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1 Introdu
tionWe 
onsidermetri
 transition systems, whi
h are transition systems in whi
h thepredi
ates, at ea
h state, are interpreted as elements of generi
 metri
 spa
es.Many examples of metri
 transition systems have been studied in the literature.As the set IR of real numbers is a metri
 spa
e (when equipped, for instan
e,with the metri
 d(x; y) = jx � yj), hybrid systems (where 
lo
ks and hybridvariables are interpreted in IR) and pri
ed automata (where a real-valued \pri
e"is asso
iated with ea
h state) are both examples of metri
 transition systems.Kripke stru
tures are also a spe
ial 
ase of metri
 transition systems, as the setft; fg of boolean values 
an be asso
iated with the metri
 d(t;t) = d(f; f) = 0,and d(t; f) = d(f;t) = 1. Indeed, it is diÆ
ult to think of a 
lass of transitionsystems that has been proposed in the literature, and that 
annot be 
ast as ametri
 transition system.Tra
e in
lusion, tra
e equivalen
e, simulation, and bisimulation are 
lassi-
al system relations whi
h play a very important role in system spe
i�
ationand veri�
ation. These notions are de�ned in terms of the equality of predi
atevaluations: for example, tra
e in
lusion holds between two states s, t if, for ev-ery tra
e from s, we 
an �nd a tra
e from t with equal predi
ate valuations.On
e the predi
ate valuations belong to metri
 spa
es, it be
omes natural toextend these system relations to metri
s, that 
apture how 
lose the valuationsare, rather than requiring equality. For example, tra
e in
lusion 
an be general-ized to a metri
, where the distan
e between s and t provides a bound for how
losely the valuations of an arbitrary tra
e from s 
an be mat
hed by a tra
efrom t. Following this idea, we extend the 
lassi
al relations of tra
e in
lusion,tra
e equivalen
e, simulation, and bisimulation to a metri
 setting, by de�ninglinear and bran
hing distan
es4. Considering distan
es, rather than relations,leads to a theory of system approximations [7, 18, 2℄, enabling the quanti�
ationof how 
losely a 
on
rete system implements a spe
i�
ation. System metri
s,rather than relations, are also appropriate when the system stru
ture is derivedfrom experimental observations, so that the predi
ate valuations are subje
tto measurement errors. In this 
ase, system metri
s provide useful informationabout the similarity of system behaviors, while relations, relying on equality inpredi
ate valuations, are unne
essarily �ne-grained.We de�ne two families of distan
es: linear distan
es, whi
h generalizetra
e in
lusion and equivalen
e, and bran
hing distan
es, whi
h generalize(bi)simulation. We relate these distan
es to the quantitative version of the twowell-known spe
i�
ation languages Ltl and �-
al
ulus, showing that the dis-tan
es measure to what extent the logi
 
an tell one system from the other. Thedistan
e notions arising as generalizations of tra
e in
lusion and simulation areasymmetri
al, just like the relations they generalize: the \simulation distan
e"between s and t is in general di�erent from the \simulation distan
e" between tand s. We 
all these asymmetri
al distan
es dire
ted metri
s, preferring this term4 In this paper, we use the term \distan
e" in a generi
 way, applying it to varioustypes of metri
s. 2



to the term quasi-pseudometri
s used elsewhere in the literature [9℄; symmetri-
al distan
es will be 
alled undire
ted metri
s. Thus, for the sake of generality,we develop our results in the general setting where predi
ates are evaluated inspa
es endowed with dire
ted metri
s.Our starting point for linear distan
es is the distan
e k�� �k1 between twotra
es � and �, whi
h measures the supremum of the di�eren
e in predi
atevaluations at 
orresponding positions of � and �. To lift this tra
e distan
e to adistan
e over states, we de�ne ld s(s; t) = sup�2Tr(s) inf�2Tr(t) k� � �k1, whereTr(s) and Tr(t) are the set of tra
es from s and t, respe
tively. The distan
eld s(s; t) is asymmetri
al, and is a quantitative extension of tra
e 
ontainment:if ld s(s; t) = b, then for all tra
es � from s, there is a tra
e � from t su
hthat k� � �k1 � b. In parti
ular, if the metri
 spa
es where the predi
ates areevaluated assign distan
e 0 only to identi
al elements, then Tr(s) � Tr(t) i�ld s(s; t) = 0. We de�ne a symmetri
al version of this distan
e by lds(s; t) =maxfld s(s; t); ld s(t; s)g, yielding a distan
e that generalizes tra
e equivalen
e;thus, lds(s; t) is the Hausdor� distan
e between Tr(s) and Tr(t).We relate the linear distan
e to the logi
 Qltl, a quantitative version ofLtl [14℄. When interpreted on a metri
 transition system, Qltl formulas yield avalue in the positive reals extended with in�nity, or IR+[f1g. The propositionalformulas of Qltl are of the form D(r; 
) and D(
; r), where r is a predi
ate, and
 a 
onstant. The formula D(r; 
), at a state, yields the distan
e of the valuationof r at the state from the 
onstant 
. Both D(r; 
) and D(
; r) are present asbasi
 formulas, sin
e in our setting based on dire
ted distan
es, the distan
ebetween the valuation of r and 
, and the distan
e between 
 and the valuationof r, need not be the same. The formula \next p" returns the (quantitative)value of the subformula p in the next step of a tra
e, while \eventually p" seeksthe maximum value attained by p throughout the tra
e. The logi
al 
onne
tives\and" and \or" are interpreted as \min" and \max."In the standard, relational setting, for a relation to 
hara
terize a logi
, twostates must be related if and only if all formulas from the logi
 have the sametruth value on them. In our metri
 framework, we 
an a
hieve a �ner 
har-a
terization: in addition to relating those states that formulas 
annot distin-guish, we 
an also measure to what extent the logi
 
an tell one state from theother. We give two kinds of 
hara
terizations. We show that for arbitrary metri
transition systems, the distan
es provide a bound for the di�eren
e in value ofQltl formulas: pre
isely, for all states s; t we have j'(t) � '(s)j � lds(s; t) and'(t) � '(s) � ld s(s; t). Moreover, we show that for �nitely bran
hing metri
transition systems, su
h 
hara
terizations are tight: for all states s; t we havelds(s; t) = sup'2Qltl j'(t) � '(s)j and ld s(s; t) = sup'2Qltl('(t) � '(s)). Thistightness result does not hold in general for non-�nitely-bran
hing metri
 tran-sition systems.We then study the bran
hing distan
es that are the analogous of simulationand bisimulation on quantitative systems. A state s simulates a state t via Rif the proposition valuations at s and t 
oin
ide, and if every su

essor of s isrelated via R to some su

essor of t. We generalize simulation to a distan
e bdAs3



over states. If bdAs(s; t) = b, then the valuations of 
orresponding predi
ates at sand t di�er by at most b, and every su

essor of s 
an be mat
hed by a su

essorof t within bdAs-distan
e b. In a similar fashion, we 
an de�ne a distan
e bdSsthat is a quantitative analogous of bisimulation; su
h a distan
e has been studiedin [7, 18℄. We relate these distan
es to Qmu, a quantitative �xpoint 
al
ulus that
losely resembles the �-
al
ulus of [4℄, and is related to the 
al
uli of [11, 5℄ (seealso [10, 15℄). Similarly to Qltl, the basi
 formulas of Qmu are of the formD(r; 
) and D(
; r), for a predi
ate r and a valuation 
. The modal formulas8 p, 9 p 
ompute respe
tively the least and greatest value of a subformula pat all su

essor states; the logi
al 
onne
tives \and" and \or" are interpreted as\min" and \max", and the �xpoints are given a quantitative interpretation.Again, we provide a twofold logi
al 
hara
terization of the bran
hing dis-tan
es in terms of Qmu. We show that for arbitrary metri
 transition systems,we have j'(t) � '(s)j � bdSs(s; t) and  (t) �  (s) � bdAs(s; t), where ' is anyQmu-formula, and  is any \universal" Qmu-formula, i.e., any formula of Qmuwhi
h does not 
ontain 9 . Moreover, if the metri
 transition system is �nitelybran
hing, then we have the stronger result bdSs(s; t) = sup'2Qmu j'(t) � '(s)jand bdAs(s; t) = sup'29Qmu('(t) � '(s)), where 9Qmu is the fragment of Qmuin whi
h 9 does not o

ur; these results do not hold in general for non-�nitely-bran
hing metri
 transition systems.We relate linear and bran
hing distan
es, showing that just as simulation im-plies tra
e 
ontainment, so the bran
hing distan
es are greater than or equal tothe 
orresponding linear distan
es. However, we show that determinism plays alesser role in the quantitative setting than in the standard boolean setting: whiletra
e in
lusion (resp. equivalen
e) 
oin
ides with simulation (resp. bisimulation)for deterministi
 boolean transition systems, we show that linear and bran
hingdistan
es do not 
oin
ide for deterministi
 quantitative transition systems. Fi-nally, we present algorithms for 
omputing linear and bran
hing distan
es overquantitative transition systems. We show that the problem of 
omputing the lin-ear distan
es is PSPACE-
omplete, and it remains PSPACE-
omplete even overdeterministi
 systems, showing on
e more that determinism plays a lesser rolein quantitative transition systems. The bran
hing distan
es 
an be 
omputed inpolynomial time using standard �xpoint algorithms [4℄.We present all our results in a dis
ounted version, in whi
h distan
es o

ur-ring i steps in the future are multiplied by �i, where � is a dis
ount fa
tor in[0; 1℄. This dis
ounted setting is 
ommon in the theory of games (see e.g. [8℄)and optimal 
ontrol (see e.g. [6℄), and it leads to robust theories of quantita-tive systems [4℄. In the dis
ouned setting, behavioral di�eren
es arising far intothe future are given less relative weight than behavioral di�eren
es a�e
ting thepresent or the near future. Hen
e, the dis
ounted setting leads to notions of\lo
al similarity" that enjoy many pleasant mathemati
al properties.
4



2 PreliminariesWe denote by IR the set of real numbers, by IR+ the set of non-negative realsand we set bIR+ = IR+ [ f1g. We extend the operations +;�; � to bIR+ as usual:namely, 1�1 = 0, 1 +1 = 1, and 1� x = 1 for all x 2 IR, 1 � x = 1for x 2 IR n f0g. For two numbers x; y 2 bIR+, we write x t y = max(x; y)and x u y = min(x; y). We lift the operators t and u, and the relations <, �to fun
tions via their pointwise extensions. Pre
isely, for n-argument fun
tionsf1; f2 : A1�� � ��An ! B, we write f1 t f2 for the fun
tion g : A1�� � ��An ! Bde�ned by g(x1; : : : ; xn) = f1(x1; : : : ; xn) t f2(x1; : : : ; xn), and similarly foru; we write f1 � f2 if f1(x1; : : : ; xn) � f2(x1; : : : ; xn) for all x1 2 A1, . . . ,xn 2 An, and we write f1 < f2 if f1 � f2 and if there are some x1 2 A1,. . . , xn 2 An for whi
h f1(x1; : : : ; xn) < f2(x1; : : : ; xn). Given a fun
tion d :X2 ! bIR+, we denote by Zero(d) = f(x; y) 2 X2 j d(x; y) = 0g its zero set.Given a sequen
e fxigi2IN, we 
ommonly write limi xi (resp. supiXi, inf i xi) forlimi!1 xi (resp. supi!1Xi, inf i!1 xi). The following lemma summarizes somesimple fa
ts about sequen
es of real numbers that will be needed in subsequentproofs.Lemma 1 Let I be a set and fxigi2I, fyigi2I be two families of numbers inIR. The following assertions hold.1. If xi�yi � 
 for all i 2 I, then supi xi� supi yi � 
 and inf i xi� inf i yi � 
.2. Let X;Y be sets and f : X � Y ! IR be a fun
tion. Thensupx2X infy2Y f(x; y) � infy2Y supx2X f(x; y): �2.1 Metri
s and metri
 spa
esWe de�ne dire
ted and undire
ted metri
s, where undire
ted metri
s are requiredto be symmetri
al and dire
ted metri
s are not. For example, the travel distan
ebetween two points in a 
ity with one-way streets is a dire
ted metri
. Our di-re
ted and undire
ted metri
s generalize the usual metri
s, in that elements thathave metri
 0 are not required to be identi
al. This terminology, used through-out the paper, di�ers somewhat from the standard one: dire
ted metri
s havebeen 
alled generalized pseudometri
s [9℄. We prefer the term \dire
ted", as itis more spe
i�
, and parallels the distin
tion between dire
ted and undire
tedgraphs. The de�nitions are as follows.De�nition 1 We introdu
e the following terminology.1. A dire
ted metri
 on a set X is a fun
tion d : X �X ! bIR+ that satis�es{ d(x; x) = 0 for all x 2 X ;{ d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X (triangle inequality).2. An undire
ted metri
 is a dire
ted metri
 d : X �X ! bIR+ that is symmet-ri
al, that is, su
h that d(x; y) = d(y; x) for all x; y 2 X . Undire
ted metri
sare also 
alled simply metri
s. �5



We will often de�ne a dire
ted metri
s, and obtain the 
orresponding undire
tedmetri
s by symmetrization.De�nition 2 (symmetrization) Given a dire
ted metri
 d on a set X , wedenote by �d its symmetrization, de�ned by �d(x; y) = d(x; y) t d(y; x) for allx; y 2 X . Obviously, for all x; y 2 X , we have d(x; y) � �d(x; y). �In a Kripke stru
ture, the value of a proposition, at ea
h state, is a member ofthe truth-value set ft; fg. We extend this setting by evaluating propositions, atea
h state, to elements of metri
 spa
es. A metri
 spa
e is a set with a metri
de�ned on it; for the sake of generality, we assume only that the metri
 is adire
ted metri
.De�nition 3 A dire
ted metri
 spa
e, or shortly a metri
 spa
e, is a pair(X; d), where d is a dire
ted metri
 on X . �Example 1 An example of a metri
 spa
e is the spa
e of RGB-represented
olors, where the distan
e between 
olors 
1 and 
2 represents the di�eren
ein brightness between 
1 and 
2. The spa
e is then X = [0; 1℄3, and for x =hx1; x2; x3i and y = hy1; y2; y3i we de�ne d(x;y) = jx � b � y � bj, where b is ave
tor giving the brightness of ea
h basi
 
olor, and � is the internal produ
t. Itis easy to see that (X; d) is a dire
ted metri
 spa
e. In parti
ular, d is undire
ted,and note that di�erent 
olors may have the same brightness. �Example 2 Another example of metri
 spa
e isXIR = (IR; dIR), with d(x; y) =x �� y def= maxfx� y; 0g for x; y 2 IR. It is immediate that d is a dire
ted metri
.�Example 3 A parti
ularly simple example of metri
 spa
e is XB = (X; dB )is X = f0; 1g and d(x; y) = jx � yj for x; y 2 f0; 1g. This is the usual spa
e of\boolean" valuations; it is immediate that d is an undire
ted metri
. �When providing logi
al 
hara
terizations for the distan
es, we will �rst 
onsiderlogi
s in whi
h any element of the metri
 spa
e 
an be used as a 
onstant. If themetri
 spa
e is un
ountable, however, this leads to the 
onsideration of logi
swith un
ountably many symbols. If a metri
 spa
e is separable, ea
h element
an be approximated by arbitrarily 
lose elements of a 
ountable basis. In this
ase, we will see that logi
s with 
ountably many symbols (
orresponding to theelements of the basis) will suÆ
e.De�nition 4 (separable dire
ted metri
 spa
e) A dire
ted metri
 spa
e(X; d) is separable if there is a 
ountable basis B � X su
h that, for all x 2 Xand all " > 0, there is y 2 B with d(x; y) < " and d(y; x) < ". �2.2 Metri
 transition systemsA metri
 transition system is a transition system where the value of a propo-sition, at ea
h state, is an element of a dire
ted metri
 spa
e. To simplify thenotation, we assume throughout the paper an underlying set AP of propositions,where ea
h proposition r 2 � takes values in a metri
 spa
e (Xr; dr).6



De�nition 5 (valuations) A valuation u of a set � � AP of propositions isa fun
tion with domain � that assigns to ea
h r 2 � an element q 2 Xr ofthe metri
 spa
e (Xr; dr) 
orresponding to r. We denote by U [�℄ the set of allvaluations of �. �De�nition 6 (metri
 transition system) Ametri
 transition system (MTS)is a tuple M = (S; � ;�; [�℄) 
onsisting of the following 
omponents:{ a set S of states;{ a transition relation � � S � S;{ a �nite set � � AP of propositions;{ a fun
tion [�℄: S ! U [�℄ whi
h assigns to ea
h state s 2 S a valuation.For a state s 2 S, we write �(s) for ft 2 S j (s; t) 2 �g. We require that M isnon-blo
king: for all s 2 S, the set �(s) is non-empty. �We distinguish the spe
ial 
lasses of deterministi
 and �nitely bran
hing MTSs.De�nition 7 (spe
ial types of MTSs) Let M = (S; � ; [�℄) be a MTS.{ We say that M is deterministi
 if for all states s 2 S and t; t0 2 �(s) witht 6= t0, there is r 2 � su
h that [t℄(r) 6= [t0℄(r).{ We say that M is �nitely bran
hing if �(s) is �nite for all s 2 S.{ We say that M is separable if, for all r 2 �, the metri
 spa
e (qr ; dr) isseparable. In this 
ase, we denote by Br a 
ountable basis for (qr; dr). �2.3 Paths and tra
esGiven a set A and a sequen
e � = a0a1a2 � � � 2 A!, we write �i for the i-thelement ai of �, and we write �i = aiai+1ai+2 � � � for the (in�nite) suÆx of �starting from �i.De�nition 8 (paths and tra
es) Consider an MTSM = (S; � ;�; [�℄). A pathofM is an in�nite sequen
e of states � 2 S! su
h that (�i; �i+1) 2 � for all i 2 N.Given a state s 2 S, we write PathsM (s) for the set of all paths of M startingfrom s; we omit the subs
ript M when 
lear from the 
ontext.A tra
e is an in�nite sequen
e � 2 U [�℄!. Every path � ofM indu
es a tra
e[�℄ = [�0℄[�1℄[�2℄ � � � . We write TrM (s) = f[�℄ j � 2 PathsM (s)g for the set oftra
es of M starting from the state s 2 S, and we omit the subs
ript M when
lear from the 
ontext. �2.4 Bran
hing and tra
e relationsWe de�ne simulation, bisimulation, tra
e 
ontainment, and tra
e equivalen
e forMTSs as usual.De�nition 9 ((bi)simulation, tra
e 
ontainment/equivalen
e) For anMTS M = (S; � ;�; [�℄), the simulation relation �sim (resp. the bisimulationrelation �bis) is the largest relation R � S � S su
h that, for all sR t, thefollowing Conditions 1 and 2 (resp. 1, 2, and 3) hold:7



1. [s℄ = [t℄;2. for all s0 2 �(s), there is t0 2 �(t) with s0R t0;3. for all t0 2 �(t), there is s0 2 �(s) with s0R t0.For s; t 2 S, we write s vtr t if Tr(s) � Tr(t), and s �tr t if Tr(s) = Tr(t). �2.5 Dis
ussionWe note that, for some of the results on system metri
s, it would have beensuÆ
ient to de�ne a metri
 transition system as a system that maps ea
h stateinto an element of a metri
 spa
e, bypassing thus the introdu
tion of a set ofpredi
ates, and the related ma
hinery. Su
h a de�nition, of 
ourse, is a spe
ial
ase of the one we adopt, and 
orresponds to 
onsidering metri
 transition sys-tems with only one proposition. The main fun
tion of predi
ates is to enable usto develop the 
onne
tion between system metri
s and logi
s, sin
e the logi
srefer to quantities via the predi
ates.In an MTS (S; � ;�; [�℄), we 
all ea
h r 2 � a \proposition", rather than \vari-able", in spite of the fa
t that r takes values in a generi
 metri
 spa
e (Xr; dr),rather than in the set of truth-values. Our 
hoi
e of terminology is motivatedby the fa
t that in the system logi
s we 
onsider, the symbol r plays a (synta
-ti
) role that is analogous to that of ordinary propositions. We reserve insteadthe term \variable" for the variables used to 
onstru
t �xpoint expressions in�-
al
ulus.3 Linear Distan
es and Logi
s3.1 Linear distan
esThroughout the paper, unless spe
i�
ally noted, we 
onsider a �xed MTS M =(S; � ;�; [�℄). We pro
eed by de�ning the linear distan
es between valuations, thenbetween tra
es and �nally between states. The propositional distan
e betweentwo valuations is the maximum di�eren
e in their proposition evaluations, wheredi�eren
es in the assignments of proposition r are measured by the metri
 dr.De�nition 10 (propositional distan
e) We de�ne the propositional dis-tan
e pd : U [�℄2 ! bIR+, for all valuations u; v 2 U [�℄, as pd(u; v) =maxr2� dr(u(r); v(r)). �For ease of notation, we write pd (s; t) for pd([s℄; [t℄). If dr is a distan
e forea
h r 2 �, then given u; v 2 U [�℄ we have (u; v) 2 Zero(pd) i� u = v, and(u; v) 2 Zero(pd ) i� u � v. The tra
e distan
e is the pointwise extension ofthe propositional distan
e to in�nite sequen
es of valuations, where the value atposition i is dis
ounted by �i, for a dis
ount fa
tor � 2 (0; 1℄.De�nition 11 (tra
e distan
e) We de�ne the tra
e distan
e td� : U [�℄! �U [�℄! ! bIR+ by letting, for �; � 2 U [AP ℄! and � 2 (0; 1℄, td�(�; �) =supi2N �ipd(�i; �i). �8



It is easy to show that td� is a dire
ted metri
. The following result statesthat if we base the notion of tra
e distan
e on pd instead of on pd (i.e. if werepla
e pd by pd in the de�nition above), we obtain the symmetrization td� oftd�. Moreover, the kernel of this symmetrization is tra
e equality.Lemma 1. For all sequen
es �, � 2 U [�℄! and all � 2 (0; 1℄, we havetd�(�; �) = supi2N �ipd(�i; �i) and (�; �) 2 Zero(td�) () � = �.The linear distan
es between two states are obtained by lifting tra
e distan
es tothe set of all tra
es from the two states, as in the de�nition of Hausdor� distan
ebetween sets.De�nition 12 (linear distan
e) We de�ne the two linear distan
es lda andld s over S as follows, for s; t 2 S and � 2 (0; 1℄:lda�(s; t) = sup�2Tr(s) inf�2Tr(t) td�(�; �) ld s�(s; t) = sup�2Tr(s) inf�2Tr(t) td�(�; �) �One 
an easily 
he
k that, for all � 2 (0; 1℄, the fun
tions lda� and ld s� aredire
ted metri
s, while lda� and lds� are undire
ted ones. Intuitively, the distan
eld s� is a quantitative extension of tra
e 
ontainment: for s; t 2 S, the distan
eld s�(s; t) measures how 
losely (in a quantitative sense) a tra
e from s 
an besimulated a tra
e from t. The symmetrization of ld s� is lds�, whi
h is related totra
e equivalen
e. Indeed, we will see in the next se
tion that it is possible tode�ne a quantitative logi
 Qltl su
h that the valuation of Qltl formulas at sand t 
an di�er by at most lds�(s; t), and similarly, the valuation of any Qltlformula at t is at most ld s�(s; t) below the valuation at s.Example 4 Consider the 
ase where (Xr; dr) = XIR for all r 2 �, that is, allpropositions are interpreted as real numbers, and dr(a; b) is a measure of howmu
h greater is a than b. In this setting, for � = 1 the distan
es lda� and lda�have the following intuitive 
hara
terization. For a tra
e � 2 U [�℄! and 
 2 IR,denote by � �� 
 the tra
e de�ned by (� �� 
)k(r) = �k(r) �� 
 for all k 2 N andr 2 �: in other words, � �� 
 is obtained from � by de
reasing all propositionvaluations by 
. For all s; t 2 S, if lda1(s; t) = 
 then for every tra
e � from s thereis a tra
e � from t su
h that � � � �� 
. This means that lda1(s; t) is a \positive"version of tra
e 
ontainment: for ea
h tra
e � of s, the goal of a tra
e � from tis not that of being 
lose to �, but rather, that of not being below � �� 
. �Theorem 1 For all �nitely bran
hing MTSs (S; � ;�; [�℄) and for all � 2 (0; 1℄,we have vtr = Zero(ld s�) and �tr = Zero(lds�).Proof. Let (S; � ;�; [�℄) be an MTS with s; t 2 S and � 2 (0; 1℄. It is easy to seethat s vtr t implies ld s�(s; t) = 0. To prove the 
onverse, assume that ld s�(s; t) =0 and let � 2 Tr(s). Then, there are tra
es �0; �1; �2 : : : 2 Tr(t) su
h thattd�(�; �i) < 12i for all i. Due to the �nitely bran
hing property, there exists atra
e �� su
h that td�(�; ��) < 12i for all i. This means that td�(�; ��) = 0,whi
h, by Lemma 1, is the same as � = �. Now, the result for �tr and lds� easilyfollows. �9



t3t0t1 t2 t4 : : :: : :r=0r=:1 r=:0001r=:01 r=:001s0 r=0Fig. 1. An MTS showing the di�eren
e between Zero(lds�) and vtr . The proposition ris evaluated in the metri
 spa
e XIR. u1r=1r=0u0r=1r=0 r=0t1 t2t0s1r=0r=0s0Fig. 2. An MTS showing the di�eren
e between lda�, ld s�, lda�, and lds�. The propositionr is evaluated in the metri
 spa
e XIR.To show that the result above does not hold for in�nitely bran
hing systems,
onsider the MTS in Figure 1, where the proposition r is again evaluated inthe metri
 spa
e XIR. This MTS has in�nitely many states s0, t0, t1, t2; : : :and transitions (s0; s0), (t0; ti) and (ti; ti) for ea
h i 2 N. Moreover, we put[r℄(s0) = [r℄(t0) = 0 and [r℄(ti) = 10�i for i > 0. Then, we have for all � 2 (0; 1℄that (s0; t0) 2 Zero(ld s�), but s0 6vtr t0. To obtain an MTS with lds�(t0; u0) = 0,but t0 6�tr u0, we let u0 be a state that is the exa
tly same as t0 (i.e. same valu-ation and same su

essor states), ex
ept that it has a self-loop (i.e. a transition(u0; u0) 2 �).The relations among linear distan
es are summarized by the following theo-rem.Theorem 2 The following assertions hold.1. For all MTSs, and for all � 2 (0; 1℄, we have lda� � lda�, lda� � ld s�,ld s� � lds�, and lda� � lds�; moreover, for � 2 (0; 1℄ the inequalities 
an-not be repla
ed by equalities.2. For � 2 (0; 1℄, the distan
es ld s� and lda� are in
omparable: there is an MTSwith states s; t; z 2 S su
h that ld s�(s; t) < lda�(s; t) and ld s�(t; z) > lda�(t; z).Proof. The �rst and third inequalities of statement (1) are trivial, while these
ond and fourth follow immediately from the fa
t that, for all tra
es � and �,td(�; �) � td(�; �). For � 2 (0; 1℄ and the MTS in Figure 2, we haveld a�(s0; t0) = 0 lda�(t0; u0) = 0 lda�(u0; t0) = 0ld s�(s0; t0) = 0 ld s�(t0; u0) = � ld s�(u0; t0) = 0lda�(s0; t0) = � lda�(t0; u0) = 0 lda�(u0; t0) = 0lds�(s0; t0) = � lds�(t0; u0) = � lds�(u0; t0) = �10



Thus, we have an example where lda� 6= ld s�, lda� 6= lda�, ld s� 6= lds�, lda� 6= lds�,and neither ld s� � lda� nor ld s� � lda�. �Next, we show that the linear distan
es are robust with respe
t to perturbationsin the state valuations: small 
hanges in the proposition valuations 
auses small
hanges in the distan
es. Given two state valuations [�℄1; [�℄2 : S ! U [�℄, wede�ne their dire
ted distan
e by:d([�℄1; [�℄2) = sups2S maxr2� dr([s℄1(r); [s℄2(r))Moreover, for a state valuation f : S ! U [�℄ and � 2 (0; 1℄, we write ldaf;�, ld sf;�for the distan
es de�ned as in De�nition 12, using f as the state valuation.Theorem 3 (linear distan
e robustness) For all � 2 (0; 1℄, all predi
atevaluations [�℄1; [�℄2, and all s; t 2 S, we haveld a[�℄1;�(s; t)� lda[�℄2;�(s; t) � d([�℄1; [�℄2) + d([�℄2; [�℄1)jld s[�℄1;�(s; t)� ld s[�℄2;�(s; t)j � 2 � d([�℄1; [�℄2)Proof. The result follows by showing that the tra
e distan
e between two tra
es� and �, measured under [�℄1 and [�℄2, di�ers by at most d([�℄1; [�℄2) + d([�℄2; [�℄1).The key step 
onsists in noting that, for any r 2 �, from the triangular inequalitydr([s℄1(r); [t℄1(r)) � dr([s℄1(r); [s℄2(r)) + dr([s℄2(r); [t℄2(r)) + dr([t℄2(r); [t℄1(r))followsdr([s℄1(r); [t℄1(r)) � dr([s℄2(r); [t℄2(r)) � dr([s℄1(r); [s℄2(r)) + dr([t℄2(r); [t℄1(r))� d([�℄1; [�℄2) + d([�℄2; [�℄1):Now the result follows by repetitive appli
ation of Lemma 1(1). �3.2 Quantitative linear-time temporal logi
The linear distan
es introdu
ed above 
an be 
hara
terized in terms quantitativelinear-time temporal logi
 (Qltl), a quantitative extension of linear-time tem-poral logi
 [14℄ whi
h in
ludes quantitative versions of the temporal operatorsand logi
 
onne
tives. Following [7℄, Qltl has a \threshold" operator, enablingthe 
omparison of a formula against a real 
onstant. The Qltl formulas over aset � of propositions are generated by the following grammar:' ::= D(r; 
) j D(
; r) j ' ^ ' j ' _ ' j �' j 3�'Here r 2 � is a proposition, 
 2 Sr2AP Xr is a 
onstant and � 2 (0; 1℄ a dis
ountfa
tor. We assume that, in a term of the form D(r; 
) or D(
; r), we have 
 2 Xr.11



A formula ' assigns a value [['℄℄(�) 2 bIR+ to ea
h tra
e � � U [�℄!:[[D(r; 
)℄℄(�) = dr(�0(r); 
)[[D(
; r)℄℄(�) = dr(
; �0(r))[['1 ^ '2℄℄(�) = [['1℄℄(�) u [['2℄℄(�)[['1 _ '2℄℄(�) = [['1℄℄(�) t [['2℄℄(�)[[ �'℄℄(�) = � � [['℄℄(�1)[[3�'℄℄(�) = supf�i � [['℄℄(�i) j i � 0gA Qltl formula ' assigns a real value [['℄℄(s) 2 bIR+ to ea
h state s of a givenMTS, by de�ning [['℄℄(s) = inff[['℄℄(�) j � 2 Tr(s)g:We note that the above de�nition 
ould also be phrased in terms of sup overall tra
es from s, rather than inf. However, as our setting is based on distan
es,the inf operator most 
losely 
orresponds to the universal quanti�
ation over allpaths present in the 
lassi
al de�nition of LTL semanti
s.For � 2 (0; 1℄, we denote by Qltl� the set of formulas 
ontainingonly dis
ount fa
tors smaller than or equal to �. Furthermore, for ops �f ;3; D(
; r); D(r; 
)g, we denote by Qltl� n ops the set of formulas whi
hdo not employ the operators in ops .Noti
e that Qltl is a proper extension to the fragment of Ltl withoutthe Until operator, in the following sense. Consider the metri
 spa
e E =(f0; 1g; �xy:jx� yj). Any Kripke stru
ture M has an obvious translation to anMTS M 0 over E. Moreover, any Ltl formula ' in positive normal form 
an betranslated into a Qltl formula '0 by adding the dis
ount fa
tor 1 as a subs
riptto all temporal operators and repla
ing r and :r with d(r; 0) and d(r; 1), respe
-tively. Then, ' is true on a Kripke stru
ture M if and only if '0 evaluates to 1on M 0.3.3 Logi
al 
hara
terization of linear distan
esLinear distan
es provide a bound for the di�eren
e in valuation ofQltl formulas.We begin by relating distan
es and logi
s over tra
es.Lemma 2 For all MTSs (S; � ;�; [�℄), all � 2 (0; 1℄ and tra
es �; � 2 U [�℄!,the following holds.For all ' 2 Qltl� n fD(r; 
)g : td�(�; �) � [['℄℄(�) � [['℄℄(�);for all ' 2 Qltl� n fD(
; r)g : td�(�; �) � [['℄℄(�) � [['℄℄(�);for all ' 2 Qltl� : td�(�; �) � j[['℄℄(�) � [['℄℄(�)j:Proof. Let us 
onsider the �rst assertion. We pro
eed by stru
tural indu
tionon '. If ' = D(
; r), using triangle inequality we get [['℄℄(�) � [['℄℄(�) =12



d(
; [�0℄(r)) � d(
; [�0℄(r)) � d([�0℄(r); [�0℄(r)) � pd (�0; �0) � td�(�; �).If ' = 3� , by indu
tive hypothesis we have that, for all i 2 N, [[ ℄℄(�i) �[[ ℄℄(�i) � td�(�i; �i) and thus �i � [[ ℄℄(�i) � �i � [[ ℄℄(�i) � �i � td�(�i; �i) �td�(�; �). Then, by Lemma 1,[['℄℄(�) � [['℄℄(�) = supi2N �i � [[ ℄℄(�i)� supj2N �j � [[ ℄℄(�j) � td�(�; �):Similar observations hold for the remaining 
ases.The se
ond assertion 
an be proved in symmetri
al fashion. The third asser-tion 
an be easily proved along similar lines. �The �rst result of the previous lemma is tight in two respe
ts: both repla
ingQltl�nfD(r; 
)gwithQltl� and repla
ing [['℄℄(�)�[['℄℄(�) with j[['℄℄(�)�[['℄℄(�)jrender the result false. The se
ond assertion is also tight in a similar sense. Thefollowing theorem uses the linear distan
es to provide the desired bounds forQltl.Theorem 4 For all MTSs (S; � ;�; [�℄), all � 2 (0; 1℄ and s; t 2 S, we have:For all ' 2 Qltl� n fD(r; 
)g:lda�(s; t) � [['℄℄(t) � [['℄℄(s) and lda�(s; t) � j[['℄℄(t) � [['℄℄(s)j;For all ' 2 Qltl�:ld s�(s; t) � [['℄℄(t) � [['℄℄(s) and lds�(s; t) � j[['℄℄(t) � [['℄℄(s)j:Proof. We �rst prove that ld a�(s; t) � [['℄℄(t) � [['℄℄(s).lda�(s; t) = sup�2Tr(s) inf�2Tr(t) td�(�; �)� sup�2Tr(s) inf�2Tr(t)([['℄℄(�) � [['℄℄(�)) by Lemma 2;= inf�2Tr(t)[['℄℄(�) � inf�2Tr(s)[['℄℄(�)= [['℄℄(t) � [['℄℄(s):The result for lda� is an immediate 
onsequen
e. The statements 
on
erning ld s�and lds� follow in a similar way from Lemma 2. �The results for ld s� and lds� are the quantitative analogous of the standard
onne
tion between tra
e 
ontainment and tra
e equivalen
e, and Ltl. For in-stan
e, the result about ld s� states that, if ld s�(s; t) = 
, then for every for-mula ' 2 Qltl� and every tra
e � from s, there is a tra
e � from t su
h that[['℄℄(�) � [['℄℄(�) � 
.We next show that, for �nitely bran
hing systems, Qltl provides a full log-i
al 
hara
terization of the linear distan
es, meaning that the distinguish-ing power of the logi
 is exa
tly the same as the one of the distan
es. Westart with a te
hni
al lemma. Given two tra
es � and �, an integer m anda dis
ount fa
tor �, let the bounded distan
e between � and � be de�ned asbtdm� (�; �) = max0�i�m �ipd(�i; �i). Clearly, td�(�; �) = limm btdm� (�; �).13



Lemma 3 If the MTS M is �nitely bran
hing, then for all tra
es �, dis
ountfa
tors � 2 (0; 1℄ and t 2 S, we havesupm2N inf�2Tr(t) btdm� (�; �) = inf�2Tr(t) supm2N btdm� (�; �):Proof. Sin
e the l.h.s. is trivially smaller than or equal to the r.h.s., we areleft to prove that (l :h:s :) � (r :h:s :). Spe
i�
ally, we prove that, for all � > 0,(r :h:s :) � (l :h:s :) + �. Fix � > 0. For all m > 0, there exists �m 2 Tr(t) su
hthat btdm� (�; �m) � inf�2Tr(t) btdm� (�; �) + �:For all m � 0, let 
m be the pre�x of �m up to the m + 1-th valuation. Theset f
m j m � 0g 
an be arranged into a tree that is a subtree of the unrollingof t. Sin
e this tree 
ontains in�nitely many nodes and is �nitely bran
hing,by K�onig's lemma it must 
ontain an in�nite tra
e �� 2 Tr(t). The tra
e ��has in�nitely many pre�xes in f
m j m � 0g. Therefore, there is an in
reasingsequen
e (im)m>0 su
h that, for all m � 0, 
im is a pre�x of ��. It follows that(r :h:s :) � td�(�; ��) = limm btdm� (�; ��)= limm btd im� (�; ��)� limm btd im� (�; 
im )= limm btd im� (�; �im )� limm inf�2Tr(t) btd im� (�; �) + � = (l :h:s :) + �: �The following theorem states whi
h fragment of the logi
 is ne
essary to 
har-a
terize ea
h linear distan
e. In parti
ular, the operator 3 is never needed. To-gether with Theorem 4, this result 
onstitutes a full 
hara
terization of lineardistan
es in terms of Qltl.Theorem 5 If an MTS M = (S; � ;�; [�℄) is �nitely bran
hing, then for all� 2 (0; 1℄ and s; t 2 S,ld a�(s; t) = sup'2Qltl�nfD(r;
);3g[['℄℄(t) � [['℄℄(s)lda�(s; t) = sup'2Qltl�nfD(r;
);3g j[['℄℄(t) � [['℄℄(s)jld s�(s; t) = sup'2Qltl�nf3g[['℄℄(t) � [['℄℄(s)lds�(s; t) = sup'2Qltl�nf3g j[['℄℄(t) � [['℄℄(s)jProof. By Theorem 4, we only need to prove the \�" part of the equalities. We�rst prove the statement involving ld a�. For sake of simpli
ity, assume � = frg.Let ld a�(s; t) = x, we show that for all � > 0 there is a formula ' su
h that14



[['℄℄(t)�[['℄℄(s) > x��. Let �� 2 Tr(s) be a path su
h that inf�2Tr(t) td�(��; �) >x� �. For all m � 0, we set'm = _0�i�m i�D([��i ℄(r); r);where i� stands for i repetitions of the operator �. Intuitively, when formula'm is evaluated on a tra
e �0, it measures the asymmetri
 distan
e between �0and ��, up to the m-th step. Obviously, it is [['m℄℄(s) = 0 for all m � 0. Then,the value of 'm on a state s0 measures the distan
e between �� and the tra
e inTr(s0) whi
h is 
losest to it. For all t 2 S, it holds thatsupm [['m℄℄(t) = limm [['m℄℄(t) = limm inf�2Tr(t) max0�i�m�iD([��i ℄(r); [�i℄(r))= limm inf�2Tr(t) btdm� (��; �)= inf�2Tr(t) td�(��; �) by Lemma 3> x� �:Consequently, sup'2Qltl�nfD(r;
)g[['℄℄(t)� [['℄℄(s) � supm2N[['m℄℄(t)� [['m℄℄(s)= supm2N[['m℄℄(t)� 0> x� �:The statement about lda� is an easy 
onsequen
e: Assume �rst that lda�(s; t) =lda�(s; t). Then,lda�(s; t) = sup'2Qltl�nfD(r;
)g[['℄℄(s) � [['℄℄(t) � sup'2Qltl�nfD(r;
)g j[['℄℄(s) � [['℄℄(t)j:If instead lda�(s; t) = ld a�(t; s), we havelda�(s; t) = sup'2Qltl�nfD(r;
)g[['℄℄(t) � [['℄℄(s) � sup'2Qltl�nfD(r;
)g j[['℄℄(s) � [['℄℄(t)j:We now 
onsider the statement about ld s�. The proof pro
eeds similarly tothe one involving ld a�, using as distinguishing formula the following.'m = _0�i�m i�D([��i ℄(r); r) _ i�D(r; [��i ℄(r)):Finally, the statement involving lds� 
an be easily obtained from the proofthat ld s�(s; t) = sup'2Qltl� [['℄℄(t)�[['℄℄(s) and the fa
t that lds�(s; t) = ld s�(s; t) tld s�(t; s). �The next example shows that �nitely bran
hing is ne
essary for Theorem 5to hold. 15



sr = 0 s2s1 r = 0r = 1Fig. 3. An MTS exhibiting the language 0f0; 1g!; the single predi
ate is evaluated inthe metri
 spa
e XB.Theorem 6 There is an in�nitely bran
hing MTS su
h thatld s�(s; t) > sup'2Qltl�[['℄℄(s) � [['℄℄(t):Proof. Consider the system in Figure 3, where � = frg. Informally, Tr(s) =0f0; 1g!. Let � be a tra
e su
h that f�g is not a regular language over thealphabet f0; 1g (it would be suÆ
ient for � to be not star-free regular). Forinstan
e, let � = 01 001 0001 : : :. Consider a se
ond system, 
ontaining a state tsu
h that Tr(t) = Tr(s)nf�g. Noti
e that, in order to have su
h a set of tra
es, tmust be in�nitely bran
hing, sin
e if a �nitely bran
hing tree 
ontains all pre�xesof an in�nite path, it must also 
ontain the path itself. We have ld s1(s; t) = 1.We know that ordinary Ltl 
annot distinguish s from t, otherwise there wouldbe a formula  2 Ltl su
h that L( ) = f�g. We argue that Qltl is also unableto distinguish s from t. To prove it, we have to show that dis
ounting does notgive any advantage. �3.4 Logi
al 
hara
terization via logi
s with 
ountably many symbolsAbove, we have provided a logi
al 
hara
terization for the linear distan
es interms of a logi
 that 
ontains a potentially un
ountable set of 
onstants: in gen-eral, we need one 
onstant for ea
h element of a metri
 spa
e 
orresponding to apredi
ate. Here, we show how, for separable MTSs, we 
an provide a 
hara
ter-ization in terms of logi
s with 
ountably many symbols. First, we state a usefulresult, namely, that the logi
 is robust with respe
t to 
hanges in the 
onstantso

urring in the formulas: a small 
hange in the 
onstants 
auses a small 
hangein the value of the formulas.Theorem 7 Consider a formula ' of Qltl 
ontaining the 
onstants 
1; : : : ; 
n,belonging respe
tively to the metri
 spa
es (q1; d1); : : : ; (qn; dn). Let  ='[
01; : : : ; 
0n=
1; : : : ; 
n℄ be the result of repla
ing ea
h 
i with 
0i, for 1 � i �n, and let Æ = maxni=1(di(
i; 
0i) t di(
0i; 
i)) be the maximal distan
e be-tween the new and old value of ea
h 
onstant. Then, for all s 2 S, we havej[['℄℄(s) � [[ ℄℄(s)j � Æ.Proof. The result follows by a straightforward stru
tural indu
tion. The onlyinteresting 
ase is the one for D(r; 
i), for some 1 � i � n; in this 
ase, using16



the triangular inequality we havej[[D(r; 
i)℄℄(s) � [[D(r; 
0i)℄℄(s)j = jdi([s℄(r); 
) � di([s℄(r); 
0)j � di(
0; 
);the 
ase for D(
i; r) is similar. �From the robustness of the logi
 with respe
t to the 
onstants, it follows thatif an MTS is separable, we 
an obtain a logi
al 
hara
terization of the lineardistan
es in terms of logi
s that 
onsist only of 
ountably many symbols. Theidea, essentially, is to repla
e ea
h 
onstant with a nearby element of a 
ountablebase in the formulas used to 
hara
terize the distan
es.Theorem 8 If an MTSM = (S; � ;�; [�℄) is both �nitely bran
hing and separa-ble, then the 
hara
terizations provided by Theorem 5 hold also when we restri
tthe formulas of Qltl to 
ontain only 
onstants from the 
ountable set Sr2� Br,where Br is a 
ountable basis for the metri
 spa
e (Xr; dr), for ea
h r 2 �.Proof. The result follows immediately from the observation that by Theorem 7the value of a formula, at every state, 
an be approximated arbitrarily 
loselyby the value of a formula 
ontaining only 
onstants that belong to the 
ountablebases of the metri
 spa
es. �3.5 A note on algorithmi
 
omplexityThe following se
tion des
ribes an algorithm that takes as input a �nite MTSMover a dire
ted metri
 spa
e (X; d), and 
omputes the value of a linear distan
ebetween all pairs of states. To dis
uss its 
omplexity, we need to �x a �niterepresentation for the input data. Considering that all the linear distan
es haveas starting point the propositional distan
e pd , it is suÆ
ient to provide as inputthe jSj � jSj matrix A = (as;t)s;t2S , where as;t = pd(s; t).We assume that the values pd(s; t) are rational numbers en
oded in �xed-pre
ision binary representation; we denote by jxjb the number of bits in theen
oding of the rational number x. We de�ne the size of a �nite MTS M =(S; � ;�; [�℄) by jM j =Ps;t2S jpd(s; t)jb. The size of an MTS is thus quadrati
 injSj. We further assume that arithmeti
 operations 
an be 
arried out in 
onstanttime.3.6 Computing the linear distan
eGiven as inputs a �nite MTS M = (S; � ;�; [�℄), a dis
ount fa
tor � 2 (0; 1℄ (the
ase � = 0 is trivial), and x 2 fa; sg, we wish to 
ompute ldx�(s0; t0), for alls0; t0 2 S.We des
ribe the 
omputation of lda�, as the 
omputation of ld s� is analogous.We 
an read the de�nition of lda� as a two-player game. Player 1 
hooses a path� = s0s1s2 � � � from s0; Player 2 
hooses a path �0 = t0t1t2 � � � from t0; the goalof Player 1 (resp. Player 2) is to maximize (resp. minimize) supk �kpd(�k ; �0k).The game is played with partial information: after s0 � � � sn, Player 1 must 
hoose17



sn+1 without knowledge5 of t0 � � � tn. Su
h a game 
an be solved via a variationof the subset 
onstru
tion [16℄. The key idea is to asso
iate with ea
h �nal statesn of a �nite path s0s1 � � � sn 
hosen by Player 1, all �nal states tn of �nite pathst0t1 � � � tn 
hosen by Player 2, ea
h labeled by the distan
e v(s0 � � � sn; t0 � � � tn) =max0�k�n �k�npd (sk; tk).From M , we 
onstru
t another MTS M 0 = (S0; � 0; frg; [�℄0), having set ofstates S0 = S � 2S�D . If � = 1 we 
an take D = fpd(s; t) j s; t 2 Sg, so thatjD j � jSj2. For � 2 (0; 1), we take D = fpd(s; t)=�k j s; t 2 S^k 2 N^pd (s; t) ��kg [ f1g, so that jD j � jSj2 � dlog�minfpd(s; t) j s; t 2 S ^ pd(s; t) > 0ge+ 1.The transition relation � 0 
onsists of all pairs (hs; Ci; hs0; C 0i) su
h that s0 2 �(s)and C 0 = fht0; v0i j 9ht; vi 2 C : t0 2 �(t)^ v0 = (v=� t pd(s0; t0)) u 1g. Note thatonly Player 1 has a 
hoi
e of moves in this game, sin
e the moves of Player 2are a

ounted for by the subset 
onstru
tion. Finally, the interpretation [�℄0 isgiven by [hs; Ci℄0(r) = minfv j ht; vi 2 Cg, so that r indi
ates the minimumdistan
e a
hievable by Player 2 while trying to mat
h a path to hs; Ci 
hosenby Player 1. The goal of the game, for Player 1, 
onsists in rea
hing a state ofM 0 with the highest possible (dis
ounted) value or r. Thus, for all s; t 2 S, wehave lda�(s; t) = [[93�r℄℄M 0 (hs; fht; pd(s; t)igi), where the right-hand side is to be
omputed on M 0. This expression 
an be evaluated by a depth-�rst traversal ofthe state spa
e of M 0, noting that no state of M 0 needs to be visited twi
e, assubsequent visits do not in
rease the value of 3�r. This leads to the following
omplexity result.Theorem 9 For all x 2 fa; sg, the following assertions hold:1. Computing ldx� for � 2 (0; 1℄ and MTSM is PSPACE-
omplete in jM j+j�jb.2. Computing ldx� for � 2 (0; 1℄ and deterministi
 MTS M is PSPACE-
omplete in jM j+ j�jb.3. Computing ldx� for � 2 (0; 1℄ and boolean, deterministi
 MTS M is in timeO(jM j4).Proof. For Part 1, the upper 
omplexity bound 
omes from the above algorithm,noti
ing that the subset 
onstru
tion 
an be done on the 
y; the lower bound
omes from a redu
tion from the 
orresponding result for tra
e in
lusion [17℄.Part 2 states that, unlike in the boolean 
ase, the problem remains PSPACE-
omplete even for deterministi
 MTSs. This result is proved by an nlogspa
eredu
tion from the problem of 
omputing the distan
e between nondeterministi
systems to the one of 
omputing it between deterministi
 ones. More pre
isely,let M be a nondeterministi
 MTS and let m be the number of bits needed torepresent ea
h quantity inM . Assume that � is also en
oded as a �xed-pre
isionnumber of m bits. Then, from an analysis of the algorithm, we see that theminimum di�eren
e between two possible answers returned by the algorithmis a number with (n + 1)m bits, where n = jSj. This is essentially �n timesthe least di�eren
e of value among two non-equal valuations. We then build a5 Indeed, if the game were played with total information, we would obtain the bran
h-ing distan
es of the next se
tion. 18



deterministi
 MTSM 0, by 
opying every valuation and padding it to (n+1)m+1bits, thus using log2 jSj additional bits to uniquely identify ea
h state of S. On
ethe algorithm returns an answer for the deterministi
 system, the answer for theoriginal nondeterministi
 one 
an be re
overed by rounding to (n + 1)m bits ofpre
ision.Part 3 is a 
onsequen
e of Theorems 17 and 18. �3.7 Dis
ussionIn De�nition 10, we 
ould have de�ned the propositional distan
e between twostates using the L2 norm, via pd(u; v) = �Pr2� d(u(r); v(r))2�1=2 (or in generalusing the Ln norm, for n > 0). The reason why in De�nition 10 we 
hose the L1norm is that this de�nition leads to a logi
al 
hara
terization of the distan
es,sin
e the max in the L1 norm 
orresponds to the _ of the logi
s. It is easy tosee that, aside from the logi
al 
hara
terizations, the results of the paper wouldhold if we repla
ed in De�nition 10 the L1 norm with Ln, for any n > 0.4 Bran
hing Distan
es and Logi
s4.1 Bran
hing distan
esDe�nition 13 (bran
hing distan
es) For � 2 (0; 1℄ and x 2fAa;As; Sa; Ssg, 
onsider the four operators Hx� : (S2 ! bIR+) ! (S2 ! bIR+)de�ned as follows, for d : S2 ! bIR+:HAa� (d)(s; t) = pd(s; t) t � � sups02�(s) inft02�(t) d(s0; t0)HAs� (d)(s; t) = pd(s; t) t � � sups02�(s) inft02�(t) d(s0; t0)HSa� (d)(s; t) = pd(s; t) t � � sups02�(s) inft02�(t) d(s0; t0) t � � supt02�(t) infs02�(s) d(s0; t0)HSs� (d)(s; t) = pd(s; t) t � � sups02�(s) inft02�(t) d(s0; t0) t � � supt02�(t) infs02�(s) d(s0; t0)For x 2 fAa;As; Sa; Ssg, we de�ne the bran
hing distan
e bdx� as the least �x-points of the operators Hx. �For all � 2 (0; 1℄, the fun
tions bdAa� , bdAs� , and bdSa� are dire
ted metri
s, andthe fun
tions bdSs� , bdAa� , bdAs� , and bdSa� are undire
ted metri
s.The distan
e bdSs� is a quantitative generalization of bisimulation, and itessentially 
oin
ides with the metri
s of [7, 18, 4℄; as it is already symmetri
al,we have bdSs� = bdSs� . Similarly, the distan
e bdAs� generalizes simulation, andbdAs� generalizes mutual simulation.Theorem 10 For all MTSs (S; � ;�; [�℄) where dr is a dire
ted distan
e for allr 2 �, and for all � 2 (0; 1℄, we have �sim= Zero(bdAs� ) and �bis = Zero(bdSs� ).19



The distan
es bdAa� and bdSa� 
orrespond to quantitative notions of simulationand bisimulation with respe
t to the asymmetri
al propositional distan
e pd ;these distan
es are not symmetri
al, and we indi
ate their symmetri
al versionsby bdAa� and bdSa� . Just as in the boolean 
ase mutual similarity is not equivalentto bisimulation, so in our quantitative setting bdAs� 
an be stri
tly smaller thanbdSs� , and bdAa� 
an be stri
tly smaller than bdSa� .Theorem 11 The relations in Figure 5(b) hold for all MTS and for all � 2(0; 1℄. For � 2 (0; 1℄, no other inequalities hold on all MTSs.Proof. The inequalities bdAa� � bdSa� � bdSs� and bdAa� � bdAs� � bdSs� shown inthe �gure are immediate. Let � 2 (0; 1℄ and 
onsider the MTS in Figure 5(a)again. In this MTS, we have lda� = bdAa� , ld s� = bdAs� , lda� = bdSa� , lds� = bdSs�Hen
e, the results for the linear distan
es (see Theorem 2) show that bdAa� 6=bdAs� , bdAa� 6= bdSa� , bdAs� 6= bdSs� , bdSa� 6= bdSs� , and neither bdAs� � bdSa� norbdAs� � bdSa� . �The bran
hing distan
es, like the linear ones, are robust with respe
t to per-turbations in the state valuations: small 
hanges in the proposition valuations
ause small 
hanges in the distan
es. To state the theorem, given a state valu-ation f : S ! U [�℄, x 2 fAa;As; Sa; Ssg, and � 2 (0; 1℄, we write bdxf;� for thedistan
es de�ned as in De�nition 13, using f as the state valuation.Theorem 12 (bran
hing distan
e robustness) For all � 2 (0; 1℄, all x 2fAs; Sa; Ssg, all predi
ate valuations [�℄1; [�℄2, and all s; t 2 S, we havebdAa[�℄1;�(s; t)� bdAa[�℄2;�(s; t) � d([�℄1; [�℄2) + d([�℄2; [�℄1)jbdx[�℄1;�(s; t)� bdx[�℄2;�(s; t)j � 2 � d([�℄1; [�℄2):4.2 Quantitative �-
al
ulusWe de�ne quantitative �-
al
ulus after [5, 4℄. Given a set of variables X and aset of propositions �, the formulas of the quantitative �-
al
ulus are generatedby the grammar:' ::= D(r; 
) j D(
; r) j x j ' ^ ' j ' _ ' j 9 �' j 8 �' j �x : ' j �x : 'for propositions r 2 �, variables x 2 X , 
onstants 
 2 Sr2AP Xr, and dis
ountfa
tors � 2 (0; 1℄. We assume that, in a term of the form D(r; 
) or D(
; r),we have 
 2 Xr. Denoting by F = (S ! bIR+), a (variable) interpretation is afun
tion E : X ! F . Given an interpretation E , a variable x 2 X and a fun
tionf 2 F , we denote by E [x := f ℄ the interpretation E 0 su
h that E 0(x) = f and, forall y 6= x, E 0(y) = E(y). Given an MTS and an interpretation E , every formula20



' of the quantitative �-
al
ulus de�nes a valuation [['℄℄E : S ! bIR+:[[D(r; 
)℄℄E (s) = d([s℄(r); 
)[[D(
; r)℄℄E (s) = d(
; [s℄(r))[[x℄℄E = E(x)[['1 ^ '2℄℄E = [['1℄℄E u [['2℄℄E[['1 _ '2℄℄E = [['1℄℄E t [['2℄℄E
[[9 �'℄℄E (s) = � � sups02�(s)[['℄℄E(s0)[[8 �'℄℄E (s) = � � infs02�(s)[['℄℄E(s0)[[�x : '℄℄E = infff 2 F j f = [['℄℄E[x:=f ℄g[[�x : '℄℄E = supff 2 F j f = [['℄℄E[x:=f ℄g:The existen
e of the required �xpoints is guaranteed by the monotoni
ity and
ontinuity of all operators. A variable x is bound in ' if it is in the s
ope ofa quanti�er �x or �x; otherwise, it is 
alled free. A formula is 
losed if allvariables are bound. If ' is 
losed, we write [['℄℄ for [['℄℄E . For all � 2 (0; 1℄,we 
all Qmu� the set of quantitative �-
al
ulus formulas where all dis
ountfa
tors are smaller than or equal to �. We denote by ClQmu� the subset ofQmu� 
ontaining only 
losed formulas. For ops � fD(
; r); D(r; 
); 9;8; �; �g,we denote by Qmu� n ops and ClQmu� n ops the respe
tive subsets of formulasthat do not employ operators in ops . Noti
e that, if we take all dis
ount fa
torsto be 1, then the semanti
s of the quantitative �-
al
ulus on boolean systems
oin
ides with the one of the 
lassi
al �-
al
ulus.4.3 Logi
al 
hara
terizations of bran
hing distan
esIn the following theorem, we write '(x1; : : : ; xn) to signify that the free variablesin ' are among x1; : : : ; xn.Lemma 4 Given an MTS (S; � ;�; [�℄) and a dis
ount fa
tor � 2 (0; 1℄, thefollowing holds.1. For all '(x1; : : : ; xn) 2 Qmu� n f9; D(r; 
)g, for all variable environmentsE, and for all f1; : : : ; fn 2 F , if for all s; t 2 S and all i = 1; : : : ; n, fi(t) �fi(s) � bdAa� (s; t), then, for all s; t 2 S,[['℄℄E[xi:=fi℄(t)� [['℄℄E[xi:=fi℄(s) � bdAa� (s; t):2. For all '(x1; : : : ; xn) 2 Qmu� n f9g, and for all f1; : : : ; fn 2 F , if for alls; t 2 S and all i = 1; : : : ; n, fi(t)� fi(s) � bdAs� (s; t), then, for all s; t 2 S,[['℄℄E[xi:=fi℄(t)� [['℄℄E[xi:=fi℄(s) � bdAs� (s; t):3. For all '(x1; : : : ; xn) 2 Qmu� n fD(r; 
)g, and for all f1; : : : ; fn 2 F , iffor all s; t 2 S and all i = 1; : : : ; n, fi(t) � fi(s) � bdSa� (s; t), then, for alls; t 2 S, [['℄℄E[xi:=fi℄(t)� [['℄℄E[xi:=fi℄(s) � bdSa� (s; t):4. For all '(x1; : : : ; xn) 2 Qmu�, and for all f1; : : : ; fn 2 F , if for all s; t 2 Sand all i = 1; : : : ; n, jfi(t)� fi(s)j � bdSs� (s; t), then, for all s; t 2 S,j[['℄℄E[xi:=fi℄(t)� [['℄℄E[xi:=fi℄(s)j � bdSs� (s; t):Proof. We prove statements 1 and 3; the other two statements 
an be proved insimilar fashion. 21



Statement 1. We prove the result 
on
erning bdAa� by stru
tural indu
tion onthe formula. For ' = D(
; r), we obtain by triangle inequality [['℄℄(t)� [['℄℄(s) =d(
; [t℄(r)) � d(
; [s℄(r)) � d([s℄(r); [t℄(r)) � pd (s; t) � bdAa� (s; t).The 
ases ' = x, ' = '1 ^ '2 and ' = '1 _ '2 are also trivial.Consider the 
ase ' = 8 � , for some � � �: we prove that, for all statess; t 2 S and all � > 0, [['℄℄(t) � [['℄℄(s) � bdAa� (s; t) + �. For ease of notation, inthis part of the proof we write [[�℄℄ for [[�℄℄E[xi:=fi℄, as the variable interpretationis not the issue here. Re
all that, for all t 2 S, we have by de�nition [['℄℄(t) =� inft02�(t)[[ ℄℄(t0), By indu
tive hypothesis, for all s0; t0 2 S, [[ ℄℄(t0) � [[ ℄℄(s0) �bdAa� (s0; t0). For all s� 2 �(s) and Æ > 0, we de�ne 
loser (t; s�; Æ) to 
ontain allstates t� 2 �(t) su
h that bdAa(s�; t�) � Æ + inft02�(t) bdAa� (s�; t0). Intuitively,
loser (t; s�; Æ) 
ontains those su

essors of t that are 
loser than Æ to the bestmat
h for s�. For all s� 2 �(s) and t� 2 
loser (t; s�; Æ), we have that� � �[[ ℄℄(t�)� [[ ℄℄(s�)� � � � bdAa� (s�; t�)� � � � inft02�(t) bdAa� (s�; t0) + Æ�� � � � sups02�(s) inft02�(t) bdAa� (s0; t0) + Æ�� �Æ + bdAa� (s; t): (x)Finally, let s� 2 �(s) be su
h that [[ ℄℄(s�) � infs02�(s)[[ ℄℄(s0) + �2� and t� 2
loser (t; s�; �2� ), we have[['℄℄(t) � [['℄℄(s) = � inft02�(t)[[ ℄℄(t0)� � infs02�(s)[[ ℄℄(s0)� ��[[ ℄℄(t�)� [[ ℄℄(s�) + �2�� (y)� �2 + �([[ ℄℄(t�)� [[ ℄℄(s�))� �2 + �2 + bdAa� (s; t): (z)To obtain (y), we have used [[ ℄℄(t�) � inft02�(t)[[ ℄℄(t0) and our 
hoi
e of s�; toobtain (z), we have used t� 2 
loser (t; s�; �2� ), along with the previous result (x).This 
on
ludes this 
ase.If ' = �y :  , then [['℄℄ = limn gn, where g0(s) = 0 for all s 2 S, andgn+1 = [[ ℄℄E[y:=gn℄. This is a 
onsequen
e of the fa
t that, when the MTS is�nitely bran
hing, all operators of the �-
al
ulus are 
ontinuous: that is, for ea
hoperator F 2 f^;_; 9 ;8 g and ea
h sequen
e gnn�0 of fun
tions S2 ! bIR+, wehave F (limn gn) = limn F (gn). Sin
e g0(t)� g0(s) = 0 � bdAa� (s; t), by indu
tivehypothesis we obtain that, for all n 2 N, gn(t)�gn(s) � bdAa� (s; t), and thus thethesis. By taking g0(s) =1 for all s 2 S, we obtain the argument for ' = �y : .Statement 3. The 
ases ' = r, ' = x, ' =  1 ^  2 and ' =  1 _  2 are trivial,while the proofs for ' = 8 � , ' = �y : and ' = �y : are similar to the onesof Part 1. 22



Let ' = 9 � , for some � � �. We prove that, for all states s; t 2 S andall � > 0, [['℄℄(t) � [['℄℄(s) � bdSa� (s; t) + �. For ease of notation, we again write[[�℄℄ for [[�℄℄E[xi:=fi℄. By indu
tive hypothesis, for all s0; t0 2 S, [[ ℄℄(t0) � [[ ℄℄(s0) �bdSa� (s0; t0).For all s� 2 �(s) and Æ > 0, we de�ne 
loser (s; t�; Æ) to 
ontain all statess� 2 �(t) su
h that bdSa(s�; t�) � Æ+infs02�(s) bdSa� (s0; t�). Again, 
loser(s; t�; Æ)
ontains those su

essors of s that are 
loser than Æ to the best mat
h for t�. Forall t� 2 �(t) and s� 2 
loser (s; t�; Æ), we have that ��bdSa� (s�; t�) � �Æ+bdSa� (s; t),and thus � � �[[ ℄℄(t�)� [[ ℄℄(s�)� � � � bdSa� (s�; t�)� �Æ + bdSa� (s; t): (xx)There are now three 
ases.1. If [['℄℄(t) = � supt02�(t)[[ ℄℄(t0) <1, then let t� 2 �(t) be su
h that [[ ℄℄(t�) �supt02�(t)[[ ℄℄(t0)� �2� and s� 2 
loser (s; t�; �2� ). We have[['℄℄(t) � [['℄℄(s) = � supt02�(t)[[ ℄℄(t0)� � sups02�(s)[[ ℄℄(s0)� ��[[ ℄℄(t�) + �2� � [[ ℄℄(s�)�� �2 + �([[ ℄℄(t�)� [[ ℄℄(s�))� �2 + �2 + bdSa� (s; t);leading to the desired result.2. If [['℄℄(t) =1 and bdSa� (s; t) =1, then we are done.3. If [['℄℄(t) =1 and bdSa� (s; t) <1, then for every 
 2 IR, we 
an �nd t� 2 �(t)su
h that [[ ℄℄(t�) � 
. From (xx), we 
an thus �nd s� 2 
loser(s; t�; 1) su
hthat �(
� 1)� bdSa� (s; t) � �[[ ℄℄(t�)� �� bdSa� (s; t) � [[ ℄℄(s�):From [['℄℄(s) = � sups02�(s)[[ ℄℄(s0) � [[ ℄℄(s�), sin
e bdSa� (s; t) <1 and sin
e
 is arbitrary, we obtain [['℄℄(s) =1 = [['℄℄(t), 
on
luding the proof. �From the pre
eding lemma, we immediately obtain a theorem stating that thebran
hing distan
es provide bounds for the 
orresponding fragments of the �-
al
ulus. The statement for bdSs� is very similar to a result in [7℄.Theorem 13 For all MTSs (S; � ;�; [�℄), states s; t 2 S, and � 2 (0; 1℄, wehave for all ' 2 ClQmu� n f9; D(r; 
)g bdAa� (s; t) � [['℄℄(t) � [['℄℄(s)for all ' 2 ClQmu� n f9g bdAs� (s; t) � [['℄℄(t) � [['℄℄(s)for all ' 2 ClQmu� n fD(r; 
)g bdSa� (s; t) � [['℄℄(t) � [['℄℄(s)for all ' 2 ClQmu� bdSs� (s; t) � j[['℄℄(t) � [['℄℄(s)j23



As noted before, ea
h bound of the form d(s; t) � [['℄℄(t) � [['℄℄(s) trivially leadsto a bound of the form d(s; t) � j[['℄℄(t) � [['℄℄(s)j. The bounds are tight for�nitely bran
hing systems, and the following theorem identi�es whi
h fragmentsof quantitative �-
al
ulus suÆ
e for 
hara
terizing ea
h bran
hing distan
e. Theformula s
heme used to 
hara
terize bdSs� is reminis
ent of the one used in [1℄ forbisimulation.Theorem 14 For all �nitely bran
hing MTSs (S; � ;�; [�℄), states s; t 2 S, and� 2 (0; 1℄, we havebdAa� (s; t) = sup'2ClQmu�nf9;D(r;
);�;�g [['℄℄(t)� [['℄℄(s);bdAs� (s; t) = sup'2ClQmu�nf9;�;�g [['℄℄(t)� [['℄℄(s);bdSa� (s; t) = sup'2ClQmu�nfD(r;
);�;�g [['℄℄(t)� [['℄℄(s);bdSs� (s; t) = sup'2ClQmu�nf�;�g [['℄℄(t)� [['℄℄(s):Proof.Part 1. Consider the statement about bdAa� . For all s 2 S, we de�ne the sequen
eof formulas ('ks )k�0 as follows.'0s = _r2�D([s℄(r); r);'k+1s = '0s _ _s02�(s)8 �'ks0 :First, one 
an easily prove by indu
tion that, for all k 2 N and s 2 S, [['ks ℄℄(s) = 0.The distan
e bdAa� is de�ned as the least �xpoint of HAa� . Denoting by (HAa� )k asequen
e of k appli
ations of HAa� , sin
e the MTS is �nitely bran
hing, we havethat bdAa� = limk(HAa� )k(pd ). We prove by indu
tion on k that, for all s; t 2 S,[['ks ℄℄(t) = (HAa� )k(pd )(s; t).[['0s℄℄(t) = maxr2� d([s℄(r); [t℄(r))= pd(s; t) = (HAa� )0(pd )(s; t);[['k+1s ℄℄(t) = [['0s℄℄(t) t maxs02�(s) mint02�(t)�[['ks0 ℄℄(t0)= pd(s; t) t maxs02�(s) mint02�(t)� � (HAa� )k(pd)(s0; t0)= (HAa� )k+1(pd )(s; t):It follows that sup'2ClQmu�nf9;D(r;
);�;�g[['℄℄(t) � [['℄℄(s) � supk2N [['ks ℄℄(t)� [['ks ℄℄(s)= supk2N (HAa� )k(pd )(s; t)� 0= bdAa� (s; t):24



Part 2. To prove the statement 
on
erning bdAs� (s; t), we de�ne the followingsequen
e of formulas ('ks )k2N.'0s = _r2�D([s℄(r); r) _D(r; [s℄(r));'k+1s = '0s _ _s02�(s)8 �'ks0 :We then pro
eed similarly to the previous part.Part 3. To prove the bound on bdSa� (s; t), we use the formulas:'0s = _r2�D([s℄(r); r)'k+1s = '0s _ _s02�(s)8 �'ks0 _ 9 �� ^s02�(s)'ks0�:On
e again, one 
an easily prove by indu
tion that, for all k 2 N and s 2S, [['ks ℄℄(s) = 0. The distan
e bdSa� is de�ned as the least �xpoint of HSa� . Inparti
ular, denoting by (HSa� )k a sequen
e of k appli
ations of HSa� , again dueto the fa
t that the MTS is �nitely bran
hing we have bdSa� = limk(HSa� )k(pd ).We prove by indu
tion on k that, for all s; t 2 S, [['ks ℄℄(t) = (HSa� )k(pd )(s; t).[['0s ℄℄(t) = maxr2� �d([s℄(r); [t℄(r)) t d([t℄(r); [s℄(r))�= pd(s; t) = (HSa� )0(pd)(s; t);[['k+1s ℄℄(t) = [['0s ℄℄(t) t maxs02�(s) mint02�(t)�[['ks0 ℄℄(t0) t maxt02�(t) mins02�(s)�[['ks0 ℄℄(t0)= pd(s; t) t � maxs02�(s) mint02�(t)(HSa� )k(pd )(s0; t0)t � maxt02�(t) mins02�(s)(HSa� )k(pd )(s0; t0)= (HSa� )k+1(pd )(s; t):It follows that sup'2ClQmu�nfD(r;
);�;�g[['℄℄(t) � [['℄℄(s) � supk2N [['ks ℄℄(t) � [['ks ℄℄(s)= supk2N (HSa� )k(pd )(s; t)� 0= bdSa� (s; t):Part 4. To prove the bound on bdSs� (s; t), we use the formulas:'0s = _r2�D([s℄(r); r) _D(r; [s℄(r));'k+1s = '0s _ _s02�(s)8 �'ks0 _ 9 �� ^s02�(s)'ks0�:25



We then pro
eed similarly to the previous parts. �4.4 Logi
al 
hara
terization via logi
s with 
ountably many symbolsAgain, the logi
al 
hara
terization above is in terms of formulas de�ned over apotentially un
ountable set of 
onstants: in general, we need one 
onstant forea
h element of a metri
 spa
e 
orresponding to a predi
ate. As in the linear
ase, we show that if the MTS is separable, then it suÆ
es to 
onsider formulasde�ned over the 
ountable set of 
onstants 
orresponding to the 
ountable basesof the metri
 spa
es for the various predi
ates. We start on
e more with a resultthat expresses the robustness of the 
al
ulus with respe
t to 
hanges in thevaluation of the 
onstants.Theorem 15 Consider a formula ' of the quantitative �-
al
ulus 
on-taining the 
onstants 
1; : : : ; 
n, belonging respe
tively to the metri
 spa
es(q1; d1); : : : ; (qn; dn). Let  = '[
01; : : : ; 
0n=
1; : : : ; 
n℄ be the result of repla
ingea
h 
i with 
0i, for 1 � i � n, and let Æ = maxni=1(di(
i; 
0i) t di(
0i; 
i)) be themaximal distan
e between the new and old value of ea
h 
onstant. Then, for alls 2 S and all variable environments E, we have j[['℄℄E (s)� [[ ℄℄E (s)j � Æ.Proof. The result is obtained by a straightforward indu
tion on the stru
ture ofthe formula; the only interesting 
ase is the base 
ase for D, whi
h is proved asin the proof of Theorem 7. �Again, for separable MTSs this result leads to logi
al 
hara
terizations basedon languages with 
ountable sets of 
onstants, 
orresponding to the bases of themetri
 spa
es.Theorem 16 If an MTS M = (S; � ;�; [�℄) is both �nitely bran
hing and sep-arable, then the 
hara
terizations provided by Theorem 14 hold also when werestri
t the formulas of quantitative �-
al
ulus to 
ontain only 
onstants fromthe 
ountable set Sr2� Br, where Br is a 
ountable basis for the metri
 spa
e(Xr; dr), for ea
h r 2 �.Proof. Similarly to the linear 
ase, the result follows from the observation thatby Theorem 15 the value of a formula, at every state, 
an be approximatedarbitrarily 
losely by the value of a formula 
ontaining only 
onstants that belongto the 
ountable bases of the metri
 spa
es. �4.5 Computing the bran
hing distan
esGiven a �nite MTS M = (S; �;�; [�℄) a rational number � 2 (0; 1℄, and x 2fSs; Sa;As;Aag, we 
an 
ompute bdx�(s; t) for all states s; t 2 S by 
omputingin an iterative fashion the �xpoints of De�nition 13. For instan
e, bdAa� 
an be
omputed by letting d0(s; t) = 0 for all s; t 2 S and, for k 2 IN, by lettingdk+1(s; t) = pd (s; t) t � � maxs02�(s)mint02�(t) dk(s0; t0), for all s; t 2 S. Thenbdx� = limk!1 dk, and it 
an be shown that this and the other 
omputationsterminate in at most jSj2 iterations. This gives the following 
omplexity result.26



t1 t2t4t3 t0 r=0; r0=0r=0; r0=1 r=1; r0=0r=1; r0=0r=0; r0=1s0 s4s3 s1 r=0; r0=0r=1; r0=0r=12 ; r0=12r=0; r0=1Fig. 4. Linear versus bran
hing distan
es on a deterministi
 MTS.lds�ld s� ??��� lda�__???lda� ??���
__???

(a) Linear distan
es.
bdSs�bdAs� ??���� bdSa�__????bdAs�OO bdAa�__????

??���� bdSa�OObdAa�OO ??����

__????

(b) Bran
hing distan
es.
bdSs�bdAs� ??���� bdSa�__????lds� ??bdAs�OO bdAa�__????

??���� bdSa�OOlds�OO ?? lda�__?????

??bdAa�??

__?? OO ??����lda�__?????

OO

??(
) All distan
es.Fig. 5. Relations between distan
es, where f ! g means f � g. In (
), the dottedarrows 
ollapse to equality for boolean, deterministi
 MTSs.Theorem 17 Computing bdx� for x 2 fSs; Sa;As;Aag, � 2 (0; 1℄ and an MTSM 
an be done in time O(jM j4).5 Comparing the Linear and Bran
hing Distan
esLast, we provide a 
omparison between linear and bran
hing distan
es. Just assimilarity implies tra
e in
lusion, we have both ld a� � bdAa� and ld s� � bdAs� ; justas bisimilarity implies tra
e equivalen
e, we have lds� � bdSs� and lda� � bdSa� .Moreover, in the non-quantitative setting, tra
e in
lusion (resp. tra
e equiva-len
e) 
oin
ides with (bi-)similarity on deterministi
 systems. This result gener-alizes to distan
es over MTSs that are both deterministi
 and boolean, but notto distan
es over MTSs that are just deterministi
. To formalize these results,we say that an MTS is boolean if all its predi
ates are evaluated in the metri
spa
e XB .Theorem 18 The following properties hold.27



1. For all MTSs and all � 2 (0; 1℄, we havelda� � bdAa� ld s� � bdAs� lda� � bdSa� lds� � bdSs� :Moreover, for � 2 (0; 1℄, the inequalities 
annot be repla
ed by equalities.2. For all boolean, deterministi
 MTSs and for all � 2 (0; 1℄, we haveld a� = bdAa� ld s� = bdAs� lda� = bdAa� lds� = bdAs� :These equalities need not to hold for non-boolean, deterministi
 MTSs.The relations of Part 1 are illustrated in Figure 5(
).In order to prove this theorem, we pro
eed in steps. First, we providea relation between the �xpoints of the operators used to de�ne linear andbran
hing distan
es. For � 2 (0; 1℄ and x 2 fa; sg, we de�ne the operatorsF x� ; F x� : (S2 ! bIR+)! (S2 ! bIR+) as follows, for d : S2 ! bIR+:F a�(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) supi2N �id(�i; �i)F s�(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) supi2N �id(�i; �i)F a�(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) supi2N �id(�i; �i)t sup�2Paths(t) inf�2Paths(s) supi2N �id(�i; �i)F s�(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) supi2N �id(�i; �i)t sup�2Paths(t) inf�2Paths(s) supi2N �id(�i; �i):These operators should be 
ompared with the �xpoint operators used in De�-nition 13 to de�ne the bran
hing distan
es. Essentially, the operators F x� aboveshare the same stru
ture of the operators Hx�, ex
ept that F x� looks at the in�-nite paths originating from states, whereas Hx� looks just at the su

essor states.The following lemma follows immediately from the de�nitions.Lemma 5 Denoting by 0 : �(s; t):0 the zero fun
tion S2 ! bIR+. For � 2 (0; 1℄and x 2 fa; sg, we have: lda� = F a�(F a�(0))ld s� = F s�(F s�(0))lda� = F a�(F a�(0))lds� = F s�(F s�(0)):For � 2 (0; 1℄ denote the least �xpoints of these operators by:fdAa� = inffd : S2 ! bIR+ j d = F a�(d)gfdAs� = inffd : S2 ! bIR+ j d = F s�(d)gfdSa� = inffd : S2 ! bIR+ j d = F a�(d)gfdSs� = inffd : S2 ! bIR+ j d = F s�(d)g28



(where we have preferred to avoid the �-notation for least �xpoints not to gen-erate 
onfusion with �-
al
ulus over MTSs). The following lemma states thatthese �xpoints are bran
hing distan
es.Lemma 6 For all � 2 (0; 1℄, we have thatfdAa� = bdAa�fdAs� = bdAs�fdSa� = fdSs� = bdSs� :Proof. Let � 2 (0; 1℄. We show that fdAa� = bdAa� ; the other 
ases are similar.First, note that the operator HAa� used in De�nition 13 to de�ne the bran
hingdistan
es 
an be equivalently repla
ed by the following operator G : (S2 !bIR+)! (S2 ! bIR+) byG(d)(s; t) = pd(s; t) t d(s; t) t sups02�(s) inft02�(t)� � d(s0; t0):For 
onvenien
e, let also F = F a� . Then bdAa� is the least �xpoint of G and fdAa�is the least �xpoint of F . Sin
e G(d) � F (d) for all d : S2 ! bIR+, we get bymonotoni
ity of G and F that bdAa� � fdAa� . To prove that fdAa� � bdAa� , wede�ne for ea
h k 2 NFk(d)(s; t) = pd(s; t) t sup�2Paths(s) inf�2Paths(t) sup0�i�k �id(�i; �i):We denote by Gk the operator G iterated k times, i.e. G0(d) = d and Gk+1(d) =G(Gk(d)). We show by indu
tion that Fk � Gk for all k � 1. For k = 1, we haveF1(d) = pd t d � G1(d). For k + 1, we have:Fk+1(d)(s; t)= pd(s; t) t sup�2Paths(s) inf�2Paths(t) sup0�i�k+1�id(�i; �i)= pd(s; t) t sups02�(s) sup�02Paths(s0) inft02�(t) inf�02Paths(t0) sup0�i�k(d(s; t) t �i+1d(�0i; �0i))� pd(s; t) t d(s; t) t sups02�(s) inft02�(t) sup�02Paths(s0) inf�02Paths(t0) sup0�i�k �i+1d(�0i; �0i)= pd(s; t) t d(s; t) t sups02�(s) inft02�(t)Fk(d)(s0; t0)� pd(s; t) t d(s; t) t sups02�(s) inft02�(t)�Gk(d)(s0; t0)= Gk+1(d)(s; t):Then, F (bdAa� ) = limk Fk(bdAa� ) � limk Gk(bdAa� ) = bdAa� :Together with F (d) � d for all d, this shows F (bdAa� ) = bdAa� , i.e. bdAa� is a�xpoint of F . Hen
e, bdAa� � fdAa� , sin
e fdAa� is the least �xpoint of F . �With this result, we 
an �nally prove Theorem 18.29



Proof of Theorem 18.1. The inequalities follow from Lemmas 5 and 6, and from the monotoni
-ity of the F x� , F x� operators for � 2 (0; 1℄ and x 2 fa; sg. To see thaton deterministi
, non-boolean MTSs, the linear distan
es between states
an be stri
tly smaller than the 
orresponding bran
hing ones, 
onsiderthe MTS in Figure 4. We assume that � > 12 ; a similar example worksif � � 12 . Then ld a�(s; t) = ld s�(s; t) = lda�(s; t) = lds�(s; t) = 12�, whilebdAa� (s; t) = bdAs� (s; t) = bdAa� (s; t) = bdAs� (s; t) = �2.2. Let M = (S; � ;�; [�℄) be a boolean, deterministi
 MTS, let � 2 (0; 1℄ ands; t 2 S. We show that lda� = bdAa� . The other 
ases are similar. By part 1 ofthis theorem, we know that ld a� � bdAa� . To prove that lda� � bdAa� , we showthat HAa(ld a�) = ld a�, i.e. that ld a� is a �xpoint of HAa. As bdAa� is the least�xpoint of HAa, we obtain lda� � bdAa� . First, we observe thatHAa(ld a�)(s; t) = pd (s; t) t � sups02�(s) inft02�(t) lda�(s0; t0)= pd (s; t) t � sups02�(s) inft02�(t) sup�02Paths(s0) inf�02Paths(t0) td�(�0; �0)� pd (s; t) t � sups02�(s) sup�02Paths(s0) inft02�(t) inf�02Paths(t0) td�(�0; �0)= sup�2Paths(s) inf�2Paths(t) td�(�; �)= ld a�(s; t):SoHAa(lda�)(s; t) � lda�(s; t). We show that alsoHAa(ld a�)(s; t) � lda�(s; t). Ifpd(s; t) = 1, then HAa(lda�)(s; t) = lda�(s; t) = 1. Hen
e, assume pd(s; t) = 0.We distinguish two 
ases.Case 1: sups02�(s) inf t02�(t) pd�(s0; t0) = 1. Then one easily shows thatHAa(ld a�)(s; t) = � = lda�(s; t):Case 2: sups02�(s) inf t02�(t) pd�(s0; t0) = 0.Sin
e M is deterministi
 and boolean, we know that for all s0 2 �(s), thereis a ts0 2 �(t) su
h that pd�(s0; ts0) = 0 and pd�(s0; t0) = 1 for t0 6= ts0 . Then,we have for all s0 2 �(s); t0 2 �(t); t0 6= ts0 , �0 2 Paths(s0), �0 2 Paths(t0),and �s0 2 Paths(ts0 ) thattd�(�0; �ts0 ) � � and td�(�0; �0) = 1and therefore inf�02Paths(ts0 ) td�(�0; �0) � inf�02Paths(t0) td�(�0; �0)so inf�02Paths(ts0 ) td�(�0; �0) � inft02�(t) inf�02Paths(t0) td�(�0; �0): (*)30



Re
alling that pd(s; t) = 0, we getHAa(ld a�)(s; t) = � sups02�(s) inft02�(t) sup�02Paths(s0) inf�02Paths(t0) td�(�0; �0)� � sups02�(s) sup�02Paths(s0) inf�02Paths(ts0 ) td�(�0; �0) by (*)� � sups02�(s) sup�02Paths(s0) inft02�(t) inf�02Paths(t0) td�(�0; �0)= sup�2Paths(s) inf�2Paths(t) td�(�; �)= ld a�(s; t):To see that the equalities 
annot be strengthened to equalities, 
onsider� 2 (0; 1℄. We give the proof for � > 12 ; a similar example works if � � 12 .Consider the MTS in Figure 4. Then ldx�(s; t) = 12�, while bdx�(s; t) = �2. �6 Con
lusionsIn this paper, we have provided metri
 extensions of the 
lassi
al linear andbran
hing relations: tra
e in
lusion, tra
e equivalen
e, simulation, and bisimu-lation. We remark that, while metri
 analogous of bisimulation had been knownfor some time [7, 18℄, this is not the 
ase for the other notions, whi
h had es
apedattention thus far. We hope that the introdu
tion of these quantitative asym-metri
al and symmetri
al distan
es 
onstitutes a useful step toward a
hieving aquantitative theory of systems, in whi
h the 
lassi
al boolean setting of spe
i�-
ation and veri�
ation is repla
ed by a setting in whi
h properties have (real-valued, or general) values, and veri�
ation 
an yield not only yes/no answers,but also measures of quality, adequa
y, and 
ost.We have provided three main 
lasses of 
hara
terizations for linear andbran
hing distan
es:1. Distan
es as upper bounds for logi
 valuations. Results in this 
lass statethat the distan
es provide an upper bound for the di�eren
e in value offormulas of linear (Qltl) and bran
hing (Qmu) logi
s. Results of this typeare Theorems 4 and 13.2. Logi
s as full 
hara
terizations of distan
es. Results in this 
lass state thatthe distan
es are equal to the supremum of the di�eren
e in value of alllinear, or bran
hing formulas. Results of this type are Theorems 5 and 14.3. Relations among distan
es. Results in this 
lass 
ompare the value of linearand bran
hing distan
es; results of this type are Theorems 2, 11, and 18.Results in 
lasses 1 and 3 hold for general MTSs, and are thus parti
ularlysatisfying. In 
ontrast, as we have seen, results in 
lass 2 hold only for �nitelybran
hing MTSs. Many MTSs of interest are not �nite bran
hing: for instan
e,in a hybrid system, there 
an be un
ountably many su

essors of a state, 
orre-sponding to the real-valued length of time steps possible from the state. It is aninteresting open problem to investigate 
lasses of MTSs that are more generalthan �nitely bran
hing MTSs, and for whi
h results of 
lass 2 still hold.31
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