Efficient Soft Real-Time Processing in an Integrated System
Technical Report (UCSC-CRL-04-11)

Caixue Lin and Scott A. Brandt
Computer Science Department

University of California
Santa Cruz, CA, USA
{lcx,sbrandt} @cs.ucsc.edu

Abstract

The rapidly increasing user demands on more powerful
computing platforms and application capabilities requires
modern operating systems capable of scheduling multiple
classes of processes in an integrated way, in which real-time
applications are guaranteed to meet their time constraints
by using worst case resource reservation and non-critical
applications (such as soft real-time) execute in degraded
performance by using average case reservation. How-
ever these reservation-based resource allocation mecha-
nisms may overbook resources so that the system may waste
large amounts of resources in such a way that the slack time
is not efficiently consumed. Also, overhead caused by best-
effort processes is usually not considered. In this paper,
we present for such an integrated system a flexible and ef-
ficient resource management mechanism for soft real-time
processes in such a way that the slack time is better utilized
and a single monolithic server for all best-effort processes
to reduce the dynamic scheduling overhead. The simulation
results show that our flexible slack time management mech-
anism for soft real-time processes can result in significantly
performance improvement in terms of reducing the deadline
miss ratio and tardiness.

Keywords: Integrated Scheduling, Soft Real-Time,
Slack Time Management

1 Introduction

The rapidly increasing user demands on more powerful
computing platforms and application capabilities requires
modern operating systems to support integrated schedul-
ing of multiple classes of processes. The typical example
work are the hierarchical scheduler developed by Regehr et
al. [10] and the flat integrated scheduler RBED by Brandt
et al. [3]. In such an integrated system, worst case re-
source reservation or execution is usually used to guaran-
tee the performance of critical real-time applications, such
as external event/signal sampling and processing; non crit-

ical applications, including soft real-time (e.g., desktop au-
dio/video) and best effort (e.g., compiler), receive the left-
over resources and run in degraded performance. However
the constant worst case reservation mechanism always over-
books the resources that an real-time application does not
really need. That is the system may waste large amounts of
resources in such a way that none of the soft real-time and
best effort processes can efficiently use the slack time left
by the hard real-time processes. Furthermore, in such a sys-
tem, the overhead incurred by the frequent entrance and exit
of a large number of best-effort processes is another impor-
tant issue since the behavior of best-effort processes is not
as predictable as that of soft or hard real-time processes.

In this paper, we present a flexible resource management
mechanism in which resources are better utilized to improve
the performance of soft real-time and best-effort applica-
tions and still guarantee the worst case performance of real-
time applications in such a way that no deadline is missed.

First, though both aiming at integrated scheduling,
specifically our working system uses constant reservation-
based resource allocation mechanism, which is some how
different from the dynamic rate-based resource allocation
mechanism used in our previous work RBED [3]. With our
resource allocation mechanism, hard real-time and soft real-
time processes are guaranteed a minimum resource alloca-
tion in a fixed interval of time (usually period) and best-
effort processes are never starved. However RBED changes
allocated resources and application periods dynamically
as needed without violating EDF constraints, guarantee-
ing that hard real-time processes never miss their assigned
deadlines and soft real-time processes run in degraded per-
formance specifically depending on their demanding load.

Second, our work focuses on enhancing the system to let
the soft real-time processes use the slack time left by the
hard real-time processes and other soft real-time processes.
That is the slack time is consumed as early as possible by
the soft real-time processes which need more resources in
the sense that their actual demanded resources are beyond
their allocated resources. Though short-term fairness is not

guaranteed in such a mechanism, long term-fairness, lower
deadline miss ratio and smaller tardiness are achieved.

Third, all best-effort processes with same timeliness
properties are considered as one single soft real-time pro-
cessing server, which schedules each best-effort process in
turn.

Our preliminary results show that our flexible schedul-
ing mechanism can result in significantly performance im-
provement for soft real-time processes in terms of reducing
the deadline miss ratio and tardiness (by an average of over
20% in our experiments) compared to the well-known CBS
[1] mechanism and the BEBS algorithm [2].

2 Related work

Traditional slack stealing algorithm [7] for priority-
driven (including deadline-driven) or fixed-priority system,
schedules aperiodic jobs whenever the peroidoc tasks and
sporadic jobs have slack, that is, their execution time can be
safely postponed without causing them to miss their dead-
lines. However its main drawback is the incurred huge over-
head to do slack computations at high frequency: the ex-
tra work that the algorithm (both static and dynamic) must
do to determine the amount of the available slack at each
scheduling decision time (The computation and thus the
overhead always exist whenever there is actually slack or
not).

CBS [1] is designed to provide CPU bandwidth reserva-
tions to continuous media applications. It provides greedy
slack time reclamation mechanism by immediately releas-
ing the next job of an expired process (i.e., it has consumed
the reserved resources during its execution) with the dead-
line set to the end of its next period. Note that this slack
time technique can be efficiently applied to acyclic pro-
cesses (such as CPU bound best-effort processes) which al-
low to rephrase their jobs’ release times (if there are). Here,
to rephrase a job’s release time means to dynamically adjust
the pre-defined old release time of the job to a new one so
that the job can be released earlier or later than the old one.
However the main drawback of CBS when serving acyclic
processes is that it does not guarantee for them a minimum
execution time in a fixed interval of time (refer to [8] for
more detail). Furthermore, for cyclic processes whose jobs’
release times can’t be rephrased (such as periodic soft real-
time) CBS really does not provide any way to manage slack
time.

GRUB [6] is a CBS-alike algorithm. It tends to dynam-
ically allocate excess capacity to the current running server
or a few active servers in direct proportion to their proces-
sor shares. It has to frequently decide when and the duration
during which the slack time (idle time) is constantly avail-
able. Furthermore the available slack time are dynamically
re-allocated to the needy servers by updating their reserva-

tions. These dynamic operations may incur in large over-
head. In our case, the scheduler does no dynamic resource
re-allocation at all. It knows exactly when and how much
the slack is generated and allows it to be used (without in-
curred in overhead) by those processes which need it most
and most urgently (earliest deadline).

The IRIS principle [8] is based on the CBS algorithm.
It enhances CBS with a fairer slack reclaiming strategy and
guarantees a minimum execution to a task in a fixed inter-
val of time. However this technique can be applied to best-
effort applications as that in CBS, but not efficiently applied
to periodic or sporadic soft real-time applications whose re-
lease times can not controlled or rephrased by the system.
Similar to IRIS, BEBS [2] models best-effort applications
as aperiodic tasks. Again, it has all the disadvantages as in
IRIS. In both IRIS and BEBS, slack time is pushed back to
the end of a point only at which it is available to be used
fairly. Also in both algorithms, each best-effort process is
considered as an independent server. As a result, large over-
head may be incurred by the frequent dynamic changes in
the scheduling parameters upon every re-schedule and the
frequent changes in the numbers of the runnable best-effort
processes.

Our previous work RBED [3] provides an CBS-alike
slack time management mechanism in which only best-
effort processes are allowed to consume the slack left by
hard real-time and soft real-time processes. It does so by
immediately releasing the next job of an expired best-effort
process with the deadline set to the end of its next pseudo-
period. Note that RBED assigns dynamic pseudo periods to
best-effort processes to enforce EDF scheduling algorithm.
Again, with this technique, though the slack time is evenly
distributed among the runnable best-effort processes, a new-
entered best-effort may cause others to starve; Also it does
not allow other classes of processes (notably soft real-time)
to take advantage of dynamic slack.

RBED also provides dynamic rate adjustment (similar
to the elastic model [4] and VRE model [5]) during sched-
ule in case that extra resources (slack) are available or pro-
cess demand changes. However frequent dynamic change
in scheduling parameters introduces high overhead, which
is again not good for an integrated real-time system

3 System Model and Problem Description
3.1 System Model

The system we are considering is an integrated system
(as that described by our previous work RBED [3]) con-
sisting of hard real-time, soft real-time and best-effort pro-
cesses. For simplicity, here the real-time processes (includ-
ing hard and soft real-time processes) we are dealing with
are periodic process, which consists of a sequence of peri-
odically released jobs whose deadlines equal their release

times plus the process period. Note that the release time
of a periodic process (such as external data sampling and
multimedia applications) can not be rephrased dynamically
during scheduling.

Our system uses separated rate-based resource allocation
and EDF scheduling algorithm (refer to RBED [3] for de-
tails) for the processes in the system.

3.1.1 Rate-based resource allocation

The rate-based resource allocation mechanism, which is
similar to the reservation-based resource allocation (such as
Processor Capacity Reserves [9] and CBS) allocates a fixed
minimum resource (here it is CPU execution time) budget
to each process in a fixed interval.

In our system, each periodic real-time process 7; con-
sists of sequential jobs J;x, where each job has a release
time 7;, fixed period p;, deadline d;, and fixed minimum
execution budget ¢;. So the resource rate (utilization) of 7;
is u; = 4. All best-efforts processes are associated with
a single i)seudo periodic server (called BEServer) which
has a pseudo period ppeserver and a pseudo execution bud-
get epeserver (The detailed management conducted by the
BEServer is explained in section 4.2). The total global
system utilization is U, = Upgr + USRT + Upeserver, Where
Ux =Y rex T.u and X is the set of all tasks of type X.

Specifically, upon request at process creation time, the
rate-based resource allocation mechanism determines the
execution budget e; for process 7; according to the follow-
ings rules subject to U, < 1:

1. If 7; is hard real-time process, e; is assigned to its worst
case execution time so that all its deadlines are guaranteed
to be met. T; is rejected if U, > 1 upon the allocation.

2. If T; is soft real-time process, e; is assigned to an allo-
cated bandwidth, which is equal or less than the worst
case. Note that e; could be any value between its aver-
age case execution time and worst case execution time
depending on the tradeoff between the soft real-time per-
formance and throughput. 7; is rejected if U, > 1 upon the
allocation.

3. For the BEServer, a minimum resource utilization B
is reserved for it to guarantee no best-effort processes
1s starved, i.e., Upeserver = max([3,1 — Unrt — USRT)-
€peserver 18 computed as epeserver = Upeserver X DPbeserver
Where ppeserver 15 Usually set to a value in such a way that
tolerable response time is guaranteed for interactive best-
effort processes (I/O bound processes).

3.1.2 EDF scheduling and one-shot mechanism

Our proposed mechanism uses EDF algorithm to schedule
processes with resource reservation and overrun protection

enforced by a high-precision one-shot timer. Since Uy, is
never bigger than 1, the EDF scheduling algorithm always
provides the required guarantees to the different classes of
processes in the system:

1. Every hard real-time process in the system is guaranteed
to receive a fixed minimum amount of CPU budget in any
of its periods so that it meet all of its deadlines.

2. Every soft real-time process in the system is guaranteed to
receive a fixed minimum amount of CPU budget in any of
its periods so that it is guaranteed an average performance
though some jobs of the soft real-time processes may miss
their deadlines.

3. All best-effort are always guaranteed to share the reserved
resources for them so that none of them is starved.

Note that process overrun (i.e., allocated budget is con-
sumed before a job finishes) is protected by issuing a one-
shot timer to the current running process with the timer
counter set to the process’ left budget ¢; (Note that ¢; of a
process is initialized to its assigned budget ¢; and c; is then
decreasing when the process is running on CPU). Processes
are rescheduled when the one-shot timer expires. Here, we
only consider soft real-time process overrun since it uses
average execution reservation. We assume job is never
dropped in such a way that an overrun soft real-time pro-
cess may still re-start the overrun part of a job upon its next
release (Note that an alternative is to notify the application
to drop its overrun job if drop is allowed).

An example of process overrun is given in Figure 1,
which shows the CPU allocation for a system running
three soft real-time processes (P1, P2 and P3) with follow-
ing configurations respectively: (p; = 6,e; = 1.5), (p2 =
8,e0 =4) and (p3 = 10,e3 = 2.5). Assume the first job of
P1 has actual execution time 2, which is larger than its bud-
get e = 1.5. Thus its first job overruns and the overrun
part is pushed back until the next release time. In this case,
though the first job misses deadline, the second job (con-
sisting of the overrun part of the first job and the original
second job) may still finish before its deadline at time 12
if the original second job has far less actual execution time
than the process’ budget.

3.2 Problem Description

There are main drawbacks when use the simple EDF
scheduling algorithm with the one-shot mechanism for an
integrated system in which hard real-time and soft real-
time processes may generate slack time at any time because
of highly varying execution times but constant reservation.
Figure 2 shows the problems when no slack time manage-
ment technique is used for the EDF scheduler with one-shot

Overrun part
5 1 3

0 1 2 3 4 5 6 7 8 10 11 2 13 14 15 16 17 18
n L | s |
0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18
0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18

Figure 1. Soft real-time process overrun example

Overrun part

0 1 2 3 4 5 6 7 8 9 10
Slack time
P2 Il Il 1 1 1 1 Il Il Il Il Il 1 1 1
0 1 2 3 4 5 6 7 8 9 10
P’; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i
0 1 2 3 4 5 6 7 8 9 10
(a) case 1

Slack time
Pl i

P2 1 1 1 1 1 1 1 1 ‘ 1 1 1 1 i 1
0 1 2 3 4 s 6 7 8 9 10
P3 1 1 1 1 1 1 1 1 1 1 1 1 1 i
0 1 2 3 4 5 6 7 8 9 10

(b) case 2

Figure 2. One-shot EDF scheduler drawbacks

mechanism. The processes showed in Figure 2 have the
same parameters as those showed in Figure 1.

The first drawback is slack time may be not used by a
past overrun job of a process. In Figure 2(a), the first job
of P1 has an overrun part of 0.5; The first job of P2 has
actual execution time of 2 and thus it generates slack time
of 2. Since there is no slack time management employed,
the overrun job of P1 can’t start execution until time 6 and
thus misses its deadline.

The second drawback is slack time may be not used by a
future (following) overrun job of a process. In Figure 2(b),
the first jobs of P1, P2 and P3 finish before their deadlines
as expected. However now the second job of P1 has ac-
tual execution time of 1 and thus it generates slack time of
0.5; the second job of P2 has an overrun part of 0.5. Again
without slack time management, the generated slack time is
pushed back and available until idle point 17. As a results,
the overrun job of P2 misses its deadline.

4 Design
4.1 Efficient slack time management

The basic principle for our slack time management is to
use slack time as early as possible for the processes which
need it most. Note that our work focuses on improving the
system performance of scheduling soft real-time processes
in terms of tardiness and deadline miss ratio, but not fairness
in using slack time.

As described in section 3, the currently running process
is associated with a one-shot timer which controls the max-
imum duration of the execution based on the left budget.
The one-shot timer starts or updates its counter value when
the process starts to run. When the one-shot timer expires,
the interrupt handler calls a predefined timer handler, in
which the status of the currently running process is set to
expired and re-schedule is triggered. Note that the overhead
on starting the one-shot timer, executing the interrupt han-
dler, executing the timer handler and context switch have
to be taken into account for setting the exact counter of the
timer so that no extra resource is taken. In re-schedule, the
currently expired process is preempted and at the same time
next process with the earliest deadline in the run queue is

Run Queue (E: Expired, R: Running)

EIEIR[E[R[R[R

expired head

runnable head

Figure 3. Run queue structure

Pl 1 1 1 ! 1 i 1 1 1
0 1 2 3 T4 5 6 7 8 9 10
! Slack time
P2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

(a) case 1

| Slack time
Pl i Il Il

S o

(b) case 2

Figure 4. Slack time management for soft real-time processes

picked to run.

‘When the currently running process completes or blocks
before the one- shot timer expires, slack time is generated.
Upon process exit (completion) or blocking, re-schedule is
again triggered. In this case, the expired process (if there is)
with the earliest deadline is selected to run with the old still
running one-shot timer (see Figure 4(a) for example). This
is done by resetting the status of the selected expired pro-
cess to RUNNING and artificially creating for it a virtual
deadline equal (equivalent) to the deadline of the currently
running process which generates slack time. Note that no
dynamic rate adjustment is needed during the process. In
real-implementation, for reducing overhead purpose, this
extra operation can be eliminated by artificially creating a
pseudo runnable process which keeps all the live parame-
ters of the currently running process which generates slack
time until the one-shot timer expires. In this way, the slack
time is allowed to be consumed by the expired processes us-
ing EDF algorithm until the timer expires. In case that there
is no expired process available, the runnable soft real-time
process (the BEServer is an exception, which is detailed in
subsection 4.2) with the earliest deadline is instead selected
to run. In this way, the slack time is transferred to the future
processes until the timer expires.

The run queue is sorted by deadline in such a way that
the first job in the queue has the earliest deadline (Figure 3).
‘We use two list heads, expired-head and runnable-head to
respectively index the first expired process with the earli-

est deadline and the first runnable process with the earliest
deadline in the run queue. Thus no overhead is incurred to
pick a process (either expired or runnable) with the earliest
deadline to run.

Our slack time solution solves the problems addressed in
Figure 2. The corresponding resulting schedules are showed
in Figure 4. Clearly, in both examples, with slack time man-
agement, no job misses their deadlines even though there is
overrun job.

The advantages of using EDF scheduler with our one-
shot timer mechanism support are summarized as follows:

1. Slack time is always consumed as early as possible by pro-
cesses which need it most. In this way, the tardiness and
deadline miss ratio of soft real-time processes are reduced.
Note that short-term fairness is not our performance met-
ric.

2. EDF is used as a universal scheduling algorithm both in
normal process scheduling and slack time management.

3. Scheduling overhead is low since no dynamic complex
computation on scheduling parameters are required. Sim-
ulation results show no extra context switch is incurred in
our system enforced with new slack time management.

4.2 The BEServer

In our system, in order to reduce the overhead caused by
dynamic schedule, all best-effort processes are in turn se-

Run Queue

[E[E[R[E[R[R]R]

BEServer

Best—effort Run Queue

Figure 5. BEServer and best-effort run queue

lected by a BEServer, which is a pseudo soft real-time pro-
cess scheduled by the EDF algorithm. All runnable best-
effort processes are managed by a separate best-effort run
queue (Figure 5). The BEServer is runnable if and only
if the best-effort run queue is not empty; otherwise it is
blocked (suspended). The BEServer is almost the same as
a normal soft real-time process, with the exception that BE-
Server is not allowed to use slack time produced by other
real-time processes until there is no expired or runnable
real-time process in the system run queue. Thus the soft
real-time processes are guaranteed to receive the slack time
before any best-effort processes because they have more
strict time constraints than those of best-effort processes.

Usually, best-effort processes are divided into two cate-
gories: I/O bound and CPU bound processes. In order to
provide different timeliness service for them, in stead of us-
ing a single best-effort run queue, we can use unix-alike
two-level feedback run queues, of which the first one stores
the new-entered best-effort processes and the second one
stores the scheduled best-effort processes. When the BE-
Server is scheduled, it always picks the first BE (if there is)
in the first queue to run and at the same time the first BEs in
the second queue will be removed and added to the end of
the first queue.

There are three advantages for using BEServer to man-
age the best-effort processes. First, since BEServer is a
pseudo soft real-time process, other soft real-time processes
also can automatically consume the slack time generated
by the BEServer when the best-effort run queue is empty.
Second, the allocated resource utilization (rate) for the BE-
Server is not necessarily to be dynamically changed un-
til the demanded workload of real-time processes changes.
That is the parameters of the BEServer only depends on the
number or load of real-time processes, but not the number
of best-effort processes. Thus we eliminate the overhead
that would be introduced by the rapidly change in the num-
ber of best-effort processes as that in bandwidth preserving
or server-based systems, such as CBS and BEBS. Third, A
best-effort process at least receives the BEServer budget.

Figure 6 gives the pseudo code for the EDF scheduling
algorithm with one-shot mechanism.

5 Preliminary Results

We simulated our slack time management technique and
compared its performance to CBS as well as BEBS. For
simplicity, we call our one-shot EDF as RBED using EDF.

In the simulations, we ran 5 hard real-time tasks (HRT)
and some soft real-time tasks (SRT) at the same time. The 5
hard real-time tasks always take 50% of the CPU usage; The
soft real-time tasks increase their usage from 40% to 50%
during the experiments; All the soft real-time tasks have the
same usage, but may have different periods. Figure 7, Fig-
ure 8 and Figure 9 show the performance results in terms
of tardiness (fraction of period) and deadline miss ratio re-
spectively with 1 SRT, 2 SRT (using same periods), and 3
SRT (using different periods).

Clearly, from Figure 7, Figure 8 and Figure 9, the av-
erage performance in terms of tardiness and deadline miss
ratio of RBED (using EDF policy) outperforms CBS and
BEBS. However, as showed in Figure 8, BEBS allocates
slack time to SRT more fairly than RBED. But once the
performance in terms of tardiness and deadline miss ratio is
guaranteed to be better, the fairness is not important at all.

Furthermore, we can use other policies, such as ran-
domly pick a process, instead of EDF to pick a SRT to use
the slack time. Figure 10 show the performance comparison
between RBED (EDF) and RBED (Random). The result
turns out that the random algorithm does not work well.

Finally, we also recorded the context switch number for
each run in out simulations. The result is by using our slack
time management no extra overhead is introduced com-
pared to CBS or BEBS.

6 Conclusion and future work

We present an efficient resource management for soft
real-time processes in an intergrated system. This tech-
nique employs a simple one-shot timer based EDF algo-
rithm, which allows soft real-time processes to use gener-
ated slack time as early as possible. Our simulation results
show significant performance improvement for soft real-
time processes in terms of smaller tardiness and lower dead-
line miss ratio by using the slack time management tech-
nique other than CBS or BEBS. Also there was no extra

1 EDF _Schedule(){

16 case EXPIRED: have_slack = 0;

18 case default:

2 //If needed, preempt the currently running process CURR
3 if (CURR is a BE process) status = BEServer.status;

4 else status = CURR.status;

5 switch(CURR:.status){

6 case EXIT:

7 case BLOCKED:

8 //make sure we have enough slack time generated
9 if (timer.counter < time(context_switch)){

10 have_slack = 0; goto done;

11 }

12 NEXT = expired-head; //the first expired process
13 NEXT.status = RUNNING;

14 vd = CURR.d; //set the virtual deadline

15 have_slack = 1; break;

17 case RUNNING: CURR.c = timer.counter; //update the left-budget for CURR

19 done:

20 if (runnable-head!=NULL) NEXT = runnable-head; //the first runnable process
21 else NEXT = expired-head; //the first expired process

22 timer.counter = NEXT.c; //update the one shot timer counter

23 }

24 context_switch(CURR, NEXT);

25}

Figure 6. Pseudo-code for the EDF scheduler with one-shot mechanism

context switch incurred in our simulations.

Our future work is to implement the efficient soft real-
time resource management technique (including slack time
management and best-effort management) in a real system,
such as Linux 2.6, and investigate its performance by per-
forming extensive experiments.

Acknowledgments This research was funded in part by
Intel. Thanks to Scott Banachowski for his comments and
suggestions.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia ap-
plications in hard real-time systems. In Proceedings of
the 19th IEEE Real-Time Systems Symposium (RTSS
1998), pages 4—13, Dec. 1998.

[2] S. Banachowski, T. Bisson, and S. A. Brandt. Inte-
grating best-effort scheduling into a real-time system.
In Proceedings of the 25th IEEE Real-Time Systems
Symposium (RTSS 2004), Dec. 2004. To appear.

[3] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson.
Dynamic integrated scheduling of hard real-time, soft

real-time and non-real-time processes. In Proceed-
ings of the 24th IEEE Real-Time Systems Symposium
(RTSS 2003), pages 396—407, Dec. 2003.

[4] G. C.Buttazzo, G. Lipari, M. Caccamo, and L. Abeni.
Elastic scheduling for flexible workload management.
IEEE Transactions on Computers, 51(3):289-302,
Mar. 2002.

[5] S. Goddard and L. Xu. A variable rate execution
model. In Proceedings of the 16th Euromicro Con-
ference on Real-Time Systems, pages 135-143, July
2004.

[6] G. Lipari and S. Baruah. Greedy reclamation of un-
used bandwidth in constant-bandwidth servers. In
Proceedings of the 12th Euromicro Conference on
Real-Time Systems, pages 193-200, June 2000.

[7] J. W. Liu. Real-Time Systems. Prentice—Hall, 2000.

[8] L. Marzario, G. Lipari, P. Balbastre, and A. Cre-
spo. IRIS: A new reclaiming algorithm for server-
based real-time systems. In /0th IEEE Real-time and
Embedded Technology and Applications Symposium
(RTAS04), May 2004.

Tardiness as a Function of Load (period=0.04s)

Average Tardiness (fraction of period)

Deadline Miss Ratio (%)

80

30

Deadline Miss as a Function of Load (period=0.04s)

cBS ——

0.4 0.41 042 043 044 045 046 047 048 0.49 0.5
Load (fraction of CPU)
(b) Deadline Miss Ratio

Figure 7. Tardiness and deadline miss ratio in CBS, BEBS and RBED using EDF

0.1 | &
0 L I I I I I I I I
0.4 0.41 042 043 044 045 046 047 048 049 0.5
Load (fraction of CPU)
(a) Tardiness
Tardiness as a Function of Load (period=0.04s)
0.2 T T T T T T T T
BEBS:Taski ——
BEBS:Task2
RBED:Taskl -------
RBED:Task2 --------
0.15 | B

Average Tardiness (fraction of period)

0

V

0.4

Figure 8. Tardiness and deadline miss ratio in BEBS, and RBED using EDF (two tasks use same parameters, i.e., usage

and period)

L L
041 042 043 044 045 046 047 048 049 05
Load (fraction of CPU)

(a) Tardiness

[9] C. W. Mercer, S. Savage, and H. Tokuda. Processor
capacity reserves: Operating system support for mul-
timedia applications. In Proceedings of the 1994 IEEE
International Conference on Multimedia Computing
and Systems (ICMCS ’94), pages 90-99, May 1994,

[10]

J. Regehr and J. A. Stankovic. HLS: A framework

for composing soft real-time schedulers. In Proceed-
ings of the 22nd IEEE Real-Time Systems Symposium
(RTSS 2001), pages 3—14, London, UK, Dec. 2001.

IEEE.

Deadline Miss Ratio (%)

60

50 -

20

Deadline Miss as a Function of Load (period=0.04s)

T T T T T
BEBS:Taski ——

BEBS:Task2
RBED:Task1
RBED:Task2 --------

L L L L L L L L L
0.4 041 042 043 044 045 046 047 048 049 0.5
Load (fraction of CPU)

(b) Deadline Miss Ratio

Tardiness as a Function of Load (different periods) Deadline Miss as a Function of Load (different periods)

BEBS:Taski

=0.04s) BEBS:Task1 (p=0.
0.1 BEBS:TaskZ(p=0.) BEB%:Taskz(p=0.
- BEBS:Task3 X - BEBS:Task3(p=0.
8 RBED:Task1 . 3 50 - RBED:Task1 %E=o.
H RBED:Task2) RBED:Task2(p=0.
2 0.08) = RBED:Task3(p=0.
S &
5 e or
5 3
£ o006 v
2 -
2 s ¥
(3
2 2
e =
5 0.04 ?} 20 |
(] a
o
I
:% 0.02 T
0 | | | | | | | | oy — g ! ! ! ! ! !
0.4 0.41 042 043 044 045 046 047 048 049 0.5 0.4 0.41 042 043 044 045 0.46 0.47 048 049 0.5
Load (fraction of CPU) Load (fraction of CPU)
(a) Tardiness (b) Deadline Miss Ratio

Figure 9. Tardiness and deadline miss ratio in BEBS, and RBED using EDF (three tasks use same usage, but different
periods)

Tardiness as a Function of Load (period=0.04s) Deadline Miss as a Function of Load (period=0.04s)
05 T T T T T T T T 1 80 T T T T T T T T

RBED(EDF): Taski —— : RBED(EDF): Taski —— 1

RBED(EDF): Task2 § RBED(EDF): Task2 :
= RBED(Random):Taskl ------- i 70 | BBED(Random):Taskl -------
_S 04 b RBED(Random):Task2 -------- " RBED(Random):Task2 --------
g _
ks X 60 4
8 2
g o3r & 50 - R
= @
2 s
?
GE) (0]
5 £
F
) a
©
)
>
<

0 ! L L L L L L L L 10 L L L L L L L L L
0.4 0.41 0.42 043 044 045 046 047 048 049 0.5 0.4 0.41 042 043 044 045 046 047 048 049 0.5
Load (fraction of CPU) Load (fraction of CPU)
(a) Tardiness (b) Deadline Miss Ratio

Figure 10. Tardiness and deadline miss ratio using EDF and random policy respectively in RBED(two tasks use same
parameters, i.e., usage and period)

