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1 Introduction

We consider metric transition systems, which are transition systems in which the
predicates, at each state, are interpreted as elements of generic metric spaces.
Many examples of metric transition systems have been studied in the literature.
As the set IR of real numbers is a metric space (when equipped, for instance,
with the metric d(z,y) = |z — y|), hybrid systems (where clocks and hybrid
variables are interpreted in IR) and priced automata (where a real-valued “price”
is associated with each state) are both examples of metric transition systems.
Kripke structures are also a special case of metric transition systems, as the set
{T,F} of boolean values can be associated with the metric d(T, T) = d(F,F) =0,
and d(T,F) = d(F,T) = 1. Indeed, it is difficult to think of a class of transition
systems that has been proposed in the literature, and that cannot be cast as a
metric transition system.

Trace inclusion, trace equivalence, simulation, and bisimulation are classi-
cal system relations which play a very important role in system specification
and verification. These notions are defined in terms of the equality of predicate
valuations: for example, trace inclusion holds between two states s, t if, for ev-
ery trace from s, we can find a trace from ¢ with equal predicate valuations.
Once the predicate valuations belong to metric spaces, it becomes natural to
extend these system relations to metrics, that capture how close the valuations
are, rather than requiring equality. For example, trace inclusion can be general-
ized to a metric, where the distance between s and ¢ provides a bound for how
closely the valuations of an arbitrary trace from s can be matched by a trace
from t. Following this idea, we extend the classical relations of trace inclusion,
trace equivalence, simulation, and bisimulation to a metric setting, by defining
linear and branching distances*. Considering distances, rather than relations,
leads to a theory of system approximations [7, 18, 2], enabling the quantification
of how closely a concrete system implements a specification. System metrics,
rather than relations, are also appropriate when the system structure is derived
from experimental observations, so that the predicate valuations are subject
to measurement errors. In this case, system metrics provide useful information
about the similarity of system behaviors, while relations, relying on equality in
predicate valuations, are unnecessarily fine-grained.

We define two families of distances: linear distances, which generalize
trace inclusion and equivalence, and branching distances, which generalize
(bi)simulation. We relate these distances to the quantitative version of the two
well-known specification languages LTL and p-calculus, showing that the dis-
tances measure to what extent the logic can tell one system from the other. The
distance notions arising as generalizations of trace inclusion and simulation are
asymmetrical, just like the relations they generalize: the “simulation distance”
between s and ¢t is in general different from the “simulation distance” between ¢
and s. We call these asymmetrical distances directed metrics, preferring this term

* In this paper, we use the term “distance” in a generic way, applying it to various
types of metrics.



to the term quasi-pseudometrics used elsewhere in the literature [9]; symmetri-
cal distances will be called undirected metrics. Thus, for the sake of generality,
we develop our results in the general setting where predicates are evaluated in
spaces endowed with directed metrics.

Our starting point for linear distances is the distance ||o — p||cc between two
traces o and p, which measures the supremum of the difference in predicate
valuations at corresponding positions of ¢ and p. To lift this trace distance to a
distance over states, we define [d®(s,t) = sup, ¢ 1.(s) Inf pe 7(1) |0 — plloo, Where
Tr(s) and Tr(t) are the set of traces from s and ¢, respectively. The distance
Id®(s,t) is asymmetrical, and is a quantitative extension of trace containment:
if 1d®(s,t) = b, then for all traces o from s, there is a trace p from ¢ such
that |0 — p|leo < b. In particular, if the metric spaces where the predicates are
evaluated assign distance 0 only to identical elements, then Tr(s) C Tr(t) iff
1d°(s,t) = 0. We define a symmetrical version of this distance by ld*(s,t) =
max{ld®(s,t),1d*(t, s)}, yielding a distance that generalizes trace equivalence;
thus, Id®(s, t) is the Hausdorff distance between Tr(s) and Tr(t).

We relate the linear distance to the logic QLTL, a quantitative version of
LtL [14]. When interpreted on a metric transition system, QLTL formulas yield a
value in the positive reals extended with infinity, or Ry U{oco}. The propositional
formulas of QLTI are of the form D(r,¢) and D(e,r), where r is a predicate, and
¢ a constant. The formula D(r,¢), at a state, yields the distance of the valuation
of r at the state from the constant ¢. Both D(r,c¢) and D(e,r) are present as
basic formulas, since in our setting based on directed distances, the distance
between the valuation of r and ¢, and the distance between ¢ and the valuation
of r, need not be the same. The formula “next p” returns the (quantitative)
value of the subformula p in the next step of a trace, while “eventually p” seeks
the maximum value attained by p throughout the trace. The logical connectives
“and” and “or” are interpreted as “min” and “max.”

In the standard, relational setting, for a relation to characterize a logic, two
states must be related if and only if all formulas from the logic have the same
truth value on them. In our metric framework, we can achieve a finer char-
acterization: in addition to relating those states that formulas cannot distin-
guish, we can also measure to what extent the logic can tell one state from the
other. We give two kinds of characterizations. We show that for arbitrary metric
transition systems, the distances provide a bound for the difference in value of
QutL formulas: precisely, for all states s, we have |o(t) — ¢(s)| < Id®(s,t) and
p(t) — p(s) < ld°(s,t). Moreover, we show that for finitely branching metric
transition systems, such characterizations are tight: for all states s,t we have
& (5,1) = Subpcqum (1) — 9(s)] and 1d*(s,2) = sup,coum (1) — (). This
tightness result does not hold in general for non-finitely-branching metric tran-
sition systems.

We then study the branching distances that are the analogous of simulation
and bisimulation on quantitative systems. A state s simulates a state ¢ via R
if the proposition valuations at s and t coincide, and if every successor of s is
related via R to some successor of . We generalize simulation to a distance bd"®



over states. If bdAS(s, t) = b, then the valuations of corresponding predicates at s
and ¢ differ by at most b, and every successor of s can be matched by a successor
of t within bd**-distance b. In a similar fashion, we can define a distance bd>*
that is a quantitative analogous of bisimulation; such a distance has been studied
in [7,18]. We relate these distances to QMU, a quantitative fixpoint calculus that
closely resembles the u-calculus of [4], and is related to the calculi of [11, 5] (see
also [10,15]). Similarly to QLTL, the basic formulas of QMU are of the form
D(r,c¢) and D(e,r), for a predicate r and a valuation ¢. The modal formulas
VYOp, 30p compute respectively the least and greatest value of a subformula p
at all successor states; the logical connectives “and” and “or” are interpreted as
“min” and “max”, and the fixpoints are given a quantitative interpretation.
Again, we provide a twofold logical characterization of the branching dis-
tances in terms of QMU. We show that for arbitrary metric transition systems,
we have |p(t) — @(s)| < bd™(s,t) and () — ¥(s) < bd™(s,t), where ¢ is any
QMU-formula, and 9 is any “universal” QMU-formula, i.e., any formula of QMU
which does not contain 30. Moreover, if the metric transition system is finitely
branching, then we have the stronger result bd™(s,t) = SUP,equu [P (1) — ()]

and bd*(s,t) = SUp,czquu(9(t) — ¢(s)), where 3QMU is the fragment of QMU
in which 3O does not occur; these results do not hold in general for non-finitely-
branching metric transition systems.

We relate linear and branching distances, showing that just as simulation im-
plies trace containment, so the branching distances are greater than or equal to
the corresponding linear distances. However, we show that determinism plays a
lesser role in the quantitative setting than in the standard boolean setting: while
trace inclusion (resp. equivalence) coincides with simulation (resp. bisimulation)
for deterministic boolean transition systems, we show that linear and branching
distances do not coincide for deterministic quantitative transition systems. Fi-
nally, we present algorithms for computing linear and branching distances over
quantitative transition systems. We show that the problem of computing the lin-
ear distances is PSPACE-complete, and it remains PSPACE-complete even over
deterministic systems, showing once more that determinism plays a lesser role
in quantitative transition systems. The branching distances can be computed in
polynomial time using standard fixpoint algorithms [4].

We present all our results in a discounted version, in which distances occur-
ring i steps in the future are multiplied by o, where « is a discount factor in
[0,1]. This discounted setting is common in the theory of games (see e.g. [8])
and optimal control (see e.g. [6]), and it leads to robust theories of quantita-
tive systems [4]. In the discouned setting, behavioral differences arising far into
the future are given less relative weight than behavioral differences affecting the
present or the near future. Hence, the discounted setting leads to notions of
“local similarity” that enjoy many pleasant mathematical properties.



2 Preliminaries

We denote by IR the set of real numbers, by IR, the set of non-negative reals
and we set R, = R, U {oc}. We extend the operations +, —, - to R, as usual:
namely, oc — 00 = 0, 00 + 00 = 00, and co £z = oo for all z € IR, 0o -z = o0
for z € R\ {0}. For two numbers z,y € R4, we write z U y = max(z,y)
and z M y = min(z,y). We lift the operators U and M, and the relations <, <
to functions via their pointwise extensions. Precisely, for n-argument functions
fi,fa: Ay x---x A, = B, wewrite f; U f5 for the function g : Ay x---xA, > B
defined by g(z1,...,2n) = fi(z1,...,2n) U fo(z1,...,2,), and similarly for
MN; we write f; < fo if fi(z1,...,2,) < fo(z1,...,2,) for all z; € Ay, ...
x, € A,, and we write f; < fy if fi < fy and if there are some x; € A,

.., &, € A, for which fi(z1,...,2,) < fo(x1,...,2,). Given a function d :
X2 = Ry, we denote by Zero(d) = {(z,y) € X2 | d(z,y) = 0} its zero set.
Given a sequence {z;};eN, we commonly write lim; z; (resp. sup; X;, inf; z;) for
lim; s o0 2; (resp. sup;_, o, X;, inf; o ;). The following lemma summarizes some
simple facts about sequences of real numbers that will be needed in subsequent,
proofs.

Lemma 1 Let T be a set and {x;}icz, {yiticz be two families of numbers in
IR. The following assertions hold.

1. If x;—y; < c foralli €Z, then sup; z; —sup; y; < ¢ and inf; x; —inf,; y; < c.
2. Let XY be sets and f : X xY — R be a function. Then

sup inf f(z,y) < inf su z,y). O
zegyeyf( y) < yeyzegf( y)

2.1 Metrics and metric spaces

We define directed and undirected metrics, where undirected metrics are required
to be symmetrical and directed metrics are not. For example, the travel distance
between two points in a city with one-way streets is a directed metric. Our di-
rected and undirected metrics generalize the usual metrics, in that elements that
have metric 0 are not required to be identical. This terminology, used through-
out the paper, differs somewhat from the standard one: directed metrics have
been called generalized pseudometrics [9]. We prefer the term “directed”, as it
is more specific, and parallels the distinction between directed and undirected
graphs. The definitions are as follows.

Definition 1 We introduce the following terminology.

1. A directed metric on a set X is a function d: X x X — ]IAL_ that satisfies
— d(z,z) =0 for all z € X;
— d(z,2) <d(z,y) + d(y,z) for all z,y,z € X (triangle inequality).
2. An undirected metric is a directed metricd : X x X — lﬁ+ that is symmet-
rical, that is, such that d(x,y) = d(y, z) for all z,y € X. Undirected metrics
are also called simply metrics. O



We will often define a directed metrics, and obtain the corresponding undirected
metrics by symmetrization.

Definition 2 (symmetrization) Given a directed metric d on a set X, we
denote by d its symmetrization, defined by d(z,y) = d(z,y) U d(y,x) for all

z,y € X. Obviously, for all z,y € X, we have d(z,y) < d(z,y). O

In a Kripke structure, the value of a proposition, at each state, is a member of
the truth-value set {T, F}. We extend this setting by evaluating propositions, at
each state, to elements of metric spaces. A metric space is a set with a metric
defined on it; for the sake of generality, we assume only that the metric is a
directed metric.

Definition 3 A directed metric space, or shortly a metric space, is a pair
(X,d), where d is a directed metric on X. O

Example 1 An example of a metric space is the space of RGB-represented
colors, where the distance between colors ¢; and cs represents the difference
in brightness between ¢; and ¢y. The space is then X = [0,1], and for = =
(x1,%2,23) and y = (y1,y2,y3) we define d(x,y) = | - b — y - b|, where b is a
vector giving the brightness of each basic color, and - is the internal product. It
is easy to see that (X, d) is a directed metric space. In particular, d is undirected,
and note that different colors may have the same brightness. O

Example 2 Another example of metric space is X = (IR, dr), with d(z,y) =

Ty def max{z —y,0} for z,y € R. It is immediate that d is a directed metric.

O

Example 3 A particularly simple example of metric space is Xg = (X, dg)
is X = {0,1} and d(z,y) = |z — y| for 2,y € {0,1}. This is the usual space of
“boolean” valuations; it is immediate that d is an undirected metric. O

When providing logical characterizations for the distances, we will first consider
logics in which any element of the metric space can be used as a constant. If the
metric space is uncountable, however, this leads to the consideration of logics
with uncountably many symbols. If a metric space is separable, each element
can be approximated by arbitrarily close elements of a countable basis. In this
case, we will see that logics with countably many symbols (corresponding to the
elements of the basis) will suffice.

Definition 4 (separable directed metric space) A directed metric space
(X,d) is separable if there is a countable basis B C X such that, for all z € X
and all € > 0, there is y € B with d(z,y) < € and d(y, z) < e. O

2.2 DMetric transition systems

A metric transition system is a transition system where the value of a propo-
sition, at each state, is an element of a directed metric space. To simplify the
notation, we assume throughout the paper an underlying set AP of propositions,
where each proposition r € X' takes values in a metric space (X,,d,).



Definition 5 (valuations) A valuation u of a set X' C AP of propositions is
a function with domain Y that assigns to each r € X an element ¢ € X, of
the metric space (X,,d,) corresponding to r. We denote by U[X] the set of all
valuations of X. O

Definition 6 (metric transition system) A metric transition system (MTS)
is a tuple M = (S, 7, X, []) counsisting of the following components:

— a set S of states;

— a transition relation 7 C S x S;

— a finite set X' C AP of propositions;

— a function [-]: S — U[X] which assigns to each state s € S a valuation.

For a state s € S, we write 7(s) for {t € S| (s,t) € 7}. We require that M is
non-blocking: for all s € S, the set 7(s) is non-empty. O

We distinguish the special classes of deterministic and finitely branching MTSs.

Definition 7 (special types of MTSs) Let M = (S, ,[-]) be a MTS.

— We say that M is deterministic if for all states s € S and t,t' € 7(s) with
t # ', there is r € X such that [¢t](r) # [#'](r).

— We say that M is finitely branching if 7(s) is finite for all s € S.

— We say that M is separable if, for all r € X, the metric space (¢, d;) is
separable. In this case, we denote by B, a countable basis for (¢, d,). O

2.3 Paths and traces

Given a set A and a sequence m = agajas --- € A¥, we write m; for the i-th
element a; of w, and we write 7 = a;a;11a;49 -+ for the (infinite) suffix of =
starting from ;.

Definition 8 (paths and traces) Consider an MTS M = (S, 7, X, [-]). A path
of M is an infinite sequence of states m € S* such that (m;, 7;41) € 7 for alli € N.
Given a state s € S, we write Paths s (s) for the set of all paths of M starting
from s; we omit the subscript M when clear from the context.

A trace is an infinite sequence o € U[X]¥. Every path 7 of M induces a trace

[7] = [mo][m1][ma] - - -. We write Tras(s) = {[n] | @ € Pathsa(s)} for the set of
traces of M starting from the state s € S, and we omit the subscript M when
clear from the context. O

2.4 Branching and trace relations

We define simulation, bisimulation, trace containment, and trace equivalence for
MTSs as usual.

Definition 9 ((bi)simulation, trace containment/equivalence) For an
MTS M = (S,7,X,[]), the simulation relation <, (resp. the bisimulation
relation =) is the largest relation R C S x S such that, for all s Rt, the
following Conditions 1 and 2 (resp. 1, 2, and 3) hold:



L [s] = [t];
2. for all s’ € 7(s), there is ' € 7(t) with s’ R#';
3. for all ¢’ € 7(t), there is s' € 7(s) with s’ Rt'.

For s,t € S, we write s Ty, ¢ if Tr(s) C Tr(t), and s = t if Tr(s) = Tr(t). O

2.5 Discussion

We note that, for some of the results on system metrics, it would have been
sufficient to define a metric transition system as a system that maps each state
into an element of a metric space, bypassing thus the introduction of a set of
predicates, and the related machinery. Such a definition, of course, is a special
case of the one we adopt, and corresponds to considering metric transition sys-
tems with only one proposition. The main function of predicates is to enable us
to develop the connection between system metrics and logics, since the logics
refer to quantities via the predicates.

In an MTS (S, 7, X, [-]), we call each r € X a “proposition”, rather than “vari-
able”, in spite of the fact that r takes values in a generic metric space (X, d,),
rather than in the set of truth-values. Our choice of terminology is motivated
by the fact that in the system logics we consider, the symbol r plays a (syntac-
tic) role that is analogous to that of ordinary propositions. We reserve instead
the term “variable” for the variables used to construct fixpoint expressions in
p-calculus.

3 Linear Distances and Logics

3.1 Linear distances

Throughout the paper, unless specifically noted, we consider a fixed MTS M =
(S, 7, X,[-])- We proceed by defining the linear distances between valuations, then
between traces and finally between states. The propositional distance between
two valuations is the maximum difference in their proposition evaluations, where
differences in the assignments of proposition r are measured by the metric d,..

Definition 10 (propositional distance) We define the propositional dis-
tance pd : U[X]? — Ry, for all valuations uw,v € U[X], as pd(u,v) =
max, ey d.(u(r),v(r)). O

For ease of notation, we write pd(s,t) for pd([s],[t]). If d, is a distance for
each r € X, then given u,v € U[X] we have (u,v) € Zero(pd) iff u = v, and
(u,v) € Zero(pd) iff u < v. The trace distance is the pointwise extension of
the propositional distance to infinite sequences of valuations, where the value at
position i is discounted by o, for a discount factor o € (0, 1].

Definition 11 (trace distance) We define the trace distance td, : U[X]¥ x

UZ]* — Ry by letting, for 0,p € U[AP] and a € (0,1], tda(o,p) =
sup;ey a'pd(0i, pi). a



It is easy to show that td, is a directed metric. The following result states
that if we base the notion of trace distance on pd instead of on pd (i.e. if we
replace pd by pd in the definition above), we obtain the symmetrization td, of
td,. Moreover, the kernel of this symmetrization is trace equality.

Lemma 1. For all sequences o, p € U[X]” and all « € (0,1], we have
tdy (o, p) = sup;en @'pd(0;, pi) and (o,p) € Zero(td,) < o = p.

The linear distances between two states are obtained by lifting trace distances to
the set of all traces from the two states, as in the definition of Hausdorff distance
between sets.

Definition 12 (linear distance) We define the two linear distances ld* and
Id° over S as follows, for s, € S and « € (0, 1]:

ld%(s,t) = sup inf td,(o, 1d° (s,t) = sup inf td,(o, O
( ) o€ Tr(s) PE Tr(t) ( p) ( ) oceTr(s) pE Tr(t) ( p)

One can easily check that, for all @ € (0,1], the functions Id% and Id}, are
directed metrics, while Id® and IdS, are undirected ones. Intuitively, the distance
Id}, is a quantitative extension of trace containment: for s,t € S, the distance
Id} (s, t) measures how closely (in a quantitative sense) a trace from s can be
simulated a trace from ¢. The symmetrization of Id?, is [d%,, which is related to
trace equivalence. Indeed, we will see in the next section that it is possible to
define a quantitative logic QLTL such that the valuation of QLTL formulas at s
and ¢ can differ by at most [d5,(s,t), and similarly, the valuation of any QUTT.
formula at ¢ is at most Id}, (s, t) below the valuation at s.

Example 4 Consider the case where (X,,d,.) = X for all r € X| that is, all
propositions are interpreted as real numbers, and d,(a,b) is a measure of how
much greater is a than b. In this setting, for a = 1 the distances [d® and [d?
have the following intuitive characterization. For a trace o € U[X]¥ and ¢ € IR,
denote by o = ¢ the trace defined by (o = ¢)x(r) = o (r) ~ ¢ for all k € N and
r € X: in other words, o = ¢ is obtained from o by decreasing all proposition
valuations by c. For all s, ¢ € S, if Id{(s,t) = ¢ then for every trace o from s there
is a trace p from t such that p > o = ¢. This means that ld](s,t) is a “positive”
version of trace containment: for each trace o of s, the goal of a trace p from t
is not that of being close to o, but rather, that of not being below o = c. O

Theorem 1  For all finitely branching MTSs (S, 7, X, []) and for all a € (0,1],
we have Cy = Zero(ld)) and =4 = Zero(ld3,).

Proof. Let (S,7,X,[]) be an MTS with s,¢t € S and a € (0,1]. It is easy to see
that s Cy, ¢ implies 1d% (s,t) = 0. To prove the converse, assume that Id® (s, t) =
0 and let o € Tr(s). Then, there are traces po,p1,p2... € Tr(t) such that
tdy (o, p;) < 51— for all i. Due to the finitely branching property, there exists a
trace p* such that td,(o,p*) < 3 for all i. This means that Ha(o,_p*) = 0,
which, by Lemma 1, is the same as ¢ = p. Now, the result for =, and Id}, easily
follows. O



Fig. 1. An MTS showing the difference between Zero(ld},) and C,,. The proposition r
is evaluated in the metric space XR.

Fig. 2. An MTS showing the difference between Id?, Id5,, Id%, and 1d’,. The proposition
r is evaluated in the metric space XR.

To show that the result above does not hold for infinitely branching systems,
consider the MTS in Figure 1, where the proposition r is again evaluated in
the metric space Xi. This MTS has infinitely many states sq, to, t1, t2,...
and transitions (so, o), (to,t;) and (¢;,t;) for each ¢ € N. Moreover, we put
[r](s0) = [r](to) = 0 and [r](t;) = 10~ for i > 0. Then, we have for all a € (0,1]
that (sg,t9) € Zero(ld?,), but sy ¢ to. To obtain an MTS with Id5, (¢, ug) = 0,
but tg Z4r uo, we let ug be a state that is the exactly same as ¢ (i.e. same valu-
ation and same successor states), except that it has a self-loop (i.e. a transition
(uo,up) € T).

The relations among linear distances are summarized by the following theo-
rem.

Theorem 2 The following assertions hold.

1. For all MTSs, and for all « € (0,1], we have 1d% < ld%, 1d% < 1d5,
1d3, < Id3, and ld® < Id5,; moreover, for a € (0,1] the inequalities can-
not be replaced by equalities.

2. For a € (0,1], the distances ld3, and 1d% are incomparable: there is an MTS
with states s,t,z € S such that 1d%,(s,t) < 1d%(s,t) and Id}(t,2) > 1d2(t, 2).

Proof. The first and third inequalities of statement (1) are trivial, while the
second and fourth follow immediately from the fact that, for all traces o and p,
td(o,p) < td(o,p). For a € (0,1] and the MTS in Figure 2, we have

1d% (s0,t0) =0 1d% (tg, up) =0 1d% (ug,to) =0
143, (s0,t0) =0 14}, (to, up) = Id} (ug,to) =0
1d* (s0,t9) = « 1d? (to,up) =0 1d? (ug,t0) =0

)=« « Id )=«



Thus, we have an example where Id5, # 1d3,, 1d}, # 1d3, 1d}, # Id3,, 1ds, # 1d;,,
and neither 1d®, < Id? nor Id}, > 1d?. O

Next, we show that the linear distances are robust with respect to perturbations
in the state valuations: small changes in the proposition valuations causes small
changes in the distances. Given two state valuations []1,[]z : S — U[X], we
define their directed distance by:

([, [12) = sup max d dr([s]1(r), [s]2(r))

Moreover, for a state valuation f : S — U[X] and a € (0, 1], we write ld% ,, ld5 ,
for the distances defined as in Definition 12, using f as the state valuation.

Theorem 3 (linear distance robustness) For all a € (0,1], all predicate
valuations []1,[]2, and all s,t € S, we have

ld?_]l’a(S t) ld[]2 a(S t) S
1 <2

|ldf-]1,a( ) lds ( ([]1 []2)

Proof. The result follows by showing that the trace distance between two traces
p and o, measured under [-]; and [-]2, differs by at most d([-]1, [-]2) + d([-]2, []1)-
The key step consists in noting that, for any r € X, from the triangular inequality

dr([sh (r), [t]1 (7)) < dr([s]1 (r) [s]2(7)) + dr([s]2(r), [ta (r)) + dr ([t (r), [2]: (7))

follows

dr([s]1(r), [t]1(r)) = dr([s]2(r), [t]2(r)) < dr([s]i(r),[s]2(r)) + dr([t]2(r), [t]1(r))
< d([1, [2) + d([ ]2, [11)-
Now the result follows by repetitive application of Lemma 1(1). O

3.2 Quantitative linear-time temporal logic

The linear distances introduced above can be characterized in terms quantitative
linear-time temporal logic (QLTL), a quantitative extension of linear-time tem-
poral logic [14] which includes quantitative versions of the temporal operators
and logic connectives. Following [7], QLTL has a “threshold” operator, enabling
the comparison of a formula against a real constant. The QLTL formulas over a
set X of propositions are generated by the following grammar:

@ = D(r,e) | D(c,r) o Ao oV |Oap| Cap

Here r € X'is a proposition, ¢ € |J,c 4 p X is a constant and a € (0, 1] a discount
factor. We assume that, in a term of the form D(r,¢) or D(c,r), we have ¢ € X,.
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A formula ¢ assigns a value [¢](p) € Ry to each trace o C U[X]“:

[D(r,0)](e) = dr(00(r).c)
[D(c,m)](o) = di(c,o0(r))

L1 A w2l(0) = [pa](o) M [2](0)
[e1 vV @2](0) = [wr1](o) U [w2](0)
[Catl(o) = a-[pl(a")

[

A QurL formula ¢ assigns a real value [p](s) € ﬁ+ to each state s of a given
MTS, by defining

[#l(s) = inf{lel(p) | p € Tr(s)}.

We note that the above definition could also be phrased in terms of sup over
all traces from s, rather than inf. However, as our setting is based on distances,
the inf operator most closely corresponds to the universal quantification over all
paths present in the classical definition of LTL semantics.

For a € (0,1], we denote by QLTL, the set of formulas containing
only discount factors smaller than or equal to a. Furthermore, for ops C
{0,¢,D(¢,r),D(r,c)}, we denote by QLTL, \ ops the set of formulas which
do not employ the operators in ops.

Notice that QLTL is a proper extension to the fragment of LTL without
the Until operator, in the following sense. Consider the metric space E =
({0,1}, Azy.|]z — y|). Any Kripke structure M has an obvious translation to an
MTS M' over E. Moreover, any LTL formula ¢ in positive normal form can be
translated into a QLTL formula ¢’ by adding the discount factor 1 as a subscript
to all temporal operators and replacing r and —r with d(r,0) and d(r, 1), respec-
tively. Then, ¢ is true on a Kripke structure M if and only if ¢’ evaluates to 1
on M'.

3.3 Logical characterization of linear distances

Linear distances provide a bound for the difference in valuation of QLTL formulas.
We begin by relating distances and logics over traces.

Lemma 2  For all MTSs (S,7,X,[]), all a € (0,1] and traces a,p € U[X]*,
the following holds.

For all p € QurL, \ {D(r,c)}:  tda(o,p) > [¢l(p) — [#](0);
for all p € QurL, \{D(c,r)}:  tda(o,p) > [¢](0) — [¢](p);
for all p € QUL = tda(0,p) > |[¢l(p) — [¢](0)l.

t
t

Proof. Let us consider the first assertion. We proceed by structural induction
on ¢. If ¢ = D(e,r), using triangle inequality we get [¢](p) — [¢](o) =

12



d(c, [po](r)) — d(c, [00](r)) < d([o0](r), [po](r)) < pd(00, po) < tda(a, p).

If ¢ = $,1, by inductive hypothesis we have that, for all i € N, [¢](p?) —
[W1(0) < tda(p',0%) and thus ai - [¥](s") — af - [P](o%) < ai - tda(pi,0') <
tdo(p,0). Then, by Lemma 1,

[e](p) — [¢l(0) = sup o - [Y](p") — up o - [9](0?) < tda(p, o).

Similar observations hold for the remaining cases.
The second assertion can be proved in symmetrical fashion. The third asser-
tion can be easily proved along similar lines. O

The first result of the previous lemma is tight in two respects: both replacing

QrrL, \{D(r,c)} with QrTL,, and replacing [¢](p)—[¢] (o) with |[¢](p)—[¢](o)]|
render the result false. The second assertion is also tight in a similar sense. The

following theorem uses the linear distances to provide the desired bounds for
QLTL.

Theorem 4  For all MTSs (S,7,X,][-]), all @ € (0,1] and s,t € S, we have:
For all p € QurL, \ {D(r,¢)}:

13 (s, 1) > [@](t) — [l (s) and 1dg (s, 1) > |[@](t) — [l (s)];
For all p € QLTL,:

dy, (s,t) > [l (t) — [el(s) and 1d;,(s,t) > [[2](£) — [¢](s)]-
Proof. We first prove that Id% (s, t) > [¢](t) — [¢](s).

Idé(s,t) = sup inf td,(o,p)
o€ Tr(s) PE Tr(t)

> sup inf ([el(s) [¢lw) by Lemma2,
o€ Tr(s) PE Tr(t)

p— 1 f - i f
pel%(t)[[w]](p) UEHTlT(S)[[w]](U)

[£1(#) — [#D(s)-

The result for 1d? is an immediate consequence. The statements concerning Id?,
and [d}, follow in a similar way from Lemma 2. O

The results for /d% and IdS, are the quantitative analogous of the standard
connection between trace containment and trace equivalence, and LrL. For in-
stance, the result about Id}, states that, if Id} (s,t) = ¢, then for every for-
mula ¢ € QLTL, and every trace o from s, there is a trace p from ¢ such that
[l(p) > [¢l(o) —c.

We next show that, for finitely branching systems, QLTL provides a full log-
ical characterization of the linear distances, meaning that the distinguish-
ing power of the logic is exactly the same as the one of the distances. We
start with a technical lemma. Given two traces o and p, an integer m and
a discount factor «, let the bounded distance between o and p be defined as
btd? (o, p) = maxo<i<m a'pd(0;, p;). Clearly, tdo (o, p) = lim,, btdl) (o, p).
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Lemma 3 If the MTS M is finitely branching, then for all traces o, discount
factors a € (0,1] and t € S, we have

. m . m
ibuodii " 710 = i SR M 0

Proof. Since the lLh.s. is trivially smaller than or equal to the r.h.s., we are
left to prove that (l.h.s.) > (r.h.s.). Specifically, we prove that, for all € > 0,
(r.h.s.) < (L.h.s.) + €. Fix € > 0. For all m > 0, there exists py, € Tr(t) such
that

btd)) (o, pm) < inf  btd2 (o, p) + €.

pETr(t)

For all m > 0, let ,, be the prefix of p,, up to the m + 1-th valuation. The
set {ym | m > 0} can be arranged into a tree that is a subtree of the unrolling
of t. Since this tree contains infinitely many nodes and is finitely branching,
by Koénig’s lemma it must contain an infinite trace p* € Tr(¢). The trace p*
has infinitely many prefixes in {v,, | m > 0}. Therefore, there is an increasing
sequence (im,)m>o such that, for all mm > 0, 7, is a prefix of p*. It follows that

(r.h.s.) <tdy(o,p*) = ligln btdl (o, p")
= lim btd'™ (o, p*)
< lim btdy (7,7, )
— tim bty (0,

<lim inf btd(0,p)+e=(L.h.s)+e O
m peTr(t)
The following theorem states which fragment of the logic is necessary to char-
acterize each linear distance. In particular, the operator < is never needed. To-
gether with Theorem 4, this result constitutes a full characterization of linear
distances in terms of QLTL.

Theorem 5 If an MTS M = (S,7,X,[]) is finitely branching, then for all
a € (0,1 and s,t € S,

1d3 (s, 1) = sup [l () =[] (s)
peQurL, \{D(r,c),O}

Td2 (s, 1) = sup el (2) = [l (s)]
peQurL, \{D(r,¢), O}

dy(s,t) = sup  [p](t) — [#](s)
eeQurL \{O}

Id (s, t) = sup  |[e](t) = [@](s)]
eeQurL \{O}

Proof. By Theorem 4, we only need to prove the “<” part of the equalities. We
first prove the statement involving Id%. For sake of simplicity, assume X = {r}.
Let ld%(s,t) = x, we show that for all € > 0 there is a formula ¢ such that
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[el(t) —[¢l(s) > x—e. Let 0* € Tr(s) be a path such that inf ,¢c 7,.(4) tda (0", p) >
x — €. For all m > 0, we set

om =\ OLD(o}](r),r),

0<i<m

where O! stands for i repetitions of the operator O, . Intuitively, when formula
©m 1s evaluated on a trace o', it measures the asymmetric distance between o’
and ¢*, up to the m-th step. Obviously, it is [¢.m](s) = 0 for all m > 0. Then,
the value of @, on a state s’ measures the distance between o* and the trace in
Tr(s') which is closest to it. For all ¢ € S, it holds that

sup [om](#) = lim [ ](#) = lim pei%f(t) Qmax a' D([o7](r), [pi](r))

=1 inf btd" (0",
g’bnpelgr(t) @ (U p)

= inf td,(c", by L 3
pel%"(t) (c*,p) y Lemma

> T — €.
Consequently,

sup [l () — [w](s) > sup[wm](t) — [¥m](s)
peQrurL, \{D(r,c)} meN

= sup [n](2) = 0
meN

> T — €.

The statement about Id® is an easy consequence: Assume first that [d®(s,t) =
1d% (s,t). Then,

Idy (s, 1) = sup [£](s) = [l() < sup Tl (s) — L] (B)]-
peQurL \{D(r,c)} peQurL \{D(r,c)}

If instead Id? (s,t) = Id%(t, s), we have

Id; (s, 1) = sup [e](8) = [](s) < sup Tl (s) — L] (B)]-
peQurL \{D(r,c)} peQurL \{D(r,c)}

We now consider the statement about Id$,. The proof proceeds similarly to
the one involving Id%, using as distinguishing formula the following.

Pm = \/ 0L D([o7](r),m) vV OLD(r,[07](r)).

Finally, the statement involving Hg can be easily obtained from the proof
that I, (s, t) = sup,equr, [¢](t) —[¢](s) and the fact that Id3, (s, 1) = ld}, (s, ) U
Id: (¢, s). O

The next example shows that finitely branching is necessary for Theorem 5
to hold.
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Fig. 3. An MTS exhibiting the language 0{0,1}*; the single predicate is evaluated in
the metric space Xg.

Theorem 6 There is an infinitely branching MTS such that

(s, t) > sup [el(s) — [l(F).

YEQLTL,,

Proof. Consider the system in Figure 3, where X' = {r}. Informally, Tr(s) =
0{0,1}“. Let o be a trace such that {o} is not a regular language over the
alphabet {0,1} (it would be sufficient for o to be not star-free regular). For
instance, let o = 010010001 .. .. Consider a second system, containing a state ¢
such that Tr(t) = Tr(s)\{o}. Notice that, in order to have such a set of traces, ¢
must be infinitely branching, since if a finitely branching tree contains all prefixes
of an infinite path, it must also contain the path itself. We have Id](s,t) = 1.
We know that ordinary LTL cannot distinguish s from ¢, otherwise there would
be a formula ¢ € LTL such that L(y) = {o}. We argue that QLTL is also unable
to distinguish s from ¢. To prove it, we have to show that discounting does not
give any advantage. O

3.4 Logical characterization via logics with countably many symbols

Above, we have provided a logical characterization for the linear distances in
terms of a logic that contains a potentially uncountable set of constants: in gen-
eral, we need one constant for each element of a metric space corresponding to a
predicate. Here, we show how, for separable MTSs, we can provide a character-
ization in terms of logics with countably many symbols. First, we state a useful
result, namely, that the logic is robust with respect to changes in the constants
occurring in the formulas: a small change in the constants causes a small change
in the value of the formulas.

Theorem 7 Consider a formula @ of QUTL containing the constantscy, . .., cy,
belonging respectively to the metric spaces (q1,d1),...,(qn,dn). Let ¢ =
ol .. el fen, .. en] be the result of replacing each ¢; with ¢}, for 1 < i <
n, and let § = max},(d;(ci,c;) U di(c;,¢i)) be the mazimal distance be-
tween the mew and old value of each constant. Then, for all s € S, we have

l](s) = [¥1(s)| < 6.

Proof. The result follows by a straightforward structural induction. The only
interesting case is the one for D(r,¢;), for some 1 < i < n; in this case, using

7
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the triangular inequality we have

[D(r,c0)](s) = [D(r, )l (s)] = |di([s](r), ¢) — di([s](r), )| < di(c’, ¢);
the case for D(¢;,r) is similar. O

From the robustness of the logic with respect to the constants, it follows that
if an MTS is separable, we can obtain a logical characterization of the linear
distances in terms of logics that consist only of countably many symbols. The
idea, essentially, is to replace each constant with a nearby element of a countable
base in the formulas used to characterize the distances.

Theorem 8 Ifan MTS M = (S,7,X,][-]) is both finitely branching and separa-
ble, then the characterizations provided by Theorem 5 hold also when we restrict
the formulas of QLTI to contain only constants from the countable set |, .5, B,
where B, is a countable basis for the metric space (X,,d,), for each r € X.

Proof. The result follows immediately from the observation that by Theorem 7
the value of a formula, at every state, can be approximated arbitrarily closely
by the value of a formula containing only constants that belong to the countable
bases of the metric spaces. O

3.5 A note on algorithmic complexity

The following section describes an algorithm that takes as input a finite MTS M
over a directed metric space (X, d), and computes the value of a linear distance
between all pairs of states. To discuss its complexity, we need to fix a finite
representation for the input data. Considering that all the linear distances have
as starting point the propositional distance pd, it is sufficient to provide as input
the |S] x |S| matrix A = (ast)s.tes, where as = pd(s,t).

We assume that the values pd(s,t) are rational numbers encoded in fixed-
precision binary representation; we denote by |z|, the number of bits in the
encoding of the rational number z. We define the size of a finite MTS M =
(S, 7, X, []) by [M] =3, ;cq |pd(s,t)[s. The size of an MTS is thus quadratic in
|S]. We further assume that arithmetic operations can be carried out in constant
time.

3.6 Computing the linear distance

Given as inputs a finite MTS M = (S, 7, X, [-]), a discount factor a € (0, 1] (the
case a = 0 is trivial), and = € {a,s}, we wish to compute Ild’.(so, ), for all
So,tg € S.

We describe the computation of ld%, as the computation of Id}, is analogous.
We can read the definition of 1d% as a two-player game. Player 1 chooses a path
T = $p8182 - -+ from sg; Player 2 chooses a path 7' = tgt1ts - - - from tg; the goal
of Player 1 (resp. Player 2) is to maximize (resp. minimize) supj, o* pd(my, 7},).
The game is played with partial information: after sq - - - s,,, Player 1 must choose
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Snpe1 without knowledge® of tq - - -t,. Such a game can be solved via a variation
of the subset construction [16]. The key idea is to associate with each final state
sy of a finite path sgsy - - - s, chosen by Player 1, all final states t,, of finite paths
toty - - - t, chosen by Player 2, each labeled by the distance v(sg -« 8p,t0 " tn) =
maxo<ig<n a’“*”pd(shtk).

From M, we construct another MTS M' = (S',7',{r},[]'), having set of
states S’ = S x 25%P_ If o = 1 we can take D = {pd(s,t) | s, € S}, so that
ID| < [S]2. For a € (0,1), we take D = {pd(s,t)/a* | s,t € SAk € NApd(s,t) <
ok} U {1}, so that |D| < |S|* - [log, min{pd(s,t) | s,t € S A pd(s,t) > 0}] + 1.
The transition relation 7' consists of all pairs ({s, C), (s’, C')) such that s’ € 7(s)
and C' = {(t',v") | (t,v) € C.¢' € 7(t) AV = (v/a U pd(s',t")) M 1}. Note that
only Player 1 has a choice of moves in this game, since the moves of Player 2
are accounted for by the subset construction. Finally, the interpretation [-]" is
given by [(s,C)]'(r) = min{v | (¢,v) € C}, so that r indicates the minimum
distance achievable by Player 2 while trying to match a path to (s,C) chosen
by Player 1. The goal of the game, for Player 1, consists in reaching a state of
M’ with the highest possible (discounted) value or r. Thus, for all s,¢ € S, we
have Id% (s, t) = [FCar]m ((s,{(t, pd(s,t))})), where the right-hand side is to be
computed on M’. This expression can be evaluated by a depth-first traversal of
the state space of M’, noting that no state of M’ needs to be visited twice, as
subsequent visits do not increase the value of ¢,r. This leads to the following
complexity result.

Theorem 9 For all z € {a,s}, the following assertions hold:

1. Computing ld?%, for a € (0,1] and MTS M is PSPACE-complete in | M|+ |alp.

2. Computing 1d% for a € (0,1] and deterministic MTS M is PSPACE-
complete in | M| + |alp.

3. Computing ld", for a € (0,1] and boolean, deterministic MTS M is in time
O(IM[*).

Proof. For Part 1, the upper complexity bound comes from the above algorithm,
noticing that the subset construction can be done on the fly; the lower bound
comes from a reduction from the corresponding result for trace inclusion [17].
Part 2 states that, unlike in the boolean case, the problem remains PSPACE-
complete even for deterministic MTSs. This result is proved by an nlogspace
reduction from the problem of computing the distance between nondeterministic
systems to the one of computing it between deterministic ones. More precisely,
let M be a nondeterministic MTS and let m be the number of bits needed to
represent each quantity in M. Assume that « is also encoded as a fixed-precision
number of m bits. Then, from an analysis of the algorithm, we see that the
minimum difference between two possible answers returned by the algorithm
is a number with (n + 1)m bits, where n = |S|. This is essentially o™ times
the least difference of value among two non-equal valuations. We then build a

% Indeed, if the game were played with total information, we would obtain the branch-
ing distances of the next section.
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deterministic MTS M', by copying every valuation and padding it to (n+1)m+1
bits, thus using log, |S| additional bits to uniquely identify each state of S. Once
the algorithm returns an answer for the deterministic system, the answer for the
original nondeterministic one can be recovered by rounding to (n + 1)m bits of
precision.

Part 3 is a consequence of Theorems 17 and 18. g

3.7 Discussion

In Definition 10, we could have defined the propositional distance between two
states using the Ly norm, via pd(u,v) = (3, cx d(u(r), v(r))2)1/2 (or in general
using the L,, norm, for n > 0). The reason why in Definition 10 we chose the L
norm is that this definition leads to a logical characterization of the distances,
since the max in the L., norm corresponds to the V of the logics. It is easy to
see that, aside from the logical characterizations, the results of the paper would
hold if we replaced in Definition 10 the L., norm with L, for any n > 0.

4 Branching Distances and Logics

4.1 Branching distances

Definition 13 (branching distances) For a € (0,1] and z €
{Aa, As, Sa, Ss}, consider the four operators HZ : (S* - Ry) — (S* - Ry)
defined as follows, for d : S* — R
H2%(d)(s,t) = pd(s,t) Ua- sup inf d(s',t)
srer(s) t'ET (D)
H25(d)(s,t) = pd(s,t) Ua- sup inf d(s',t')
sier(s) I'ET(D)

HS(d)(s,t) = pd(s,t) Ua - sup inf d(s',t')U - sup inf d(s',t)

s'er(s) t'er(t) t'er(t) s'eT(s)
HS(d)(s,t) = pd(s,t) Ua- sup inf d(s',t')Ua- sup inf d(s',t)
s'er(s) ' ET(H) t'er(t)s'E€T(s)

For x € {Aa, As,Sa, Ss}, we define the branching distance bd? as the least fix-
points of the operators H”. O
For all o € (0,1], the functions bd2?, bd®*, and bd>* are directed metrics, and
the functions bdis, bdA®, bdA*®, and bd>? are undirected metrics.

The distance bdzS is a quantitative generalization of bisimulation, and it
essentially coincides with the metrics of [7,18,4]; as it is already symmetrical,
we have bd>® = bd>®. Similarly, the distance bd’® generalizes simulation, and
bd® generalizes mutual simulation.

Theorem 10 For all MTSs (S, 7, X,[]) where d, is a directed distance for all
r € X, and for all a € (0,1], we have < ym = Zero(bd2®) and ~op;, = Zero(bd>®).
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The distances bd* and bd>?* correspond to quantitative notions of simulation
and bisimulation with respect to the asymmetrical propositional distance pd;
these distances are not symmetrical, and we indicate their symmetrical versions
by bdA® and bd>?. Just as in the boolean case mutual similarity is not equivalent
to bisimulation, so in our quantitative setting bd2* can be strictly smaller than
bd>s, and bdA* can be strictly smaller than bd>?.

Theorem 11 The relations in Figure 5(b) hold for all MTS and for all a €
(0,1]. For a € (0,1], no other inequalities hold on all MTSs.

Proof. The inequalities bd2® < bd>* < bd>® and bd2?* < bd2® < bd> shown in
the figure are immediate. Let @ € (0,1] and consider the MTS in Figure 5(a)
again. In this MTS, we have ld* = bd4?*, Id5, = bd2s, 1d2 = bd>?, IdS, = bd>*
Hence, the results for the llnear distances (see Theorem 2) show that bdAa 7é
Bars, bdA® £ A5, b £ bd>, bdS* # bd™, and neither bdA® < dea

bdrs > b5, E

The branching distances, like the linear ones, are robust with respect to per-
turbations in the state valuations: small changes in the proposition valuations
cause small changes in the distances. To state the theorem, given a state valu-
ation f : S — U[X], z € {Aa, As,Sa,Ss}, and a € (0,1], we write bd} , for the
distances defined as in Definition 13, using f as the state valuation.

Theorem 12 (branching distance robustness) For all a € (0,1], all z €
{As, Sa, Ss}, all predicate valuations []1,[-]2, and all s,t € S, we have

b} (s, 1) — b o (s,1) < ([]1,[]2)+d([]2,[-]1)
(b, o (s 8) = bf), o (s,0)] < 2-d([]1, []2).

4.2 Quantitative u-calculus

We define quantitative u-calculus after [5,4]. Given a set of variables X and a
set of propositions X, the formulas of the quantitative u-calculus are generated
by the grammar:

¢ == D(r,e) | D(e,r) |z | oANp Ve |T0ap [VOup | pz. @ |ve. ¢

for propositions r € Y, variables x € X, constants ¢ € {J, . 4p X», and discount
factors a € (0,1]. We assume that, in a term of the form D(r,¢) or D(c,r),
we have ¢ € X,.. Denoting by F = (S — ]f{+), a (variable) interpretation is a
function £ : X — F. Given an interpretation £, a variable x € X and a function
f € F, we denote by £[z := f] the interpretation £ such that £'(z) = f and, for
all y # z, £'(y) = E(y). Given an MTS and an interpretation £, every formula
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 of the quantitative u-calculus defines a valuation [p]s : S — R,

[D(r,c)]e(s) = d([s](r).c) [30a¢le(s) = a - supy e (5)[e]e(s’)
[D(c,7)]e(s) = d(c, [s](r)) [VOaw]e(s) = a-infyer(5)[e]e(s)

[z]e = &(z) [z . le =inf{f e F|f=I[ple=5}
[or Apale  =Tpile M [w2le  [vz.¢ple =sup{f € F|f=I[plefe:=p}-
[or Vele  =lpile U [p:]e

The existence of the required fixpoints is guaranteed by the monotonicity and
continuity of all operators. A variable x is bound in ¢ if it is in the scope of
a quantifier puz or vz; otherwise, it is called free. A formula is closed if all
variables are bound. If ¢ is closed, we write [¢] for [¢]e. For all a € (0,1],
we call QMU, the set of quantitative p-calculus formulas where all discount
factors are smaller than or equal to a. We denote by CLQMU, the subset of
QMU,, containing only closed formulas. For ops C {D(c,r), D(r,¢),3,V, u,v},
we denote by Qmu,, \ ops and CLQMU,, \ ops the respective subsets of formulas
that do not employ operators in ops. Notice that, if we take all discount factors
to be 1, then the semantics of the quantitative p-calculus on boolean systems
coincides with the one of the classical p-calculus.

4.3 Logical characterizations of branching distances

in ¢ are among x1,...,Ty.

Lemma 4 Given an MTS (S,7,X,[-]) and a discount factor a € (0,1], the
following holds.

1. For all p(z1,...,z,) € QMU \ {3,D(r,c)}, for all variable environments
E, and for all f1,...,fn € F, if for all s,t € S and alli =1,...,n, fi(t) —
fi(s) < bd22(s,t), then, for all s,t € S,

II()O]]S[-Z‘iZ:fi](t) - II()O]]S[-Z‘ii:fi](S) < bdéa(sat)'

2. For all p(x1,...,2,) € QMU \ {3}, and for all fi,..., fn € F, if for all

s,t€Sandalli=1,....n, fi(t) — fi(s) < bdgs(s,t), then, for all s,t € S,
II()O]]S[-Z‘ii:fi](t) - II()O]]E[JIiZZfi](S) < bdgs(&t)'

3. For all (z1,...,2) € Qmu, \ {D(r,¢)}, and for all f1,....fn € F, if
forall s,t € S and alli = 1,...,n, fi(t) — fi(s) < bdia(s,t), then, for all
s,t €S,

H@]]f[zi::fi](t) - [[‘p]]f[zi::fi](s) < bdtsya(sﬂi’)'

4. For all p(z1,...,z,) € QMU,, and for all fi,..., f, € F, if for all s,t € S

and all i = 1,...,n, |fi(t) — fi(s)| < bdS5(s,t), then, for all s,t € S,

HI()O]]S[JJii:fi](t) - II(IO]]S[miZZfi](S” < bdis(sat)'
Proof. We prove statements 1 and 3; the other two statements can be proved in
similar fashion.
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Statement 1. We prove the result concerning bdga by structural induction on
the formula. For ¢ = D(¢,r), we obtain by triangle inequality [¢](¢) — [¢](s) =
(e, [1)(r)) — dle, [5)(r)) < d([s)(r), [11(r)) < pd(s,1) < b (s, ).

The cases ¢ =z, ¢ = Y1 A o and ¢ = @1 V o are also trivial.

Consider the case ¢ = VOg, for some 3 < a: we prove that, for all states
s,t € S and all € > 0, [¢](t) — [¢](s) < bd2?(s,t) + €. For ease of notation, in
this part of the proof we write [-] for [-]¢s,.—r,1, as the variable interpretation
is not the issue here. Recall that, for all ¢ € S, we have by definition [p](t) =
Binfy e [](t'), By inductive hypothesis, for all s',t' € S, [¢](t') — [¢](s') <
bd2?(s',t'). For all s* € 7(s) and § > 0, we define closer(t, s*,6) to contain all
states t* € 7(t) such that bd**(s*,t*) < & + infycr bdA*(s*,t'). Intuitively,
closer(t,s*,0) contains those successors of ¢ that are closer than ¢ to the best
match for s*. For all s* € 7(s) and t* € closer(t, s*,d), we have that

a- ([P1E) = [$1(s) < a-bdy™(s™,t7)
: Aay _* 4t
<a (tllerif(t) bd (s 7t)—f—é)
<a- inf bd2?(s', ') + 0
<o (oo, 2000 )

< ad + bdh?(s,t). (8)
Finally, let s* € 7(s) be such that [¢)](s*) < infyc,(5[¥](s') + 55 and t* €
closer(t, s*, &), we have
[e)®) ~ [e)s) = 6 inf [91() = B _int[0](5)
<a([Ie) - [WIs") + 5=) (%)
< 3 +a([e) - 1)
< 5+ g+ b (s ). 1)

To obtain (f), we have used [¢](t*) > inf, c,)[¢](#') and our choice of s*; to
obtain (1), we have used t* € closer(t, s*, 5=), along with the previous result (§).
This concludes this case.

If ¢ = py ., then [¢] = lim, g,, where go(s) = 0 for all s € S, and
gnt1 = [Y]elyi=g,)- This is a consequence of the fact that, when the MTS is
finitely branching, all operators of the p-calculus are continuous: that is, for each
operator F' € {A,V,30,VO} and each sequence g,,,,~ of functions S — R, we
have F(lim, g,) = lim,, F(g,). Since go(t) — go(s) = 0 < bd2*(s, t), by inductive
hypothesis we obtain that, for all n € N, g,,(t) — gn(s) < bdfa(s, t), and thus the
thesis. By taking go(s) = oc for all s € S, we obtain the argument for p = vy .1).

Statement 3. The cases ¢ =71, p =, © = Y1 APy and @ = 1 V )y are trivial,

while the proofs for ¢ = VOg, ¢ = py .9 and ¢ = vy . are similar to the ones
of Part 1.
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Let ¢ = 307, for some B < a. We prove that, for all states s,t € S and
all € > 0, [](t) — [¢](s) < bd5*(s,t) + €. For ease of notation, we again write
[-] for [-][a;:=f,- By inductive hypothesis, for all s',¢' € S, [¢](#') — [¢](s") <
bd>? (s, t').

For all s* € 7(s) and § > 0, we define closer(s,t*,0) to contain all states
s* € 7(t) such that bd>®(s*,t*) < d+infyc (s bd>*(s',t*). Again, closer(s,t*,d)
contains those successors of s that are closer than ¢ to the best match for ¢*. For
all t* € 7(t) and s* € closer(s,t*,6), we have that a-bd>? (s*, t*) < ad+bd>? (s, 1),
and thus

a- ([](t) = [W](s")) < a-bd3*(s",t")
< ad + bd3'(s,1). (58)
There are now three cases.

L If [@](t) = Bsupy e [](#') < oo, then let t* € 7(t) be such that [y](*) >
supy e, [Y1(') — 55 and s* € closer(s,t*, 57). We have

10~ [el(e) = 8 sup [W1() — B sup WI(&)
< a([]() + 5~ [¥1(")
< 5 +o([l() - [W1(s")

€ €
;T35 T bd3? (s, 1),

IN

leading to the desired result.

2. Tf [¢](t) = 0o and bd>*(s,t) = co, then we are done.

3. If [¢](t) = oo and bdf’(s, t) < oo, then for every ¢ € IR, we can find t* € 7(t)
such that [4](t*) > ¢. From (8§), we can thus find s* € closer(s,t*,1) such
that

ale— 1) — b5 (s, 1) < alpl(t") — a — bdS*(s, £) < [¥](s"):

From [¢](s) = Bsupgy e, [¥](s') > [#](s*), since bd3*(s,t) < oo and since
¢ is arbitrary, we obtain [¢](s) = oo = [¢](¢), concluding the proof. O

From the preceding lemma, we immediately obtain a theorem stating that the
branching distances provide bounds for the corresponding fragments of the u-
calculus. The statement for bd>* is very similar to a result in [7].

Theorem 13  For all MTSs (S,7,X,][]), states s,t € S, and a € (0,1], we
have

for all g € CLQMU \ {3, D(r,¢)}  bd2?(s,t) > [](t) — [¢](s)
for all ¢ € CLQMU,, \ {3} bd2" (s, t) > [¢](t) — [¢](s)
for all ¢ € CLQMU, \ {D(r, )} bd>?(s,1) > [l (t) — [l (s)
for all ¢ € CLQMU,, bds> (s,t) > |[l(t) — [l ()]
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As noted before, each bound of the form d(s,t) > [¢](¢) — [¢](s) trivially leads
to a bound of the form d(s,t) > [[¢](t) — [¢](s)|. The bounds are tight for
finitely branching systems, and the following theorem identifies which fragments
of quantitative p-calculus suffice for characterizing each branching distance. The
formula scheme used to characterize bd>* is reminiscent of the one used in [1] for
bisimulation.

Theorem 14  For all finitely branching MTSs (S, 7, X, [-]), states s,t € S, and
a € (0,1], we have

bd ™ (8,1) = SUPcoquu \ (3.0(re) 0y 191(E) = [£](5),
bd* (s, 1) = SUP,ccrqumu\ (.00} [el(t) — [l (s).
bd5 (s, 1) = SUP ecLquu \{D(re) v} 1P1(E) — [#](s),
bdy* (s, 1) = SUP,ccrquu, \ [} [el(t) = [l (s).

Proof.

Part 1. Consider the statement about bdéa. For all s € S, we define the sequence
of formulas (p*),>¢ as follows.

vt =\ D([s)(r),r),
rel
et =0lv \/ VOoagk.
s'eT(s)
First, one can easily prove by induction that, for all k € Nand s € S, [¢*](s) = 0.
The distance bd? is defined as the least fixpoint of HA?. Denoting by (HA#)* a

sequence of k applications of H2?2, since the MTS is finitely branching, we have
that bdf;a = limy, (H2*)*(pd). We prove by induction on k that, for all s,¢ € S,

[ed1(t) = (HZ*)*(pd)(s. ).
[p31(t) = maxd([s](r), [1](r))
= pd(s.t) = (Hy")"(pd) (s, t);

[es (1) = [¥3](#) U max  min afeh](t)
s'er(s) t'eT(t)

= pd(s,t) U max min a-(H2)*(pd)(s',t")
s'eT(s)t'er(t)

= (H3 ! (pd) (s, 1).
It follows that

sup [l (#) — [l () > sup [@i](#) — [5](s)
peCLQMu, \{3,D(r,c),u,v} keN

= sup (Hy*)" (pd)(s,1) — 0
keN

= bd2?(s,1).
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Part 2. To prove the statement concerning bdgs(s,t), we define the following
sequence of formulas (¢¥)gen.

vi =\ D([s)(r),r) v D(r,[s](r)),

rel
et =glv \/ VOuplh.
s'eT(s)

We then proceed similarly to the previous part.

Part 8. To prove the bound on bdia(s, t), we use the formulas:

ve = \/ D(s](r),m)

rey
A=ty voughvaoa( A o)
s'eT(s) s'eT(s)

Once again, one can easily prove by induction that, for all ¥ € N and s €
S, [¢*](s) = 0. The distance bd5* is defined as the least fixpoint of HS32. In
particular, denoting by (H3*)* a sequence of k applications of H>?, again due
to the fact that the MTS is finitely branching we have bd5* = limy (HS*)* (pd).
We prove by induction on k that, for all s,¢ € S, [¢*](t) = (H5?)*(pd)(s,1).

[£21(t) = max (d([s)(r), [8)(r)) L d([t)(r), [s](r)))
= pd(s,t) = (H3")"(pd) (s, 1);
[os1(8) = [2](8) U [Joex min aleh](t") U Juax min aleh 1)

= pd(s,t) Ua max min (H>*)(pd)(s',t")
s'eT(s)t'er(t)

U in (H3)*(pd)(s', '
@ max s,rgr(ls)( o) (pd)(s", 1)

= (H3) ! (pd) (s, 1).
It follows that

sup [l (#) — [el(s) > sup [i](t) — [¥51(s)
peCLQmu, \{D(r,c),u,v} keN

= sup (H3)* (pd) (s, 1) — 0
keN

= bd>?(s,1).
Part 4. To prove the bound on bdis(s7 t), we use the formulas:

Py = \/ D([s](r),r) v D(r,[s](r)),
wff)-

reX

it =plv \/ Voaph v 30a<
s'eT(s) s'eT(s)
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We then proceed similarly to the previous parts. O

4.4 Logical characterization via logics with countably many symbols

Again, the logical characterization above is in terms of formulas defined over a
potentially uncountable set of constants: in general, we need one constant for
each element of a metric space corresponding to a predicate. As in the linear
case, we show that if the MTS is separable, then it suffices to consider formulas
defined over the countable set of constants corresponding to the countable bases
of the metric spaces for the various predicates. We start once more with a result
that expresses the robustness of the calculus with respect to changes in the
valuation of the constants.

Theorem 15  Consider a formula ¢ of the quantitative p-calculus con-
taining the constants cy,...,c,, belonging respectively to the metric spaces
(q1,d1)y .., (Gn,dyn). Let ¥ = @lc},...,ch/c1,. .., cn] be the result of replacing
each ¢; with ¢, for 1 < i < n, and let 6 = max}"_, (d;(c;, ;) U d;(c}, ¢;)) be the
mazimal distance between the new and old value of each constant. Then, for all
s € S and all variable environments £, we have [[p]e(s) — [¥]e(s)| < 0.

Proof. The result is obtained by a straightforward induction on the structure of
the formula; the only interesting case is the base case for D, which is proved as
in the proof of Theorem 7. O

Again, for separable MTSs this result leads to logical characterizations based
on languages with countable sets of constants, corresponding to the bases of the
metric spaces.

Theorem 16 If an MTS M = (S,7,X,[]) is both finitely branching and sep-
arable, then the characterizations provided by Theorem 14 hold also when we
restrict the formulas of quantitative p-calculus to contain only constants from

the countable set | J, .y, By, where B, is a countable basis for the metric space
(X;,d.), for each r € X.

Proof. Similarly to the linear case, the result follows from the observation that
by Theorem 15 the value of a formula, at every state, can be approximated
arbitrarily closely by the value of a formula containing only constants that belong
to the countable bases of the metric spaces. O

4.5 Computing the branching distances

Given a finite MTS M = (S, 7, X,[]) a rational number « € (0,1], and = €
{Ss,Sa, As, Aa}, we can compute bd.(s,t) for all states s,t € S by computing
in an iterative fashion the fixpoints of Definition 13. For instance, bd* can be
computed by letting d°(s,t) = 0 for all s,¢t € S and, for k¥ € IN, by letting
d**1(s,t) = pd(s,t) U a - MaX,y ¢ (5) My er(s) d*(s',t"), for all s,t € S. Then
bdy = limg_ oo d*, and it can be shown that this and the other computations
terminate in at most |S|? iterations. This gives the following complexity result.
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Fig. 4. Linear versus branching distances on a deterministic MTS.

1dy, bd5® bd S
SN /N N
lda\ /lda Més Ega EaAs Mga
i (1 NI I B N
bda®  bdA*  bd3? Iy,  bdh" bdh*  bd3?
N PN X
bd2e i, 1d5,  bdhe
ld3
(a) Linear distances. (b) Branching distances. (c) All distances.

Fig. 5. Relations between distances, where f — g means f < g. In (c), the dotted
arrows collapse to equality for boolean, deterministic MTSs.

Theorem 17 Computing bd?, for © € {Ss,Sa, As, Aa}, a € (0,1] and an MTS
M can be done in time O(|M|*).

5 Comparing the Linear and Branching Distances

Last, we provide a comparison between linear and branching distances. Just as
similarity implies trace inclusion, we have both ld? < bd2® and 1d%, < bdA*; just
as bisimilarity implies trace equivalence, we have Id, < bd>® and Id® < bdS®.
Moreover, in the non-quantitative setting, trace inclusion (resp. trace equiva-
lence) coincides with (bi-)similarity on deterministic systems. This result gener-
alizes to distances over MTSs that are both deterministic and boolean, but not
to distances over MTSs that are just deterministic. To formalize these results,
we say that an MTS is boolean if all its predicates are evaluated in the metric
space Xg.

Theorem 18 The following properties hold.
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1. For all MTSs and all a € (0,1], we have
1d® < bdA®  1d5, < bd®® Td® < bd>? Id, < bd>s.

Moreover, for a € (0,1], the inequalities cannot be replaced by equalities.
2. For all boolean, deterministic MTSs and for all o € (0,1], we have
1d? = bd®*  1dS, = bd® Td: =bd>® 1d, = bd™e.

These equalities need not to hold for non-boolean, deterministic MTSs.

The relations of Part 1 are illustrated in Figure 5(c).

In order to prove this theorem, we proceed in steps. First, we provide
a relation between the fixpoints of the operators used to define linear and
branching distances. For @ € (0,1] and =z € {a,s}, we define the operators
Fr F*:(S2 5 Ry) — (S - Ry) as follows, for d : $2 — R

Fi(d)(s,t) = pd(s,t) U sup inf supa'd(o;, pi)

o€ Paths(s) p€ Paths(t) jeN

Fy(d)(s,t) = pd(s,t) U sup inf supa'd(o;, pi)
o€ Paths(s) PEPaths(t) jeN

Fo(d)(s,t) = pd(s,) U sup inf supa'd(oi, p;)
o€ Paths(s) PEPaths(t) jeN

LI sup inf  supa‘d(p;,oi

p€E Paths(t) o€ Paths(s) jeN (pi- 1)

F(d)(s,t) =pd(s,t) U sup  inf supaid(oi,p)

o€ Paths(s) pE Paths(t) jeN

U sup inf  supa'd(p;, ;).
pE Paths(t) o€ Paths(s) jeN
These operators should be compared with the fixpoint operators used in Defi-
nition 13 to define the branching distances. Essentially, the operators F¥ above
share the same structure of the operators HZ, except that F¥ looks at the infi-
nite paths originating from states, whereas HY looks just at the successor states.
The following lemma follows immediately from the definitions.

Lemma 5 Denoting by 0 : X(s,1).0 the zero function S* — ]lAL_. For a € (0,1]
and z € {a,s}, we have:

ld;, = F3(F3(0))
Iy, = F3(F3(0))
Idy, = Fi,(Fo(0))

Id;, = F3,(F;,(0)).
For a € (0,1] denote the least fixpoints of these operators by:

fdA* =inf{d: S > Ry | d = F*(d)}

fdAs
dea
deS

inf{d: S*> - Ry | d = F3(d)}
inf{d: $> >R, |d=F(d

(d)}
inf{d: S*> - Ry | d=F5(d)}

28



(where we have preferred to avoid the p-notation for least fixpoints not to gen-
erate confusion with p-calculus over MTSs). The following lemma states that
these fixpoints are branching distances.

Lemma 6 For all a € (0, 1], we have that

i = e

fd5" = bds®

fd3r = fd = bd>.
Proof. Let a € (0,1]. We show that fd2® = bd?; the other cases are similar.
First, note that the operator H2? used in Definition 13 to define the branching

distances can be equivalently replaced by the following operator G : (S%? —
R+) — (SZ — R+) by
G(d)(s,t) = pd(s,t) Ud(s,t) U sup inf «-d(s',t).
s'eT(s) t'er(t)
For convenience, let also F' = F?. Then bd* is the least fixpoint of G and fd?
is the least fixpoint of F. Since G(d) < F(d) for all d : S* — IR, we get by

monotonicity of G and F' that bdﬁa < fd,;Aa. To prove that fdﬁa < bdga, we
define for each k € N

Fy(d)(s,t) = pd(s,t) U sup inf sup a'd(o;, pi).
o€ Paths(s) PEPaths(t) 0<i<k

We denote by G* the operator G iterated k times, i.e. G°(d) = d and G**'(d) =
G(G*(d)). We show by induction that F}, < G* for all k > 1. For k = 1, we have
Fi(d) = pd Ud < G'(d). For k + 1, we have:

Fiy1(d)(s,t)

= pd(s,t) U  sup inf sup a'd(o;, pi)
o€ Paths(s) PEPaths(t) 0<i<k41
= pd(s,t) U sup sup inf inf sup (d(s,t) U a'td(al, pl))

s'€r(s) o’ € Paths(s') t' €7 (t) p' € Paths(t') 0<i<k
< pd(s,t) Ud(s,t) Ul sup inf sup inf sup o' T'd(ol, pl)
s'€T(s) t'eT(t) o' € Paths(s') p' € Paths(t') 0<i<k
=pd(s,t) Ud(s,t) U sup inf Fi(d)(s',t)
s'eT(s) t'er(t)
< pd(s,t) Ud(s,t) U sup inf aG¥(d)(s',t")
s'er(s)t'ET(D)
= G (d)(s,1).
Then,
F(bd2*) = lin Fp(bd2®) < lin G*(bd2*) = bdh?.

Together with F(d) > d for all d, this shows F(bd2*) = bd2?*, ie. bd2* is a
fixpoint of F. Hence, bd‘;‘a > fdéa, since fd‘,i‘a is the least fixpoint of F'. O

With this result, we can finally prove Theorem 18.
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Proof of Theorem 18.

1. The inequalities follow from Lemmas 5 and 6, and from the monotonic-
ity of the F*, F* operators for a € (0,1] and =z € {a,s}. To see that
on deterministic, non-boolean MTSs, the linear distances between states
can be strictly smaller than the corresponding branching ones, consider
the MTS in Figure 4. We assume that a > %; a similar example works
if @ < §. Then Id%(s,t) = ld},(s,t) = ld4(s,t) = Id5(s,t) = o, while
bd2% (s, 1) = bd25 (s, t) = bdA2 (s, t) = bd (s, 1) = a?.

2. Let M = (S,7,X,[]) be a boolean, deterministic MTS, let o € (0, 1] and
s,t € S. We show that Id® = bd ®. The other cases are similar. By part 1 of
this theorem, we know that 1d® < bd®*. To prove that ld? > bd2*, we show
that HA2(ld*) = ld®, i.e. that ld® is a fixpoint of HA®. As bd®* is the least
fixpoint of HA2, we obtain ld® > bdA*. First, we observe that

HA%(1d%)(s,t) = pd(s,t) Ua sup inf Ild*(s',t")
s'eT(s) t'eT(t)

=pd(s,t) Ua sup inf sup inf tda (o', p')
scr(s) ET(1) o' ¢ Paths(s') ' € Paths(t')

> pd(s,t) Ua sup sup inf inf tdo (o', p")
s'€T1(s) o' € Paths(s’) t'e7(t) p' € Paths(t')

= sup inf  td, (o,
o€ Paths(s) PE Paths(t) (0:7)
— 1% (s, 1).

So HAA(1d%)(s,t) > 1d® (s, t). We show that also HA?(1d%)(s,t) < ld? (s,t). If
pd(s,t) = 1, then HA2(1d?)(s,t) = ld%(s,t) = 1. Hence, assume pd(s,t) = 0.
We distinguish two cases.

Case 1: Sup, ¢, (s infyrer(r) pd,(s',t") = 1. Then one easily shows that
HA(1d%)(s,1) = a = ld% (s, 1).

Case 2: Sup, ¢, (s) infrrer(r) pd,(s',t") = 0.

Since M is deterministic and boolean, we know that for all s’ € 7(s), there
isaty € 7(t) such that pd,(s',ts) = 0 and pd, (s',t") = 1 for t' # ty. Then,
we have for all s’ € 7(s),t' € 7(¢),t' # ty, o' € Paths(s'), p' € Paths(t")
and pg € Paths(ts ) that

tdo(0',p,) <a and td,(o',p') =1
and therefore

inf tdo (o', p") < inf  td,(o',p)

p' € Paths(t,) p' € Paths(t)
S0
inf td, (o', p') < inf inf tdo (o', p'). *
'€ Paths(t,) a(0',7) < t'E7(t) p' € Paths(t') a(o' ") )
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Recalling that pd(s,t) =0, we get

H*%(ld*)(s,t) = sup inf sup inf  tdy(c',p")
s'er(s) t'eT(t) o' € Paths(s") p' € Paths(t')
<a sup sup inf tdo(a', p") by (*)
s'€7(s) o' € Paths(s') P’ EPaths(t,/)

<a sup sup inf inf tdo (o', p")
s'€1(s) o' € Paths(s') t'er(t) p' € Paths(t')

= sup inf  td, (o,
o€ Paths(s) pE Paths(t) ( p)
= 1d% (s,1).

To see that the equalities cannot be strengthened to equalities, consider
€ (0,1]. We give the proof for a > %; a similar example works if a < 2

E.
Consider the MTS in Figure 4. Then IdZ, (s, t) = +a, while bd? (s, 1) = . O

6 Conclusions

In this paper, we have provided metric extensions of the classical linear and
branching relations: trace inclusion, trace equivalence, simulation, and bisimu-
lation. We remark that, while metric analogous of bisimulation had been known
for some time [7, 18], this is not the case for the other notions, which had escaped
attention thus far. We hope that the introduction of these quantitative asym-
metrical and symmetrical distances constitutes a useful step toward achieving a
quantitative theory of systems, in which the classical boolean setting of specifi-
cation and verification is replaced by a setting in which properties have (real-
valued, or general) values, and verification can yield not only yes/no answers,
but also measures of quality, adequacy, and cost.

We have provided three main classes of characterizations for linear and
branching distances:

1. Distances as upper bounds for logic valuations. Results in this class state
that the distances provide an upper bound for the difference in value of
formulas of linear (QrTL) and branching (QMU) logics. Results of this type
are Theorems 4 and 13.

2. Logics as full characterizations of distances. Results in this class state that
the distances are equal to the supremum of the difference in value of all
linear, or branching formulas. Results of this type are Theorems 5 and 14.

3. Relations among distances. Results in this class compare the value of linear
and branching distances; results of this type are Theorems 2, 11, and 18.

Results in classes 1 and 3 hold for general MTSs, and are thus particularly
satisfying. In contrast, as we have seen, results in class 2 hold only for finitely
branching MTSs. Many MTSs of interest are not finite branching: for instance,
in a hybrid system, there can be uncountably many successors of a state, corre-
sponding to the real-valued length of time steps possible from the state. It is an
interesting open problem to investigate classes of MTSs that are more general
than finitely branching MTSs, and for which results of class 2 still hold.
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