
Optimal State Feedback Based Resource Allocation for
Resource-Constrained Control Tasks

Technical Report (UCSC-CRL-04-06)

Pau Marti, Caixue Lin and Scott A. Brandt Manel Velasco and Josep M. Fuertes
University of California Technical University of Catalonia

Santa Cruz, USA Barcelona, Spain
pmarti,lcx,scott@cs.ucsc.edu manel.velaso,josep.m.fuertes@upc.es

Abstract

In many application areas, including control systems, careful management of system resources is key to pro-
viding the best application performance. Most traditionalresource management techniques for real-time systems
with multiple control loops are based onopen-loop strategies that statically allocate a constant CPU share toeach
controller, independent of their current resource needs. This provides average control performance with minimal
overhead but in general fails to provide the best performance possible within the available resources. We show
that by using feedback to dynamically allocate resources tocontrollers as a function of the current state of their
controlled systems, control performance can be significantly improved. We present an optimal resource allocation
policy that maximizes control performance within the available resources and provide experimental results showing
that the optimal policy 1) significantly increases control performance compared to traditional control system imple-
mentations (by more than 20% in our experiments), 2) maximizes control performance over other feedback-based
policies, 3) saves resources when perturbations occur infrequently, and 4) incurs negligible overhead.

Keywords: real-time systems, control theory, optimization, qualityof service, dynamic resource allocation

1 Introduction

In many application areas, including control systems, fully exploiting the available system resources is crucial to

maximizing application performance. Most traditional resource management techniques for real-time systems with

multiple control loops are based ona priori characterizations of the expected workload. They use fixed param-

eters that are configured at system setup time. At run-time, resources are shared by all tasks according to the

pre-established allocations regardless of the dynamics ofthe control applications, thus workingopen loop. This is

done both in the early work on real-time scheduling [15] and in more recent approaches to control and real-time

systems [19].

Open loop resource allocation policies work well because they guarantee a constant CPU share to each controller,

allowing them to meet given control performance specifications. However, taking a closer look at the behavior of

control loops and at the relation between control performance and controller execution rate, open loop policies may

not be optimal for resource constrained systems. As suggested in [16], a controller may not require the assigned

execution rate if the controlled system is in equilibrium. In this case, the contribution of each job can be considered

1

useless, i.e., resources are wasted. These underutilized resources could be more usefully employed by other tasks

with higher processing demands. If a controlled system is affected by a perturbation and brought away from its

equilibrium point, an increase in the rate of the controllerwill decrease system deviation and hasten system recovery,

improving control performance.

Taking this observation as a baseline for our current work oncontrol performance optimization in real-time

systems, we have developed dynamic resource management policies for control tasks that allocate resources at run-

time based onfeedback information from the jobs that the controllers are performing. We show that a real-time

system with multiple control loops can provide improved control performance by assigning resources to controllers

based on whether control loops are affected by perturbations or not. Alternatively, with these techniques the same

control performance could be achieved using less resources.

As a key contribution of this paper, we present an optimal resource allocation policy for control tasks based on

feedback from the controlled systems dynamics, i.e., from their state, that maximizes control performance within

the available resources. We argue that the optimization of control systems performance (for a wide class of control

systems) when resources are limited and allocated as a function of the state of the controlled systems can be formu-

lated as a linear constrained optimization problem [9]. Consequently, the solution to this problem is a feasible (in

terms of computational complexity) algorithm for a run-time resource allocator, and provides the optimal resource

allocation policy for control tasks.

To successfully implement the state feedback optimal resource allocation policy as well as two other state feed-

back based policies used as a basis for comparison, two key aspects must be considered. First, these policies require

the implementation of controllers capable of running with different sampling frequencies given different resource

allocations, providing better control performance when given more resources (as explicated in [17] and [16]). This

feedback-based approach to resource management takes advantage of the fact that the performance of these clas-

sically designed controllers is improved by a run-time resource allocator that gives the controllers more resources

exactly when they need it the most, i.e. when their controlled system is experiencing the greatest deviation from the

equilibrium point.

Second, the implementation of such policies requires a flexible real-time system capable of dynamically changing

the allocated resources (via e.g., the controllers’ periods) while guaranteeing tasks timing constraints, as does the

Rate-Based Earliest Deadline (RBED) integrated real-timesystem [4]. RBED facilitates the implementation of our

feedback resource allocation policies because it is based on the Resource Allocation/Dispatching (RAD) integrated

scheduling model, which explicitly separates the management of the amount of resources allocated to each task

from the timing of the delivery of those resources. This separation allows the resource management to be precisely

tailored to the needs of the individual control tasks.

To illustrate the benefits of our feedback approach to resource management, we implemented the policies in

2

RBED and performed extensive experiments on simulated inverted pendulums. Our results show that, on the same

sequence of randomly generated perturbations, the optimalpolicy 1) significantly increases control performance

compared to traditional control system implementations (by more than 20% in our experiments), 2) maximizes

control performance over other feedback-based policies, 3) saves resources when perturbations occur infrequently,

and 4) incurs negligible overhead.

2 Related work

Optimization of control systems performance subject to resource constraints has been examined before. Setoet

al. [19] optimized task frequencies at the design stage in orderto minimize a control performance index defined

over the task set. Rehbinder and Sanfridson [18] proposed anoff-line scheduling method based on optimal control

theory. None of the previous resource-constrained controlsystem optimization work has examined run-time adaptive

resource management for optimization of control systems performance, as we do.

Different approaches to control systems and run-time resource allocation policies have also been examined be-

fore. Shin and Meissner [21] presented a resource allocation technique for multiprocessor systems where tasks are

reallocated and periods are changed while taking into account control performance. Beccariet al. [2] present

a scheduling technique for adaptation of soft real-time load to available computational capacity in the context of

autonomous robot control architectures. Caccamoet al. [6] allowed tasks’ computation times to range from aver-

age to worst case computation times and adjusted periods at runtime to optimize control performance and enhance

schedulability using server approaches. Cervin and Eker [7] present a case study with hybrid controllers , where

the sampling rates are adjusted to avoid CPU overloads. Cervin et al. [8], proposed a scheduling architecture for

real-time control tasks where the scheduler uses feedback from execution time measurements and feed-forward from

workload changes to adjust the sampling periods of the control tasks so that the combined performance of the con-

trollers is optimized. Buttazzoet al. [5] present a method for promptly react to overload conditions, while still

guaranteeing a given control performance. However, none ofthe previous work uses feedback from the controlled

systems dynamics in order to reassign resources as we do.

Our approach has some similarities to the feedback scheduling architectures presented by Zhao and Zheng [24],

and by Henriksoonet al. [13]. Zhao and Zheng discussed an event feedback schedulingstrategy in which controllers

are executed according to the dynamics of the controlled systems to meet asymptotical and exponential stability

performance criteria, without adapting sampling periods.The goal of their approach is the design of the control

laws that meet those performance requirements. Our goal is to optimize a performance criterion based on the errors

of the set of controlled systems, by appropriately varying the execution frequency of each controller. Henriksoon

presented a scheduler that allocates CPU time to a specific class of controllers (model predictive controllers) based

3

on feedback information from the optimization algorithm carried out by each controller. In such a framework,

performance optimization is achieved by dynamically varying and controlling the executions time of each controller.

Our approach targets a wider class of control systems (linear systems), control performance optimization is based on

feedback information from the controlled systems, and it isachieved by dynamically adjusting the sampling period

of each controller (that is, the period of each control task), which is determined at each resource reallocation.

The optimal resource allocation policy for control tasks that we present in this paper optimally solves the Quality-

of-Control (QoC) scheduling problem formulated by Martiet al. [16], but in terms of resource management. As

suggested in [16] and further developed by Yepezet al. [23] and Velascoet al. [22], the dynamics of the controlled

systems are the key to better exploiting system resources and improving control systems performance in resource

constrained control systems. Preliminary results of the feedback approach to resource management, that are briefly

included in this paper, were reported previously [14].

3 System model and feedback architecture

The system we consider is a real-time system with multiple control loops. That is, we have a set of controllers (or

control tasks), each one controlling a physical system (or controlled system), sharing a single CPU. The real-time

system may also integrate other hard real-time tasks as wellas soft-real time and non-real-time tasks. Since the

main goal of this work is control performance optimization via feedback resource allocation techniques, henceforth,

we will focus on control tasks. Due to resource limitations,the controllers cannot all simultaneously run with

their highest possible sampling frequency, providing the best possible control performance equivalent to what they

would provide if they were running alone on the CPU. In order to optimize the performance delivered by this set of

controllers, we apply our feedback resource allocation policies.

3.1 Basic operation of the feedback architecture

Computing
resources

Operating
system

tasks
Control

E
nv

iro
nm

en
t

Figure 1: System Model

The basic operation of the system, schematically illustrated in Figure 1, can be summarized as follows: at each

control task execution, the task samples its controlled system (theenvironment in Figure 1), capturing its current

dynamics, in order to execute the control algorithm and output the control signal. Each control signal affects the

4

controlled system dynamics in such a way that the system is driven to the specified set point (also called equilibrium

point). Each sample is aninstantaneous picture of the dynamics of the controlled system. It indicates itsstate, that is,

whether the controlled system is affected by a perturbationor not, providing the magnitude of the controlled system

deviation with respect to the equilibrium point (deviationthat is called controlled systemerror). This information is

fed back to the operating system in order to allow the system to reallocate resources accordingly (see Section 3.2 for

further explanation on the type of information that is fed back to the system).

At the system level, the state of each controlled system is used to re-scale thestatic relation that can be established

between resources and control performance, which is specific for each control loop (given the controlled system, the

controller and a range of periods). As pointed out in Cervinet al. [8], a controller can normally give satisfactory

performance within a range of sampling periods. This relation, that is further explained in Section 3.2, can be

computeda priori and condensed in a function (that we call theperformance criterion) that maps controller period

to control performance.

At the system level, we could only use this static information (all performance criteria of the set of control loops)

to determine the allocation of resources such that all task are schedulable and the performance criteria are optimized

(as is done by Cervinet al. [8]). However, by doing so, the maximum benefit (in terms of control performance) could

possibly be achieved by several different resource allocations and in the absence of other information the system has

no way of knowing which is the best choice. By taking into account the current dynamics of each controlled system,

we can determine the optimal allocation.

To illustrate the problem, suppose there are two control tasks characterized by the same performance criterion,

each of which may use one of two equal (in terms of control performance and rate) controllers, one with a higher

sampling rate and one lower. Suppose also that because the amount of computing resources is limited, so the

system cannot simultaneously run both controllers at theirhighest rate. Therefore, the only choice is to choose

the higher rate controller for one task and the lower rate controller for the other, or vice-versa. In terms of static

control benefit (provided by the performance criteria), both choices are equal. Nevertheless, it may happen that one

controlled system is in equilibrium and the other is not. In that case, the best choice in terms of control performance

optimization is for the task of the system in equilibrium to use the lower rate controller and the other task to use

the higher rate controller, as argued previously [16]. To make this possible, and to assign resources according to

the dynamics of each controlled system, for each control loop we re-scale each performance criterion by the state

(feedback measure) of the controlled system.

Finally, resource allocation also considers current system load (computing resources in Figure 1) to determine

how much resources are available to be allocated and how manyprocesses need them.

With all this information (performance criteria, controlled systems current states, and current system workload)

at the system level, resources are reallocated to control tasks according to a particular resource allocation policy

5

(see Section 5.1) with the objective of optimizing the overall control performance of the set of control loops (or,

alternatively, to save system resources), while guaranteeing task set schedulability.

3.2 Control systems and performance

We now examine the formal aspects of the optimization problem. Let (1) and (2) be the ordinary vector differential

equations (calledstate andoutput equations, respectively) that describe the linear dynamics of eachith controlled

system _xi(t) = fi(xi(t); ui(t); t) t 2 R+ (1)yi(t) = di(xi(t)) (2)

where the functionsfi anddi are linear,ui(t) is thecontrol input to the dynamical system, and the vectorxi(t) =[x1(t); : : : ; xn(t)℄ is the state of the system at timet and its elements are calledstate-variables. The state and output

equations defining a given system can be considered an abstract summary of the data obtained by subjecting the

system to different inputs (control signals) and observingthe corresponding outputs.

Without loss of generality, if we consider the equilibrium point of all controlled systems to be zero, the norm of

the state vector,jxi(t)j, is the distance that measures how far each controlled system is from its equilibrium point at

any given timet > 0. This measure tells howcritical the situation is for each controlled system; the higher its value,

the worse the system. We define this measure (also callederror (3)) as the feedback information that each controller,

at each sample, will send to the system for the re-scaling of each performance criterion. If, for a given control loop,

all states cannot be measured, they can be determined from the available measurements and a model [1].ei = jxi(t)j (3)

Therefore, more or less resources will be assigned at run-time to each controller taking into account the controlled

system error: the higher the norm of the states (i.e., the higher the error), the more urgently a controller requires

more resources.

For each control task, we specify a performance criterionpi(ri) that relates control performance under different

task rates,ri. The rate (also called partial utilization factor) is the relation between each tasks’ worst case execution

time
i and its periodhi, ri =
ihi . Since the worst case execution time is a constant value, anyvariation on the task

rate implies a variation on the task period (and vice-versa).

Since controller design attempts to minimize the system error produced by certain anticipated inputs, traditional

linear or quadratic performance criteria (also called performance indices or cost functions) are mainly based on

6

measures of the system error (see [11] for a review of classiccontrol criteria or [20] for a review of performance

measures to evaluate real-time computer control systems).

Therefore, our performance criteria, that will be rescaledby the errors (3), should capture the relation between

these indices and the tasks’ periods. In fact, the relation between control performance (measured using standard

quadratic or linear performance index) and a range of allowed periods can be approximated by a linear relation-

ship [8]. Therefore, for a given control taski, we approximate its performance criterionpi(ri) by a linear increasing

function (4), that establishes the following relation for each control loop:the higher the rate (i.e., the shorter the

sampling period) of the controller, the better the control performance. The�i parameter in (4) is specific for each

control loop and can be obtained prior to system run-time.pi(ri) = �iri (4)

Although this linear approximation is not an oversimplification and it covers a wide class of control systems, as

we will discuss in Section 4, the optimal resource allocation policy also admits performance criteria in the form of

polynomials of grade less than five.

We require controllers capable of running with different frequencies. To do so, we design controllers for the class

of linear systems (that can be specified by (1) and (2)) using classic design procedures, either in the continuous-time

domain followed by discretization, or directly in the discrete-time domain [1]. In the end, each control law is an

algorithm that depends on the sampling period. We specify a range of sampling periods for which the closed loop

requirements are met and allow the controller, implementedwithin a single task that sequentially executes sampling,

control algorithm and actuation, to execute with a run-timeperiod that belongs to the specified range (for full details,

see Martiet al. [17]), adapting the gains accordingly. System stability isanalyzed using the approach described by

Dogruel andÖzgüner [10].

4 Performance optimization of control systems

At the system level, each control task�i can be characterized by its rateri (which is asystem characterization), its

performance criterionpi (which relatessystem resources andcontrol performance), and its controlled system errorei (which is acontrol characterization), represented by (5)�i = fri; pi; eig (5)

7

With this information, for a given set ofn control tasks,�1; : : : ; �n, the problem is to determine the task ratesri,i = 1; : : : ; n, such that all the tasks are schedulable and the overall control system performance is maximized.

The resource allocation problem can be formulated as a generic constrained optimization problem as follows,

maximize g(pi(ri); ei) (6)

subject to
nXi=1 ri � Ud (7)

where the solution is a vector~r = [r1; r2; : : : ; rn℄ that maximizes the control performance delivered by the setof

controllers, represented by the objective (vector) function g in (6), restricted to the utilization feasibility constraint

specified in (7), whereUd is the desired global resource utilization factor for the set of control tasks.

The absolute maximum~r may lie either in the interior, on the boundary, or at the extreme points of the feasibility

set defined by (7). A generic algorithm to find the solution canbe summarized in four steps (as detailed by Chong

and Zak [9]):

Step 1: Search for local relative maxima in the interior of the feasibility set by solving the set of equations

specified by (8), where�g�ri are the partial derivatives ofg with respect to eachri.�g�r1 = 0,
�g�r2 = 0, : : : , �g�rn = 0 (8)

and keep those~r that, being interior points of the feasibility set (conforming with the restriction (7)), maximizeg.

Step 2: Search for local relative maxima in the boundary of the feasibility set by solving the set of equations

specified by (9), �g([Ud � r2 � r3 � : : :� rn; r2; r3; : : : ; rn℄)�ri = 0, i � n; i 6= 1�g([r1; Ud � r1 � r3 � : : :� rn; r3; : : : ; rn℄)�ri = 0, i � n; i 6= 2 (9)

...�g([r1; r2; : : : ; Ud � r1 � r2 � : : :� rn�1℄)�ri = 0, i � n; i 6= n
and keep those~r that maximizeg.

Step 3: Search for theg values of the feasibility set extremes as specified in (10),g([Ud; 0; : : : ; 0℄), g([0; Ud; : : : ; 0℄), : : : , g([0; 0; : : : ; Ud℄) (10)

and keep those~r that maximizeg.

8

Step 4: Choose a~r among those obtained inStep 1, 2 and3 that maximizeg.

Depending on the objective functiong, solving the optimization problem may not be feasible for anon-line

real-time resource manager. However, in the case of controltasks characterized as described in Section 3.2, the

optimization problem can be simplified, it is directly solvable, and the algorithm that obtains the solution can feasibly

be executed at run-time, as we explain next.

Assuming that each controller is independent in the sense ofcontrolling an independent controlled system (as

we assumed in the system model in Section 3), the functiong(:) that links all of the control performance benefits

(which are given by the performance criteriapi defined in (4)) can be considered as the sum (possibly weighted) of

all individual benefits obtained by each controller (as was also done in the optimization procedures for control tasks

presented in [19] or [8]).

Each performance criterion can be weighted,wi, in order to provide a mechanism allowing appropriate com-

parisons among the control loops in the system. For example,a control loop in charge of the brake system of a car

may be more critical than the one in charge of the air conditioning. In addition, by defining the re-scaling of each

performance criterion to account for the each controlled system error (defined in (3)) aseipi, for the given set ofn
controllers, we can rewrite the optimization problem as follows

maximize
nXi=1 wieipi(ri) (11)

subject to
nXi=1 ri � Ud (12)

The complexity of the solution of the optimization problem stated in (11) and (12) depends on each functionpi(ri) due to the fact that equations (8) and (9) have been simplifiedto the set of equations specified by (13) and (14)

(becauseg has turned into a sum), wherebi = wieipi(ri):�b1�r1 = 0,
�b2�r2 = 0, : : : , �bn�rn = 0 (13)�b1(Ud � r2 � r3 � : : :� rn)�ri = 0, i � n; i 6= 1�b2(Ud � r1 � r3 � : : :� rn)�ri = 0, i � n; i 6= 2 (14)

...�bn(Ud � r1 � r2 � : : :� rn�1)�ri = 0, i � n; i 6= n
If the performance criteriapi are linear (as we assumed in our system model in Section 3.2),the optimization

9

problem becomes linear, and the solution~r = [r1; r2; : : : ; rn℄ can be found by performing a simple search (i.e.,

performingStep 3) because equations (13) and (14) corresponding toStep 1 and2, are not properly determined.

That is, ifpi are linear (pi = �iri) in (13), we end up with the following set of equations (15)�b1�r1 = �w1e1�1r1�r1 = w1e1�1 = 0; �b2�r2 = �w2e2�2r2�r2 = w2e2�2 = 0; : : : ; �bn�rn = �wnen�nrn�rn = wnen�n = 0 (15)

that are not determined. The same happens with the set of equations specified in (14). Therefore, by simply per-

formingStep 3 customized for the problem stated in (11) and (12), that is, by evaluatingg([Ud; 0; : : : ; 0℄) = b1(Ud) + b2(0) + : : :+ bn(0) = w1e1�1Udg([0; Ud; : : : ; 0℄) = b1(o) + b2(Ud) + : : :+ bn(0) = w2e2�2Ud (16)

...g([0; 0; : : : ; Ud℄) = b1(0) + b2(0) + : : :+ bn(Ud) = wnen�nUd
we will find the optimal resource allocation. Note that (16) is equivalent to finding the maximumwiei�i, i = 1 : : : n.

Theorem 1 The optimal solution ~r = [r1; r2; : : : ; rn℄ of the optimization problem (11) and (12) is ~r = [0; 0; : : : ; 0; ri =Ud; 0; : : : ; 0℄, i 2 [1; : : : ; n℄ such that wiei�i is maximum 8i 2 [1 : : : n℄ , if the set on control tasks are described

by (5).

Proof.

Follows from the argument above.�
Observation 1 In terms of resource allocation, the theorem states that we should assign all the available CPU (that

is, Ud) to the control task with maximumwieipi. If all of the functionspi and all the weightswi are the same, we

should assign all of the available resources to the control task with the largest errorei. In practice we need to assign a

minimum rate to the rest of the control tasks so that stability tests can be performed and they can continue to monitor

the state of their controlled systems. This result dictatesthat the control task with the largest error should receive all

of the resources remaining after every task has received itsminimum.

Observation 2 If the pi are not linear but still polynomial functions onri of grade less than five [12], an analytical

solution can be found followingSteps 1, 2 and3 by solving equations (13), (14) and (10), turning the solution into a

feasible (in terms of computational complexity) algorithmfor a run-time resource manager.

Observation 3 For the case of linearpi, the geometric explanation of the optimal solution of the problem formulated

10

by (11) and (12) is as follows. The optimal solution~r is one of the extreme points (vertex) that is maximum in the

projection of the hyperplane given by the constraints (11) on the hyperplane defined by the objective function (12).

Figure 2 illustrates the case for two control tasks whereUd = 0:8, both controllers have same performance criterion

and weights (�1 = �2 = 1 which implies thatp1(r1) = r1 andp2(r2) = r2, andw1 = w2 = 1), but one controlled

system at timet has a bigger error (e1 = jx1(t)j = 4) than the other (e2 = jx2(t)j = 1). As it can be seen in the

figure, the maximum benefit considering the schedulability constraints is found at~r = [0:8; 0:0℄ (extreme point).

0
0.2

0.4
0.6

0.8
1

r1
0

0.2

0.4

0.6

0.8

1

r2

0

1

2

3

4

5

Benfit

Figure 2: Optimal Solution

5 Flexible real-time processing in RBED

Our control feedback architecture is implemented in the RBED integrated real-time system [4], which supports hard

real-time, soft real-time and best-effort processes. RBEDallocates resources to processes as a percentage of the CPU

such that the total allocated is less than or equal to 100% andthen schedules all processes with the Earliest Dead-

line First (EDF) algorithm [15]. RBED dynamically changes allocated resources and application periods without

violating EDF constraints, guaranteeing that tasks never misses their assigned deadlines.

In RBED, we have implemented control tasks as flexible real-time processes which have a known worst case

execution time
i, but flexible period choices,hi, that take values from pre-defined ranges (which correspondto the

sampling periods of the controllers),hi 2 [hmin : : : hmax℄ (which for now we consider continuous), and relative

hard deadlines equal to their periods. Given a set of periodic control tasks�i(1 � i � n), their resource utilizations

are defined asri =
ihi . If
Pni=1 ri � 1, the EDF algorithm in RBED guarantees that all of the deadlines of the

tasks’ jobs will be met. At any timet, upon a dynamic resource re-allocation by adjusting the periods of the tasks,

the utilizations of the tasks are updated asr0i =
ih0i such that
Pni=1 r0i � 1. Note that any change to a task’s period

is subject to the constraints described in [4]. Therefore, RBED still guarantees all of the new deadlines of the tasks

when they are assigned new periods.

11

5.1 Feedback resource allocation policies

We implemented the optimal feedback resource allocation policy (optimal, described in Section 4), for control tasks

in RBED. In order to better demonstrate the benefits of the optimal policy and to evaluate its performance, we also

implemented two adaptive feedback based resource allocation techniques, calledproportional anddiscrete. Unlike

optimal, the proportional policy fairly distributes resources based onwieipi for all controlled systems such that all

tasks get a CPU share proportional to their error. The discrete policy, which is a mixture of optimal and proportional

with a set of discrete values for the task periods, reduces computational overhead due to its simplicity. To provide a

direct comparison with traditional control system implementations, we also implemented a baseline policy,static, in

which all controllers always share the available resourcesequally and no dynamic resource allocation is used. The

static policy implements the “traditional” controller andis used for examining the overall performance benefit of

adaptive feedback based resource allocation for control systems.

5.1.1 The optimal policy

The optimal policy, like all of the adaptive feedback based resource allocation policies implemented in this paper,

allows each control task to specify a performance criterionpi (see Section 3.2), which is a continuous function that

relates its period (and thus resource usage) to the control performance it provides. As we discussed in Section 4,

the optimal solution is to assign all the available resources to the controller whose controlled system is currently

facing the largest error (if all the control loops are the same, that is, with equalwi andpi), taking into account that

the system must also guarantee a minimum rate for the remaining controllers. With differentpi and weightswi
(meaning different type of controllers and/or different controlled processes), the resources would be assigned to the

controller having the highestwieipi. This is summarized in (17)ri = 8>>><>>>:Ud � X1�j�n;j 6=irj;min; if wieipi(ri) is maximumri;min; otherwise

;
iri 2 [hmin : : : hmax℄ (17)

wheren is the number of controllers andrj;min (corresponds tohmax) is the guaranteed minimum utilization of the

controllerj.
The optimal policy keeps track of which task has maximumwieipi. Therefore, the dynamic resource allocation

can be completed by a linear scan of the list ofn tasks inO(n) time. Note that dynamic resource allocation only

occurs when the task with the maximumwieipi changes, which greatly reduces the overhead.

12

5.1.2 The proportional policy

The proportional policy assigns resources to each controller as a proportion ofwieipi. In our implementation, the

resource allocation algorithm is given byri = wieipi(ri)X1�j�nwjejpj(rj) � Ud ;
iri 2 [hmin : : : hmax℄ (18)

Fairness comes from the fact that any controller whose controlled process is subject to a perturbation increases its

utilization according to its relative degree of error. If (18) gives a utilization that results in a longer sampling period

thanhmax, then the controller will run athmax. This mechanism allows us to guarantee a minimum sampling rate

for all the controllers.

The proportional policy has the same time complexity (O(n)) for the resource allocation as the optimal policy

though it may scan the task list a second time to distribute the leftover resources after the first round distribution

based on (18). However, any change to the error of a controlled system will cause a dynamic resource allocation

so the actual number of dynamic resource allocations and thus the introduced overhead of the proportional policy is

always more than that of the optimal policy.

5.1.3 The discrete policy

In the discrete policy, based on the assumption of a discreteset of periods instead of the continuous range defined

for optimal and proportional, each control task has a discrete function corresponding topi evaluated on only a few

values. It defines discrete resource levels in terms of the different periods, which are mapped into benefits that will

be used in the discrete optimization procedure. The benefit is given bybenefiti = wieipi(ri) = wiei�iri ;
iri 2 fhmin; : : : ; hmaxg (19)

A heuristic algorithm [14, 3] is employed to iteratively increase the level of the control tasks until no more increases

are possible within the available resources, providing high average overall system benefit.

The worst-case time complexity of the discrete policy isO(Ln), where L is maximum resource levels in the

system (which is equal to the maximum number of sampling periods for all control tasks), because the worst case for

a dynamic resource allocation may go through all of the resource levels of every control task. In order to simplify the

operation and reduce the overhead, we map the benefit of each resource level with a range of possible error values

[14]. In this way, rate readjustment takes place only when the error moves from one range to another. As a result the

overhead is significantly reduced (see overhead analysis inSection 6).

13

5.2 Implementation details of the system interfaces

The operation of the feedback based resource allocation model was given in Section 3. In this section we describe the

implementation details that allow the communication between control tasks at the application level and the resource

manager at the system level.

Controllerf hi := hnextixi := read input()ui :=
al
ulate output(hi); send output(ui)xnexti := update state(xi; hi); ei := jxnexti jri := rate adjust(i; ei)hnexti :=
irig
rate adjust(i; ei)f

if (ei! = eoldi)f bi := wieipirnexti := resour
e allo
ation(poli
y; bi)eoldi := ei
returnrnextigg

(a) Controller (Application Level) (b) Dynamic Rate Adjustment (System Level)

Figure 3: Pseudo-code for Controller and Dynamic Rate Adjustment

Figure 3 gives the pseudo-code for a controller and the dynamic rate adjustment, linked through the system callrate adjust(). The controller (Figure 3(a)), with execution periodhi,
1) does its control job: it samples the system, calculates the control signalui (based onhi), and sends it to the

controlled system (as any traditional controller would do when keeping constanthi); and

2) triggers the rate adjustment: it computes the next controlled system state vector (update state), whose normei is passed in by the system call,rate adjust(), in order to obtain the new period that will start being used at the

following controller execution.

The dynamic rate adjustment (Figure 3(b)) picks the specified resource adaptation policies, static, discrete, pro-

portional, or optimal, to re-allocate the resources based on wieipi. It does this by assigning different control tasks

with appropriate sampling periods, which are finally returned back to the controllers for next-step control.

6 Results

We implemented our feedback based resource allocation policies for control tasks in RBED in the Linux 2.4.20

kernel (for the sake of simplicity and easy prototyping). Wehave run the system over long periods of time and

performed a large number of experiments with randomly generated workloads so that the experiments are general,

and not limited to some special cases. All experiments were performed on a standard Intel-based PC equipped with

a 1 GHz Pentium III processor, 512MB RAM, and a 40GB hard drive.

14

6.1 Controlled processes

In our experiments we ran a set of control tasks, each controlling a simulated inverted pendulum. The linear time-

invariant state space model we used for each inverted pendulum mounted on a cart is given by266664 _�_!_x_v 377775 = 266664 0 1 0 0(M+m)�gM�l 0 0 00 0 0 1�m�gM 0 0 0 377775266664 �!xv 377775+ 266664 0�1M�l01M 377775 u(t)
where� is the pendulum angle,! is the angular velocity,x is the cart position andv its velocity. For the simulation,

we customized all pendulums as follows: mass of the cartM = 2kg, mass of the pendulumm = 0:1kg, length of

the pendulum stickl = 0:5m and gravityg = 9:81m=s2.
Each control task implements the same parametric control law obtained by standard pole placement [1], which

is parametrized on the sampling period. We have defined all controlled tasks to be the same because it simplifies

the performance analysis. Recall that in this case,wi andpi are equal for all tasks, which means that the errorei is

the main driving factor in each policy. However, using different controlled processes (pi) or weights (wi) would not

materially affect the results.

6.2 Workload generation

For each of the four policies we performed experiments in which we ran three control tasks implementing the same

control law and reserved a percentage of the CPU capacity (3% in our experiments) to allow the execution of general-

purpose tasks. Thus the desired global resource utilization factor (Ud) for the three control tasks isUd = 97%. Each

controller is in charge of a simulated inverted pendulum as described above, and has a fixed worst-case execution

time (
i) of 0:0135s.

With either the optimal or proportional policy, each controller can run at any sampling period (hi) within 0:03s

and0:05s. With the discrete policy, we defined three resource levelscorresponding to three different sampling

periodshi 2 f0:03s; 0:04s; 0:05sg for each controller. With this configuration, if there are three control tasks in the

system, none of them will execute at their highest level (hi = 0:03s) since(0:01350:03 +2 � 0:01350:05) = 0:99 > 97% = Ud
(that is, the required CPU load would exceed what is available). For the static policy, the three controllers share

the available CPU (Ud = 97%) equally and thus each of them is given973 % of the CPU for the duration of the

experiments.

For each of the resource adaptation policies, we ran the three controllers for1 hour and randomly generated

perturbations for each inverted pendulum with different average perturbation intervals. The distance between two

consecutive perturbations on the same system varies in sucha way that a system may be continuously perturbed

15

or almost never perturbed (capturing any scenario). That is, with different perturbation intervals, a system may be

perturbed fewer than one hundred times or many thousands of times.

6.3 Performance results

We first detail the effects on the execution rate of each controller when using the different resource management

policies we have presented. Afterwards, we look at the control performance achieved by these techniques and

examine the overhead they incur.

6.3.1 Execution rate patterns

Figures 4(a)–4(d) show the variation on the control tasks periods when using the four different policies: static,

discrete, proportional, and optimal, with perturbation interval=4s . In order to look into the detailed progress of the

three control tasks, we only show the first20s of the1 hour run. In each figure, thex-axis represents the time and

they-axis represents both the angle of each inverted pendulum (which allows us to see when each perturbation takes

place) and the corresponding controller period multipliedby 40 to normalize it to the same range.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

A
ng

le
 (

ra
di

an
s)

 4
0*

P
er

io
d

(s
)

Time (s)

Task1: Error
Task2: Error
Task3: Error

Task1: Period
Task2: Period
Task3: Period

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

A
ng

le
 (

ra
di

an
s)

 4
0*

P
er

io
d

(s
)

Time (s)

Task1: Error
Task2: Error
Task3: Error

Task1: Period
Task2: Period
Task3: Period

(a) Static (b) Discrete

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

A
ng

le
 (

ra
di

an
s)

 4
0*

P
er

io
d

(s
)

Time (s)

Task1: Error
Task2: Error
Task3: Error

Task1: Period
Task2: Period
Task3: Period

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

A
ng

le
 (

ra
di

an
s)

 4
0*

P
er

io
d

(s
)

Time (s)

Task1: Error
Task2: Error
Task3: Error

Task1: Period
Task2: Period
Task3: Period

(c) Proportional (d) Optimal

Figure 4: Sampling Period vs. Error in terms of Angle (perturbation interval=4s)

16

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20

C
um

ul
at

iv
e

E
rr

or

Time (s)

 Static
 Discrete

Proportional
 Optimal

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000 3500

C
um

ul
at

iv
e

E
rr

or

Time (s)

 Static
 Discrete

Proportional
 Optimal

(a) 20 Seconds (b) 1 Hour

Figure 5: Performance in terms of Cumulative Error (perturbation interval=4s)

Perturb Interval (s)
2 3 4

P
er

fo
rm

an
ce

Im
pr

ov
em

en
t (

%
)

0

5

10

15

20

25

30
D P O

Perturb Interval (s)
5 10 20

P
er

fo
rm

an
ce

Im
pr

ov
em

en
t (

%
)

0

5

10

15

20

25

30
D P O

(a) Without Idle CPU Usage (b) With Idle CPU Usage

Figure 6: Performance Improvement Relative to Static

With the static policy (figure 4(a)), every control task has the same sampling period (hi � 0:042s, which comes

from hi =
i=ri = 0:0135Ud=3) and does not change regardless of when the perturbations occur. With discrete, pro-

portional, and optimal (Figures 4(b)-(d)), perturbationsforce the controllers to dynamically adapt their rates. The

specific periods for each controller are determined by each policy. With the discrete policy, the three tasks cannot

simultaneously run at their second resource level (corresponding tohi = 0:04) because of the limited available

resources. Thus, the only scenario that can increase globalbenefit is the following: the two control tasks with the

larger error run at their second resource level and the control task with the smallest error runs at its lowest resource

level (Figure 4(b)). With the proportional and optimal policies, the periods can be any value in the predefined range.

The dynamic period change with the discrete policy is less frequent than with both optimal and proportional

(Figures 4(c) and (d) and as explained in Section 5). The sampling rate adaptation of the optimal and proportional

policies also occurs with different frequencies. With optimal, the magnitude of the errors determines the period

assignment: the one with largest error always runs at the highest rate (hi � 0:032) provided the other two at least

17

Perturb Interval (s)
2 3 4 5 10 20

C
P

U
 U

sa
ge

 (
%

)

60

65

70

75

80
S D P O

Perturb Interval (s) / Adaptation Techniques

2 3 4 5 10 20

O
ve

rh
ea

d
in

 P
er

ce
nt

ag
e

(%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

S S S S S SD D D D D DP P P P P PO O O O O O

Dynamic Rate Change

Scheduling

Context Switch

(a) CPU Usage in1 Hour (b) Overhead in1 Hour

Figure 7: CPU Usage vs. Overhead

can run at their lowest rate (hi = 0:05s). With proportional, any variation in the errors causes a period adjustment

among the three controllers, resulting in a larger number ofadjustments.

6.3.2 Control performance

We evaluated the control performance of the four different policies by looking at the total cumulative error of the

three inverted pendulums (i.e.,
R te0 P3i=1 jxi(t)jdt, wherete is the time each experiment lasts).

The main contribution of the paper is summarized in Figures 5and 6. Figure 5(a) shows the performance

results (in terms of total cumulative error) of the experiments running for20s with perturbation interval= 4s and

Figure 5(b) shows the performance over the course of1 hour. By looking at both Figure 4 and Figure 5(a), we can

see how each perturbation results in an error increase. In Figure 5(a), we see large gaps between the cumulative error

of the static/discrete policies and the proportional/optimal policies. Furthermore, from a general view, the gaps are

getting larger as time progresses, which shows both that ourpolicies improve overall control systems performance

and that the optimal policy achieves the highest overall control performance improvement.

Figure 6 shows the performance improvement in terms of accumulated error (1 hour experiments) against the

baseline, static policy, with different perturbation intervals. Figures 5 (a) and (b) were for a specific perturbation

interval. Now we show the same results for different perturbation intervals. Figure 6(a) shows the results when the

perturbation intervals are short enough so that all of the available CPU is allocated to the control tasks (i.e., there

is always error on at least one of the pendulums). Figure 6(b)shows the results when the perturbation intervals are

long enough so that at least a portion of the CPU usage is savedby the control tasks when there is no error. From

both figures we see that: 1) discrete, optimal, and proportional achieve better performance than static; 2) optimal

outperforms all other policies and reduces accumulated error by 20–25%; 3) discrete only reduces error by about

18

3%, due to the limitations imposed by the available number and predefined values of the discrete periods; and 4) as

the perturbation interval increases (Figure 6(b)), the difference between optimal and proportional decreases. This

is because, with enough long (e.g.,20s) perturbation intervals, most or all perturbations are non-overlapped and

the proportional policy makes essentially the same allocations as the optimal policy, i.e. the available resources are

allocated to the only task with error.

6.4 CPU usage and overhead

Besides the evaluation on the control performance, we also thoroughly investigated the resource utilization and

evaluated the overhead incurred by the four different policies.

Figure 7(a) shows the measured total CPU usage of all controltasks with the four policies. With a4s perturbation

interval, the three adaptive feedback based resource allocation policies use almost exactly the same amount of CPU

as the static policy. As the perturbation intervals increase, beginning at about5s, the dynamic policies begin to

consume less CPU due to the fact that when all the controlled systems are in equilibrium, their execution frequency

is set to the minimum. This unused CPU can be allocated to other less time-critical tasks in the system.

Figure 7(b) shows the overhead introduced by the four different policies (measured from our implementation).

Context switches are responsible for the majority of the overhead, followed by actual scheduling overhead. The

overhead introduced by the dynamic rate change is negligible compared to the control tasks’ actual CPU usage and

these other sources of overhead. As a result, the overhead iscomparable for all four policies. The dynamic policies

incur almost no extra overhead relative to the static policyand as the perturbation interval increases the overheads of

the dynamic policies are seen to be even less than that of the static policy because they incur fewer context switches.

Although negligible, proportional is seen to have the largest overhead due to dynamic rate change (as explained in

Section 5).

7 Conclusions

Careful resource management is the key to providing the bestpossible performance in resource-constrained comput-

ing systems. We have presented a feedback-based resource management model for concurrently executing control

tasks in a resource constrained environment that allows thesystem to allocate resources as a function of the state of

the controlled systems. We have presented several resourceallocation policies based on this model and shown that

they provide better overall control performance while using the same amount of (or less) resources than traditional

resource allocation practice for control tasks.

We have also presented an optimal state feedback resource allocation policy for control tasks that optimizes

control performance within the available resources. We have implemented the policies and presented results showing

19

that the optimal policy outperforms (in terms of control performance improvement measured as accumulated error)

all other dynamic policies that we examined and traditionalstatic policies. The optimal policy also saves system

resources when they are not needed, and the overhead incurred by this policy has been shown to be negligible.

References
[1] K. J. Astrom and B. Wittenmark.Computer-Controlled Systems. Third Edition. Prentice–Hall, 1997.

[2] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate modulation of soft real-time tasks in autonomous robot control
systems. InProceedings of the 11th Euromicro Conference on Real-Time Systems, June 1999.

[3] S. Brandt and G. Nutt. Flexible soft real-time processing in middleware.Real-Time Systems, 22:77–118, 2002.

[4] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic integrated scheduling of hard real-time, soft real-timeand
non-real-time processes. InProceedings of the 24th IEEE Real-Time Systems Symposium (RTSS 2003), pages 396–407,
Dec. 2003.

[5] G. Buttazzo, M. Velasco, P. Marti, and G. Fohler. Managing quality-of-control performance under overload conditionsvalue.
In Proceedings of the 16th Euromicro Conference on Real-Time Systems, July 2004.

[6] M. Caccamo, G. Buttazzo, and L. Sha. Elastic feedback control. In Proceedings of the 12th Euromicro Conference on
Real-Time Systems, pages 121–128, June 2000.

[7] A. Cervin and J. Ecker. Feedback scheduling of control tasks. In39th IEEE Conference on Decision and Control, June
2000.

[8] A. Cervin, J. Eker, B. Bernhardsson, and K.-E.Årzén. Feedback-feedforward scheduling of control tasks. Real-Time
Systems, 23:25–53, 2002.

[9] E. K. Chong and S. H. Zak.An Introduction to Optimization. John Villey and Sons, Inc, 1996.

[10] M. Dogruel and U. zgner. Stability of a set of matrices: Acontrol theoretic approach. InProceedings of the 34th IEEE
Conference of Decision and Control, Sept. 1995.

[11] R. Dorf and R. Bishop.Modern Control Sytems. Seventh Edition. John Villey and Sons, Inc, 1995.

[12] W. Gellert, S. Gottwald, and M. Hellwich.The VNR Concise Encyclopedia of Mathematics. Van Nostrand Reinhold
Company, 1988.

[13] D. Henriksson, A. Cervin, J. kesson, and K.-E. rzn. Feedback scheduling of model predictive controllers. InProceedings
of the Real-Time Technology and Applications Symposium (RTAS02), Sept. 2002.

[14] C. Lin, P. Marti, S. A. Brandt, S. Banachowski, M. Velasco, and J. M. Fuertes. Improving control performance using adaptive
quality of service in a real-time system. InWork in Progress Proceedings of the Real-Time Technology and Applications
Symposium (RTAS04), May 2004.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment.Journal of the
Association for Computing Machinery, 20(1):46–61, Jan. 1973.

[16] P. Marti, G. Fohler, K. Ramamritham, and J. M. Fuertes. Improving quality-of-control using flexible time constraints:
Metric and scheduling issues. InProceedings of the 23nd IEEE Real-Time Systems Symposium (RTSS 2002), Dec. 2002.

[17] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham. Jitter compensation for real-time control systems. InProceedings
of the 23nd IEEE Real-Time Systems Symposium (RTSS 2002), Dec. 2001.

[18] H. Rehbinder and M. Sanfridson. Integration of off-line scheduling and optimal control. InProceedings of the 12th
Euromicro Conference on Real-Time Systems, pages 137–143, Stockholm, Sweden, June 2000.

[19] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task schedulability in real-time control systems. InProceedings of the 17th
IEEE Real-Time Systems Symposium (RTSS 1996), Dec. 1996.

[20] K. G. Shin, C. Krishna, and Y.-H. Lee. A unified method forevaluating real-time computer controllers and its application.
IEEE Transactions on Automatic Control, 30(4):357–366, 1985.

[21] K. G. Shin and C. Meissner. Adaptation adn graceful degradation of control system performance by task reallocationand
period adjustment. InProceedings of the 11th Euromicro Conference on Real-Time Systems, pages 29–37, 1999.

[22] M. Velasco, J. Fuertes, and P. Marti. The self triggeredtask model for real-time control systems. InWork in Progress
Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS WIP 2003), pages 67–70, Dec. 2003.

[23] J. Yepez, J. Fuertes, and P. Marti. The large error first (LEF) scheduling policy for real-time control systems. InWork in
Progress Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS WIP 2003), pages 63–66, Dec. 2003.

[24] Q. Zhao and D.-Z. Zheng. Stable and real-time scheduling of a class of perturbed hybrid dynamic systems. InIFAC World
Congress, pages 91–96, 1999.

20

