associates with each edge a clock con-

dition that specifies when the edge can be traversed. We rectfuat for all
(0,a,01),(q9,a,02) € E with g; # g, the conjunctior®(q,a,d1) A 6(q,a,d2) is un-
satisfiable. In other words, the game move and clock valuesmee uniquely the
successor location.



— p:E— 2% is amapping that associates with each edge the set of clotiesreset
when the edge is traversed.

— Invy,Inv, : Q — ClkCondgC) are two functions that associate with each location
an invariant for player 1 and 2, respectively.

— Rew: Q— Z is a function that assignes a rewd&dw(q) € Z with eachqg € Q.

Given a clock valuatiork : C — IR>g, we denote by + 1 the valuation defined by
(k +1)(x) = k(x) + 1 for all clocksx € C. The clock valuatiork : C — IR satisfies
the clock constraintr € ClkCond$C), writtenk = a, if a holds when the clocks have
the values specified by. For a subset’ C C of clocks,k [C' := 0] denotes the valuation
defined by [C' := 0](x) = 0 if x e C, and byk|[C’ := 0](x) = k(x) otherwise.

The discrete-time game automatoefinduces a discrete-time game structfu#],
whose states consist of a location@fand a clock valuation ove®. The idea is the
following. The moved, is always enabled at all stat&g ), and leads again t@, ).
The moved; is enabled for playere {1,2} at state(q, k) if K +1 = Invi(q); the move
leads to statéq,k + 1). For playeri € {1,2} anda € Acts, the movea is enabled at
a state(q, k) if there is a transitior{g,a,q’) in E which is enabled atq, ), and if the
invariantinv; (q') holds for the destination statg’, k[p(qg,a,q’) := 0]). If the values of
the clocks can grow unboundedly, this translation woulddyéa infinite-state discrete-
time game structure. However, we can defitaxk regionsimilarly to timed automata
[AD94], and we can include in the discrete-time game stmgotunly one state per clock
region; as usual, this leads to a finite state space.

3 The Average Reward Condition

In this section, we consider a discrete-time game structuge =
(S Acts,Acts, 1,1;,0,r), unless otherwise noted.

3.1 Long-Run Average Reward of a Run

We consider games where the goal for player 1 consists in mmaxig the aver-
age reward per time unit obtained along a game outcome. Theé fgo player 2
is symmetrical, and it consists in minimizing the averageame per time unit ob-
tained along a game outcome. To make these goals precissidepra finite run
0 =%, (al,a?),s,...,5, and for allk = 0,...n, denote by its k-th states,, and by
o, o2 the moves} andaZ played by players 1 and 2 at tketh position ofo. The time
Dy elapsed at stepof the run is defined by (o) = 1 if o = o = A1, andDy(0) =0
otherwise; the rewar& accrued at stef of the run is given byR¢(o) = r (o) - Dk.
The time elapsed during and the reward achieved durimgare defined in the obvious
way, byD(0) = S_oDk(0) andR(0) = S3_oRk(0). Finally, we define the long-run
average reward of an infinite rus' by:

R(oZn)

T(o’) = liminf =
)= 5oL,

3.2 The Value of the Game

A first attempt to define the goal of the game consists in askinthe maximum value
of this long-run average reward that player 1 can secureo®ting to this approach,



the value for player 1 of the game at a stateould be defined by

V(s)= sup in

f inf{r(o) | o € Outcomets, T, ™)}.
7'[16[71 Tf2€n2

However, this approach fails to take into account the faat, tim timed games, players
must not only play in order to achieve the goal, but must alag pealistic strategies
that guarantee the advancement of time. As an example dmrbke game of Figure 1.
We havev({qp, [x := 0])) = 4, and the optimal strategy of player 1 consists in staying
at qo forever, never playing the mow&. Due to the invariank < 2, such a strategy
blocks the progress of time: onge- 2, the only move player 1 can play4s. Itis easy
to see that the only strategies of player 1 that do not blook teventually play move
al, and have value 1. Note that the game does not contain ankeustates, i.e., from
every reachable state there is a run that is time-diverdgleattack of time progress of
the above-mentioned strategy is due to the fact that playalues more obtaining high
average reward, than letting time progress.

To ensure that winning strategies do not block the progresme, we modify the
definition of value of a run, so that ensuring time divergehas higher priority than
maximizing the average reward. Following [dAFB3], we introduce the following
predicates:

— Fori € {1,2}, we denote b)blameles'b{o) ("blameless i) the predicate defined
by In > 0.vk > n.oi‘( = /. Intuitively, blamelesg o) holds if, alongao, playeri
beyond a certain point does not play any moves that blockrthgress of time.

— We denote bytd(o) (‘‘time-divergence”) the predicate defined bip > 0.3k >
n. [(0&' =A1) A (O'kz =4)].

We define the value of a rum € Runsfor playeri € {1,2} by:

40 if blameles§ o) A —td(0);
wi(0) =< (-1)*Dr(g) if td(o); 1)
—o0 if —blameles§o) A —td(0).

Itis easy to check that, for each run, exactly one of the tbases of the above definition
applies. Notice that ifd(o) holds, thenws(0) = —w»(0), so that the value of time-
divergent runs is defined in a zero-sum fashion. We define aéhgevof the game for
playeri ats € Sas follows:

Vvi(¢4,s) = sup inf inf{wj(0) | o € Outcomets, m,m)}. 2

mel; i€l
We omit the argumer# fromvi(¢,s) when clear from the context.
& note: dropped well-formedness & Since we desire games where time progresses,

we consider only games whevgs) > —co. Notice that this implies..i(s) < +e, so
time must diverge when both players use their optimal gjsate

3.3 Determinacy

A game isdeterminedf, for all se S, we haver, (s) +vz(s) = 0: this means that if player
i € {1,2} cannot enforce a rewark IR, then playeri can enforce at least rewaret.
The following theorem provides a strong non-determinasuitefor average-reward
discrete-time games.



r=—c al a2 r=-+c
Invy : x<0
at Inv, : x<0 a?
x>1 x>1
Xx:=0 % X:=0

Fig. 2. A game automaton. Unspecified guards and invariants are™tru

Theorem 1. (non-determinacy) For all ¢ 0O, there exists a game structutg =
(S Acts,Act, 1,1, 0,r) with a state s S, and two “spoiling” strategiest; € 1y,
TG, € 15, such that the following holds:

sup sup{wy (o) | o € Outcomets, 14, 75)} < —C
7'[16171

sup sup{wz(0) | o € Outcomes, 1y, T®) } < —c.
7T2€I72
As a consequence () < —c and y(s) < —c.

Note that in the theorem we take sup, rather than inf as iro{@), the set of outcomes
arising from the strategies. Hence, the theorem states eékan if the chose among
actions is resolved in favor of the player trying to achiele value, there is a game
with a states wherevs(s) + v2(s) < 2c < 0. Moreover, in the theorem, the adversary
strategies are fixed, again providing an advantage to theeptaying to achieve the
value.

Proof. Consider the game of Figure 2. We take fgre 11 andrt; € [1, the strategies
that play alwayg\o. Letsy = (g, [x:= 0]}, and consider the value

Vi(s0) = sup sup{wy(0) | o € Outcomegs, T4, 75) }
melly
There are two cases. If eventually player 1 plays foreéyein s, player 1 obtains the
value—o, as time does not progress, and player 1 is not blameledaykipl, whenever
atso, eventually plays!, then the value of the game to player 1-is. Hence, we have
V1(S9) = —c. The analysis for player 2 is symmetricil.

The example of Figure 2, together with the above analys@icaies that we cannot
define the value of an average reward discrete-time game iayahat leads to deter-
minacy, and enforces time progress. In fact, consider at&mase in which player 2
plays alway®\y ats. If, beyond some point, player 1 plays forevkyin s, time does
not progress, and the situation is symmetrical wrt. plajteasd 2: they both play for-
ever /. Hence, we must rule out this combination of strategiehéeiby assigning
value — to the outcome, as we do, or by some other device). Once thideid out,
the other possibility is that player 1, wheneveisi eventually plays®. In this case,
time diverges, and the average value to player-2dsAs the analysis is symmetrical,
the value to both players isc, contradicting determinacy.

4 Solution of Average Reward Timed Games

In this section, we solve the problem of computing the valtiaro average reward
timed game with respect to both players. First, we define @lbased version of the



timed game. Such version is equivalent to the first one whenoooncerned with the
value achieved by a specific player. Then, following [EM79% define a finite game
and we prove that it has the same value as the turn-basederdiine. This will lead

to a PSPACE algorithm for computing the value of the game. Néa tshow that the
finite and, consequently, the infinite game admit positimmimal strategies for both
players; as mentioned in the introduction, this will enaldeo show that the problem
of computing the value of the game is in NEONP.

& note: dropped well-formedness. Next sentence requires use of optimal strate-
gies, instead. & In the remainder of this section, we consider a fixed disetiate
game structur&/ = (S Acts,Acts, 1,7, d,r), and we assume that there are optimal
strategies for each player such that time must diverge. Wasfmn the problem of
computingvi (s), as the problem of computing(s) is symmetrical. For a finite ruor
and a finite or infinite ruro’” such thatlast(o) = first(g’), we denote by - ¢’ their
concatenation, where the common state is included only.once

4.1 Turn-based Timed Game

We describe a turn-based version of the timed game, wheradit ®und player 1
chooses his move before player 2. Player 2 can thus use heddahge of player 1's
move to choose her own. Moreover, when both players chooseton, the action
chosen by player 2 is carried out. This accounts for the faat in the definition of
v1(s), nondeterminism is resolved in favor of player 2 (see (2ptite that if player 2
prefers to carry out the action chosen by player 1, she cdpwéth the stuttering move
/. Definitions pertaining this game have &"tsuperscript that stands for “turn-based
infinite”.
We define theéurn-based joint destination functiad : Sx M1 x Ms — Shy

o3

s4;) ifal=a?=4;

Qo) if {al,a®} C {Ap, A1} andal = Ag ora? = A
saal) if al € Actg anda® € {Ao, A1}

sa®) if a®<Actg

>
v

d'(s.at,a?) =

[e3

(
(
(
(

[e3

As before, a run is an infinite sequengg(al,a?), s, (al,a3),s,... such thats, € S,

af, 1 € Mi(s0), 82,1 € Ma(sk), andsc;1 € 8'(sc,af 4,82, ) forallk>0. A 1-runis a
finite prefix of a run ending in a sta&g, while a 2run is a finite prefix of run ending
in a movea € My, so it is a sequence of the tygg (a7, a%),s1,...,5, (at, ;). We set
last(so, (a},a?),s1,...,5, (ak, 1)) = sn. Fori € {1,2}, we denote byFRuns the set of
all i-runs. Intuitively,i-runs are runs where it is playgs turn to move.

In the turn-based gamestategyrs for playeri € {1,2} is a mappings : FRuns+—
Mi. As before, we require that the strategy only selects edahleves, that isr; (o) €
Mi(last(g)) for all o € FRuns. Fori € {1,2}, let I} denote the set of all player
strategies. Notice thdi! = ;.

For strategiesn € I‘l{ andrp € 15, we say that a rum, <a%,a§>,sl, ... isconsistent
with 15 and7s if, for all n > 0 andi = 1,2, we haverm (o, (a1,a2),s1,...,5) = a}, 4

and (o, (al,82),s1,..., 5, (L, ;) = a2, . Sincedt is deterministic, for alls € S

9



there is a unique run that startsdand is consistent withp and,. We denote this run
by outcom& (s, m, 1®).

The value assigned to a run, to a strategy and to the whole gaendefined as
follows. We sew}*(0) = wy(0), and

Vi'(s,m) = inf wi°(outcom& (s, 1, 78)); Vi®(s) = sup Vy°(s, ).

TREl) e,
The following theorem is proved in the appendix.

Theorem 2. Forall s€ S, it holds y(s) = V{*(s).

4.2 Turn-based Finite Game

We now define a finite turn-based game that can be played orceetigime game
structure. Definitions pertaining this game have a “tf” sigpapt that stands for “turn-
based finite”. The finite game ends as soon as a loop is closethxmal runin the
finite game is a 1-ruro = so,<a%,a%>,sl,...,sq1 such thats, is the first state that is
repeated ino. Formally,n is the least number such thgt= s;, for somej < n. We
setloop(o) to be the suffix ofa: sJ,<aJ+l,aH1> ... Form € M}, » € M1}, and
se S we denote byutcomé(s, i, &) the unique maximal run that startssrand is
consistent withrg ands.

In the finite game, a maximal rum ending with the loop\ is assigned the value of
the infinite run obtained by repeatiigforever. Formallyw}(o) = wy (o - A®), where
A® denotes the concatenation of numerably many copi@s @he value assigned to a
strategyrm € 1} and the value assigned to the whole game are defined as follows

Vi(sm)= inf wj(outcomé(s,1q,®)); Vi(s) = sup Vi(s m).
Tl'2€n 7'[1€n{

Notice that since this game is finite and turn-based, fos alf, it holds:

sup |nf wj (outcomé(s, rm, 7)) = inf sup wi(outcomé&(s, mm,)). (3)
rrleI'Il”2€ 2 "26’727116[71

4.3 Mapping Strategies

In this section, we introduce definitions that allow us taatelthe finite game to the
infinite one. For a 1-rumw = s, <a%,a§),sl, ..., S, letfirstioop(o) be the operator that
returns the first simple loop (if any) occurring m. Similarly, letloopcut{o) be the
operator that removes the first simple loop (if any) framFormally, if o is a sim-
ple run (i.e. it contains no loops) we déstloop(o) = € (the empty sequence), and
loopcuto) = 0. Otherwise, lek > 0 be the smallest number such thgt= gy, for
somej < k; we set

; 1 2 1 52
fll'St'OO[XO') = 0j;, <aj+17aj+1>7 e <ak7ak>7 Ok,
1

b
loopcu{o) = 0o, (a1,83),...,0j, (81,85 1),- -+, On-
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Fig. 3. Nodes linked by dashed lines represent the same state céithe.g

We now define thejuasi-segmentation QSen) to be the sequence of simple loops
obtained by applyin@rstlooprepeatedly ta.

< (e if firstloop(o) = ¢
Q ega)_{firstloop(o)-QSG@OOPCU(U)) otherwise

For an infinite rung, we setQSego) = lim,_... QSego<n). Given a finite rung,
loopcutcan only be applied a finite number of times before it convetgea fixpoint.
We call this fixpointesidual o). Notice that for all rungr, residual o) is a simple path
and therefore its length is bounded |8}.

For simplicity, we developed the above definitions for 1gumhe corresponding
definitions ofresidualc) andQSego) for 2-runso are similar.

For alli € {1,2} and all strategiest € 1}, we define the strategit as (o) =
ni(residual o)) for all o € FRuns. Intuitively, 7t behaves liket until a loop is formed.
At that point, 7t forgetsthe loop, behaving as if the whole loop had not occurred. We
now give two technical lemmas.

Lemmal. Let rq € i, ™ € 1}, and 0 = outcom& (s, 7, ). For all k > 0,
residual o) is a prefix of a finite run consistent witly. Formally, there ist, € [T}
ando’ = outcomé(s, 1, 1) such thato” = residual o) - p.

Similarly, leto = outcom&(s, 1, 7). For all k > 0, there ism € 1} and 0’ =
outcomé(s, 11}, 7») such thato” = residualo) - p.

Proof. We prove the first statement, as the second one is analogauprdieed by
induction on the length oQSedo<). If QSego<y) is the empty sequence (i.e<
contains no loops), the result is easily obtainedirasoincides withrg until a loop is
formed. So, we can take, = 1 and obtain the conclusion.

On the other hand, suppo€Seqo<y) = A1,...,An. For simplicity, suppos@; #
Ao. Asillustrated in Figure 3, letrj be the first state aftey; that does not belong .
Then,oj_1 belongs taA; and there is another indéx j — 1 such thab; = 0j_1. So,
the game went twice througty_1 and two different successors were taken. However,
player 1 must have chosen the same mowv& iandgj_1, as by constructiofis (0<ij) =
fm(o<j_1). Therefore, the change must be due to a different choige.dt is easy to
devisert, that coincides withp, except thaf\; may be skipped when playing against
n. We can then obtain a rym = outcomé (s, 7, 7,) and an integek’ > 0 such that
QSedpx) = Az, ..., Ay andresidualp<y) = residualp). The thesis is obtained by
applying the inductive hypothesis ppandk’. i
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The next lemma shows that, for a strategyec 11, each loop occurring in the
infinite game undern can also occur in the finite game undar. The proof can be
found in the appendix.

Lemma 2. Letmm € I}, 1& € 1}, ando = outcom& (s, 71, 7). For all A € QSegdo),
A can occur as the final loop in a maximal run of the finite gamentadly, there is
1, € 1} and ¢’ = outcomé(s, r, 1) such thatA = loop(o”).

Similarly, leto = outcom&(s, s, 7). For all A € QSedo), there ism € 1} and
o’ = outcomé(s, 11, 7&) such thatA = loop(o”).

The next theorem states that if the strategyof player 1 achieves value in the
finite turn-based game, the strateffy achieves at least as much in the infinite turn-
based game.

Theorem 3. For all s € S andm € I14, it holds V*(s, /) > Vi(s, ).

Proof. Letv = V{(s, ). We show thaf can ensure rewardin the infinite game. The
result is trivially true ifv = —oc0. So, in the following we assume that> —oo.

Fix a player 2 strategys, and let ¢ = outcom& (s 7, ). Let QSedo) =
A1,A2.... We distinguish two cases, according to whether time de®my not ing.

If time diverges, all loopd\j that contain no tick give no contribution to the valuewf
and can therefore be ignored.

For all Aj containing (at least) a time step, by Lemma 2is a possible terminating
loop for the finite game unden. Thus,R(A;) > v-D(A;). Now, the value otr can be
split as the value due to loops containing time steps, pleiv#fue due to the residual.
For alln > 0, letm, be the number of loops IQSedo<,). We obtain:

Wi () = liminf R0 _ iy RUESAUalO20)) + SinaRA) LSRG
1 - now D(0<n) n—e D(residualo<p)) + ET‘QlD()\j) T neco ZT];lD()\j)

> V.

Consider now the case whencontains only finitely many time steps. Let- 0 be
such that no time steps occurdnafter oi. Consider a loof; entirely occurring after
ok. ObviouslyA; contains no time steps. Moreover, by Lemma\2js a terminating
loop for a maximal rurp in the finite game undem. SinceV{(s, 1) > —oo, it must
be wj(p) = +. Consequently, it holdblamelesYp) and in particular player 1 is
blameless in all edges iy.

Now, letk’ > 0 be such that each state (and edge) afiewill eventually be part
of a loop of QSeqo). Let k" = max{k,k'}. Then, all edges that occur aftkf will
eventually be part of a loop where player 1 is blameless. Equmsntlyk” is a witness
to the fact thablameles$(o), and thereforev*(g) = +o > v.

Theorem 4. For all s € S andrp € 1%, it holds \§°(s, &) < Vi(s, ).

Proof. Let v = Vj(s, 7). Similarly to Theorem 3, we can rule out the case: + as
trivial.
Fix a player 1 strategyr, and leto = outcomé&’(s, 1, 7). We show that* (o) <
v. If time diverges oro, the proof is similar to the analogous case in Theorem 3.
Otherwise, letk > 0 be such that no time steps occuradnafter ox. Consider a
loop A € QSedo), entirely occurring aftey. ObviouslyA contains no time steps.

12



Moreover, by Lemma 2 is a terminating loop for a maximal rup in the finite
game underg. SinceVy(s, 1) < +oo, it must bew{(p) = —e. Consequently, it holds
—blameles¥(p) and in particular player 1 is blamed in some edg oThis shows that
—blamelesY(o), and consequenthy*(g) = —e0 < v. 1l

Theorems 3 and 4 show that the infinite game is no harder treafirtite one, for
both players. Considering also (3), we obtain the followiegult.

Theorem 5. Forall s€ S, §°(s) = Vi(s).

Theorems 2 and 5 allow us to use the finite game to compute the ofthe original
timed game. The length of the finite game is boundedSpylt is well-known that a
recursive, backtracking algorithm can compute the valusich game in PSPACE.

Theorem 6. For all s € S, \i(s) can be computed in PSPACE.

4.4 Memory

We show that memoryless strategies suffice for both plapeesach their value. Notice
that it is sufficient to show that the finite game has memosytgstimal strategies, as
the result follows from Theorems 3 and 4. To this end, follogy[EM79] we define

a modified version of the finite game, which is still played ba same discrete-time
game structure. For a stage S, thes-forgetful game is played as the finite game, except
that the first timesis encountered while playing, the history upstis forgotten for the
purpose of checking game termination. Formally, a maximaln thes-forgetful game

is a finite runo = s, (a},a?), s, ..., s, such that:

— eithersdoes not occur ilr ands;, is the first state that is repeatedadn
— oroi is the first occurrence «fin g, ands, is the first state that is repeateddny.

We defineloop(o) to be the final loop\ of o, and we set(a) = w (o -A%). We
denote byoutcomé&sS(t, m, &) the unique maximal run in the-forgetful game that
starts int and is consistent with, 76. The value assigned to a stratemgye 1} and the
value assigned to the whole game are defined as usual:

ViS(t,mm) = inf wiS(outcom&S(t,mm,m));  Vi(t) = sup ViS(t,m).
el ment

Lemma 3. Forall st € S, ¥{(t) = V{*(t).

Proof. Let 1 € 1} be a strategy for player 1 such thd{t, ) = V{(t) = v. We use
strategy’n to play thes-forgetful game. Clearly, runs of the forgetful game thatrabd
contains may also have occurred in the normal finite game, so thoselravesvalue at
leastv.

Consider now a ruro = outcomé&S(t, 75, 75) which contains stats. The value
V\flf’s(a) is entirely determined by the final loop= loop(g). One can check that there
is 17, € 1} such that the rum’ = outcom& (t, 71, 7)) ends with the sequencde”. By
Theorem 5, we have/*(0) = wy(a”) > vi(t) = Vi(t) = v. This proves that(t) >
vtlf’s(t). The converse inequality is proved by a symmetrical argupexthanging the
roles of the two playerd
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The next theorem states that memoryless optimal strategissfor both players.
The proof, based on Lemma 3, can be found in the appendix.

Theorem 7. Foralli € {1,2}, and te S, there exists a memoryless optimal strategy for
player i. Formally, there exists € 1; such that y(t, 75) = v4(t).

4.5 Improved Algorithms

We show that, gives€ S, v € Q andi € {1,2}, the problem of checking whether
V(s) > v is in NPNcoNP. We exploit the existence of positional optimal sgae
for both players, as such strategies can be “guessed” impotiijal time. Consider the
problem of checking whethei{(s) > v. The problem s in NP because, once the optimal
strategy of player 1 has been guessed, we can compute ingmoightime the value
V{(s, ). The problem is also in coNP because, once a strategy ofiagdixed, we
can compute in polynomial time the valufs, ).

Once we fix a positional strategy for playiethe finite game is reduced to a graph,
where all the choices belong to player. Each edge in this graph can be labeled with
a pair of movegal,a®) € My x M. Then eis labeled withick whenevea! = a® = A;,
and withbl; whenever € Acts U {Ao}. To determine the value of this graph, we first
transform the graph into a graph where all edges are labétédiek; we then apply the
algorithm of [Kar78] for finding miminum average cost cyclasa graph. We proceed
depending on whether player 1, or player 2, fixes a positistrategy. When player 1
fixes a positional strategy:

1. Find all the loops\ in the graph where all the edges are labeled wititk and
—bl;. Since player 2 will want to avoid, collapse it into a single graph vertex,
without self-loop, and with incoming and outgoing edgeg t@respond to all
edges incoming and outgoing from the loop.

Some of these collapsed vertices may have no outgoing ediges. their value,
and the value of all vertices from which one cannot avoid mgethem, is+oo;
remove all such vertices from the graph.

2. Find all the loops where all the edges are labeled wttbk. Due to the collapsing
in the above step, each of these loops contains at least gedaukledl,, so its
value is—co. These loops, and all vertices that can reach them, have vah
Remove them from the graph.

3. From the resulting grapks, construct a multigrapl’ with the same vertices
as G. For each simple path iG of the fromup,...,un,Uunr1 Where the edges
(Up,U1),...,(un—1,Un) are labeled by-tick, and the edgéun,un;1) is labeled by
tick, we insert inG’ an edg€gup, un, 1) labeled by the same reward @, Un1).

4. Use the algorithm of [Kar78] to find the loop with minimaleamge reward G’
(the algorithm of [Kar78] is phrased for graphs, but it canttddally adapted to
multigraphs). Ifr is the ratio of the loop thus found, all the vertices of thedpand
all the vertices that can reach the loop, have vallRemove them fron®'. Repeat
this step untikis removed from the graph.

Clearly, the stage at whickis removed from the graph determines the value of the
game as. Similarly (but not symmetrically), if player 2 fixes a paeital strategy, we
can compute the value for player 1 as follows:

14



1. Find all the loops where all the edges are labeled wittk and—bl;. These loops,
and all vertices that can reach them, have valae Remove them from the graph.

2. Find all the loop2 where all the edges are labeled wittick. Due to the previous
step,A contains at least one edge labeldg, so player 1 will want to avoid it.
CollapseA into a single graph vertex, without self-loop, and with iming and
outgoing edges that correspond to all edges incoming argbmg fromA .
Some of these collapsed vertices may have no outgoing etiges. their value,
and the value of all vertices from which one cannot avoid mgethem, is—oo;
remove all such vertices from the graph.

3. From the resulting grapB, construct a grapl’ as in step 3 of the previous case.

4. This step is the same as step 4 of the previous case, eke¢pt tach iteration we
find the loop withmaximalaverage reward.

Since the algorithm of [Kar78], as well as the above graphimadations, can all be
done in polynomial time, we have the following result.

Theorem 8. The problem of computing the value to player{1,2} of a discrete-time
average reward game is in NiRoNP.
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A Additional Proofs
A.1 Proof of Theorem 2

Consider anyr € ;. Sincell; = 1}, player 1 can employg in both the original
timed game and in the turn-based game. We show that in thebasad gamer can
achieve at least the same value as in the original timed g@oresider anys € 7} and
0 € outcom& (s, 1, 7®). Player 2 cannot directly usg in the original timed game,
because in that game she cannot base her decisions on teatauwve of player 1.
However, sinceam is fixed, we can finds, € I, thatguesseshe move of player 1 at
each step, effectively simulating the behaviorgivhen played againgt . It then holds
thato € Outcomess, T, 1,). Since this holds for any, we have that (s) < vi°(s).

The inequalityvi(s) > Vy°(s) is immediate, since it is clearly an advantage for
player 1 to conceal his move from player 2 at each roind.

A.2 Proof of Lemma 2

We prove the first statement, regarding the comparison legtweand7r, as the other
statement is analogous. L&Seo) = Aq,Ao,..., andA = Aj. Let k be the largest
integer such thaQSego<k) = A1,...,Aj_1. Clearly, this means that the last edge of
Aj is Ok, (8, 1,8, 1), Ok 1. Also, residualo<y) contains at the end all the edges of
Aj, except the last one. By applying Lemma 1dgy, we obtainm € 1} and o’ =
outcomé(s, 1, 1) such thato’ = residualo-y) - p. It remains to prove that, under
m, the suffixp of o’ can be replaced by the edge, (a}. ;,aZ 1), Ok:1. This is easily
obtained by definingt to coincide with7s, except forr (residual o) - (at, 1)) =

o .0
A.3 Proof of Theorem 7

We prove the statement for= 1, as the other case is symmetrical. We develop our argu-
ments for the finite turn-based game, as the conclusion éotiginal timed game fol-
lows from from Theorem 3. We proceed by complete induction eny s |1 (s)| —|S.
Whenn = 0, only one move is available to player 1 at each state and thabviously
a memoryless optimal strategy.

Suppose that the statement is true for all integers up 00, and consider the
situation whereS os|l1(s)| — |S| = n+ 1, in this case, there is at least one state,
where|li1(s)| > 1. In this game structure (call %), we can play the-forgetful game,
and Lemma 3 states that the game value will be the same asfttied normal turn-
based finite gamef{’s(%,t) = V{(¥.,t), which can be ensured by some stratemy,
By Theorems 2 and 54 (¥¢,t) = V{"(¥,t) = vi(¢,t), so strategyr is able to ensure
v1(¥,t) in thesforgetful game. Lev = v;(¥,1).

Clearly, q only plays one move at stasén thes-forgetful game (call this mova e
I1(s)), because any return sawould end the game. Therefore, we can/Sgs) = {a}
(and leave the enabled moves for all other states the sanpgrasf a new discrete-
time game structur®’ = (S Acts;,Acts, [, >, d,r), and still be consistent with how
q desires to play the-forgetful game.

Since¥’ is consistent withm in thes-forgetful gamerm is able to ensure at least the
same value as i#, namelyv. Moreover, since?’ contains less choices for player 1,
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no player 1 strategy can achieve a value greater mefho,v‘{’s(%’,t) = v. By again
appealing to Lemma 3 and Theorems 2 and 5, we finduhat;*(¢',t) = Vi{(¥',t) =
V(9 1) = (9 1).

To summarize, we have constructed a reduced game struéfreyith value
v1(¢’,t) = v. Notice that our inductive hypothesis applies4 sincey «s|l7 ()| —
|S < n. Therefore, there exists some memoryless strategyyvhich is able to ensure
when played o7’. But thenrt; is also able to ensurnein the originak? since all moves
that g might play exist ir. This demonstrates the desired conclusion for play®r 1.
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