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1 IntrodutionWe onsidermetri transition systems, whih are transition systems in whih theprediates, at eah state, are interpreted as elements of generi metri spaes.Many examples of metri transition systems have been studied in the literature.As the set IR of real numbers is a metri spae (when equipped, for instane,with the metri d(x; y) = jx � yj), hybrid systems (where loks and hybridvariables are interpreted in IR) and pried automata (where a real-valued \prie"is assoiated with eah state) are both examples of metri transition systems.Kripke strutures are also a speial ase of metri transition systems, as the setft; fg of boolean values an be assoiated with the metri d(t;t) = d(f; f) = 0,and d(t; f) = d(f;t) = 1. Indeed, it is diÆult to think of a lass of transitionsystems that has been proposed in the literature, and that annot be ast as ametri transition system.Trae inlusion, trae equivalene, simulation, and bisimulation are lassi-al system relations whih play a very important role in system spei�ationand veri�ation. These notions are de�ned in terms of the equality of prediatevaluations: for example, trae inlusion holds between two states s, t if, for ev-ery trae from s, we an �nd a trae from t with equal prediate valuations.One the prediate valuations belong to metri spaes, it beomes natural toextend these system relations to metris, that apture how lose the valuationsare, rather than requiring equality. For example, trae inlusion an be general-ized to a metri, where the distane between s and t provides a bound for howlosely the valuations of an arbitrary trae from s an be mathed by a traefrom t. Following this idea, we extend the lassial relations of trae inlusion,trae equivalene, simulation, and bisimulation to a metri setting, by de�ninglinear and branhing distanes4. Considering distanes, rather than relations,leads to a theory of system approximations [7, 18, 2℄, enabling the quanti�ationof how losely a onrete system implements a spei�ation. System metris,rather than relations, are also appropriate when the system struture is derivedfrom experimental observations, so that the prediate valuations are subjetto measurement errors. In this ase, system metris provide useful informationabout the similarity of system behaviors, while relations, relying on equality inprediate valuations, are unneessarily �ne-grained.We de�ne two families of distanes: linear distanes, whih generalizetrae inlusion and equivalene, and branhing distanes, whih generalize(bi)simulation. We relate these distanes to the quantitative version of the twowell-known spei�ation languages Ltl and �-alulus, showing that the dis-tanes measure to what extent the logi an tell one system from the other. Thedistane notions arising as generalizations of trae inlusion and simulation areasymmetrial, just like the relations they generalize: the \simulation distane"between s and t is in general di�erent from the \simulation distane" between tand s. We all these asymmetrial distanes direted metris, preferring this term4 In this paper, we use the term \distane" in a generi way, applying it to varioustypes of metris. 2



to the term quasi-pseudometris used elsewhere in the literature [9℄; symmetri-al distanes will be alled undireted metris. Thus, for the sake of generality,we develop our results in the general setting where prediates are evaluated inspaes endowed with direted metris.Our starting point for linear distanes is the distane k�� �k1 between twotraes � and �, whih measures the supremum of the di�erene in prediatevaluations at orresponding positions of � and �. To lift this trae distane to adistane over states, we de�ne ld s(s; t) = sup�2Tr(s) inf�2Tr(t) k� � �k1, whereTr(s) and Tr(t) are the set of traes from s and t, respetively. The distaneld s(s; t) is asymmetrial, and is a quantitative extension of trae ontainment:if ld s(s; t) = b, then for all traes � from s, there is a trae � from t suhthat k� � �k1 � b. In partiular, if the metri spaes where the prediates areevaluated assign distane 0 only to idential elements, then Tr(s) � Tr(t) i�ld s(s; t) = 0. We de�ne a symmetrial version of this distane by lds(s; t) =maxfld s(s; t); ld s(t; s)g, yielding a distane that generalizes trae equivalene;thus, lds(s; t) is the Hausdor� distane between Tr(s) and Tr(t).We relate the linear distane to the logi Qltl, a quantitative version ofLtl [14℄. When interpreted on a metri transition system, Qltl formulas yield avalue in the positive reals extended with in�nity, or IR+[f1g. The propositionalformulas of Qltl are of the form D(r; ) and D(; r), where r is a prediate, and a onstant. The formula D(r; ), at a state, yields the distane of the valuationof r at the state from the onstant . Both D(r; ) and D(; r) are present asbasi formulas, sine in our setting based on direted distanes, the distanebetween the valuation of r and , and the distane between  and the valuationof r, need not be the same. The formula \next p" returns the (quantitative)value of the subformula p in the next step of a trae, while \eventually p" seeksthe maximum value attained by p throughout the trae. The logial onnetives\and" and \or" are interpreted as \min" and \max."In the standard, relational setting, for a relation to haraterize a logi, twostates must be related if and only if all formulas from the logi have the sametruth value on them. In our metri framework, we an ahieve a �ner har-aterization: in addition to relating those states that formulas annot distin-guish, we an also measure to what extent the logi an tell one state from theother. We give two kinds of haraterizations. We show that for arbitrary metritransition systems, the distanes provide a bound for the di�erene in value ofQltl formulas: preisely, for all states s; t we have j'(t) � '(s)j � lds(s; t) and'(t) � '(s) � ld s(s; t). Moreover, we show that for �nitely branhing metritransition systems, suh haraterizations are tight: for all states s; t we havelds(s; t) = sup'2Qltl j'(t) � '(s)j and ld s(s; t) = sup'2Qltl('(t) � '(s)). Thistightness result does not hold in general for non-�nitely-branhing metri tran-sition systems.We then study the branhing distanes that are the analogous of simulationand bisimulation on quantitative systems. A state s simulates a state t via Rif the proposition valuations at s and t oinide, and if every suessor of s isrelated via R to some suessor of t. We generalize simulation to a distane bdAs3



over states. If bdAs(s; t) = b, then the valuations of orresponding prediates at sand t di�er by at most b, and every suessor of s an be mathed by a suessorof t within bdAs-distane b. In a similar fashion, we an de�ne a distane bdSsthat is a quantitative analogous of bisimulation; suh a distane has been studiedin [7, 18℄. We relate these distanes to Qmu, a quantitative �xpoint alulus thatlosely resembles the �-alulus of [4℄, and is related to the aluli of [11, 5℄ (seealso [10, 15℄). Similarly to Qltl, the basi formulas of Qmu are of the formD(r; ) and D(; r), for a prediate r and a valuation . The modal formulas8 p, 9 p ompute respetively the least and greatest value of a subformula pat all suessor states; the logial onnetives \and" and \or" are interpreted as\min" and \max", and the �xpoints are given a quantitative interpretation.Again, we provide a twofold logial haraterization of the branhing dis-tanes in terms of Qmu. We show that for arbitrary metri transition systems,we have j'(t) � '(s)j � bdSs(s; t) and  (t) �  (s) � bdAs(s; t), where ' is anyQmu-formula, and  is any \universal" Qmu-formula, i.e., any formula of Qmuwhih does not ontain 9 . Moreover, if the metri transition system is �nitelybranhing, then we have the stronger result bdSs(s; t) = sup'2Qmu j'(t) � '(s)jand bdAs(s; t) = sup'29Qmu('(t) � '(s)), where 9Qmu is the fragment of Qmuin whih 9 does not our; these results do not hold in general for non-�nitely-branhing metri transition systems.We relate linear and branhing distanes, showing that just as simulation im-plies trae ontainment, so the branhing distanes are greater than or equal tothe orresponding linear distanes. However, we show that determinism plays alesser role in the quantitative setting than in the standard boolean setting: whiletrae inlusion (resp. equivalene) oinides with simulation (resp. bisimulation)for deterministi boolean transition systems, we show that linear and branhingdistanes do not oinide for deterministi quantitative transition systems. Fi-nally, we present algorithms for omputing linear and branhing distanes overquantitative transition systems. We show that the problem of omputing the lin-ear distanes is PSPACE-omplete, and it remains PSPACE-omplete even overdeterministi systems, showing one more that determinism plays a lesser rolein quantitative transition systems. The branhing distanes an be omputed inpolynomial time using standard �xpoint algorithms [4℄.We present all our results in a disounted version, in whih distanes our-ring i steps in the future are multiplied by �i, where � is a disount fator in[0; 1℄. This disounted setting is ommon in the theory of games (see e.g. [8℄)and optimal ontrol (see e.g. [6℄), and it leads to robust theories of quantita-tive systems [4℄. In the disouned setting, behavioral di�erenes arising far intothe future are given less relative weight than behavioral di�erenes a�eting thepresent or the near future. Hene, the disounted setting leads to notions of\loal similarity" that enjoy many pleasant mathematial properties.
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2 PreliminariesWe denote by IR the set of real numbers, by IR+ the set of non-negative realsand we set bIR+ = IR+ [ f1g. We extend the operations +;�; � to bIR+ as usual:namely, 1�1 = 0, 1 +1 = 1, and 1� x = 1 for all x 2 IR, 1 � x = 1for x 2 IR n f0g. For two numbers x; y 2 bIR+, we write x t y = max(x; y)and x u y = min(x; y). We lift the operators t and u, and the relations <, �to funtions via their pointwise extensions. Preisely, for n-argument funtionsf1; f2 : A1�� � ��An ! B, we write f1 t f2 for the funtion g : A1�� � ��An ! Bde�ned by g(x1; : : : ; xn) = f1(x1; : : : ; xn) t f2(x1; : : : ; xn), and similarly foru; we write f1 � f2 if f1(x1; : : : ; xn) � f2(x1; : : : ; xn) for all x1 2 A1, . . . ,xn 2 An, and we write f1 < f2 if f1 � f2 and if there are some x1 2 A1,. . . , xn 2 An for whih f1(x1; : : : ; xn) < f2(x1; : : : ; xn). Given a funtion d :X2 ! bIR+, we denote by Zero(d) = f(x; y) 2 X2 j d(x; y) = 0g its zero set.Given a sequene fxigi2IN, we ommonly write limi xi (resp. supiXi, inf i xi) forlimi!1 xi (resp. supi!1Xi, inf i!1 xi). The following lemma summarizes somesimple fats about sequenes of real numbers that will be needed in subsequentproofs.Lemma 1 Let I be a set and fxigi2I, fyigi2I be two families of numbers inIR. The following assertions hold.1. If xi�yi �  for all i 2 I, then supi xi� supi yi �  and inf i xi� inf i yi � .2. Let X;Y be sets and f : X � Y ! IR be a funtion. Thensupx2X infy2Y f(x; y) � infy2Y supx2X f(x; y): �2.1 Metris and metri spaesWe de�ne direted and undireted metris, where undireted metris are requiredto be symmetrial and direted metris are not. For example, the travel distanebetween two points in a ity with one-way streets is a direted metri. Our di-reted and undireted metris generalize the usual metris, in that elements thathave metri 0 are not required to be idential. This terminology, used through-out the paper, di�ers somewhat from the standard one: direted metris havebeen alled generalized pseudometris [9℄. We prefer the term \direted", as itis more spei�, and parallels the distintion between direted and undiretedgraphs. The de�nitions are as follows.De�nition 1 We introdue the following terminology.1. A direted metri on a set X is a funtion d : X �X ! bIR+ that satis�es{ d(x; x) = 0 for all x 2 X ;{ d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X (triangle inequality).2. An undireted metri is a direted metri d : X �X ! bIR+ that is symmet-rial, that is, suh that d(x; y) = d(y; x) for all x; y 2 X . Undireted metrisare also alled simply metris. �5



We will often de�ne a direted metris, and obtain the orresponding undiretedmetris by symmetrization.De�nition 2 (symmetrization) Given a direted metri d on a set X , wedenote by �d its symmetrization, de�ned by �d(x; y) = d(x; y) t d(y; x) for allx; y 2 X . Obviously, for all x; y 2 X , we have d(x; y) � �d(x; y). �In a Kripke struture, the value of a proposition, at eah state, is a member ofthe truth-value set ft; fg. We extend this setting by evaluating propositions, ateah state, to elements of metri spaes. A metri spae is a set with a metride�ned on it; for the sake of generality, we assume only that the metri is adireted metri.De�nition 3 A direted metri spae, or shortly a metri spae, is a pair(X; d), where d is a direted metri on X . �Example 1 An example of a metri spae is the spae of RGB-representedolors, where the distane between olors 1 and 2 represents the di�erenein brightness between 1 and 2. The spae is then X = [0; 1℄3, and for x =hx1; x2; x3i and y = hy1; y2; y3i we de�ne d(x;y) = jx � b � y � bj, where b is avetor giving the brightness of eah basi olor, and � is the internal produt. Itis easy to see that (X; d) is a direted metri spae. In partiular, d is undireted,and note that di�erent olors may have the same brightness. �Example 2 Another example of metri spae isXIR = (IR; dIR), with d(x; y) =x �� y def= maxfx� y; 0g for x; y 2 IR. It is immediate that d is a direted metri.�Example 3 A partiularly simple example of metri spae is XB = (X; dB )is X = f0; 1g and d(x; y) = jx � yj for x; y 2 f0; 1g. This is the usual spae of\boolean" valuations; it is immediate that d is an undireted metri. �When providing logial haraterizations for the distanes, we will �rst onsiderlogis in whih any element of the metri spae an be used as a onstant. If themetri spae is unountable, however, this leads to the onsideration of logiswith unountably many symbols. If a metri spae is separable, eah elementan be approximated by arbitrarily lose elements of a ountable basis. In thisase, we will see that logis with ountably many symbols (orresponding to theelements of the basis) will suÆe.De�nition 4 (separable direted metri spae) A direted metri spae(X; d) is separable if there is a ountable basis B � X suh that, for all x 2 Xand all " > 0, there is y 2 B with d(x; y) < " and d(y; x) < ". �2.2 Metri transition systemsA metri transition system is a transition system where the value of a propo-sition, at eah state, is an element of a direted metri spae. To simplify thenotation, we assume throughout the paper an underlying set AP of propositions,where eah proposition r 2 � takes values in a metri spae (Xr; dr).6



De�nition 5 (valuations) A valuation u of a set � � AP of propositions isa funtion with domain � that assigns to eah r 2 � an element q 2 Xr ofthe metri spae (Xr; dr) orresponding to r. We denote by U [�℄ the set of allvaluations of �. �De�nition 6 (metri transition system) Ametri transition system (MTS)is a tuple M = (S; � ;�; [�℄) onsisting of the following omponents:{ a set S of states;{ a transition relation � � S � S;{ a �nite set � � AP of propositions;{ a funtion [�℄: S ! U [�℄ whih assigns to eah state s 2 S a valuation.For a state s 2 S, we write �(s) for ft 2 S j (s; t) 2 �g. We require that M isnon-bloking: for all s 2 S, the set �(s) is non-empty. �We distinguish the speial lasses of deterministi and �nitely branhing MTSs.De�nition 7 (speial types of MTSs) Let M = (S; � ; [�℄) be a MTS.{ We say that M is deterministi if for all states s 2 S and t; t0 2 �(s) witht 6= t0, there is r 2 � suh that [t℄(r) 6= [t0℄(r).{ We say that M is �nitely branhing if �(s) is �nite for all s 2 S.{ We say that M is separable if, for all r 2 �, the metri spae (qr ; dr) isseparable. In this ase, we denote by Br a ountable basis for (qr; dr). �2.3 Paths and traesGiven a set A and a sequene � = a0a1a2 � � � 2 A!, we write �i for the i-thelement ai of �, and we write �i = aiai+1ai+2 � � � for the (in�nite) suÆx of �starting from �i.De�nition 8 (paths and traes) Consider an MTSM = (S; � ;�; [�℄). A pathofM is an in�nite sequene of states � 2 S! suh that (�i; �i+1) 2 � for all i 2 N.Given a state s 2 S, we write PathsM (s) for the set of all paths of M startingfrom s; we omit the subsript M when lear from the ontext.A trae is an in�nite sequene � 2 U [�℄!. Every path � ofM indues a trae[�℄ = [�0℄[�1℄[�2℄ � � � . We write TrM (s) = f[�℄ j � 2 PathsM (s)g for the set oftraes of M starting from the state s 2 S, and we omit the subsript M whenlear from the ontext. �2.4 Branhing and trae relationsWe de�ne simulation, bisimulation, trae ontainment, and trae equivalene forMTSs as usual.De�nition 9 ((bi)simulation, trae ontainment/equivalene) For anMTS M = (S; � ;�; [�℄), the simulation relation �sim (resp. the bisimulationrelation �bis) is the largest relation R � S � S suh that, for all sR t, thefollowing Conditions 1 and 2 (resp. 1, 2, and 3) hold:7



1. [s℄ = [t℄;2. for all s0 2 �(s), there is t0 2 �(t) with s0R t0;3. for all t0 2 �(t), there is s0 2 �(s) with s0R t0.For s; t 2 S, we write s vtr t if Tr(s) � Tr(t), and s �tr t if Tr(s) = Tr(t). �2.5 DisussionWe note that, for some of the results on system metris, it would have beensuÆient to de�ne a metri transition system as a system that maps eah stateinto an element of a metri spae, bypassing thus the introdution of a set ofprediates, and the related mahinery. Suh a de�nition, of ourse, is a speialase of the one we adopt, and orresponds to onsidering metri transition sys-tems with only one proposition. The main funtion of prediates is to enable usto develop the onnetion between system metris and logis, sine the logisrefer to quantities via the prediates.In an MTS (S; � ;�; [�℄), we all eah r 2 � a \proposition", rather than \vari-able", in spite of the fat that r takes values in a generi metri spae (Xr; dr),rather than in the set of truth-values. Our hoie of terminology is motivatedby the fat that in the system logis we onsider, the symbol r plays a (synta-ti) role that is analogous to that of ordinary propositions. We reserve insteadthe term \variable" for the variables used to onstrut �xpoint expressions in�-alulus.3 Linear Distanes and Logis3.1 Linear distanesThroughout the paper, unless spei�ally noted, we onsider a �xed MTS M =(S; � ;�; [�℄). We proeed by de�ning the linear distanes between valuations, thenbetween traes and �nally between states. The propositional distane betweentwo valuations is the maximum di�erene in their proposition evaluations, wheredi�erenes in the assignments of proposition r are measured by the metri dr.De�nition 10 (propositional distane) We de�ne the propositional dis-tane pd : U [�℄2 ! bIR+, for all valuations u; v 2 U [�℄, as pd(u; v) =maxr2� dr(u(r); v(r)). �For ease of notation, we write pd (s; t) for pd([s℄; [t℄). If dr is a distane foreah r 2 �, then given u; v 2 U [�℄ we have (u; v) 2 Zero(pd) i� u = v, and(u; v) 2 Zero(pd ) i� u � v. The trae distane is the pointwise extension ofthe propositional distane to in�nite sequenes of valuations, where the value atposition i is disounted by �i, for a disount fator � 2 (0; 1℄.De�nition 11 (trae distane) We de�ne the trae distane td� : U [�℄! �U [�℄! ! bIR+ by letting, for �; � 2 U [AP ℄! and � 2 (0; 1℄, td�(�; �) =supi2N �ipd(�i; �i). �8



It is easy to show that td� is a direted metri. The following result statesthat if we base the notion of trae distane on pd instead of on pd (i.e. if wereplae pd by pd in the de�nition above), we obtain the symmetrization td� oftd�. Moreover, the kernel of this symmetrization is trae equality.Lemma 1. For all sequenes �, � 2 U [�℄! and all � 2 (0; 1℄, we havetd�(�; �) = supi2N �ipd(�i; �i) and (�; �) 2 Zero(td�) () � = �.The linear distanes between two states are obtained by lifting trae distanes tothe set of all traes from the two states, as in the de�nition of Hausdor� distanebetween sets.De�nition 12 (linear distane) We de�ne the two linear distanes lda andld s over S as follows, for s; t 2 S and � 2 (0; 1℄:lda�(s; t) = sup�2Tr(s) inf�2Tr(t) td�(�; �) ld s�(s; t) = sup�2Tr(s) inf�2Tr(t) td�(�; �) �One an easily hek that, for all � 2 (0; 1℄, the funtions lda� and ld s� aredireted metris, while lda� and lds� are undireted ones. Intuitively, the distaneld s� is a quantitative extension of trae ontainment: for s; t 2 S, the distaneld s�(s; t) measures how losely (in a quantitative sense) a trae from s an besimulated a trae from t. The symmetrization of ld s� is lds�, whih is related totrae equivalene. Indeed, we will see in the next setion that it is possible tode�ne a quantitative logi Qltl suh that the valuation of Qltl formulas at sand t an di�er by at most lds�(s; t), and similarly, the valuation of any Qltlformula at t is at most ld s�(s; t) below the valuation at s.Example 4 Consider the ase where (Xr; dr) = XIR for all r 2 �, that is, allpropositions are interpreted as real numbers, and dr(a; b) is a measure of howmuh greater is a than b. In this setting, for � = 1 the distanes lda� and lda�have the following intuitive haraterization. For a trae � 2 U [�℄! and  2 IR,denote by � ��  the trae de�ned by (� �� )k(r) = �k(r) ��  for all k 2 N andr 2 �: in other words, � ��  is obtained from � by dereasing all propositionvaluations by . For all s; t 2 S, if lda1(s; t) =  then for every trae � from s thereis a trae � from t suh that � � � �� . This means that lda1(s; t) is a \positive"version of trae ontainment: for eah trae � of s, the goal of a trae � from tis not that of being lose to �, but rather, that of not being below � �� . �Theorem 1 For all �nitely branhing MTSs (S; � ;�; [�℄) and for all � 2 (0; 1℄,we have vtr = Zero(ld s�) and �tr = Zero(lds�).Proof. Let (S; � ;�; [�℄) be an MTS with s; t 2 S and � 2 (0; 1℄. It is easy to seethat s vtr t implies ld s�(s; t) = 0. To prove the onverse, assume that ld s�(s; t) =0 and let � 2 Tr(s). Then, there are traes �0; �1; �2 : : : 2 Tr(t) suh thattd�(�; �i) < 12i for all i. Due to the �nitely branhing property, there exists atrae �� suh that td�(�; ��) < 12i for all i. This means that td�(�; ��) = 0,whih, by Lemma 1, is the same as � = �. Now, the result for �tr and lds� easilyfollows. �9



t3t0t1 t2 t4 : : :: : :r=0r=:1 r=:0001r=:01 r=:001s0 r=0Fig. 1. An MTS showing the di�erene between Zero(lds�) and vtr . The proposition ris evaluated in the metri spae XIR. u1r=1r=0u0r=1r=0 r=0t1 t2t0s1r=0r=0s0Fig. 2. An MTS showing the di�erene between lda�, ld s�, lda�, and lds�. The propositionr is evaluated in the metri spae XIR.To show that the result above does not hold for in�nitely branhing systems,onsider the MTS in Figure 1, where the proposition r is again evaluated inthe metri spae XIR. This MTS has in�nitely many states s0, t0, t1, t2; : : :and transitions (s0; s0), (t0; ti) and (ti; ti) for eah i 2 N. Moreover, we put[r℄(s0) = [r℄(t0) = 0 and [r℄(ti) = 10�i for i > 0. Then, we have for all � 2 (0; 1℄that (s0; t0) 2 Zero(ld s�), but s0 6vtr t0. To obtain an MTS with lds�(t0; u0) = 0,but t0 6�tr u0, we let u0 be a state that is the exatly same as t0 (i.e. same valu-ation and same suessor states), exept that it has a self-loop (i.e. a transition(u0; u0) 2 �).The relations among linear distanes are summarized by the following theo-rem.Theorem 2 The following assertions hold.1. For all MTSs, and for all � 2 (0; 1℄, we have lda� � lda�, lda� � ld s�,ld s� � lds�, and lda� � lds�; moreover, for � 2 (0; 1℄ the inequalities an-not be replaed by equalities.2. For � 2 (0; 1℄, the distanes ld s� and lda� are inomparable: there is an MTSwith states s; t; z 2 S suh that ld s�(s; t) < lda�(s; t) and ld s�(t; z) > lda�(t; z).Proof. The �rst and third inequalities of statement (1) are trivial, while theseond and fourth follow immediately from the fat that, for all traes � and �,td(�; �) � td(�; �). For � 2 (0; 1℄ and the MTS in Figure 2, we haveld a�(s0; t0) = 0 lda�(t0; u0) = 0 lda�(u0; t0) = 0ld s�(s0; t0) = 0 ld s�(t0; u0) = � ld s�(u0; t0) = 0lda�(s0; t0) = � lda�(t0; u0) = 0 lda�(u0; t0) = 0lds�(s0; t0) = � lds�(t0; u0) = � lds�(u0; t0) = �10



Thus, we have an example where lda� 6= ld s�, lda� 6= lda�, ld s� 6= lds�, lda� 6= lds�,and neither ld s� � lda� nor ld s� � lda�. �Next, we show that the linear distanes are robust with respet to perturbationsin the state valuations: small hanges in the proposition valuations auses smallhanges in the distanes. Given two state valuations [�℄1; [�℄2 : S ! U [�℄, wede�ne their direted distane by:d([�℄1; [�℄2) = sups2S maxr2� dr([s℄1(r); [s℄2(r))Moreover, for a state valuation f : S ! U [�℄ and � 2 (0; 1℄, we write ldaf;�, ld sf;�for the distanes de�ned as in De�nition 12, using f as the state valuation.Theorem 3 (linear distane robustness) For all � 2 (0; 1℄, all prediatevaluations [�℄1; [�℄2, and all s; t 2 S, we haveld a[�℄1;�(s; t)� lda[�℄2;�(s; t) � d([�℄1; [�℄2) + d([�℄2; [�℄1)jld s[�℄1;�(s; t)� ld s[�℄2;�(s; t)j � 2 � d([�℄1; [�℄2)Proof. The result follows by showing that the trae distane between two traes� and �, measured under [�℄1 and [�℄2, di�ers by at most d([�℄1; [�℄2) + d([�℄2; [�℄1).The key step onsists in noting that, for any r 2 �, from the triangular inequalitydr([s℄1(r); [t℄1(r)) � dr([s℄1(r); [s℄2(r)) + dr([s℄2(r); [t℄2(r)) + dr([t℄2(r); [t℄1(r))followsdr([s℄1(r); [t℄1(r)) � dr([s℄2(r); [t℄2(r)) � dr([s℄1(r); [s℄2(r)) + dr([t℄2(r); [t℄1(r))� d([�℄1; [�℄2) + d([�℄2; [�℄1):Now the result follows by repetitive appliation of Lemma 1(1). �3.2 Quantitative linear-time temporal logiThe linear distanes introdued above an be haraterized in terms quantitativelinear-time temporal logi (Qltl), a quantitative extension of linear-time tem-poral logi [14℄ whih inludes quantitative versions of the temporal operatorsand logi onnetives. Following [7℄, Qltl has a \threshold" operator, enablingthe omparison of a formula against a real onstant. The Qltl formulas over aset � of propositions are generated by the following grammar:' ::= D(r; ) j D(; r) j ' ^ ' j ' _ ' j �' j 3�'Here r 2 � is a proposition,  2 Sr2AP Xr is a onstant and � 2 (0; 1℄ a disountfator. We assume that, in a term of the form D(r; ) or D(; r), we have  2 Xr.11



A formula ' assigns a value [['℄℄(�) 2 bIR+ to eah trae � � U [�℄!:[[D(r; )℄℄(�) = dr(�0(r); )[[D(; r)℄℄(�) = dr(; �0(r))[['1 ^ '2℄℄(�) = [['1℄℄(�) u [['2℄℄(�)[['1 _ '2℄℄(�) = [['1℄℄(�) t [['2℄℄(�)[[ �'℄℄(�) = � � [['℄℄(�1)[[3�'℄℄(�) = supf�i � [['℄℄(�i) j i � 0gA Qltl formula ' assigns a real value [['℄℄(s) 2 bIR+ to eah state s of a givenMTS, by de�ning [['℄℄(s) = inff[['℄℄(�) j � 2 Tr(s)g:We note that the above de�nition ould also be phrased in terms of sup overall traes from s, rather than inf. However, as our setting is based on distanes,the inf operator most losely orresponds to the universal quanti�ation over allpaths present in the lassial de�nition of LTL semantis.For � 2 (0; 1℄, we denote by Qltl� the set of formulas ontainingonly disount fators smaller than or equal to �. Furthermore, for ops �f ;3; D(; r); D(r; )g, we denote by Qltl� n ops the set of formulas whihdo not employ the operators in ops .Notie that Qltl is a proper extension to the fragment of Ltl withoutthe Until operator, in the following sense. Consider the metri spae E =(f0; 1g; �xy:jx� yj). Any Kripke struture M has an obvious translation to anMTS M 0 over E. Moreover, any Ltl formula ' in positive normal form an betranslated into a Qltl formula '0 by adding the disount fator 1 as a subsriptto all temporal operators and replaing r and :r with d(r; 0) and d(r; 1), respe-tively. Then, ' is true on a Kripke struture M if and only if '0 evaluates to 1on M 0.3.3 Logial haraterization of linear distanesLinear distanes provide a bound for the di�erene in valuation ofQltl formulas.We begin by relating distanes and logis over traes.Lemma 2 For all MTSs (S; � ;�; [�℄), all � 2 (0; 1℄ and traes �; � 2 U [�℄!,the following holds.For all ' 2 Qltl� n fD(r; )g : td�(�; �) � [['℄℄(�) � [['℄℄(�);for all ' 2 Qltl� n fD(; r)g : td�(�; �) � [['℄℄(�) � [['℄℄(�);for all ' 2 Qltl� : td�(�; �) � j[['℄℄(�) � [['℄℄(�)j:Proof. Let us onsider the �rst assertion. We proeed by strutural indutionon '. If ' = D(; r), using triangle inequality we get [['℄℄(�) � [['℄℄(�) =12



d(; [�0℄(r)) � d(; [�0℄(r)) � d([�0℄(r); [�0℄(r)) � pd (�0; �0) � td�(�; �).If ' = 3� , by indutive hypothesis we have that, for all i 2 N, [[ ℄℄(�i) �[[ ℄℄(�i) � td�(�i; �i) and thus �i � [[ ℄℄(�i) � �i � [[ ℄℄(�i) � �i � td�(�i; �i) �td�(�; �). Then, by Lemma 1,[['℄℄(�) � [['℄℄(�) = supi2N �i � [[ ℄℄(�i)� supj2N �j � [[ ℄℄(�j) � td�(�; �):Similar observations hold for the remaining ases.The seond assertion an be proved in symmetrial fashion. The third asser-tion an be easily proved along similar lines. �The �rst result of the previous lemma is tight in two respets: both replaingQltl�nfD(r; )gwithQltl� and replaing [['℄℄(�)�[['℄℄(�) with j[['℄℄(�)�[['℄℄(�)jrender the result false. The seond assertion is also tight in a similar sense. Thefollowing theorem uses the linear distanes to provide the desired bounds forQltl.Theorem 4 For all MTSs (S; � ;�; [�℄), all � 2 (0; 1℄ and s; t 2 S, we have:For all ' 2 Qltl� n fD(r; )g:lda�(s; t) � [['℄℄(t) � [['℄℄(s) and lda�(s; t) � j[['℄℄(t) � [['℄℄(s)j;For all ' 2 Qltl�:ld s�(s; t) � [['℄℄(t) � [['℄℄(s) and lds�(s; t) � j[['℄℄(t) � [['℄℄(s)j:Proof. We �rst prove that ld a�(s; t) � [['℄℄(t) � [['℄℄(s).lda�(s; t) = sup�2Tr(s) inf�2Tr(t) td�(�; �)� sup�2Tr(s) inf�2Tr(t)([['℄℄(�) � [['℄℄(�)) by Lemma 2;= inf�2Tr(t)[['℄℄(�) � inf�2Tr(s)[['℄℄(�)= [['℄℄(t) � [['℄℄(s):The result for lda� is an immediate onsequene. The statements onerning ld s�and lds� follow in a similar way from Lemma 2. �The results for ld s� and lds� are the quantitative analogous of the standardonnetion between trae ontainment and trae equivalene, and Ltl. For in-stane, the result about ld s� states that, if ld s�(s; t) = , then for every for-mula ' 2 Qltl� and every trae � from s, there is a trae � from t suh that[['℄℄(�) � [['℄℄(�) � .We next show that, for �nitely branhing systems, Qltl provides a full log-ial haraterization of the linear distanes, meaning that the distinguish-ing power of the logi is exatly the same as the one of the distanes. Westart with a tehnial lemma. Given two traes � and �, an integer m anda disount fator �, let the bounded distane between � and � be de�ned asbtdm� (�; �) = max0�i�m �ipd(�i; �i). Clearly, td�(�; �) = limm btdm� (�; �).13



Lemma 3 If the MTS M is �nitely branhing, then for all traes �, disountfators � 2 (0; 1℄ and t 2 S, we havesupm2N inf�2Tr(t) btdm� (�; �) = inf�2Tr(t) supm2N btdm� (�; �):Proof. Sine the l.h.s. is trivially smaller than or equal to the r.h.s., we areleft to prove that (l :h:s :) � (r :h:s :). Spei�ally, we prove that, for all � > 0,(r :h:s :) � (l :h:s :) + �. Fix � > 0. For all m > 0, there exists �m 2 Tr(t) suhthat btdm� (�; �m) � inf�2Tr(t) btdm� (�; �) + �:For all m � 0, let m be the pre�x of �m up to the m + 1-th valuation. Theset fm j m � 0g an be arranged into a tree that is a subtree of the unrollingof t. Sine this tree ontains in�nitely many nodes and is �nitely branhing,by K�onig's lemma it must ontain an in�nite trae �� 2 Tr(t). The trae ��has in�nitely many pre�xes in fm j m � 0g. Therefore, there is an inreasingsequene (im)m>0 suh that, for all m � 0, im is a pre�x of ��. It follows that(r :h:s :) � td�(�; ��) = limm btdm� (�; ��)= limm btd im� (�; ��)� limm btd im� (�; im )= limm btd im� (�; �im )� limm inf�2Tr(t) btd im� (�; �) + � = (l :h:s :) + �: �The following theorem states whih fragment of the logi is neessary to har-aterize eah linear distane. In partiular, the operator 3 is never needed. To-gether with Theorem 4, this result onstitutes a full haraterization of lineardistanes in terms of Qltl.Theorem 5 If an MTS M = (S; � ;�; [�℄) is �nitely branhing, then for all� 2 (0; 1℄ and s; t 2 S,ld a�(s; t) = sup'2Qltl�nfD(r;);3g[['℄℄(t) � [['℄℄(s)lda�(s; t) = sup'2Qltl�nfD(r;);3g j[['℄℄(t) � [['℄℄(s)jld s�(s; t) = sup'2Qltl�nf3g[['℄℄(t) � [['℄℄(s)lds�(s; t) = sup'2Qltl�nf3g j[['℄℄(t) � [['℄℄(s)jProof. By Theorem 4, we only need to prove the \�" part of the equalities. We�rst prove the statement involving ld a�. For sake of simpliity, assume � = frg.Let ld a�(s; t) = x, we show that for all � > 0 there is a formula ' suh that14



[['℄℄(t)�[['℄℄(s) > x��. Let �� 2 Tr(s) be a path suh that inf�2Tr(t) td�(��; �) >x� �. For all m � 0, we set'm = _0�i�m i�D([��i ℄(r); r);where i� stands for i repetitions of the operator �. Intuitively, when formula'm is evaluated on a trae �0, it measures the asymmetri distane between �0and ��, up to the m-th step. Obviously, it is [['m℄℄(s) = 0 for all m � 0. Then,the value of 'm on a state s0 measures the distane between �� and the trae inTr(s0) whih is losest to it. For all t 2 S, it holds thatsupm [['m℄℄(t) = limm [['m℄℄(t) = limm inf�2Tr(t) max0�i�m�iD([��i ℄(r); [�i℄(r))= limm inf�2Tr(t) btdm� (��; �)= inf�2Tr(t) td�(��; �) by Lemma 3> x� �:Consequently, sup'2Qltl�nfD(r;)g[['℄℄(t)� [['℄℄(s) � supm2N[['m℄℄(t)� [['m℄℄(s)= supm2N[['m℄℄(t)� 0> x� �:The statement about lda� is an easy onsequene: Assume �rst that lda�(s; t) =lda�(s; t). Then,lda�(s; t) = sup'2Qltl�nfD(r;)g[['℄℄(s) � [['℄℄(t) � sup'2Qltl�nfD(r;)g j[['℄℄(s) � [['℄℄(t)j:If instead lda�(s; t) = ld a�(t; s), we havelda�(s; t) = sup'2Qltl�nfD(r;)g[['℄℄(t) � [['℄℄(s) � sup'2Qltl�nfD(r;)g j[['℄℄(s) � [['℄℄(t)j:We now onsider the statement about ld s�. The proof proeeds similarly tothe one involving ld a�, using as distinguishing formula the following.'m = _0�i�m i�D([��i ℄(r); r) _ i�D(r; [��i ℄(r)):Finally, the statement involving lds� an be easily obtained from the proofthat ld s�(s; t) = sup'2Qltl� [['℄℄(t)�[['℄℄(s) and the fat that lds�(s; t) = ld s�(s; t) tld s�(t; s). �The next example shows that �nitely branhing is neessary for Theorem 5to hold. 15



sr = 0 s2s1 r = 0r = 1Fig. 3. An MTS exhibiting the language 0f0; 1g!; the single prediate is evaluated inthe metri spae XB.Theorem 6 There is an in�nitely branhing MTS suh thatld s�(s; t) > sup'2Qltl�[['℄℄(s) � [['℄℄(t):Proof. Consider the system in Figure 3, where � = frg. Informally, Tr(s) =0f0; 1g!. Let � be a trae suh that f�g is not a regular language over thealphabet f0; 1g (it would be suÆient for � to be not star-free regular). Forinstane, let � = 01 001 0001 : : :. Consider a seond system, ontaining a state tsuh that Tr(t) = Tr(s)nf�g. Notie that, in order to have suh a set of traes, tmust be in�nitely branhing, sine if a �nitely branhing tree ontains all pre�xesof an in�nite path, it must also ontain the path itself. We have ld s1(s; t) = 1.We know that ordinary Ltl annot distinguish s from t, otherwise there wouldbe a formula  2 Ltl suh that L( ) = f�g. We argue that Qltl is also unableto distinguish s from t. To prove it, we have to show that disounting does notgive any advantage. �3.4 Logial haraterization via logis with ountably many symbolsAbove, we have provided a logial haraterization for the linear distanes interms of a logi that ontains a potentially unountable set of onstants: in gen-eral, we need one onstant for eah element of a metri spae orresponding to aprediate. Here, we show how, for separable MTSs, we an provide a harater-ization in terms of logis with ountably many symbols. First, we state a usefulresult, namely, that the logi is robust with respet to hanges in the onstantsourring in the formulas: a small hange in the onstants auses a small hangein the value of the formulas.Theorem 7 Consider a formula ' of Qltl ontaining the onstants 1; : : : ; n,belonging respetively to the metri spaes (q1; d1); : : : ; (qn; dn). Let  ='[01; : : : ; 0n=1; : : : ; n℄ be the result of replaing eah i with 0i, for 1 � i �n, and let Æ = maxni=1(di(i; 0i) t di(0i; i)) be the maximal distane be-tween the new and old value of eah onstant. Then, for all s 2 S, we havej[['℄℄(s) � [[ ℄℄(s)j � Æ.Proof. The result follows by a straightforward strutural indution. The onlyinteresting ase is the one for D(r; i), for some 1 � i � n; in this ase, using16



the triangular inequality we havej[[D(r; i)℄℄(s) � [[D(r; 0i)℄℄(s)j = jdi([s℄(r); ) � di([s℄(r); 0)j � di(0; );the ase for D(i; r) is similar. �From the robustness of the logi with respet to the onstants, it follows thatif an MTS is separable, we an obtain a logial haraterization of the lineardistanes in terms of logis that onsist only of ountably many symbols. Theidea, essentially, is to replae eah onstant with a nearby element of a ountablebase in the formulas used to haraterize the distanes.Theorem 8 If an MTSM = (S; � ;�; [�℄) is both �nitely branhing and separa-ble, then the haraterizations provided by Theorem 5 hold also when we restritthe formulas of Qltl to ontain only onstants from the ountable set Sr2� Br,where Br is a ountable basis for the metri spae (Xr; dr), for eah r 2 �.Proof. The result follows immediately from the observation that by Theorem 7the value of a formula, at every state, an be approximated arbitrarily loselyby the value of a formula ontaining only onstants that belong to the ountablebases of the metri spaes. �3.5 A note on algorithmi omplexityThe following setion desribes an algorithm that takes as input a �nite MTSMover a direted metri spae (X; d), and omputes the value of a linear distanebetween all pairs of states. To disuss its omplexity, we need to �x a �niterepresentation for the input data. Considering that all the linear distanes haveas starting point the propositional distane pd , it is suÆient to provide as inputthe jSj � jSj matrix A = (as;t)s;t2S , where as;t = pd(s; t).We assume that the values pd(s; t) are rational numbers enoded in �xed-preision binary representation; we denote by jxjb the number of bits in theenoding of the rational number x. We de�ne the size of a �nite MTS M =(S; � ;�; [�℄) by jM j =Ps;t2S jpd(s; t)jb. The size of an MTS is thus quadrati injSj. We further assume that arithmeti operations an be arried out in onstanttime.3.6 Computing the linear distaneGiven as inputs a �nite MTS M = (S; � ;�; [�℄), a disount fator � 2 (0; 1℄ (thease � = 0 is trivial), and x 2 fa; sg, we wish to ompute ldx�(s0; t0), for alls0; t0 2 S.We desribe the omputation of lda�, as the omputation of ld s� is analogous.We an read the de�nition of lda� as a two-player game. Player 1 hooses a path� = s0s1s2 � � � from s0; Player 2 hooses a path �0 = t0t1t2 � � � from t0; the goalof Player 1 (resp. Player 2) is to maximize (resp. minimize) supk �kpd(�k ; �0k).The game is played with partial information: after s0 � � � sn, Player 1 must hoose17



sn+1 without knowledge5 of t0 � � � tn. Suh a game an be solved via a variationof the subset onstrution [16℄. The key idea is to assoiate with eah �nal statesn of a �nite path s0s1 � � � sn hosen by Player 1, all �nal states tn of �nite pathst0t1 � � � tn hosen by Player 2, eah labeled by the distane v(s0 � � � sn; t0 � � � tn) =max0�k�n �k�npd (sk; tk).From M , we onstrut another MTS M 0 = (S0; � 0; frg; [�℄0), having set ofstates S0 = S � 2S�D . If � = 1 we an take D = fpd(s; t) j s; t 2 Sg, so thatjD j � jSj2. For � 2 (0; 1), we take D = fpd(s; t)=�k j s; t 2 S^k 2 N^pd (s; t) ��kg [ f1g, so that jD j � jSj2 � dlog�minfpd(s; t) j s; t 2 S ^ pd(s; t) > 0ge+ 1.The transition relation � 0 onsists of all pairs (hs; Ci; hs0; C 0i) suh that s0 2 �(s)and C 0 = fht0; v0i j 9ht; vi 2 C : t0 2 �(t)^ v0 = (v=� t pd(s0; t0)) u 1g. Note thatonly Player 1 has a hoie of moves in this game, sine the moves of Player 2are aounted for by the subset onstrution. Finally, the interpretation [�℄0 isgiven by [hs; Ci℄0(r) = minfv j ht; vi 2 Cg, so that r indiates the minimumdistane ahievable by Player 2 while trying to math a path to hs; Ci hosenby Player 1. The goal of the game, for Player 1, onsists in reahing a state ofM 0 with the highest possible (disounted) value or r. Thus, for all s; t 2 S, wehave lda�(s; t) = [[93�r℄℄M 0 (hs; fht; pd(s; t)igi), where the right-hand side is to beomputed on M 0. This expression an be evaluated by a depth-�rst traversal ofthe state spae of M 0, noting that no state of M 0 needs to be visited twie, assubsequent visits do not inrease the value of 3�r. This leads to the followingomplexity result.Theorem 9 For all x 2 fa; sg, the following assertions hold:1. Computing ldx� for � 2 (0; 1℄ and MTSM is PSPACE-omplete in jM j+j�jb.2. Computing ldx� for � 2 (0; 1℄ and deterministi MTS M is PSPACE-omplete in jM j+ j�jb.3. Computing ldx� for � 2 (0; 1℄ and boolean, deterministi MTS M is in timeO(jM j4).Proof. For Part 1, the upper omplexity bound omes from the above algorithm,notiing that the subset onstrution an be done on the y; the lower boundomes from a redution from the orresponding result for trae inlusion [17℄.Part 2 states that, unlike in the boolean ase, the problem remains PSPACE-omplete even for deterministi MTSs. This result is proved by an nlogspaeredution from the problem of omputing the distane between nondeterministisystems to the one of omputing it between deterministi ones. More preisely,let M be a nondeterministi MTS and let m be the number of bits needed torepresent eah quantity inM . Assume that � is also enoded as a �xed-preisionnumber of m bits. Then, from an analysis of the algorithm, we see that theminimum di�erene between two possible answers returned by the algorithmis a number with (n + 1)m bits, where n = jSj. This is essentially �n timesthe least di�erene of value among two non-equal valuations. We then build a5 Indeed, if the game were played with total information, we would obtain the branh-ing distanes of the next setion. 18



deterministi MTSM 0, by opying every valuation and padding it to (n+1)m+1bits, thus using log2 jSj additional bits to uniquely identify eah state of S. Onethe algorithm returns an answer for the deterministi system, the answer for theoriginal nondeterministi one an be reovered by rounding to (n + 1)m bits ofpreision.Part 3 is a onsequene of Theorems 17 and 18. �3.7 DisussionIn De�nition 10, we ould have de�ned the propositional distane between twostates using the L2 norm, via pd(u; v) = �Pr2� d(u(r); v(r))2�1=2 (or in generalusing the Ln norm, for n > 0). The reason why in De�nition 10 we hose the L1norm is that this de�nition leads to a logial haraterization of the distanes,sine the max in the L1 norm orresponds to the _ of the logis. It is easy tosee that, aside from the logial haraterizations, the results of the paper wouldhold if we replaed in De�nition 10 the L1 norm with Ln, for any n > 0.4 Branhing Distanes and Logis4.1 Branhing distanesDe�nition 13 (branhing distanes) For � 2 (0; 1℄ and x 2fAa;As; Sa; Ssg, onsider the four operators Hx� : (S2 ! bIR+) ! (S2 ! bIR+)de�ned as follows, for d : S2 ! bIR+:HAa� (d)(s; t) = pd(s; t) t � � sups02�(s) inft02�(t) d(s0; t0)HAs� (d)(s; t) = pd(s; t) t � � sups02�(s) inft02�(t) d(s0; t0)HSa� (d)(s; t) = pd(s; t) t � � sups02�(s) inft02�(t) d(s0; t0) t � � supt02�(t) infs02�(s) d(s0; t0)HSs� (d)(s; t) = pd(s; t) t � � sups02�(s) inft02�(t) d(s0; t0) t � � supt02�(t) infs02�(s) d(s0; t0)For x 2 fAa;As; Sa; Ssg, we de�ne the branhing distane bdx� as the least �x-points of the operators Hx. �For all � 2 (0; 1℄, the funtions bdAa� , bdAs� , and bdSa� are direted metris, andthe funtions bdSs� , bdAa� , bdAs� , and bdSa� are undireted metris.The distane bdSs� is a quantitative generalization of bisimulation, and itessentially oinides with the metris of [7, 18, 4℄; as it is already symmetrial,we have bdSs� = bdSs� . Similarly, the distane bdAs� generalizes simulation, andbdAs� generalizes mutual simulation.Theorem 10 For all MTSs (S; � ;�; [�℄) where dr is a direted distane for allr 2 �, and for all � 2 (0; 1℄, we have �sim= Zero(bdAs� ) and �bis = Zero(bdSs� ).19



The distanes bdAa� and bdSa� orrespond to quantitative notions of simulationand bisimulation with respet to the asymmetrial propositional distane pd ;these distanes are not symmetrial, and we indiate their symmetrial versionsby bdAa� and bdSa� . Just as in the boolean ase mutual similarity is not equivalentto bisimulation, so in our quantitative setting bdAs� an be stritly smaller thanbdSs� , and bdAa� an be stritly smaller than bdSa� .Theorem 11 The relations in Figure 5(b) hold for all MTS and for all � 2(0; 1℄. For � 2 (0; 1℄, no other inequalities hold on all MTSs.Proof. The inequalities bdAa� � bdSa� � bdSs� and bdAa� � bdAs� � bdSs� shown inthe �gure are immediate. Let � 2 (0; 1℄ and onsider the MTS in Figure 5(a)again. In this MTS, we have lda� = bdAa� , ld s� = bdAs� , lda� = bdSa� , lds� = bdSs�Hene, the results for the linear distanes (see Theorem 2) show that bdAa� 6=bdAs� , bdAa� 6= bdSa� , bdAs� 6= bdSs� , bdSa� 6= bdSs� , and neither bdAs� � bdSa� norbdAs� � bdSa� . �The branhing distanes, like the linear ones, are robust with respet to per-turbations in the state valuations: small hanges in the proposition valuationsause small hanges in the distanes. To state the theorem, given a state valu-ation f : S ! U [�℄, x 2 fAa;As; Sa; Ssg, and � 2 (0; 1℄, we write bdxf;� for thedistanes de�ned as in De�nition 13, using f as the state valuation.Theorem 12 (branhing distane robustness) For all � 2 (0; 1℄, all x 2fAs; Sa; Ssg, all prediate valuations [�℄1; [�℄2, and all s; t 2 S, we havebdAa[�℄1;�(s; t)� bdAa[�℄2;�(s; t) � d([�℄1; [�℄2) + d([�℄2; [�℄1)jbdx[�℄1;�(s; t)� bdx[�℄2;�(s; t)j � 2 � d([�℄1; [�℄2):4.2 Quantitative �-alulusWe de�ne quantitative �-alulus after [5, 4℄. Given a set of variables X and aset of propositions �, the formulas of the quantitative �-alulus are generatedby the grammar:' ::= D(r; ) j D(; r) j x j ' ^ ' j ' _ ' j 9 �' j 8 �' j �x : ' j �x : 'for propositions r 2 �, variables x 2 X , onstants  2 Sr2AP Xr, and disountfators � 2 (0; 1℄. We assume that, in a term of the form D(r; ) or D(; r),we have  2 Xr. Denoting by F = (S ! bIR+), a (variable) interpretation is afuntion E : X ! F . Given an interpretation E , a variable x 2 X and a funtionf 2 F , we denote by E [x := f ℄ the interpretation E 0 suh that E 0(x) = f and, forall y 6= x, E 0(y) = E(y). Given an MTS and an interpretation E , every formula20



' of the quantitative �-alulus de�nes a valuation [['℄℄E : S ! bIR+:[[D(r; )℄℄E (s) = d([s℄(r); )[[D(; r)℄℄E (s) = d(; [s℄(r))[[x℄℄E = E(x)[['1 ^ '2℄℄E = [['1℄℄E u [['2℄℄E[['1 _ '2℄℄E = [['1℄℄E t [['2℄℄E
[[9 �'℄℄E (s) = � � sups02�(s)[['℄℄E(s0)[[8 �'℄℄E (s) = � � infs02�(s)[['℄℄E(s0)[[�x : '℄℄E = infff 2 F j f = [['℄℄E[x:=f ℄g[[�x : '℄℄E = supff 2 F j f = [['℄℄E[x:=f ℄g:The existene of the required �xpoints is guaranteed by the monotoniity andontinuity of all operators. A variable x is bound in ' if it is in the sope ofa quanti�er �x or �x; otherwise, it is alled free. A formula is losed if allvariables are bound. If ' is losed, we write [['℄℄ for [['℄℄E . For all � 2 (0; 1℄,we all Qmu� the set of quantitative �-alulus formulas where all disountfators are smaller than or equal to �. We denote by ClQmu� the subset ofQmu� ontaining only losed formulas. For ops � fD(; r); D(r; ); 9;8; �; �g,we denote by Qmu� n ops and ClQmu� n ops the respetive subsets of formulasthat do not employ operators in ops . Notie that, if we take all disount fatorsto be 1, then the semantis of the quantitative �-alulus on boolean systemsoinides with the one of the lassial �-alulus.4.3 Logial haraterizations of branhing distanesIn the following theorem, we write '(x1; : : : ; xn) to signify that the free variablesin ' are among x1; : : : ; xn.Lemma 4 Given an MTS (S; � ;�; [�℄) and a disount fator � 2 (0; 1℄, thefollowing holds.1. For all '(x1; : : : ; xn) 2 Qmu� n f9; D(r; )g, for all variable environmentsE, and for all f1; : : : ; fn 2 F , if for all s; t 2 S and all i = 1; : : : ; n, fi(t) �fi(s) � bdAa� (s; t), then, for all s; t 2 S,[['℄℄E[xi:=fi℄(t)� [['℄℄E[xi:=fi℄(s) � bdAa� (s; t):2. For all '(x1; : : : ; xn) 2 Qmu� n f9g, and for all f1; : : : ; fn 2 F , if for alls; t 2 S and all i = 1; : : : ; n, fi(t)� fi(s) � bdAs� (s; t), then, for all s; t 2 S,[['℄℄E[xi:=fi℄(t)� [['℄℄E[xi:=fi℄(s) � bdAs� (s; t):3. For all '(x1; : : : ; xn) 2 Qmu� n fD(r; )g, and for all f1; : : : ; fn 2 F , iffor all s; t 2 S and all i = 1; : : : ; n, fi(t) � fi(s) � bdSa� (s; t), then, for alls; t 2 S, [['℄℄E[xi:=fi℄(t)� [['℄℄E[xi:=fi℄(s) � bdSa� (s; t):4. For all '(x1; : : : ; xn) 2 Qmu�, and for all f1; : : : ; fn 2 F , if for all s; t 2 Sand all i = 1; : : : ; n, jfi(t)� fi(s)j � bdSs� (s; t), then, for all s; t 2 S,j[['℄℄E[xi:=fi℄(t)� [['℄℄E[xi:=fi℄(s)j � bdSs� (s; t):Proof. We prove statements 1 and 3; the other two statements an be proved insimilar fashion. 21



Statement 1. We prove the result onerning bdAa� by strutural indution onthe formula. For ' = D(; r), we obtain by triangle inequality [['℄℄(t)� [['℄℄(s) =d(; [t℄(r)) � d(; [s℄(r)) � d([s℄(r); [t℄(r)) � pd (s; t) � bdAa� (s; t).The ases ' = x, ' = '1 ^ '2 and ' = '1 _ '2 are also trivial.Consider the ase ' = 8 � , for some � � �: we prove that, for all statess; t 2 S and all � > 0, [['℄℄(t) � [['℄℄(s) � bdAa� (s; t) + �. For ease of notation, inthis part of the proof we write [[�℄℄ for [[�℄℄E[xi:=fi℄, as the variable interpretationis not the issue here. Reall that, for all t 2 S, we have by de�nition [['℄℄(t) =� inft02�(t)[[ ℄℄(t0), By indutive hypothesis, for all s0; t0 2 S, [[ ℄℄(t0) � [[ ℄℄(s0) �bdAa� (s0; t0). For all s� 2 �(s) and Æ > 0, we de�ne loser (t; s�; Æ) to ontain allstates t� 2 �(t) suh that bdAa(s�; t�) � Æ + inft02�(t) bdAa� (s�; t0). Intuitively,loser (t; s�; Æ) ontains those suessors of t that are loser than Æ to the bestmath for s�. For all s� 2 �(s) and t� 2 loser (t; s�; Æ), we have that� � �[[ ℄℄(t�)� [[ ℄℄(s�)� � � � bdAa� (s�; t�)� � � � inft02�(t) bdAa� (s�; t0) + Æ�� � � � sups02�(s) inft02�(t) bdAa� (s0; t0) + Æ�� �Æ + bdAa� (s; t): (x)Finally, let s� 2 �(s) be suh that [[ ℄℄(s�) � infs02�(s)[[ ℄℄(s0) + �2� and t� 2loser (t; s�; �2� ), we have[['℄℄(t) � [['℄℄(s) = � inft02�(t)[[ ℄℄(t0)� � infs02�(s)[[ ℄℄(s0)� ��[[ ℄℄(t�)� [[ ℄℄(s�) + �2�� (y)� �2 + �([[ ℄℄(t�)� [[ ℄℄(s�))� �2 + �2 + bdAa� (s; t): (z)To obtain (y), we have used [[ ℄℄(t�) � inft02�(t)[[ ℄℄(t0) and our hoie of s�; toobtain (z), we have used t� 2 loser (t; s�; �2� ), along with the previous result (x).This onludes this ase.If ' = �y :  , then [['℄℄ = limn gn, where g0(s) = 0 for all s 2 S, andgn+1 = [[ ℄℄E[y:=gn℄. This is a onsequene of the fat that, when the MTS is�nitely branhing, all operators of the �-alulus are ontinuous: that is, for eahoperator F 2 f^;_; 9 ;8 g and eah sequene gnn�0 of funtions S2 ! bIR+, wehave F (limn gn) = limn F (gn). Sine g0(t)� g0(s) = 0 � bdAa� (s; t), by indutivehypothesis we obtain that, for all n 2 N, gn(t)�gn(s) � bdAa� (s; t), and thus thethesis. By taking g0(s) =1 for all s 2 S, we obtain the argument for ' = �y : .Statement 3. The ases ' = r, ' = x, ' =  1 ^  2 and ' =  1 _  2 are trivial,while the proofs for ' = 8 � , ' = �y : and ' = �y : are similar to the onesof Part 1. 22



Let ' = 9 � , for some � � �. We prove that, for all states s; t 2 S andall � > 0, [['℄℄(t) � [['℄℄(s) � bdSa� (s; t) + �. For ease of notation, we again write[[�℄℄ for [[�℄℄E[xi:=fi℄. By indutive hypothesis, for all s0; t0 2 S, [[ ℄℄(t0) � [[ ℄℄(s0) �bdSa� (s0; t0).For all s� 2 �(s) and Æ > 0, we de�ne loser (s; t�; Æ) to ontain all statess� 2 �(t) suh that bdSa(s�; t�) � Æ+infs02�(s) bdSa� (s0; t�). Again, loser(s; t�; Æ)ontains those suessors of s that are loser than Æ to the best math for t�. Forall t� 2 �(t) and s� 2 loser (s; t�; Æ), we have that ��bdSa� (s�; t�) � �Æ+bdSa� (s; t),and thus � � �[[ ℄℄(t�)� [[ ℄℄(s�)� � � � bdSa� (s�; t�)� �Æ + bdSa� (s; t): (xx)There are now three ases.1. If [['℄℄(t) = � supt02�(t)[[ ℄℄(t0) <1, then let t� 2 �(t) be suh that [[ ℄℄(t�) �supt02�(t)[[ ℄℄(t0)� �2� and s� 2 loser (s; t�; �2� ). We have[['℄℄(t) � [['℄℄(s) = � supt02�(t)[[ ℄℄(t0)� � sups02�(s)[[ ℄℄(s0)� ��[[ ℄℄(t�) + �2� � [[ ℄℄(s�)�� �2 + �([[ ℄℄(t�)� [[ ℄℄(s�))� �2 + �2 + bdSa� (s; t);leading to the desired result.2. If [['℄℄(t) =1 and bdSa� (s; t) =1, then we are done.3. If [['℄℄(t) =1 and bdSa� (s; t) <1, then for every  2 IR, we an �nd t� 2 �(t)suh that [[ ℄℄(t�) � . From (xx), we an thus �nd s� 2 loser(s; t�; 1) suhthat �(� 1)� bdSa� (s; t) � �[[ ℄℄(t�)� �� bdSa� (s; t) � [[ ℄℄(s�):From [['℄℄(s) = � sups02�(s)[[ ℄℄(s0) � [[ ℄℄(s�), sine bdSa� (s; t) <1 and sine is arbitrary, we obtain [['℄℄(s) =1 = [['℄℄(t), onluding the proof. �From the preeding lemma, we immediately obtain a theorem stating that thebranhing distanes provide bounds for the orresponding fragments of the �-alulus. The statement for bdSs� is very similar to a result in [7℄.Theorem 13 For all MTSs (S; � ;�; [�℄), states s; t 2 S, and � 2 (0; 1℄, wehave for all ' 2 ClQmu� n f9; D(r; )g bdAa� (s; t) � [['℄℄(t) � [['℄℄(s)for all ' 2 ClQmu� n f9g bdAs� (s; t) � [['℄℄(t) � [['℄℄(s)for all ' 2 ClQmu� n fD(r; )g bdSa� (s; t) � [['℄℄(t) � [['℄℄(s)for all ' 2 ClQmu� bdSs� (s; t) � j[['℄℄(t) � [['℄℄(s)j23



As noted before, eah bound of the form d(s; t) � [['℄℄(t) � [['℄℄(s) trivially leadsto a bound of the form d(s; t) � j[['℄℄(t) � [['℄℄(s)j. The bounds are tight for�nitely branhing systems, and the following theorem identi�es whih fragmentsof quantitative �-alulus suÆe for haraterizing eah branhing distane. Theformula sheme used to haraterize bdSs� is reminisent of the one used in [1℄ forbisimulation.Theorem 14 For all �nitely branhing MTSs (S; � ;�; [�℄), states s; t 2 S, and� 2 (0; 1℄, we havebdAa� (s; t) = sup'2ClQmu�nf9;D(r;);�;�g [['℄℄(t)� [['℄℄(s);bdAs� (s; t) = sup'2ClQmu�nf9;�;�g [['℄℄(t)� [['℄℄(s);bdSa� (s; t) = sup'2ClQmu�nfD(r;);�;�g [['℄℄(t)� [['℄℄(s);bdSs� (s; t) = sup'2ClQmu�nf�;�g [['℄℄(t)� [['℄℄(s):Proof.Part 1. Consider the statement about bdAa� . For all s 2 S, we de�ne the sequeneof formulas ('ks )k�0 as follows.'0s = _r2�D([s℄(r); r);'k+1s = '0s _ _s02�(s)8 �'ks0 :First, one an easily prove by indution that, for all k 2 N and s 2 S, [['ks ℄℄(s) = 0.The distane bdAa� is de�ned as the least �xpoint of HAa� . Denoting by (HAa� )k asequene of k appliations of HAa� , sine the MTS is �nitely branhing, we havethat bdAa� = limk(HAa� )k(pd ). We prove by indution on k that, for all s; t 2 S,[['ks ℄℄(t) = (HAa� )k(pd )(s; t).[['0s℄℄(t) = maxr2� d([s℄(r); [t℄(r))= pd(s; t) = (HAa� )0(pd )(s; t);[['k+1s ℄℄(t) = [['0s℄℄(t) t maxs02�(s) mint02�(t)�[['ks0 ℄℄(t0)= pd(s; t) t maxs02�(s) mint02�(t)� � (HAa� )k(pd)(s0; t0)= (HAa� )k+1(pd )(s; t):It follows that sup'2ClQmu�nf9;D(r;);�;�g[['℄℄(t) � [['℄℄(s) � supk2N [['ks ℄℄(t)� [['ks ℄℄(s)= supk2N (HAa� )k(pd )(s; t)� 0= bdAa� (s; t):24



Part 2. To prove the statement onerning bdAs� (s; t), we de�ne the followingsequene of formulas ('ks )k2N.'0s = _r2�D([s℄(r); r) _D(r; [s℄(r));'k+1s = '0s _ _s02�(s)8 �'ks0 :We then proeed similarly to the previous part.Part 3. To prove the bound on bdSa� (s; t), we use the formulas:'0s = _r2�D([s℄(r); r)'k+1s = '0s _ _s02�(s)8 �'ks0 _ 9 �� ^s02�(s)'ks0�:One again, one an easily prove by indution that, for all k 2 N and s 2S, [['ks ℄℄(s) = 0. The distane bdSa� is de�ned as the least �xpoint of HSa� . Inpartiular, denoting by (HSa� )k a sequene of k appliations of HSa� , again dueto the fat that the MTS is �nitely branhing we have bdSa� = limk(HSa� )k(pd ).We prove by indution on k that, for all s; t 2 S, [['ks ℄℄(t) = (HSa� )k(pd )(s; t).[['0s ℄℄(t) = maxr2� �d([s℄(r); [t℄(r)) t d([t℄(r); [s℄(r))�= pd(s; t) = (HSa� )0(pd)(s; t);[['k+1s ℄℄(t) = [['0s ℄℄(t) t maxs02�(s) mint02�(t)�[['ks0 ℄℄(t0) t maxt02�(t) mins02�(s)�[['ks0 ℄℄(t0)= pd(s; t) t � maxs02�(s) mint02�(t)(HSa� )k(pd )(s0; t0)t � maxt02�(t) mins02�(s)(HSa� )k(pd )(s0; t0)= (HSa� )k+1(pd )(s; t):It follows that sup'2ClQmu�nfD(r;);�;�g[['℄℄(t) � [['℄℄(s) � supk2N [['ks ℄℄(t) � [['ks ℄℄(s)= supk2N (HSa� )k(pd )(s; t)� 0= bdSa� (s; t):Part 4. To prove the bound on bdSs� (s; t), we use the formulas:'0s = _r2�D([s℄(r); r) _D(r; [s℄(r));'k+1s = '0s _ _s02�(s)8 �'ks0 _ 9 �� ^s02�(s)'ks0�:25



We then proeed similarly to the previous parts. �4.4 Logial haraterization via logis with ountably many symbolsAgain, the logial haraterization above is in terms of formulas de�ned over apotentially unountable set of onstants: in general, we need one onstant foreah element of a metri spae orresponding to a prediate. As in the linearase, we show that if the MTS is separable, then it suÆes to onsider formulasde�ned over the ountable set of onstants orresponding to the ountable basesof the metri spaes for the various prediates. We start one more with a resultthat expresses the robustness of the alulus with respet to hanges in thevaluation of the onstants.Theorem 15 Consider a formula ' of the quantitative �-alulus on-taining the onstants 1; : : : ; n, belonging respetively to the metri spaes(q1; d1); : : : ; (qn; dn). Let  = '[01; : : : ; 0n=1; : : : ; n℄ be the result of replaingeah i with 0i, for 1 � i � n, and let Æ = maxni=1(di(i; 0i) t di(0i; i)) be themaximal distane between the new and old value of eah onstant. Then, for alls 2 S and all variable environments E, we have j[['℄℄E (s)� [[ ℄℄E (s)j � Æ.Proof. The result is obtained by a straightforward indution on the struture ofthe formula; the only interesting ase is the base ase for D, whih is proved asin the proof of Theorem 7. �Again, for separable MTSs this result leads to logial haraterizations basedon languages with ountable sets of onstants, orresponding to the bases of themetri spaes.Theorem 16 If an MTS M = (S; � ;�; [�℄) is both �nitely branhing and sep-arable, then the haraterizations provided by Theorem 14 hold also when werestrit the formulas of quantitative �-alulus to ontain only onstants fromthe ountable set Sr2� Br, where Br is a ountable basis for the metri spae(Xr; dr), for eah r 2 �.Proof. Similarly to the linear ase, the result follows from the observation thatby Theorem 15 the value of a formula, at every state, an be approximatedarbitrarily losely by the value of a formula ontaining only onstants that belongto the ountable bases of the metri spaes. �4.5 Computing the branhing distanesGiven a �nite MTS M = (S; �;�; [�℄) a rational number � 2 (0; 1℄, and x 2fSs; Sa;As;Aag, we an ompute bdx�(s; t) for all states s; t 2 S by omputingin an iterative fashion the �xpoints of De�nition 13. For instane, bdAa� an beomputed by letting d0(s; t) = 0 for all s; t 2 S and, for k 2 IN, by lettingdk+1(s; t) = pd (s; t) t � � maxs02�(s)mint02�(t) dk(s0; t0), for all s; t 2 S. Thenbdx� = limk!1 dk, and it an be shown that this and the other omputationsterminate in at most jSj2 iterations. This gives the following omplexity result.26



t1 t2t4t3 t0 r=0; r0=0r=0; r0=1 r=1; r0=0r=1; r0=0r=0; r0=1s0 s4s3 s1 r=0; r0=0r=1; r0=0r=12 ; r0=12r=0; r0=1Fig. 4. Linear versus branhing distanes on a deterministi MTS.lds�ld s� ??��� lda�__???lda� ??���
__???

(a) Linear distanes.
bdSs�bdAs� ??���� bdSa�__????bdAs�OO bdAa�__????

??���� bdSa�OObdAa�OO ??����

__????

(b) Branhing distanes.
bdSs�bdAs� ??���� bdSa�__????lds� ??bdAs�OO bdAa�__????

??���� bdSa�OOlds�OO ?? lda�__?????

??bdAa�??

__?? OO ??����lda�__?????

OO

??() All distanes.Fig. 5. Relations between distanes, where f ! g means f � g. In (), the dottedarrows ollapse to equality for boolean, deterministi MTSs.Theorem 17 Computing bdx� for x 2 fSs; Sa;As;Aag, � 2 (0; 1℄ and an MTSM an be done in time O(jM j4).5 Comparing the Linear and Branhing DistanesLast, we provide a omparison between linear and branhing distanes. Just assimilarity implies trae inlusion, we have both ld a� � bdAa� and ld s� � bdAs� ; justas bisimilarity implies trae equivalene, we have lds� � bdSs� and lda� � bdSa� .Moreover, in the non-quantitative setting, trae inlusion (resp. trae equiva-lene) oinides with (bi-)similarity on deterministi systems. This result gener-alizes to distanes over MTSs that are both deterministi and boolean, but notto distanes over MTSs that are just deterministi. To formalize these results,we say that an MTS is boolean if all its prediates are evaluated in the metrispae XB .Theorem 18 The following properties hold.27



1. For all MTSs and all � 2 (0; 1℄, we havelda� � bdAa� ld s� � bdAs� lda� � bdSa� lds� � bdSs� :Moreover, for � 2 (0; 1℄, the inequalities annot be replaed by equalities.2. For all boolean, deterministi MTSs and for all � 2 (0; 1℄, we haveld a� = bdAa� ld s� = bdAs� lda� = bdAa� lds� = bdAs� :These equalities need not to hold for non-boolean, deterministi MTSs.The relations of Part 1 are illustrated in Figure 5().In order to prove this theorem, we proeed in steps. First, we providea relation between the �xpoints of the operators used to de�ne linear andbranhing distanes. For � 2 (0; 1℄ and x 2 fa; sg, we de�ne the operatorsF x� ; F x� : (S2 ! bIR+)! (S2 ! bIR+) as follows, for d : S2 ! bIR+:F a�(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) supi2N �id(�i; �i)F s�(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) supi2N �id(�i; �i)F a�(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) supi2N �id(�i; �i)t sup�2Paths(t) inf�2Paths(s) supi2N �id(�i; �i)F s�(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) supi2N �id(�i; �i)t sup�2Paths(t) inf�2Paths(s) supi2N �id(�i; �i):These operators should be ompared with the �xpoint operators used in De�-nition 13 to de�ne the branhing distanes. Essentially, the operators F x� aboveshare the same struture of the operators Hx�, exept that F x� looks at the in�-nite paths originating from states, whereas Hx� looks just at the suessor states.The following lemma follows immediately from the de�nitions.Lemma 5 Denoting by 0 : �(s; t):0 the zero funtion S2 ! bIR+. For � 2 (0; 1℄and x 2 fa; sg, we have: lda� = F a�(F a�(0))ld s� = F s�(F s�(0))lda� = F a�(F a�(0))lds� = F s�(F s�(0)):For � 2 (0; 1℄ denote the least �xpoints of these operators by:fdAa� = inffd : S2 ! bIR+ j d = F a�(d)gfdAs� = inffd : S2 ! bIR+ j d = F s�(d)gfdSa� = inffd : S2 ! bIR+ j d = F a�(d)gfdSs� = inffd : S2 ! bIR+ j d = F s�(d)g28



(where we have preferred to avoid the �-notation for least �xpoints not to gen-erate onfusion with �-alulus over MTSs). The following lemma states thatthese �xpoints are branhing distanes.Lemma 6 For all � 2 (0; 1℄, we have thatfdAa� = bdAa�fdAs� = bdAs�fdSa� = fdSs� = bdSs� :Proof. Let � 2 (0; 1℄. We show that fdAa� = bdAa� ; the other ases are similar.First, note that the operator HAa� used in De�nition 13 to de�ne the branhingdistanes an be equivalently replaed by the following operator G : (S2 !bIR+)! (S2 ! bIR+) byG(d)(s; t) = pd(s; t) t d(s; t) t sups02�(s) inft02�(t)� � d(s0; t0):For onveniene, let also F = F a� . Then bdAa� is the least �xpoint of G and fdAa�is the least �xpoint of F . Sine G(d) � F (d) for all d : S2 ! bIR+, we get bymonotoniity of G and F that bdAa� � fdAa� . To prove that fdAa� � bdAa� , wede�ne for eah k 2 NFk(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) sup0�i�k �id(�i; �i):We denote by Gk the operator G iterated k times, i.e. G0(d) = d and Gk+1(d) =G(Gk(d)). We show by indution that Fk � Gk for all k � 1. For k = 1, we haveF1(d) = pd t d � G1(d). For k + 1, we have:Fk+1(d)(s; t)= pd(s; t) t sup�2Paths(s) inf�2Paths(t) sup0�i�k+1�id(�i; �i)= pd(s; t) t sups02�(s) sup�02Paths(s0) inft02�(t) inf�02Paths(t0) sup0�i�k(d(s; t) t �i+1d(�0i; �0i))� pd(s; t) t d(s; t) t sups02�(s) inft02�(t) sup�02Paths(s0) inf�02Paths(t0) sup0�i�k �i+1d(�0i; �0i)= pd(s; t) t d(s; t) t sups02�(s) inft02�(t)Fk(d)(s0; t0)� pd(s; t) t d(s; t) t sups02�(s) inft02�(t)�Gk(d)(s0; t0)= Gk+1(d)(s; t):Then, F (bdAa� ) = limk Fk(bdAa� ) � limk Gk(bdAa� ) = bdAa� :Together with F (d) � d for all d, this shows F (bdAa� ) = bdAa� , i.e. bdAa� is a�xpoint of F . Hene, bdAa� � fdAa� , sine fdAa� is the least �xpoint of F . �With this result, we an �nally prove Theorem 18.29



Proof of Theorem 18.1. The inequalities follow from Lemmas 5 and 6, and from the monotoni-ity of the F x� , F x� operators for � 2 (0; 1℄ and x 2 fa; sg. To see thaton deterministi, non-boolean MTSs, the linear distanes between statesan be stritly smaller than the orresponding branhing ones, onsiderthe MTS in Figure 4. We assume that � > 12 ; a similar example worksif � � 12 . Then ld a�(s; t) = ld s�(s; t) = lda�(s; t) = lds�(s; t) = 12�, whilebdAa� (s; t) = bdAs� (s; t) = bdAa� (s; t) = bdAs� (s; t) = �2.2. Let M = (S; � ;�; [�℄) be a boolean, deterministi MTS, let � 2 (0; 1℄ ands; t 2 S. We show that lda� = bdAa� . The other ases are similar. By part 1 ofthis theorem, we know that ld a� � bdAa� . To prove that lda� � bdAa� , we showthat HAa(ld a�) = ld a�, i.e. that ld a� is a �xpoint of HAa. As bdAa� is the least�xpoint of HAa, we obtain lda� � bdAa� . First, we observe thatHAa(ld a�)(s; t) = pd (s; t) t � sups02�(s) inft02�(t) lda�(s0; t0)= pd (s; t) t � sups02�(s) inft02�(t) sup�02Paths(s0) inf�02Paths(t0) td�(�0; �0)� pd (s; t) t � sups02�(s) sup�02Paths(s0) inft02�(t) inf�02Paths(t0) td�(�0; �0)= sup�2Paths(s) inf�2Paths(t) td�(�; �)= ld a�(s; t):SoHAa(lda�)(s; t) � lda�(s; t). We show that alsoHAa(ld a�)(s; t) � lda�(s; t). Ifpd(s; t) = 1, then HAa(lda�)(s; t) = lda�(s; t) = 1. Hene, assume pd(s; t) = 0.We distinguish two ases.Case 1: sups02�(s) inf t02�(t) pd�(s0; t0) = 1. Then one easily shows thatHAa(ld a�)(s; t) = � = lda�(s; t):Case 2: sups02�(s) inf t02�(t) pd�(s0; t0) = 0.Sine M is deterministi and boolean, we know that for all s0 2 �(s), thereis a ts0 2 �(t) suh that pd�(s0; ts0) = 0 and pd�(s0; t0) = 1 for t0 6= ts0 . Then,we have for all s0 2 �(s); t0 2 �(t); t0 6= ts0 , �0 2 Paths(s0), �0 2 Paths(t0),and �s0 2 Paths(ts0 ) thattd�(�0; �ts0 ) � � and td�(�0; �0) = 1and therefore inf�02Paths(ts0 ) td�(�0; �0) � inf�02Paths(t0) td�(�0; �0)so inf�02Paths(ts0 ) td�(�0; �0) � inft02�(t) inf�02Paths(t0) td�(�0; �0): (*)30



Realling that pd(s; t) = 0, we getHAa(ld a�)(s; t) = � sups02�(s) inft02�(t) sup�02Paths(s0) inf�02Paths(t0) td�(�0; �0)� � sups02�(s) sup�02Paths(s0) inf�02Paths(ts0 ) td�(�0; �0) by (*)� � sups02�(s) sup�02Paths(s0) inft02�(t) inf�02Paths(t0) td�(�0; �0)= sup�2Paths(s) inf�2Paths(t) td�(�; �)= ld a�(s; t):To see that the equalities annot be strengthened to equalities, onsider� 2 (0; 1℄. We give the proof for � > 12 ; a similar example works if � � 12 .Consider the MTS in Figure 4. Then ldx�(s; t) = 12�, while bdx�(s; t) = �2. �6 ConlusionsIn this paper, we have provided metri extensions of the lassial linear andbranhing relations: trae inlusion, trae equivalene, simulation, and bisimu-lation. We remark that, while metri analogous of bisimulation had been knownfor some time [7, 18℄, this is not the ase for the other notions, whih had esapedattention thus far. We hope that the introdution of these quantitative asym-metrial and symmetrial distanes onstitutes a useful step toward ahieving aquantitative theory of systems, in whih the lassial boolean setting of spei�-ation and veri�ation is replaed by a setting in whih properties have (real-valued, or general) values, and veri�ation an yield not only yes/no answers,but also measures of quality, adequay, and ost.We have provided three main lasses of haraterizations for linear andbranhing distanes:1. Distanes as upper bounds for logi valuations. Results in this lass statethat the distanes provide an upper bound for the di�erene in value offormulas of linear (Qltl) and branhing (Qmu) logis. Results of this typeare Theorems 4 and 13.2. Logis as full haraterizations of distanes. Results in this lass state thatthe distanes are equal to the supremum of the di�erene in value of alllinear, or branhing formulas. Results of this type are Theorems 5 and 14.3. Relations among distanes. Results in this lass ompare the value of linearand branhing distanes; results of this type are Theorems 2, 11, and 18.Results in lasses 1 and 3 hold for general MTSs, and are thus partiularlysatisfying. In ontrast, as we have seen, results in lass 2 hold only for �nitelybranhing MTSs. Many MTSs of interest are not �nite branhing: for instane,in a hybrid system, there an be unountably many suessors of a state, orre-sponding to the real-valued length of time steps possible from the state. It is aninteresting open problem to investigate lasses of MTSs that are more generalthan �nitely branhing MTSs, and for whih results of lass 2 still hold.31
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