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Abstract

Traditional control systems employ fixed sampling

intervals. Recent work in integrated control and real-

time systems has resulted in control systems in which

the sampling interval may vary based on the state of

controller performance. Soft real-time systems provide

mechanisms for dynamically adapting application re-

source usage based on system state and application

needs. In this paper we investigate employing this mech-

anism to allow several control applications to dynam-

ically adapt their resource usage so that they receive

enough of the limited resources to achieve their goals,

but do not greedily consume resources, allowing the sys-

tem to be utilized by other applications as well. This pa-

per presents a framework in which a flexible, integrated

real-time system directly supports adaptive control ap-

plications. Our results show that this technique can re-

sult in significantly lower controller error (by an aver-

age of over 20% in our experiments) with no increase in

overall resource usage.

Keywords: real-time systems, control theory, opti-

mization, quality of service

1. Introduction

Control systems and hard real-time systems

have evolved hand-in-hand. Control systems sam-

ple the world and provide signal outputs at fixed in-

tervals, while hard real-time systems provide the

timeliness guarantees necessary to complete these op-

erations on time. However, providing hard guaran-

tees comes with a price—in order to make guaran-

tees, the system must dedicate resources to appli-

cations based on their worst-case processing con-

straints, even though their average-case resource needs

may be far lower than the worst-case. This typically cor-

responds to poor system utilization and/or increased

power consumption.

On the other hand, if resources are allocated to tasks

based on their average requirements, the system may be-

come overloaded when a task exceeds its average pro-

cessing requirements and deadlines may be missed. Re-

cent work in soft real-time addresses this problem by

providing applications the opportunity to adapt to avail-

able system resources [2, 12, 14]. When processes do not

meet enough deadlines to provide adequate Quality of

Service (QoS), they adapt by changing their processing

requirements, either continuously or among a set of pre-

determined levels. A global resource allocation mech-



anism sets all application levels such that overall, the

combination of active levels yields the highest overall

benefit to the user within the available resources.

Recently, researchers have examined ways to provide

similar soft functionality to control applications by al-

lowing the applications to change their sampling inter-

vals, along with their control law, on the fly [10]. The

reasoning for this is analogous to the worst-case execu-

tion time example for traditional real-time systems: in

the case where the system is stable, the control applica-

tion need not monitor and control the plant as aggres-

sively, and by reducing the sampling interval, the task

consumes less resources than the worse-case. Generally,

smaller sampling intervals consume more resources and

yield better control, while larger sampling intervals con-

sume less resources but may yield larger errors.

Mirroring the continued evolution of control and real-

time systems, this paper examines using an adaptive

Quality of Service (QoS) framework to support these

new adaptive control applications. In an adaptive QoS

framework, the system (and corresponding scheduler)

directly supports applications that are designed to pro-

vide different modes of operation for delivering varying

levels of quality. One of the difficult problems facing

previous adaptive soft real-time scheduling algorithms

is determining the desired outputs, because they must

be based on relative qualities produced among several

applications. Functions describing quality are often as-

signed, arbitrarily or through trial-and-error, by the user.

In the control case, this problem is solved because the

control task exhibiting the most stability is the likely

candidate to reduce its resource consumption.

The contributions of this work are the implementa-

tion of an adaptive QoS soft real-time scheduling frame-

work in an integrated real-time scheduler, and the ap-

plication of this framework to the problem of support-

ing adaptive control applications. The novel aspects of

the design include the elimination of static benefit func-

tions associated with different levels of QoS in favor of

dynamic benefits based on a novel function of instan-

taneous controller error. Overall, we show scenarios in

which this technique reduces the error of an individual

controller by as much as 40% and reduces the average

error of all concurrently executing controllers by about

22%.

Section 2 first discusses the implementation of the

Adaptive QoS system in the Rate-Based Earliest Dead-

line (RBED) scheduler, which provides a general frame-

work for supporting adaptive QoS applications in a

multi-purpose, real-time scheduler. Section 3 intro-

duces the concepts of adaptive control applications,

and Section 4 describes how the scheduling frame-

work was adapted to support these applications. The

remaining sections provide some performance re-

sults, related works, and conclusions.

2. DQM Soft Real-Time Processing in

RBED

We implemented the Adaptive QoS system in the

Rate-Based Earliest Deadline (RBED) Linux system [4].

RBED provides fully integrated scheduling of hard real-

time, soft real-time, and best-effort processes. RBED

is an instance of the resource allocation/dispatching in-

tegrated real-time scheduling model in which applica-



tion resource allocations and dispatching are managed

separately. RBED allocates resources to processes as

a percentage of the CPU such that the total allocated

is less than or equal to 100%, then schedules all pro-

cesses with the earliest deadline first (EDF) algorithm.

Unlike traditional EDF implementations, RBED dynam-

ically adjusts both the utilizations and periods of appli-

cations so that it flexibly supports several flavors of real-

time, soft real-time and best-effort processing. Changes

to process resource allocations are made without violat-

ing EDF constraints [4], so a task never misses its as-

signed deadlines—this allows it to execute a mix of hard

real-time applications with sets of other tasks in a dy-

namic, integrated environment.

To support Adaptive QoS applications, we have im-

plemented a modified version of the DQM QoS Level

soft real-time system [2] in the RBED system. QoS Lev-

els allow discrete application adaptation. Each applica-

tion provides to the system a table specifying the dis-

cretelevelsat which it can operate, the relative amount

of resources required to run at each level, and the rel-

ativebenefitof running at each level. Each level corre-

sponds to a particular algorithm appropriate for meet-

ing the application goals using a different amount of re-

sources. For example algorithms may change their sam-

pling interval, frame rate, bit rate, display size, compres-

sion algorithm, etc. The resulting different levels each

consume different amounts of resources and provide dif-

ferent output quality (described as the benefit). The rel-

ative benefit of each level is a static quantity reflecting

the quality of the output at each level relative to the qual-

ity at the highest level—i.e. the maximum quality of the

application.

In traditional soft real-time systems, the overall ben-

efit of an application is a static quantity based on the

user’s needs and is specified at job admission time. De-

termining this value is problematic and the nearest ana-

log, priority of best-effort applications, is almost always

set to the default value. When running adaptive control

applications in this system, the benefit of the applica-

tion is dynamically determined by theinstantaneous er-

ror of the application (discussed further below). Unlike a

static benefit specification, instantaneous error provides

a specification of the current criticality of each applica-

tion and thus allows the system to dynamically optimize

the resource allocations to the needs of the applications.

2.1. RBED

RBED allocates resources to processes as a percent-

age of the CPU such that the total allocated to all pro-

cesses is less than or equal to 100%. Hard real-time pro-

cesses have periodp and worst-case execution timee

and are either granted their desired rate (e=p) or rejected

if resources are not available. Soft real-time processes

receive their desired rate (e=p) if possible, or are as-

signed a lesser rate, possibly based upon a QoS speci-

fication if one is available. The rate of each best-effort

process is determined from the remaining resources af-

ter the rates of the other processes in the system are set.

A reservation mechanism guarantees that a minimum or

maximum allocation is available to any particular class

of processes, ensuring, for example, that there are al-

ways some resources available to the best-effort pro-

cesses.



By allocating the resources appropriately and choos-

ing appropriate deadlines, RBED presents a feasible

workload to EDF, guaranteeing that all applications will

receive the correct amount of CPU, on time. However,

unlike processes in traditional hard real-time systems,

the rates of soft real-time and best-effort processes may

change as processes enter and leave the system, and the

periods of soft real-time processes may change as they

adjust to the available resources.

2.2. The DQM QoS Level Soft Real-Time Pro-

cessing Model

In the Dynamic QoS Manager (DQM) system, soft

real-time support is provided to a community of cooper-

ating applications by incorporating a QoS manager that

optimizes resource allocation according to the global

benefit of each application to the community within the

currently available resources. Each application provides

the QoS manager with a model of its application bene-

fit, processing time, and period. Applications that pro-

vide relatively high benefit to the user receive corre-

spondingly more resources than ones that provide lower

benefit at that same instant. In addition, by allowing ap-

plications to determine which real-time processing con-

straints to change as they change their resource usage,

QoS Levels effectively separate soft real-time policy

from soft real-time mechanism—the system provides

the soft real-time mechanism and the applications them-

selves define their own adaptive soft real-time policies.

The Dynamic QoS Manager (DQM) was originally

developed as a middleware mechanism that operates on

the collective QoS Level specifications. It analyzes the

optimization functions provided by the community of

processes to determine its allocation strategy. Once the

DQM determines how resources should be allocated, it

sets the level at which each application operates in or-

der to optimize the global benefit. In the original DQM

middleware solution, each application is informed of the

level at which it should execute to maximize global ben-

efit, but the middleware manager does not ensure that

the application will actually execute at the recommended

level, nor that the level will consume the resources that

it is supposed to consume. Thus the DQM requires that

the applications cooperate to achieve maximized behav-

ior. An advantage of our RBED implementation is that

this is no longer required—RBED forces applications to

run within their resource allocations so that the the DQM

model is guaranteed to work correctly in a mixed envi-

ronment or in the presence of misbehaving applications.

2.3. Implementing DQM in RBED

Because the RBED system allows run-time flexi-

bility in task utilization and period, it is well-suited

for running DQM-style QoS Level adaptive soft real-

time processes. The DQM middleware manager is ex-

ecuted as part of the RBED run-time system and QoS

Level application utilizations and periods are adjusted

as necessary based on a global calculation taking into

account both available resources and application QoS

Level specifications. Adjustments are made whenever

available resources change (due to other applications

entering or leaving the system), application processing

requirements change (due to a mode change or other

application-specific processing changes), or when ben-



efits change (in this case, due to changes in the error

of one or more controllers). RBED mode-change the-

ory guarantees that these changes do not interfere with

the processing of other applications.

To demonstrate the performance of the DQM as im-

plemented in RBED, we evaluated the performance of

several QoS Level SRT applications. Each application

has a table describing the Quality of Service (QoS) lev-

els it provides (shown in Table 1), each level corresponds

to an algorithm, and each algorithm has a different set of

real-time constraints and benefit to the user when exe-

cuting at that level. The first level represents the high-

est resource usage, and provides the maximum bene-

fit. A kernel task monitors the utilization of the system

and sets QoS levels for these applications, attempting to

maximize the global benefit density (the benefit to re-

source use ratio bene f it
resource rate) [2].

Figure 1 shows the simulated scheduling behavior

when dynamically changing QoS levels of the soft real-

time processes in the RBED algorithm. Initially, a hard

real-time process uses 60% of the resource, and exe-

cutes for 46.2 seconds. The initial resource rates of soft

real-time processes are set to their lowest QoS levels

(10%,10%, and 10%, respectively). When the hard real-

time process leaves, the levels of the three soft real-time

processes are adjusted to provide a higher level of bene-

fit within the available resources. The heuristic resource

allocation algorithm iteratively increases the level of

the tasks until no more increases are possible within

the available resources. It does this by always choos-

ing the task whose level increase provides the greatest

increase in benefit density, i.e. the one with the great-

est ∆bene f it
∆resource usage. Similarly, when lowering resources it

always chooses the level whose removal decreases over-

all benefit density the least. In this case, the result is that

SRT-1 increases to level 1, SRT-2 increases to level 1,

and SRT-3 remains at level 4.

Although the heuristic algorithm found the resource

allocation that provides the highest possible benefit, this

is not always guaranteed nor is it always possible. The

discrete QoS Level approach is in general NP-complete

(by a straightforward reduction to the Knapsack Prob-

lem [7]). It is therefore not generally possible to calcu-

late an optimal resource allocation that maximizes ben-

efit for a given set of process. QoS Levels managed

with heuristic resource allocation algorithms that come

close to the optimal solution are an appropriate platform

for implementing soft control applications. Furthermore,

the benefit density heuristic performs quite well in prac-

tice and has the nice property that application level

changes are monotonic in regards to the change in avail-

able resources, a property that is not present in the opti-

mal solution [3].

3. Adaptive Control

Control systems deal with meeting system specifica-

tions for performance and stability. Performance is usu-

ally specified in terms of the controlled system response

(both transient and steady-state), for example optimiz-

ing cost functions or meeting power consumption or re-

sponse time requirements. Stability implies that the con-

trolled system must achieve the expected results regard-

less of how they are reached, i.e. during the system life-

time the controlled system must not crash.



Table 1: Sample Benefit Tables (SRT-1, SRT-2 and SRT-3 in Figu re 1)

Number of QoS Levels: 4
Level Benefit Rate Period
1 1.0 0.35 100 ms
2 0.7 0.30 100 ms
3 0.5 0.20 100 ms
4 0.3 0.10 100 ms

Number of QoS Levels: 4
Level Benefit Rate Period
1 1.0 0.45 100 ms
2 0.8 0.40 100 ms
3 0.6 0.30 100 ms
4 0.4 0.10 100 ms

Number of QoS Levels: 4
Level Benefit Rate Period
1 1.0 0.60 100 ms
2 0.9 0.50 100 ms
3 0.7 0.40 100 ms
4 0.5 0.10 100 ms

(a) SRT-1 (b) SRT-2 (c) SRT-3
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Figure 1: SRT QoS Management in RBED.

Traditional control specifications are used to obtain

static controllers; given a set of different control applica-

tion scenarios, a controller is designed with enough ro-

bustness to cope with all of them while achieving the de-

sired application performance. A traditional controller is

designed to meet the stability and performance specifi-

cations for any application scenario, allowing the same

static controller to execute regardless of changes in the

environment. It is important to stress that for digital con-

trollers, the choice of the sampling period will determine

if its requirements may be met. Once the sampling pe-

riod is established, the controller resource requirements

are set and the controller task will demand a constant

CPU load.

Although this traditional way of designing control

applications works fine, better approaches can be used

in dynamic environments. When using a static con-

troller we obtain the same average performance (e.g.,

benefit) for all application scenarios. However, if we

execute specific controllers for each application sce-

nario, we maximize the overall benefit by executing each

controller according to the application dynamics [17].

Moreover, static controllers force a static CPU alloca-

tion to each control task although for specific applica-

tion scenarios (e.g., when the system is in a safe state),

the allocated resources may be reduced without losing

the specified performance [16].

Flexible control strategies can be supported by a

framework that is able to dynamically allocate comput-

ing resources according to the control application dy-

namics. Instead of designing one single controller for

each control task to cope with all application scenarios,



we design different controllers for different scenarios,

each one delivering a specific performance level (ben-

efit) and demanding a specific CPU share (utilization).

Note that each controller’s benefit relates to control per-

formance in the sense that higher execution rates yield

better control performance. Therefore, it is desirable to

execute each task with the highest rate controller. How-

ever, this is not always feasible due to the limited avail-

ability of computing resources. In a situation with sev-

eral tasks, each one with few candidate controllers, we

must choose for each task the appropriate controller such

that the overall benefit is maximized taking into account

resource availability.

Although a maximum benefit may be achieved by

several combinations of levels for the set of control

tasks, some of these combinations may be more appro-

priate than others for the current application dynamics.

To illustrate the problem, suppose there are two control

tasks, each of which may use one of two equal (in terms

of benefit and rate) controllers, one of a higher rate and

one lower. Because the amount of computing resources

is limited, the system cannot run both controllers at their

highest rate simultaneously. Therefore, the only choice

is to choose the higher rate controller for one task and

the lower rate controller for the other, or vice-versa. In

terms of static benefits, both choices are equal. Never-

theless, it may happen that one controlled system is in

equilibrium and the other isn’t. In this case, the best

choice is for the task of the system in equilibrium to use

the lower rate controller and the other task to use the

higher rate controller. To make this possible, we need

to have feedback information from the controlled plants

available to the system.

To solve the problem of choosing the appropriate

combination of controller levels, we allow the system to

obtain feedback information from the controlled plants.

With this information the system is able to re-scale

the benefits associated to each controller for all control

tasks. Thus, the maximum benefit will be obtained not

only in terms of system resource but also in terms of cur-

rent application demands.

4. Implementing Adaptive Control on

DQM

In order to integrate into the DQM framework the

management of the control applications we must first

define how to associate benefits to each controller and

then what information to feedback from the application.

As explained in the previous section, we have config-

ured each control task with a set of candidate controllers

to choose from. In previous QoS Level work, the asso-

ciation of benefits to each candidate is made according

to any policy which most benefits the user, for example

as a function of power consumption, CPU load, com-

munication bandwidth, execution rate, etc. In this con-

trol implementation, we assign relative benefits reflect-

ing the execution rate, and thus controller performance:

the higher the rate, the greater the relative benefit.

The relative importance of each controller will be

determined by the performance of that controller. Be-

cause the benefit specifications consist of a set of lev-

els with relative benefit values, a set of dynamic benefits

is achieved by rescaling the base benefit of the relative

benefits. However, the feedback information required by



the system to re-scale the benefits may be application-

dependent. Looking at control applications, the choice

is still wide open—control theory provides metrics for

measuring control performance that are used in the anal-

ysis and design of controllers. However these metrics are

not defined for run-time measurement of control perfor-

mance.

For this study, we chose to model the inverted pen-

dulum problem as our control application. Its discrete-

time control system model is described byx(k+ 1) =
Ax(k) +Bu(k), wherex is the state vector,A is a ma-

trix describing the system dynamics, andB is an input

matrix that relates the system with the control signalu,

computed by the controller at each execution. We can

use its components or any combination of them to ob-

tain the feedback information. It is important to note that

any choice may be good enough depending on the de-

sired results.

In a pendulum model (Figure 2), we choose four in-

dependent state variables (x= (s1;s2;s3;s4)) for a con-

trol task (pendulum) :� s1: The angle of the pendulum (radians)� s2: The variation of the pendulum angle, that is the

angular velocity of the pendulum (radians/second)� s3: The cart position (meters)� s4: The variation of the cart position, that is the ve-

locity of the cart (meters/second)

We investigated a variety of possible instantaneous

error measures, based on elements of the state vector,

for use as the control error feedback information pro-

vided to the scheduler. We ultimately chose the one

that gave the best performance. The best performing er-

ror function is the normalized value of the state vector

(e= qs2
1+s2

2+s2
3+s2

4). This function captures all of

the control system dynamics and was also desirable be-

cause, unlike some other error functions, it is monoton-

ically non-increasing over time in response to a single

step input. Figure 3 shows the angle of the pendulum as

the system reacts to a single step perturbation, for each

the four controllers we configured for this study.

Based on the feedback information (i.e. the control

errors) from the control tasks, the system re-scales the

benefits, and from these dynamic benefit values the best

controller per task is chosen. In order to add hystere-

sis and prevent too frequent adjustment, we smooth and

adjust the highly varying control errors. A heuristic er-

ror quantization function is used to quantize the values

of the control errors into four levels:

quantized error= d2 �e1
4 e

The decision to use four levels is based on the maxi-

mum value of the measured control errors and the num-

ber of available sampling periods of the controller in our

experiments.

The quantized error is used as the value that dynami-

cally scales the original benefits of the control tasks. As

a result, the new dynamic benefit of a control task is cal-

culated as follows:

dynamic benefit= static benefit�quantized error
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Figure 2: Inverted Pendulum
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Figure 3: Sampled Control Errors in terms of Pendulum Angle

5. Results

To show the performance achieved using dynamic

period adjustment, we simulated the control tasks, and

ran them in the RBED scheduler. The simulated control

tasks were configured with the QoS Levels described in

Table 2. During the experiments, we also ran a hard real-

time task and best-effort tasks. In RBED, the system al-

ways reserves a minimum of 5% of the CPU to the set of

best-effort processes, enough to provide a functional in-

teractive system for running command shells and other

tools while real time applications are executing.

We evaluate the performance of the system by com-

Table 2: Benefit tables for the control tasks

Number of QoS Levels: 4
Level Benefit % CPU Period
1 0.80 40% 0.2 s
2 0.56 27% 0.3 s
3 0.40 20% 0.4 s
4 0.32 16% 0.5 s

paring the performance of the control tasks (i.e. pendu-

lums) with and without dynamic scaled adaptation. In

the non-adaptive case, benefits are static so the period

chosen by the controller is determined statically when

they enter the system, and does not change through-

out the execution. With adaptation, the benefit of each

QoS level is scaled with the dynamic control error.
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Figure 4: Cumulative CPU Time without Adaptation

This means as the controller executes its benefit will be

scaled, possibly triggering the QoS adaption mechanism

to alter the sampling periods of the controller tasks.

To evaluate the performance of the system, we con-

sider multiple (three or four) control tasks (inverted pen-

dulums). A hard real-time task HRT with period of 0.5

seconds and execution time of 0.05 seconds (10% CPU

bandwidth) and a CPU bound best-effort task BE are

also running simultaneously with the control tasks in

most of our experiments. The control tasks start run-

ning at the same time and initially are in stable states,

which means their control errors are zero. We trigger er-

ror for each task at different times in the different sce-

narios. Four scenarios are evaluated in our experiments:� Scenario 1 (3 control tasks + HRT + BE): An error

(i.e. perterbation) is triggered at different times for

each control task with large enough gaps that only

one task has controller error at any one time.� Scenario 2 (3 control tasks + HRT + BE): An error

is triggered at different times for each control task

with small enough gaps that multiple controllers

have error at the same time.� Scenario 3 (3 control tasks + HRT + BE): An error

is triggered simultaneously for all control tasks.� Scenario 4 (4 control tasks + BE): An error is trig-

gered at different times for each control task with
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Figure 5: Cumulative CPU Time with Adaptation

large enough gaps that only one task has controller

error at any one time.

Figure 4 shows the cumulative CPU time received by

each task in each of the four scenarios without adap-

tation. The hard real-time process receives its required

resources, unaffected by the presence of the soft real-

time or best-effort processes. The best-effort process re-

ceives at least the minimum reserved resources (5%) of

the CPU, or 10% in Scenarios 1, 2 and 3 because it also

uses the slack time left by the hard real-time and the

three soft real-time processes. Without adaptation, the

resource usage of the three soft real-time processes is

constant and is based on a benefit optimization using

each process’s static relative benefit. The rough slope of

each of the SRT (control task) lines is the same in Sce-

narios 1 through 3, reflecting the fact that they each re-

ceived the same amount of resources throughout each

experiment. In Scenario 4 the resource usage of the four

SRT processes are different, reflecting the fact that no all

could run at the same level given the available resources.

Finally, the slope of the BE line increases rapidly at the

end of each experiment (showed in Scenarios 2 and 3)

as the SRT processes exit the system and their resources

are given to it.

Figure 5 shows the cumulative CPU time received

by each task in each of the four scenarios with adap-
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Figure 6: Scenario 1 (three tasks not overlapped)
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Figure 7: Scenario 2 (three tasks partially overlapped)

tation (in which benefit is scaled based on the current er-

ror of the controller, as described above). In contrast to

the non-adaptive case, we see that the progress of each

of the tasks in Scenarios 1, 2 and 4 varies at different

times as the system adjusts the resource allocations to re-

flect the current state of the applications. The progress of

each task in Scenario 3 remain relatively constant. This

is due to the fact that the perturbations and resulting er-

ror are almost completely overlapping. As a result, no

additional benefit can be obtained by shifting resources

from one application to another, and so all are left at

roughly the same level throughout the execution. In ad-

dition, the best-effort process receives more than 12%

of the CPU in all the Scenarios. This is because the con-

trol tasks consume less resources campared to the non-

adaptation case.

Figures 6 through 9 show the resulting performance

of the control tasks in these scenarios. Figure 6(a) and

Figure 6(b) show the performance of the control tasks in

Scenario 1 without and with adaptation. In Figure 6(a)

the system executes each controller throughout the ex-

periment at a level determined by its static benefit spec-

ification, mirroring the stable CPU allocations seen in

Figure 4(a). This results in an overall controller error
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Figure 8: Scenario 3 (three tasks fully overlapped)
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Figure 9: Scenario 4 (four tasks not overlapped)

of 2.16 (calculated as the integral of the error curves as

showed in 3).

In Figure 6(b) the system dynamically reallocates the

system resources to allow the controller with the great-

est error to run at a higher sampling frequency while

lowering the sampling frequency of the controller with

the least error. As the perturbations and resulting error

for the three applications are sufficiently far apart, there

is only one application with any error at one time and

this application is always allowed to run at it’s highest

level while it is responding to the perturbation. This re-

flects the varying cumulative CPU allocations seen in

Figure 5(a). This results in an overall controller error of

1.61, 25.3% less than without adaptation. The three pro-

cesses with adaptation decrease their error faster than

those without adaptation and thus incur less total error.

The results for Scenario 2 (Figure 7) are similar to

those for Scenario 1 except that the partial overlap of

the errors requires greater sharing of the resources. Nev-

ertheless, the controller error numbers are almost identi-

cal to those of Scenario 1, with total error of 2.16 with-

out adaptation and 1.61 with adaptation for a 25.3% re-

duction overall.

In Scenario 3 (Figure 8), the overlap of the errors is
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Figure 10: Performance Evaluation in terms of Cumulative Er ror

nearly complete and no benefit can be achieved by re-

allocating the resources. Thus each controller continues

to run mostly at its original level and there is little dif-

ference between the two cases, with and without adap-

tation. In fact, the total error rises very slightly (by 1%)

with adaptation, from 2.16 to 2.18. This slight reduction

in performance is the result of some adaptations occur-

ring at the wrong times (i.e. just before a perturbation).

Specifically, the level of SRT2 (task2) is lowered just be-

fore a perturbation. This slightly longer sampling period

increases the response time of the system slightly and in-

creases the error for this task, but it is quickly corrected

as soon as the increased error is detected, minimizing

the effect of this slight delay.

In Scenario 4 (Figure 9), the results are similar to

those of Scenario 1, but with a corresponding increase

in overall performance resulting from the improved per-

formance of a fourth controller as controller error goes

down from 3.25 to 2.16 for a 33.6% reduction in total er-

ror.

The reduced error for each process in the four sce-

narios are difficult to discern and compare in the previ-

ous figures. The accumulated error for each task, shown

in Figure 10, provides a good way to compare the per-

formance of the system in the various Scenarios, with-

out and with adaptation. In Scenario 1 and Scenario 2,

the tasks with adaptation have much less cumulative er-

ror than those without adaptation. In Scenario 3, there



is almost no gap between the accumulated error of the

two cases, again reflecting the lack of room for adapta-

tion due to the overlapping errors. In Scenario 4 there is

once again a large gap reflecting the performance gains

achieved by the system.

Table 3 summarizes the total error for the various sce-

narios. It shows that in all of the scenarios where the er-

ror is even partially non-overlapping, significant reduc-

tions in error are achieved. In the one case where the

perturbations are nearly simultaneous and the controllers

and the perturbations are identical, a very slight perfor-

mance loss is experienced. However, this loss is more

than made up for by the significant gains achieved in the

other scenarios. Overall in these four scenarios the con-

trollers achieved 22.3% less error. While the actual ben-

efits in real system will vary, the artificially constructed

worst-case parameters of Scenario 3 are unlikely to oc-

cur in practice and we expect that the system will there-

fore provide significant performance improvements in

most real situations.

6. Related Work

This work represents a synergistic combination of

two technologies: adaptive soft real-time scheduling al-

gorithms and adaptive control applications. Control ap-

plications are not considered soft in the traditional sense,

in that we do not allow a control application to miss

a deadline. Nevertheless, adaptive control applications

may use the same scheduling approaches developed to

support soft real-time applications that adjust their re-

source consumption in order to consume limited avail-

able resources that change dynamically.

We have adapted QoS Levels to work with a new

class of real-time control applications which we call

adaptive control. The control application may choose

among a discrete set of controllers, each of a different

sampling rate, and hence consume a different amount

of CPU resource at each level [10]. In a similar work,

Cervin et al. [6] present a system in which feedback

from control tasks is used to adjust the workload by

rescaling the task periods. However, in this work all pe-

riods are rescaled each time, and there is no provision to

trade off resources among tasks that need them more ur-

gently.

Tokuda and Kitayama [14] developed QoS Levels as

a mechanism to be used with RT Mach [15] and proces-

sor capacity reserves [11]. Their implementation of lev-

els was limited only to differences in either temporal or

spatial processing, as opposed to DQM where QoS lev-

els may be determined by the application developer. Ra-

jkumar et al. have developed a theoretical QoS model

called Q-RAM [12, 13] that is similar to the one pre-

sented here. Q-RAM uses continuous benefit functions

to specify application benefit as a function of resource

allocations. Lee extended Q-RAM to address applica-

tions with discrete benefit functions [8], a model similar

to QoS Levels. Unlike DQM, which was implemented

in a soft-real time system, these systems were based on

theoretical models. Abdelzaher et al. use a similar no-

tion to QoS Levels to support automated flight control

processes distributed over a pool of processors [1]. Their

system was built upon the real-time support of RT Mach,

but the work did not indicate how to select appropriate

QoS Levels. In this work, we implemented QoS Levels



Table 3: Accumulated Error for the Control Tasks in the Four S cenarios
Scenario 1: Three Tasks w/Non-Overlapping Error
Task Error Error Change

(w/out Adaptation) (w/Adaption)
SRT-1 0.72 0.54 -25.3%
SRT-2 0.72 0.54 -25.3%
SRT-3 0.72 0.54 -25.3%
Total 2.16 1.61 -25.3%

Scenario 2: Three Tasks w/Partially Overlapping Error
Task Error Error Change

(w/out Adaptation) (w/Adaption)
SRT-1 0.72 0.54 -25.2%
SRT-2 0.72 0.54 -25.7%
SRT-3 0.72 0.54 -25.4%
Total 2.16 1.61 -25.4%

Scenario 3: Three Tasks w/Fully Overlapping Error
Task Error Error Change

(w/out Adaptation) (w/Adaption)
SRT-1 0.72 0.72 +0.0%
SRT-2 0.72 0.72 +0.0%
SRT-3 0.72 0.74 +2.3%
Total 2.16 2.18 +0.9%

Scenario 4: Four Tasks w/non-Overlapping Error
Task Error Error Change

(w/out Adaptation) (w/Adaption)
SRT-1 0.72 0.54 -25.3%
SRT-2 0.72 0.54 -25.7%
SRT-3 0.90 0.54 -40.3%
SRT-4 0.90 0.54 -40.3%
Total 3.25 2.16 -33.6%

into the RBED real-time system.

The RBED scheduler handles dynamic mixed work-

loads, flexibly adjusting the rates and deadlines assigned

to applications as they run such that constraints are never

violated and all hard deadlines are met. For adaptive

tasks that may change their resource utilization, such as

the adaptive control applications, Buttazzo et al. formu-

lated an algorithm in which rate changes are modeled us-

ing spring coefficients [5]. This novel approach incorpo-

rates constraints for dynamically changing resource as-

signments. Liu and Goddard have implemented an en-

hancement to the rate-based execution model, which

also supports task rate variability [9]. Our goal is sim-

ilar, but the approach used by RBED differs as all re-

source assignments are changed within an EDF frame-

work.

7. Conclusion

Traditional control and hard real-time systems have

evolved hand-in-hand. Our work continues this evolu-

tion by merging adaptive control with adaptive soft real-

time processing. We have extended the RBED integrated

real-time scheduler to include dynamic QoS Level soft

real-time processing, and implemented an adaptive con-

trol system on this platform. We show significant perfor-

mance improvement when using our QoS level frame-

work to execute adaptive control applications with up to

40% improvement in some controllers and an average of

22% improvement over all of our experiments, with no

corresponding increase in resource usage.

These improvements comes from two standpoints:

from the control perspective, the adaptive system accu-

mulates less error than the non-adaptive system, pro-

viding better control even when computing resources

shared by the controllers are limited. From the system

perspective, the adaptive approach is also an improve-

ment because, even while achieving better control, the

control tasks consume less resources.

Future directions for this work include several av-

enues: for soft real-time processing we will continue to

refine Adaptive QoS in RBED, and include provisions

for continuous as well as discrete levels of quality. One

novelty of the work described here is that we allowed the

static benefit specifications of adaptive tasks to change



based on run-time performance. This was a natural by-

product of using control applications, because error pro-

vides a reasonable metric for the critically of the applica-

tion. There may be a similar analogous approach for soft

real-time applications—using a metric of run-time per-

formance to scale the user-provided benefits, we may get

better results when trying to optimize the system over

several dimensions. In this study, all the adaptive tasks

running simultaneously were control tasks; we have not

yet studied a system where some soft real-time tasks are

control tasks and others are not.
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