Optimal State Feedback Based Resource Allocation for
Resource-Constrained Control Tasks
Technical Report (UCSC-CRL-04-06)

Pau Marti, Caixue Lin and Scott A. Brandt Manel Velasco arskpaV. Fuertes

University of California Technical University of Catalonia
Santa Cruz, USA Barcelona, Spain
pmarti,lcx,scott@cs.ucsc.edu manel .vel aso,josep.m.fuertes@upc.es
Abstract

In many application areas, including control systems, fohraanagement of system resources is key to pro-
viding the best application performance. Most traditioreource management techniques for real-time systems
with multiple control loops are based open-loop strategies that statically allocate a constant CPU shasacth
controller, independent of their current resource needss provides average control performance with minimal
overhead but in general fails to provide the best perforregmassible within the available resources. We show
that by using feedback to dynamically allocate resourcesotdrollers as a function of the current state of their
controlled systems, control performance can be signifigamproved. We present an optimal resource allocation
policy that maximizes control performance within the ashie resources and provide experimental results showing
that the optimal policy 1) significantly increases contretfprmance compared to traditional control system imple-
mentations (by more than 20% in our experiments), 2) max@miontrol performance over other feedback-based
policies, 3) saves resources when perturbations occuggoéntly, and 4) incurs negligible overhead.

Keywords: real-time systems, control theory, optimization, quatifyservice, dynamic resource allocation

1 Introduction

In many application areas, including control systemsyfelploiting the available system resources is crucial to
maximizing application performance. Most traditionaloesce management techniques for real-time systems with
multiple control loops are based @npriori characterizations of the expected workload. They use fixedmp-
eters that are configured at system setup time. At run-timsources are shared by all tasks according to the
pre-established allocations regardless of the dynamitiseo€ontrol applications, thus workirgpen loop. This is
done both in the early work on real-time scheduling [15] amdniore recent approaches to control and real-time
systems [19].

Open loop resource allocation policies work well becausg tluarantee a constant CPU share to each controller,
allowing them to meet given control performance specifarai However, taking a closer look at the behavior of
control loops and at the relation between control perforcesand controller execution rate, open loop policies may
not be optimal for resource constrained systems. As sugdast[16], a controller may not require the assigned

execution rate if the controlled system is in equilibriumthis case, the contribution of each job can be considered

useless, i.e., resources are wasted. These underuti#sednces could be more usefully employed by other tasks
with higher processing demands. If a controlled systemfiscéfd by a perturbation and brought away from its
equilibrium point, an increase in the rate of the controlMdl decrease system deviation and hasten system recovery,
improving control performance.

Taking this observation as a baseline for our current workcontrol performance optimization in real-time
systems, we have developed dynamic resource managemamepfdr control tasks that allocate resources at run-
time based orieedback information from the jobs that the controllers are perfarmi We show that a real-time
system with multiple control loops can provide improvedttohperformance by assigning resources to controllers
based on whether control loops are affected by perturbsittomot. Alternatively, with these techniques the same
control performance could be achieved using less resources

As a key contribution of this paper, we present an optimaduese allocation policy for control tasks based on
feedback from the controlled systems dynamics, i.e., froairttate, that maximizes control performance within
the available resources. We argue that the optimizatiomofrol systems performance (for a wide class of control
systems) when resources are limited and allocated as aduaruftthe state of the controlled systems can be formu-
lated as a linear constrained optimization problem [9]. €&mpuently, the solution to this problem is a feasible (in
terms of computational complexity) algorithm for a run-imesource allocator, and provides the optimal resource
allocation policy for control tasks.

To successfully implement the state feedback optimal mesoailocation policy as well as two other state feed-
back based policies used as a basis for comparison, two kegtssmust be considered. First, these policies require
the implementation of controllers capable of running witfiedent sampling frequencies given different resource
allocations, providing better control performance wheregimore resources (as explicated in [17] and [16]). This
feedback-based approach to resource management takedagh/af the fact that the performance of these clas-
sically designed controllers is improved by a run-time tese allocator that gives the controllers more resources
exactly when they need it the most, i.e. when their contdodlgstem is experiencing the greatest deviation from the
equilibrium point.

Second, the implementation of such policies requires dflexeal-time system capable of dynamically changing
the allocated resources (via e.g., the controllers’ pajiachile guaranteeing tasks timing constraints, as does the
Rate-Based Earliest Deadline (RBED) integrated real-system [4]. RBED facilitates the implementation of our
feedback resource allocation policies because it is basedeoResource Allocation/Dispatching (RAD) integrated
scheduling model, which explicitly separates the managemethe amount of resources allocated to each task
from the timing of the delivery of those resources. This safian allows the resource management to be precisely
tailored to the needs of the individual control tasks.

To illustrate the benefits of our feedback approach to resouranagement, we implemented the policies in

RBED and performed extensive experiments on simulatedtiedgendulums. Our results show that, on the same
sequence of randomly generated perturbations, the oppwiady 1) significantly increases control performance
compared to traditional control system implementations rfiore than 20% in our experiments), 2) maximizes
control performance over other feedback-based policipsades resources when perturbations occur infrequently,

and 4) incurs negligible overhead.

2 Reated work

Optimization of control systems performance subject t@uese constraints has been examined before. &eto
al. [19] optimized task frequencies at the design stage in a@eninimize a control performance index defined
over the task set. Rehbinder and Sanfridson [18] proposedfdime scheduling method based on optimal control
theory. None of the previous resource-constrained cogystem optimization work has examined run-time adaptive
resource management for optimization of control systemfopaance, as we do.

Different approaches to control systems and run-time nesoallocation policies have also been examined be-
fore. Shin and Meissner [21] presented a resource allat#gichnique for multiprocessor systems where tasks are
reallocated and periods are changed while taking into attcoontrol performance. Beccast al. [2] present
a scheduling technique for adaptation of soft real-timealltmavailable computational capacity in the context of
autonomous robot control architectures. Caccatral. [6] allowed tasks’ computation times to range from aver-
age to worst case computation times and adjusted periods e to optimize control performance and enhance
schedulability using server approaches. Cervin and EKepri@sent a case study with hybrid controllers , where
the sampling rates are adjusted to avoid CPU overloads.iiCenal. [8], proposed a scheduling architecture for
real-time control tasks where the scheduler uses feedbackdxecution time measurements and feed-forward from
workload changes to adjust the sampling periods of the obtasks so that the combined performance of the con-
trollers is optimized. Buttazzet al. [5] present a method for promptly react to overload condgiowhile still
guaranteeing a given control performance. However, noribeprevious work uses feedback from the controlled
systems dynamics in order to reassign resources as we do.

Our approach has some similarities to the feedback scheglaithitectures presented by Zhao and Zheng [24],
and by Henriksooet al. [13]. Zhao and Zheng discussed an event feedback schedtiaiggy in which controllers
are executed according to the dynamics of the controlleterys to meet asymptotical and exponential stability
performance criteria, without adapting sampling periodibe goal of their approach is the design of the control
laws that meet those performance requirements. Our goaldptimize a performance criterion based on the errors
of the set of controlled systems, by appropriately varying ¢éxecution frequency of each controller. Henriksoon

presented a scheduler that allocates CPU time to a specifis of controllers (model predictive controllers) based

on feedback information from the optimization algorithnrréad out by each controller. In such a framework,
performance optimization is achieved by dynamically vagyand controlling the executions time of each controller.
Our approach targets a wider class of control systems flsyedems), control performance optimization is based on
feedback information from the controlled systems, and édkieved by dynamically adjusting the sampling period
of each controller (that is, the period of each control tasljich is determined at each resource reallocation.

The optimal resource allocation policy for control taskattive present in this paper optimally solves the Quality-
of-Control (QoC) scheduling problem formulated by Magttial. [16], but in terms of resource management. As
suggested in [16] and further developed by Yegeal. [23] and Velascat al. [22], the dynamics of the controlled
systems are the key to better exploiting system resouragsn@oroving control systems performance in resource
constrained control systems. Preliminary results of tlegleck approach to resource management, that are briefly

included in this paper, were reported previously [14].

3 System model and feedback architecture

The system we consider is a real-time system with multipletrod loops. That is, we have a set of controllers (or
control tasks), each one controlling a physical system ¢atrolled system), sharing a single CPU. The real-time
system may also integrate other hard real-time tasks asasedbft-real time and non-real-time tasks. Since the
main goal of this work is control performance optimizatiaa feedback resource allocation techniques, henceforth,
we will focus on control tasks. Due to resource limitatiottsee controllers cannot all simultaneously run with
their highest possible sampling frequency, providing thstipossible control performance equivalent to what they
would provide if they were running alone on the CPU. In ordeoptimize the performance delivered by this set of

controllers, we apply our feedback resource allocatiomncjes.

3.1 Basicoperation of the feedback architecture

Control
tasks
Operatinge -l]
system 3~ }

~- Computingd :
: resources| :

=

Environment

Figure 1. System Model

The basic operation of the system, schematically illustté Figure 1, can be summarized as follows: at each
control task execution, the task samples its controlledesygtheenvironment in Figure 1), capturing its current

dynamics, in order to execute the control algorithm and wutpe control signal. Each control signal affects the

controlled system dynamics in such a way that the systeniisrtto the specified set point (also called equilibrium
point). Each sample is anstantaneous picture of the dynamics of the controlled system. It indicatestite, that is,
whether the controlled system is affected by a perturbatiarot, providing the magnitude of the controlled system
deviation with respect to the equilibrium point (deviatibiat is called controlled systeenror). This information is

fed back to the operating system in order to allow the systeradllocate resources accordingly (see Section 3.2 for
further explanation on the type of information that is fedlto the system).

Atthe system level, the state of each controlled systenmed tesre-scale thgatic relation that can be established
between resources and control performance, which is spéaifeach control loop (given the controlled system, the
controller and a range of periods). As pointed out in Cestial. [8], a controller can normally give satisfactory
performance within a range of sampling periods. This refatithat is further explained in Section 3.2, can be
computeda priori and condensed in a function (that we call geeformance criterion) that maps controller period
to control performance.

At the system level, we could only use this static informafall performance criteria of the set of control loops)
to determine the allocation of resources such that all teskehedulable and the performance criteria are optimized
(as is done by Cervigt al. [8]). However, by doing so, the maximum benefit (in terms aftcol performance) could
possibly be achieved by several different resource aliooatand in the absence of other information the system has
no way of knowing which is the best choice. By taking into agaithe current dynamics of each controlled system,
we can determine the optimal allocation.

To illustrate the problem, suppose there are two contréist@baracterized by the same performance criterion,
each of which may use one of two equal (in terms of controlgrerfince and rate) controllers, one with a higher
sampling rate and one lower. Suppose also that because thentwf computing resources is limited, so the
system cannot simultaneously run both controllers at thigihest rate. Therefore, the only choice is to choose
the higher rate controller for one task and the lower raterodler for the other, or vice-versa. In terms of static
control benefit (provided by the performance criteria) tbdoices are equal. Nevertheless, it may happen that one
controlled system is in equilibrium and the other is not.Hattcase, the best choice in terms of control performance
optimization is for the task of the system in equilibrium teeuthe lower rate controller and the other task to use
the higher rate controller, as argued previously [16]. Tdkenthis possible, and to assign resources according to
the dynamics of each controlled system, for each contrgd e re-scale each performance criterion by the state
(feedback measure) of the controlled system.

Finally, resource allocation also considers current sydtead €omputing resources in Figure 1) to determine
how much resources are available to be allocated and how pracgsses need them.

With all this information (performance criteria, contredl systems current states, and current system workload)

at the system level, resources are reallocated to contskétaccording to a particular resource allocation policy

(see Section 5.1) with the objective of optimizing the ollazantrol performance of the set of control loops (or,

alternatively, to save system resources), while guarargeask set schedulability.

3.2 Control systems and performance

We now examine the formal aspects of the optimization prableet (1) and (2) be the ordinary vector differential
equations (calledtate andoutput equations, respectively) that describe the linear dynamieachith controlled

system

yi(t) = di(z(t)) 2

where the functiong; andd; are linearu;(t) is thecontrol input to the dynamical system, and the vectoft) =
[#1(t),...,2"(t)] is the state of the system at timand its elements are callsthte-variables. The state and output
equations defining a given system can be considered an etbstramary of the data obtained by subjecting the
system to different inputs (control signals) and obsertirgcorresponding outputs.

Without loss of generality, if we consider the equilibriumipt of all controlled systems to be zero, the norm of
the state vectofy;(t)|, is the distance that measures how far each controlledrayist&om its equilibrium point at
any giventime > 0. This measure tells howritical the situation is for each controlled system; the higherédisi®,
the worse the system. We define this measure (also calted(3)) as the feedback information that each controller,
at each sample, will send to the system for the re-scalingci @erformance criterion. If, for a given control loop,

all states cannot be measured, they can be determined feoav#filable measurements and a model [1].

ei = |zi(t)] ®)

Therefore, more or less resources will be assigned at ma-td each controller taking into account the controlled
system error; the higher the norm of the states (i.e., thhdrighe error), the more urgently a controller requires
more resources.

For each control task, we specify a performance criterign;) that relates control performance under different
task ratesy;. The rate (also called partial utilization factor) is th&at®n between each tasks’ worst case execution
time ¢; and its perioth;, r; = ,“L— Since the worst case execution time is a constant valueyagtion on the task
rate implies a variation on the task period (and vice-versa)

Since controller design attempts to minimize the systemrgnoduced by certain anticipated inputs, traditional

linear or quadratic performance criteria (also called perfance indices or cost functions) are mainly based on

measures of the system error (see [11] for a review of classitrol criteria or [20] for a review of performance
measures to evaluate real-time computer control systems).

Therefore, our performance criteria, that will be rescddgdhe errors (3), should capture the relation between
these indices and the tasks’ periods. In fact, the relatetwéen control performance (measured using standard
quadratic or linear performance index) and a range of altbperiods can be approximated by a linear relation-
ship [8]. Therefore, for a given control taskwe approximate its performance criteripy(r;) by a linear increasing
function (4), that establishes the following relation farch control loop:the higher the rate (i.e., the shorter the
sampling period) of the controller, the better the control performance. The«; parameter in (4) is specific for each

control loop and can be obtained prior to system run-time.
pi(ri) = aur; 4)

Although this linear approximation is not an oversimplifioa and it covers a wide class of control systems, as
we will discuss in Section 4, the optimal resource allogapolicy also admits performance criteria in the form of
polynomials of grade less than five.

We require controllers capable of running with differemduencies. To do so, we design controllers for the class
of linear systems (that can be specified by (1) and (2)) udassic design procedures, either in the continuous-time
domain followed by discretization, or directly in the diste-time domain [1]. In the end, each control law is an
algorithm that depends on the sampling period. We specignge of sampling periods for which the closed loop
requirements are met and allow the controller, implemewntigtiin a single task that sequentially executes sampling,
control algorithm and actuation, to execute with a run-tpedod that belongs to the specified range (for full details,
see Martiet al. [17]), adapting the gains accordingly. System stabilitgrisilyzed using the approach described by

Dogruel andOzgiiner [10].

4 Performance optimization of control systems

At the system level, each control taskcan be characterized by its ratg(which is asystem characterization), its
performance criteriom; (which relatessystem resources andontrol performance), and its controlled system error

e; (which is acontrol characterization), represented by (5)

T = {ri,pi ei} ®)

With this information, for a given set aof control tasks, ..., 7,, the problem is to determine the task ratgs

i =1,...,n, such that all the tasks are schedulable and the overallai@ysstem performance is maximized.

The resource allocation problem can be formulated as a germrstrained optimization problem as follows,

maximize g(pi(r;),ei) (6)
n
subjectto > r; < Uy (7)
i=1
where the solution is a vectét= [ry, s, ..., r,] that maximizes the control performance delivered by theoget

controllers, represented by the objective (vector) forct in (6), restricted to the utilization feasibility constndi
specified in (7), wheré/, is the desired global resource utilization factor for theafecontrol tasks.

The absolute maximummay lie either in the interior, on the boundary, or at the exte points of the feasibility
set defined by (7). A generic algorithm to find the solution barsummarized in four steps (as detailed by Chong
and Zak [9]):

Sep 1. Search for local relative maxima in the interior of the fédlgly set by solving the set of equations
specified by (8), wher@% are the partial derivatives gfwith respect to each;.

g g g

—=0,=—=0,...,=— =0 8

ory Oors ory, (8)
and keep thosgthat, being interior points of the feasibility set (confong with the restriction (7)), maximize.

Sep 2: Search for local relative maxima in the boundary of the faiéisi set by solving the set of equations

specified by (9),

99(Uqg —r2 — 713 — ... —Tn,T2,73,...,Tn]) =0,i<ni#1
87“1'

99([r1,Us—rm =13 — ... =073, -, Tn]) =0,i <n,i#2 ©)
87"7;

9g([ri,ra,-. ., Us =i —71a — ... —1pp1]) =0,i<n,i#n
a’l“z'

and keep thosgthat maximizey.

Sep 3: Search for the values of the feasibility set extremes as specified in (10),

9([U4,0,...,0]), g([0,Uq,...,0)]), ..., 9([0,0,...,Uq]) (10)

and keep thosgthat maximizey.

Sep 4: Choose & among those obtained Bep 1, 2 and3 that maximizey.

Depending on the objective functign solving the optimization problem may not be feasible forcamline
real-time resource manager. However, in the case of cotasls characterized as described in Section 3.2, the
optimization problem can be simplified, it is directly sdi@, and the algorithm that obtains the solution can fegsibl
be executed at run-time, as we explain next.

Assuming that each controller is independent in the sensemifolling an independent controlled system (as
we assumed in the system model in Section 3), the fungtfonthat links all of the control performance benefits
(which are given by the performance critepiadefined in (4)) can be considered as the sum (possibly welyjbfe
all individual benefits obtained by each controller (as wias done in the optimization procedures for control tasks
presented in [19] or [8]).

Each performance criterion can be weighted, in order to provide a mechanism allowing appropriate com-
parisons among the control loops in the system. For exaraplentrol loop in charge of the brake system of a car
may be more critical than the one in charge of the air condiitig. In addition, by defining the re-scaling of each
performance criterion to account for the each controllesteay error (defined in (3)) asp;, for the given set of

controllers, we can rewrite the optimization problem asofob

maximize Z wie;pi(r;) (11)

i=1

subjectto Y "r; < Uy (12)

i=1

The complexity of the solution of the optimization probletated in (11) and (12) depends on each function
pi(r;) due to the fact that equations (8) and (9) have been simptdidte set of equations specified by (13) and (14)

(becausg has turned into a sum), whebe= w;e;p;(r;):

Ob, Obs abn
— =0,2—=0,...,2— =0 13
ory Oorsy ory, (13)
abl(Udngf’l"g*...*Tn):O'Z.Sn:i;él
87“1'
abQ(Ud_r]_rB_"'_rn):0,i§n,i7é2 (14)
67"7;
abn(Ud—T]—TQ—...—Tn,]):O’Z,Sn’i#n
87“1'

If the performance criteria; are linear (as we assumed in our system model in SectiontB2pptimization

problem becomes linear, and the soluti®r= [r;,rs,...,r,] can be found by performing a simple search (i.e.,
performingSep 3) because equations (13) and (14) correspondingdp 1 and2, are not properly determined.

That is, ifp; are linear f; = «;r;) in (13), we end up with the following set of equations (15)

Bb] 511)1 e1a1r

8_7"1 n 87"1

abg ng €T

8_7"2 - 87"2

ob, Owpe,anrn

o Br. = wypepa, =0 (15)

= wie1a; = 0, = Wo€Er0lp = 0,

that are not determined. The same happens with the set ofieqsiapecified in (14). Therefore, by simply per-

forming Sep 3 customized for the problem stated in (11) and (12), thatjgMaluating

g([Ud,O, .. ,O]) = bl(Ud) + bQ(O) + ...+ bn(O) = 11)1610[1Ud

g([O Ud, ey O]) = b] (O) + bg(Ud) +...+ bn(O) = w2€2a2Ud (16)

g([O, 0,..., Ud]) =b (0) + bg(O) + ...+ bn(Ud) = wpe,a,Uy

we will find the optimal resource allocation. Note that (16¢quivalent to finding the maximume;a;,i = 1...n.

Theorem 1 Theoptimal solution = [ry, rs, ..., r,] of theoptimization problem(11) and (12) is# = [0,0,...,0,7; =

Uq4,0,...,0], i € [1,...,n] suchthat w;e;a; ismaximumVi € [1...n], if the set on control tasks are described

by (5).

Pr oof.

Follows from the argument abovel

Observation 1 In terms of resource allocation, the theorem states thatheald assign all the available CPU (that
is, Uy) to the control task with maximunw;e;p;. If all of the functionsp; and all the weightsv; are the same, we
should assign all of the available resources to the cordsid with the largest erre;. In practice we need to assign a
minimum rate to the rest of the control tasks so that stgtiiists can be performed and they can continue to monitor
the state of their controlled systems. This result dictdtasthe control task with the largest error should recellve a

of the resources remaining after every task has receivexiftsnum.

Observation 2 If the p; are not linear but still polynomial functions o of grade less than five [12], an analytical
solution can be found followin§teps 1, 2 and3 by solving equations (13), (14) and (10), turning the soluinto a

feasible (in terms of computational complexity) algoritfona run-time resource manager.
Observation 3 Forthe case of linear;, the geometric explanation of the optimal solution of thetjem formulated

10

by (11) and (12) is as follows. The optimal solutiins one of the extreme points (vertex) that is maximum in the
projection of the hyperplane given by the constraints (Ilj)he hyperplane defined by the objective function (12).
Figure 2 illustrates the case for two control tasks wHéfe= 0.8, both controllers have same performance criterion
and weightsd¢;, = > = 1 which implies thap, (r1) = r; andps(r2) = 9, andw; = wy = 1), but one controlled
system at time has a bigger errore{ = |z, (t)| = 4) than the otherd, = |z2(t)| = 1). As it can be seen in the

figure, the maximum benefit considering the schedulabititystraints is found at = [0.8, 0.0] (extreme point).

Benfit

Figure 2: Optimal Solution

5 Flexiblereal-time processingin RBED

Our control feedback architecture is implemented in the RBfiegrated real-time system [4], which supports hard
real-time, soft real-time and best-effort processes. RBEATates resources to processes as a percentage of the CPU
such that the total allocated is less than or equal to 100%terdschedules all processes with the Earliest Dead-
line First (EDF) algorithm [15]. RBED dynamically changdkeated resources and application periods without
violating EDF constraints, guaranteeing that tasks nevsses their assigned deadlines.

In RBED, we have implemented control tasks as flexible reaé-tprocesses which have a known worst case
execution timez;, but flexible period choiced,;, that take values from pre-defined ranges (which correspmiite
sampling periods of the controllers); € [hmin - - - hmaz] (Which for now we consider continuous), and relative
hard deadlines equal to their periods. Given a set of paricalitrol tasks; (1 < i < n), their resource utilizations
are defined as; = ;-. If >, ri <1, the EDF algorithm in RBED guarantees that all of the deadliof the
tasks’ jobs will be met. At any time, upon a dynamic resource re-allocation by adjusting thegerof the tasks,
the utilizations of the tasks are updated-as= Z— such thaty"!" | r; < 1. Note that any change to a task’s period

is subject to the constraints described in [4]. TherefoRER still guarantees all of the new deadlines of the tasks

when they are assigned new periods.

11

5.1 Feedback resource allocation policies

We implemented the optimal feedback resource allocatidicypoptimal, described in Section 4), for control tasks
in RBED. In order to better demonstrate the benefits of tharatpolicy and to evaluate its performance, we also
implemented two adaptive feedback based resource alboctgchniques, calleproportional anddiscrete. Unlike
optimal, the proportional policy fairly distributes resoas based ow;e;p; for all controlled systems such that all
tasks get a CPU share proportional to their error. The disgrelicy, which is a mixture of optimal and proportional
with a set of discrete values for the task periods, reducempoatational overhead due to its simplicity. To provide a
direct comparison with traditional control system implartaions, we also implemented a baseline pobtatic, in
which all controllers always share the available resouespsally and no dynamic resource allocation is used. The
static policy implements the “traditional” controller amslused for examining the overall performance benefit of

adaptive feedback based resource allocation for contsikays.

5.1.1 Theoptimal policy

The optimal policy, like all of the adaptive feedback basesburce allocation policies implemented in this paper,
allows each control task to specify a performance critefipfsee Section 3.2), which is a continuous function that
relates its period (and thus resource usage) to the corgrédnmance it provides. As we discussed in Section 4,
the optimal solution is to assign all the available resositoethe controller whose controlled system is currently
facing the largest error (if all the control loops are the sathat is, with equal; andp;), taking into account that

the system must also guarantee a minimum rate for the rengpgontrollers. With differenp; and weightsw;
(meaning different type of controllers and/or differenthtwlled processes), the resources would be assigned to the

controller having the highest;e;p;. This is summarized in (17)

Uy — Z Tj,min; if wieipi(ri) is maximum
o
T = 1<j<n, ji . — € [hmin - - hmaz] (17)

T
Ti,min, otherwise
wheren is the number of controllers ang ,,,;,, (corresponds t@,,,.) is the guaranteed minimum utilization of the
controllerj.
The optimal policy keeps track of which task has maximuya;p;. Therefore, the dynamic resource allocation

can be completed by a linear scan of the listiafasks inO(n) time. Note that dynamic resource allocation only

occurs when the task with the maximume;p; changes, which greatly reduces the overhead.

12

5.1.2 The proportional policy

The proportional policy assigns resources to each coetra a proportion ofv;e;p;. In our implementation, the

resource allocation algorithm is given by

Z wje;p;i(ry) "
1<j<n

Fairness comes from the fact that any controller whose obett process is subject to a perturbation increases its
utilization according to its relative degree of error. IBjlgives a utilization that results in a longer sampling peri
thanh,,, .., then the controller will run ak,, ... This mechanism allows us to guarantee a minimum samplileg ra
for all the controllers.

The proportional policy has the same time complexi()) for the resource allocation as the optimal policy
though it may scan the task list a second time to distribugeléftover resources after the first round distribution
based on (18). However, any change to the error of a contisijistem will cause a dynamic resource allocation
so the actual number of dynamic resource allocations arglttteiintroduced overhead of the proportional policy is

always more than that of the optimal policy.

5.1.3 Thediscretepolicy

In the discrete policy, based on the assumption of a dissedtef periods instead of the continuous range defined
for optimal and proportional, each control task has a discienction corresponding te; evaluated on only a few
values. It defines discrete resource levels in terms of tfierdnt periods, which are mapped into benefits that will

be used in the discrete optimization procedure. The besddit/en by

benefit; = wie;ipi(r;) = wie;a;r; , ;—: € {hmin,- -, Nmaz } (19)
A heuristic algorithm [14, 3] is employed to iteratively iease the level of the control tasks until no more increases
are possible within the available resources, providindpl@igerage overall system benefit.

The worst-case time complexity of the discrete policy)i&l.n), where L is maximum resource levels in the
system (which is equal to the maximum number of samplingoglsrfor all control tasks), because the worst case for
a dynamic resource allocation may go through all of the resmlevels of every control task. In order to simplify the
operation and reduce the overhead, we map the benefit of eactirce level with a range of possible error values
[14]. In this way, rate readjustment takes place only wheretiior moves from one range to another. As a result the

overhead is significantly reduced (see overhead analySisdtion 6).

13

5.2 Implementation details of the system interfaces

The operation of the feedback based resource allocatiorhaas given in Section 3. In this section we describe the
implementation details that allow the communication bemveontrol tasks at the application level and the resource

manager at the system level.

Controller Eate_adj ust(i, e:)
{ h; = h;th |f(€z' = 6?”)
x; := read_input() { bi = wieip;
u; := calculate_output(h;); send_output(u;) /neﬂ ':IIIl‘elsource allocation(policy, b;)
7" .= update_state(z;, h;); e; := |z7"!] Cid B posecy, s
;= rate_adjust (i, ; i =
7};7;,'16;% ri ec_,-a Jjus (Z/ PI) returnr?ext
0 =)
I)
(a) Controller (Application Level) (b) Dynamic Rate Adjustment (System Level)

Figure 3: Pseudo-code for Controller and Dynamic Rate Adjustment

Figure 3 gives the pseudo-code for a controller and the dymeate adjustment, linked through the system call
rate_adjust(). The controller (Figure 3(a)), with execution peribgd

1) does its control job: it samples the system, calculatestimtrol signak:; (based orh;), and sends it to the
controlled system (as any traditional controller would doemw keeping constant); and

2) triggers the rate adjustment: it computes the next ctiatteystem state vectougdate_state), whose norm
e; is passed in by the system cathte_adjust(), in order to obtain the new period that will start being usethea
following controller execution.

The dynamic rate adjustment (Figure 3(b)) picks the spetisource adaptation policies, static, discrete, pro-
portional, or optimal, to re-allocate the resources based.@;p;. It does this by assigning different control tasks

with appropriate sampling periods, which are finally reedtback to the controllers for next-step control.

6 Results

We implemented our feedback based resource allocatiogigslfor control tasks in RBED in the Linux 2.4.20
kernel (for the sake of simplicity and easy prototyping). Wave run the system over long periods of time and
performed a large number of experiments with randomly getieelrworkloads so that the experiments are general,
and not limited to some special cases. All experiments wertdpmed on a standard Intel-based PC equipped with

a 1 GHz Pentium Ill processor, 512MB RAM, and a 40GB hard drive

14

6.1 Controlled processes

In our experiments we ran a set of control tasks, each cdinigc simulated inverted pendulum. The linear time-

invariant state space model we used for each inverted pemdulounted on a cart is given by

6 0 10 0 0 0
: (M+m)-g —1
w —7F= 0 0 0 w —
— M-1 + M-l u(t)
T 0 0 0 1 T 0
. 1
0]T\"/Ig 0 0 0 v e

wheref is the pendulum angle; is the angular velocity; is the cart position and its velocity. For the simulation,
we customized all pendulums as follows: mass of the kAt 2kg, mass of the pendulum = 0.1kg, length of
the pendulum stick = 0.5m and gravityg = 9.81m/s”.

Each control task implements the same parametric contnoblatained by standard pole placement [1], which
is parametrized on the sampling period. We have defined aliralted tasks to be the same because it simplifies
the performance analysis. Recall that in this cagseandp; are equal for all tasks, which means that the e¢tds
the main driving factor in each policy. However, using diéfet controlled processes;§ or weights (v;) would not

materially affect the results.

6.2 Workload generation

For each of the four policies we performed experiments incllvie ran three control tasks implementing the same
control law and reserved a percentage of the CPU capa®ifyi our experiments) to allow the execution of general-
purpose tasks. Thus the desired global resource utilizddictor (/) for the three control tasks i$; = 97%. Each
controller is in charge of a simulated inverted pendulumescdbed above, and has a fixed worst-case execution
time (¢;) of 0.0135s.

With either the optimal or proportional policy, each cofigocan run at any sampling perio#l;{ within 0.03s
and0.05s. With the discrete policy, we defined three resource lewetsesponding to three different sampling

periodsh; € {0.03s,0.04s,0.05s} for each controller. With this configuration, if there areeté control tasks in the

system, none of them will execute at their highest leligk 0.03s) since(%2135 4 2. 80135) — .99 > 97% = U,
(that is, the required CPU load would exceed what is avalabiFor the static policy, the three controllers share
the available CPUl(; = 97%) equally and thus each of them is givéh% of the CPU for the duration of the
experiments.

For each of the resource adaptation policies, we ran the tboatrollers forl hour and randomly generated

perturbations for each inverted pendulum with differergrage perturbation intervals. The distance between two

consecutive perturbations on the same system varies inaswgy that a system may be continuously perturbed

15

or almost never perturbed (capturing any scenario). Thatith different perturbation intervals, a system may be

perturbed fewer than one hundred times or many thousandses$t

6.3 Performanceresults

We first detail the effects on the execution rate of each otletrwhen using the different resource management

policies we have presented. Afterwards, we look at the obmerformance achieved by these techniques and

examine the overhead they incur.

6.3.1 Execution ratepatterns

Figures 4(a)—4(d) show the variation on the control taskiode when using the four different policies: static,

discrete, proportional, and optimal, with perturbatioteival=4s . In order to look into the detailed progress of the

three control tasks, we only show the figsts of thel hour run. In each figure, theaxis represents the time and

they-axis represents both the angle of each inverted pendulinicvallows us to see when each perturbation takes

place) and the corresponding controller period multiplgdl0 to normalize it to the same range.

40*Period (s)

Angle (radians)

40*Period (s)

Angle (radians)

35 r
Task1: Error
3l Task2: Error
Task3: Error
Task1: Period
25 Task2: Period
Task3: Period
2k
15 |
1F
-3
05 f %
0 R
05 |
Il Il Il
0 5 10 15
Time (s)
(a) Static
3.5 T
Taskl: Error
3l Task2: Error
Task3: Error
Taskl: Period
25 Task2: Period
Task3: Period
2 o —
¢
154 ¢ :

5 10
Time (s)

(c) Proportional

15

Figure4: Sampling Period vs.

35 r
—_— Taskl: Error ——
rrrrrrrr | 3l Task2: Error ----=--- |
. Task3: Error .
Task1: Period
rrrrrrrr b & 25r Task2: Period --------
= Task3: Period
T
— kel 2
@
a
B 5 15
<
1 o
o ‘
g
5 05k
g 4
o o
[=2)
[=4
g < .05
Il Il Il
20 0 5 10 15
Time (s)
(b) Discrete
3.5 T
Taskl: Error
"""" | 3l Task2: Error ------- |
- Task3: Error -
Task1: Period
rrrrrrrr B & 25r Task2: Period --------
g Task3: Period
=]
2
5]
a
X
o
<
)
c
8
=]
g
°
f=2)
c
<
Il Il Il
20 0 5 10 15
Time (s)
(d) Optimal

16

Error in terms of Angle (perturbatiotemal=4s)

. 25000 T T
140 Static b Static
Discrete ------- e Discrete ------- /
Proportional -------- Proportional -------- 7
120 F Optimal Optimal
20000 [,
100
& & 15000
o 8of °
2 2
& &
S E
E 60 £ 10000 |- b
(8] (8]
40t g .
il 5000 | R
20 + e
0 | | | 0 | | | | | | |
0 5 10 15 20 0 500 1000 1500 2000 2500 3000 3500
Time (s) Time (s)
(a) 20 Seconds (b) 1 Hour

Figure5: Performance in terms of Cumulative Error (perturbatioemal=4s)

30 4 30 4

D mer H o D mer Ho
S 25 - S 25
g g
S5 55
EE 15 EE 15
g3 g2
o 2 10+ 3 S 10
g 5 — g 5
o - o -
2 3 4 5 10 20
Perturb Interval (s) Perturb Interval (s)
(a) Without Idle CPU Usage (b) With Idle CPU Usage

Figure 6: Performance Improvement Relative to Static

With the static policy (figure 4(a)), every control task hlas same sampling period(~ 0.042s, which comes

from h; = ¢;/r; = 0[}31]/335) and does not change regardless of when the perturbatiaus. o@ith discrete, pro-
portional, and optimal (Figures 4(b)-(d)), perturbatidosce the controllers to dynamically adapt their rates. The
specific periods for each controller are determined by eadicyp With the discrete policy, the three tasks cannot
simultaneously run at their second resource level (cooedimg toh; = 0.04) because of the limited available
resources. Thus, the only scenario that can increase dgheloefit is the following: the two control tasks with the
larger error run at their second resource level and the obtask with the smallest error runs at its lowest resource
level (Figure 4(b)). With the proportional and optimal midis, the periods can be any value in the predefined range.
The dynamic period change with the discrete policy is lesguent than with both optimal and proportional
(Figures 4(c) and (d) and as explained in Section 5). The Bagh@ate adaptation of the optimal and proportional

policies also occurs with different frequencies. With aml, the magnitude of the errors determines the period

assignment: the one with largest error always runs at thiedsigrate ; ~ 0.032) provided the other two at least

17

0.6 — B Dynamic Rate Change

80 —_ i
s Wmp Hprp HO S B Scheduling
: 05 Context Switch
g
= 75 € 04
e 8
% L o3
o 70 7 £
S
3 T 02+
o Q
O £
65 g 01
(o]
0
60 SDPO SDPO SDPO SDPO SDPO SDPO
> 3 2 5 10 20 2 3 4 5 10 20
Perturb Interval (s) Perturb Interval (s) / Adaptation Techniques
(a) CPU Usage in Hour (b) Overhead in Hour

Figure 7: CPU Usage vs. Overhead

can run at their lowest ratéi(= 0.05s). With proportional, any variation in the errors cause®aqu adjustment

among the three controllers, resulting in a larger numbedjfistments.

6.3.2 Control performance

We evaluated the control performance of the four differesitgies by looking at the total cumulative error of the
three inverted pendulums (i.q(cf"‘ Zle |z; (t)|dt, wheret, is the time each experiment lasts).

The main contribution of the paper is summarized in Figurean8 6. Figure 5(a) shows the performance
results (in terms of total cumulative error) of the expenirtserunning for20s with perturbation intervak 4s and
Figure 5(b) shows the performance over the courskwdur. By looking at both Figure 4 and Figure 5(a), we can
see how each perturbation results in an error increase gur&b(a), we see large gaps between the cumulative error
of the static/discrete policies and the proportionalimyatipolicies. Furthermore, from a general view, the gaps are
getting larger as time progresses, which shows both thapolicies improve overall control systems performance
and that the optimal policy achieves the highest overaltrobperformance improvement.

Figure 6 shows the performance improvement in terms of acéated error { hour experiments) against the
baseline, static policy, with different perturbation int@ls. Figures 5 (a) and (b) were for a specific perturbation
interval. Now we show the same results for different perdtidn intervals. Figure 6(a) shows the results when the
perturbation intervals are short enough so that all of thedlalvsle CPU is allocated to the control tasks (i.e., there
is always error on at least one of the pendulums). Figure €{bjvs the results when the perturbation intervals are
long enough so that at least a portion of the CPU usage is $avtte control tasks when there is no error. From
both figures we see that: 1) discrete, optimal, and propuatiachieve better performance than static; 2) optimal

outperforms all other policies and reduces accumulateat &y 20-25%; 3) discrete only reduces error by about

18

3%, due to the limitations imposed by the available number aedgfined values of the discrete periods; and 4) as
the perturbation interval increases (Figure 6(b)), théedince between optimal and proportional decreases. This
is because, with enough long (e.90s) perturbation intervals, most or all perturbations are-ngerlapped and

the proportional policy makes essentially the same allonatas the optimal policy, i.e. the available resources are

allocated to the only task with error.

6.4 CPU usage and overhead

Besides the evaluation on the control performance, we &smtghly investigated the resource utilization and
evaluated the overhead incurred by the four different [edic

Figure 7(a) shows the measured total CPU usage of all caasks with the four policies. With4s perturbation
interval, the three adaptive feedback based resourceasibocpolicies use almost exactly the same amount of CPU
as the static policy. As the perturbation intervals inceedseginning at abouis, the dynamic policies begin to
consume less CPU due to the fact that when all the controfietgmis are in equilibrium, their execution frequency
is set to the minimum. This unused CPU can be allocated ta ke time-critical tasks in the system.

Figure 7(b) shows the overhead introduced by the four diffepolicies (measured from our implementation).
Context switches are responsible for the majority of therlogad, followed by actual scheduling overhead. The
overhead introduced by the dynamic rate change is negtigibinpared to the control tasks’ actual CPU usage and
these other sources of overhead. As a result, the overheadhgarable for all four policies. The dynamic policies
incur almost no extra overhead relative to the static paliogt as the perturbation interval increases the overheads of
the dynamic policies are seen to be even less than that ofetie golicy because they incur fewer context switches.
Although negligible, proportional is seen to have the latgeverhead due to dynamic rate change (as explained in

Section 5).

7 Conclusions

Careful resource managementis the key to providing thegmsstible performance in resource-constrained comput-
ing systems. We have presented a feedback-based resounagenaent model for concurrently executing control
tasks in a resource constrained environment that allowsytsem to allocate resources as a function of the state of
the controlled systems. We have presented several resallmcation policies based on this model and shown that
they provide better overall control performance while gsihe same amount of (or less) resources than traditional
resource allocation practice for control tasks.

We have also presented an optimal state feedback resolocatan policy for control tasks that optimizes

control performance within the available resources. Weeliaplemented the policies and presented results showing

19

that the optimal policy outperforms (in terms of control fmemance improvement measured as accumulated error)
all other dynamic policies that we examined and traditicstatic policies. The optimal policy also saves system

resources when they are not needed, and the overhead idtyrthis policy has been shown to be negligible.

References

[1] K. J. Astrom and B. WittenmarkComputer-Controlled Systems. Third Edition. Prentice—Hall, 1997.

[2] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichellat&modulation of soft real-time tasks in autonomous robatrol
systems. IrProceedings of the 11th Euromicro Conference on Real-Time Systems, June 1999.

[3] S.Brandtand G. Nutt. Flexible soft real-time procegsim middleware.Real-Time Systems, 22:77-118, 2002.

[4] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dyi@mimtegrated scheduling of hard real-time, soft real-tiamel

non-real-time processes. Rroceedings of the 24th IEEE Real-Time Systems Symposium (RTSS 2003), pages 396407,
Dec. 2003.

[5] G.Buttazzo, M. Velasco, P. Marti, and G. Fohler. Managiuality-of-control performance under overload conditiealue.
In Proceedings of the 16th Euromicro Conference on Real-Time Systems, July 2004.

[6] M. Caccamo, G. Buttazzo, and L. Sha. Elastic feedbackrobnin Proceedings of the 12th Euromicro Conference on
Real-Time Systems, pages 121-128, June 2000.

[7] A. Cervin and J. Ecker. Feedback scheduling of contrsksa In39th IEEE Conference on Decision and Control, June
2000.

[8] A. Cervin, J. Eker, B. Bernhardsson, and K.A&rzén. Feedback-feedforward scheduling of control taskeal-Time
Systems, 23:25-53, 2002.

[9] E. K. Chong and S. H. ZakAn Introduction to Optimization. John Villey and Sons, Inc, 1996.

[10] M. Dogruel and U. zgner. Stability of a set of matrices:céntrol theoretic approach. IRroceedings of the 34th IEEE
Conference of Decision and Control, Sept. 1995.

[11] R. Dorf and R. BishopModern Control Sytems. Seventh Edition. John Villey and Sons, Inc, 1995.

[12] W. Gellert, S. Gottwald, and M. Hellwich.The VNR Concise Encyclopedia of Mathematics. Van Nostrand Reinhold
Company, 1988.

[13] D. Henriksson, A. Cervin, J. kesson, and K.-E. rzn. eett scheduling of model predictive controllers. Rroceedings
of the Real-Time Technology and Applications Symposium (RTAS02), Sept. 2002.

[14] C.Lin, P.Marti, S. A. Brandt, S. Banachowski, M. Velasand J. M. Fuertes. Improving control performance usirapéide
quality of service in a real-time system. Wbrk in Progress Proceedings of the Real-Time Technology and Applications
Symposium (RTASD4), May 2004.

[15] C.L.Liuand J. W. Layland. Scheduling algorithms for ltiprogramming in a hard-real-time environmedburnal of the
Association for Computing Machinery, 20(1):46-61, Jan. 1973.

[16] P. Marti, G. Fohler, K. Ramamritham, and J. M. Fuertempiioving quality-of-control using flexible time constresn
Metric and scheduling issues. Rroceedings of the 23nd |EEE Real-Time Systems Symposium (RTSS 2002), Dec. 2002.

[17] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamrithaittedcompensation for real-time control systemsPhoceedings
of the 23nd | EEE Real-Time Systems Symposium (RTSS2002), Dec. 2001.

[18] H. Rehbinder and M. Sanfridson. Integration of offdischeduling and optimal control. roceedings of the 12th
Euromicro Conference on Real-Time Systems, pages 137-143, Stockholm, Sweden, June 2000.

[19] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task sclailitly in real-time control systems. IRroceedings of the 17th
IEEE Real-Time Systems Symposium (RTSS 1996), Dec. 1996.

[20] K. G. Shin, C. Krishna, and Y.-H. Lee. A unified method émaluating real-time computer controllers and its appiica
IEEE Transactions on Automatic Control, 30(4):357-366, 1985.

[21] K. G. Shin and C. Meissner. Adaptation adn graceful dégtion of control system performance by task reallocadiot
period adjustment. IRroceedings of the 11th Euromicro Conference on Real-Time Systems, pages 29-37, 1999.

[22] M. Velasco, J. Fuertes, and P. Marti. The self triggeteesk model for real-time control systems. \Wbrk in Progress
Proceedings of the 24th |EEE Real-Time Systems Symposium (RTSSWIP 2003), pages 67—-70, Dec. 2003.

[23] J. Yepez, J. Fuertes, and P. Marti. The large error firtEtH) scheduling policy for real-time control systems. Work in
Progress Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSSWIP 2003), pages 6366, Dec. 2003.

[24] Q. Zhao and D.-Z. Zheng. Stable and real-time schedudira class of perturbed hybrid dynamic systemslA&C World
Congress, pages 91-96, 1999.

20

