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University of California, Santa CruzTehnial Report UCSC-CRL-03-12Otober 29, 2003Abstrat. Temporal logi is two-valued: a property is either true or false. Whenapplied to the analysis of stohasti systems, or of systems with impreise formalmodels, temporal logi is therefore fragile: even small hanges in the model anlead to opposite truth values for the spei�ation. We present a generalization ofthe branhing-time logi Ctl that ahieves robustness with respet to model pertur-bations by giving a quantitative interpretation to prediates and logial operators,and by disounting the importane of events aording to how late they our.In every state, the value of a formula is a real number in the interval [0,1℄, where1 orresponds to truth and 0 to falsehood. The boolean operators and and or arereplaed by min and max, the path quanti�ers E and A determine sup and inf overall paths from a given state, and the temporal operators F and G speify sup andinf over a given path; a new operator averages all values along a path. Furthermore,all path operators are disounted by a parameter that an be hosen to give moreweight to states that are loser to the beginning of the path.We interpret the resulting logi Dtl over transition systems, Markov hains, andMarkov deision proesses. We provide examples and robustness theorems thatdemonstrate the usefulness of Dtl for speifying performane properties of sys-tems. We also present model-heking algorithms, and we show that over proba-bilisti systems the logi annot be model-heked via the usual onnetion to themu-alulus.



1 IntrodutionBoolean state-transition models are useful for the representation and veri�-ation of omputational systems, suh as hardware and software systems. Aboolean state-transition model is a labeled direted graph, whose vertiesrepresent system states, whose edges represent state hanges, and whoselabels represent boolean observations about the system, suh as the truthvalues of state prediates. Behavioral properties of boolean state-transitionsystems an be spei�ed in temporal logi [CGP99,MP91℄ and veri�ed usingmodel-heking algorithms [CGP99℄.For representing systems that are not purely omputational but partlyphysial, suh as hardware and software that interats with a physial envi-ronment, boolean state-transition models are often inadequate. Many quanti-tative extensions of state-transition models have been proposed for this pur-pose, suh as models that embed state hanges into the real time line [AD94℄and models that assign probabilities to state hanges. These models typiallyontain real numbers, e.g., for representing time or probabilities. Yet previousresearh has foused mostly on purely boolean frameworks for the spei�a-tion and veri�ation of quantitative state-transition models, where obser-vations are truth values of state prediates, and behavioral properties arebased on suh boolean observations [Han94,BdA95,BHHK00,Kwi03℄. Theseboolean spei�ation frameworks are fragile with respet to impreisions inthe model: even arbitrarily small hanges in the quantitative models anause di�erent truth values for the spei�ation.We submit that a proper framework for the spei�ation and veri�a-tion of quantitative state-transition models should itself be quantitative. Tostart with, we onsider observations that do not have boolean truth values,but real values [Koz83℄. Using these quantitative observations, we build atemporal logi for speifying quantitative temporal properties. A Ctl-liketemporal logi has three kinds of operators. The �rst kind are boolean op-erators suh as \and" and \or" for loally ombining the truth values ofboolean observations. These are replaed by \min" and \max" operators forombining the real values of quantitative observations. In addition, a binary\average" operator is useful to generate new quantitative observations. Theseond kind of onstruts are modal operators \always" (2) and \eventually"(3) for temporally ombining the truth values of all boolean observationsalong an in�nite path. These are replaed by \inf" (\lim min") and \sup"(\lim max") operators over in�nite sequenes of real values. We introdue a1



\lim avg" (4) operator that aptures the long-run average value of a quan-titative observation. For nondeterministi models, where there is a hoieof future behaviors, there is a third kind of onstrut: the path quanti�ers\for-all-possible-futures" (8) and \for-some-possible-future" (9) turn pathproperties into state properties by quantifying over the paths from a givenstate. These are replaed by \inf-over-all-possible-futures" and \sup-over-all-possible-futures." One boolean spei�ations are replaed by quantitativespei�ations, it beomes possible to disount the future, that is, to givemore weight to the near future than to the far away future. This priniple iswell-understood in eonomis and in the theory of optimal ontrol [Ber95℄,but equally natural in studying quantitative temporal properties of systems.We all the resulting logi Dtl (\Disounted Ctl"). While quantitativeversions of dynami logis [Koz83℄, �-aluli [HK97,MI98,MM02,dAHM03℄and loal Hennessy-Milner logis [DEP02℄ exist, Dtl is the �rst temporallogi in whih the basi operators (the temporal operators 3 and 2, alongwith the new temporal operator 4, and the path quanti�ers 8 and 9) aregiven a quantitative interpretation.We propose two semantis for Dtl: a path semantis, and a �xpointsemantis. In the (undisounted) path semantis, the 3 (resp. 2) operatoromputes the sup (resp. inf) over a path, and the 4 operator omputes thelong-run average. The disounted versions 3�, 2�, and4� of these operatorsweigh the value of a state that ours k steps in the future by a fator �k,where � � 1 is the disount fator. The 8 and 9 operators then ombinethese values over the paths: in transition systems, 8 and 9 simply assoiatewith eah state the inf and sup of the values of the paths leaving a state;in probabilisti systems, 8 and 9 assoiate with eah state the least andgreatest expeted value of a the value over a path, respetively. Thus, thepath semantis of Dtl is obtained by lifting to a quantitative setting thelassial interpretation of path and state formulas in Ctl.The �xpoint semantis is obtained by lifting to a quantitative settingthe onnetion between Ctl and �-alulus [EL86,CGP99℄. In a transitionsystem, given a set r of states, denote by 9Pre(r) the set of all states thathave a one-step transition to r. Then, the semantis of 93r for a set of statesr an be de�ned as the least �xpoint of the equality x = r[9Pre(x), (denoted�x:(r [ 9Pre(x)) ). We an lift this de�nition to a quantitative setting, byinterpreting [ as pointwise maximum, and 9Pre(x) as the maximal expetedvalue of x ahievable in one step [dAHM03℄. The disounted semantis 93�r2



is obtained simply by multiplying the next-step expetation by �: �x:(r[� �9Pre(x)). s0 s1s2 1q = 0q = 0:2 11/21/2 q = 1The path and �xpoint semantis oinideon transition systems, but di�er on Markovhains (and onsequently on Markov deisionproesses). This is illustrated by the Markovhain depited at right. Consider theDtl for-mula � : 93�q, for � = 0:8. Aording to thepath semantis, there are two paths from s0,eah followed with probability 1/2: the �rst path has disounted sup equalto 0.8, and the seond has disounted sup equal to 0.2; hene, � has value(0:8+0:2)=2 = 0:5 at s0. Aording to the �xpoint semantis, [q℄[0:8�9Pre(q)has value maxf0:2; 0:8 � (1 + 0)=2)g = 0:4 at s0, and this is also the value of� at s0. This example highlights the di�erent perspetive taken by the twosemantis. The path semantis of 93q is an \observational" semantis: if qrepresents, for instane, the level of water in a vessel (0 is empty, 1 is full),then 93q is the expeted value of the maximum level that ours along asystem behavior. Suh semantis is well suited to system spei�ation. The�xpoint semantis of 93q is a \ontrolling" semantis: if q represents theretirement bonus that we reeive if we deide to retire, then 93q is the max-imal expeted bonus we will reeive (disounting aounts for ination). Thedi�erene is that in the �xpoint semantis we must deide when to stop: thehoie of retiring, or working for one more day, orresponds to the hoiebetween the two sides q and 9Pre(x) of the the [ operator (interpreted aspointwise maximum) in the �xpoint. In the path semantis, on the otherhand, we have no ontrol over stopping: we an only observe the value of qover in�nite runs, and ompute the expeted value of the sup it reahes. The�xpoint semantis is better suited to system ontrol: if the goal is to reah astate with high value of q, we must not only reah suh a state, but also beable to stop, one satis�ed by a suÆiently high value of q, and move on tosome subsequent ontrol goal.In Dtl, disounting serves two purposes. First, it leads to a notion of\quality" with whih a spei�ation is satis�ed. For example, if we wish toreah a state with high value of q, then the undisounted formula 93q is validregardless on when a high value of q is reahed, whereas 93�q, for � < 1,prizes the ase where the high q is reahed earlier. Likewise, if q representsthe \level of funtionality" of a system, then the spei�ation 82�q willhave a value that is higher, the longer the system funtions well, even if the3



system will eventually always break. Seond, disounting is instrumental inahieving robustness with respet to system perturbations. Indeed, we willshow that for disount fators smaller than 1, the value of Dtl formulasin both semantis is a ontinuous funtion of the values of the numerialquantities (observations, transition probabilities) of the model.We present algorithms for model heking both semantis of Dtl overtransition systems, Markov hains, and Markov deision proesses. Note thatDtl is a quantitative logi even when interpreted over purely boolean state-transition systems, for disount fators less than 1. Over transition systems,the algorithms for 2� and 3� are based on iterating quantitative �xpointexpressions; the main result in this regard is that the iteration always ter-minates within a �nite number of steps whih is bounded by the diameterof the system. The algorithm for 4� (disounted long-run average along apath) is more involved, but still polynomial: it builds on both Karp's algo-rithm for omputing minimum mean-weight yles and a disounted versionof Bellman-Ford for omputing shortest paths.For Markov hains and Markov proesses, we an model hek the �xpointsemantis ofDtl by relying on a mix of results from optimal ontrol [Ber95℄and quantitative �-alulus [dAHM03℄. On the other hand, model hekingthe path semantis of Dtl over Markov hains and Markov deision pro-esses requires novel algorithms. Indeed, in spite of the fat that MDPs havebeen heavily studied, no algorithms for solving this natural problem | om-pute the maximal expetation of the sup along a path | were previouslyknown, neither in the disounted, nor in the undisounted, setting.In all ases, we show that the model heking problem for Dtl an besolved in time polynomial in the size of the system. For transition systemsand Markov hains, the time required is also polynomial in the size of theDtl formula. For Markov deision proesses, the time required is insteadexponential in the depth of the Dtl formula, as the bit-wise enoding ofvaluations is subjet to growing at eah nesting of the temporal operators.11 In pratie, unless the algorithms are implemented with arbitrary-preision arithmeti, thetime for Dtl model heking over Markov deision proesses is polynomial in the size of theDtl formula. 4



2 Disounted Ctl2.1 SyntaxLet � be a set of propositions and let A be a set of parameters. The Dtlformulas over (�;A) are generated by the grammar� ::= r j t j f j � _ � j � ^ � j :� j �� � j 9 j 8  ::= 3� j 2� j 4�where r 2 � is a proposition and  2 A is a parameter. The formulasgenerated by � are state formulas; the formulas generated by  are pathformulas. TheDtl formulas are the state formulas. We say that the formula� is a basi formula if every non-trivial subformula of � is a proposition.2.2 Semantis for Labeled Transition SystemsWe de�ne two semantis for Dtl: the path semantis, and the �xpointsemantis. In the path semantis, the path operators 3 and 2 determinethe disounted sup and inf values over a path, and the 9 and 8 operatorsdetermine the minimum and maximum values of the path formula over allpaths from a given state. The �xpoint semantis is de�ned by lifting to aquantitative setting the usual onnetion between Ctl and �-alulus.Disount fators. Let A be a set of parameters. A parameter interpretationof A is a funtion h�i: A ! [0; 1℄ whih assigns to eah parameter a realbetween 0 and 1. If 0 < hi < 1, then hi is alled a disount fator. Theinterpretation h�i is ontrative if hi < 1 for all  2 A; it is undisounted ifhi = 1 for all  2 A. We write IA for the set of parameter interpretationsof A. We denote by jqjb the length of the binary enoding of a number q 2 Q,and we denote by jh�ijb =Pa2A jhaijb the size of the interpretation h�i of A.Valuations. Let S be a set of states. A valuation on S is a funtion v:S ! [0; 1℄ whih assigns to eah state a real between 0 and 1. The valuationv is boolean if v(s) 2 f0; 1g for all s 2 S. We write VS for the set of valuationson S. We write 0 for the valuation that maps all states to 0, and 1 for thevaluation that maps all states to 1. For two real numbers u1; u2 and a disountfator � 2 [0; 1℄ we write u1tu2 for maxfu1; u2g, u1uu2 for minfu1; u2g, andu1 +� u2 for (1 � �)�u1 + ��u2. We lift operations on reals to operations onvaluations in a pointwise fashion; for example, for two valuations v1; v2 2 VS,by v1tv2 we denote the valuation that maps eah state s 2 S to v1(s)tv2(s).5



Labeled transition systems. A labeled transition system (LTS) S =(S; Æ; �; [�℄) onsists of a set S of states, a transition relation Æ: S ! 2Sn;whih assigns to eah state a nonempty set of suessor states, a set � ofpropositions, and a funtion [�℄: � ! VS whih assigns to eah propositiona valuation. We denote by jÆj the value Ps2S jÆ(s)j. The labeled transitionsystem S is boolean if for all propositions r 2 �, the valuation [r℄ is boolean.A path of S is an in�nite sequene s0s1s2 : : : of states suh that si+1 2 Æ(si)for all i � 0. Given a state s 2 S, we write Traj (s) for the set of paths thatstart in s.The path semantis. The Dtl formulas over (�;A) are evaluated withrespet to a labeled transition system S = (S; Æ; �; [�℄) whose propositionsare �, and with respet to a parameter interpretation h�i 2 IA. Every stateformula � de�ne a valuation [[�℄℄p 2 VS:[[r℄℄p = [r℄[[t℄℄p = 1[[f℄℄p = 0[[:�℄℄p = 1� [[�℄℄p [[�1 _ �2℄℄p = [[�1℄℄p t [[�2℄℄p[[�1 ^ �2℄℄p = [[�1℄℄p u [[�2℄℄p[[�1 � �2℄℄p = [[�1℄℄p +hi [[�2℄℄p[[9 ℄℄p(s) = supf[[ ℄℄p(�) j � 2 Traj (s)g[[8 ℄℄p(s) = inff[[ ℄℄p(�) j � 2 Traj (s)gwhere r 2 �. Every path formula  assigns a real [[ ℄℄p(�) 2 [0; 1℄ to eahpath � of S:[[3�℄℄p(s0s1 : : :) = supfhii � [[�℄℄p(si) j i � 0g[[2�℄℄p(s0s1 : : :) = inff1� hii � (1� [[�℄℄p(si)) j i � 0g[[4�℄℄p(s0s1 : : :) = ( (1� hi) �Pfhii � [[�℄℄p(si) j i � 0g if hi < 1;limi�0( 1i+1 �P0�j�i[[�℄℄p(sj)) if hi = 1:Notie that the limit of the �rst lause for 4 when hi ! 1 gives theseond lause. If the labeled transition system S is boolean and the parameterinterpretation h�i is undisounted, then 1 an be interpreted as truth, 0 asfalsehood, and Dtl without the operator 4 oinides with Ctl.The �xpoint semantis. In this semantis, the Dtl formulas are eval-uated with respet to a labeled transition system and to a ontrative pa-rameter interpretation h�i 2 IA. Given a valuation x 2 VS, we denote by9Pre(x) 2 VS the valuation de�ned by 9Pre(x)(s) = maxfx(t) j t 2 Æ(s)g,and we denote by 8Pre(x) 2 VS the valuation de�ned by 8Pre(x)(s) =6



minfx(t) j t 2 Æ(s)g. The �xpoint semantis [[�℄℄f for the propositions, theonstants t and f and the boolean operators is similar to the path seman-tis, where [[�℄℄p is substituted by [[�℄℄f . The other operators are de�ned asfollows: [[93�℄℄f = �x:([[�℄℄f t (0+hi 9Pre(x)))[[83�℄℄f = �x:([[�℄℄f t (0+hi 8Pre(x)))[[92�℄℄f = �x:([[�℄℄f u (1+hi 9Pre(x)))[[82�℄℄f = �x:([[�℄℄f u (1+hi 8Pre(x)))[[94�℄℄f = �x:([[�℄℄f +hi 9Pre(x)))[[84�℄℄f = �x:([[�℄℄f +hi 8Pre(x)))Above, for F : VS ! VS, the notation �x:F (x) indiates the unique (ashi < 1) valuation x� suh that x� = F (x�).2.3 Semantis for Markov ProessesGiven a �nite set S, let Distr(S) be the set of probability distributions overS; for a 2 Distr(S), we denote by Supp(a) = fs 2 S j a(s) > 0g the supportof a. A probability distribution a over S is deterministi if a(s) 2 f0; 1g forall s 2 S.Markov deision proesses. A Markov deision proess (MDP) S =(S; �; �; [�℄) onsists of a set S of states, a probabilisti transition relation� : S ! 2Distr(S) n ;, whih assigns to eah state a �nite nonempty set ofprobability distributions over the suessor states, a set � of propositions,and a funtion [�℄: � ! VS whih assigns to eah proposition a valuation.The Markov deision proess S is boolean if for all propositions r 2 �, thevaluation [r℄ is boolean. A �nite (resp. in�nite) path of S is a �nite (resp.in�nite) sequene s0s1s2 : : : sm (resp. s0s1s2 : : :) of states suh that for alli < m (resp. i 2 IN) there is ai 2 �(si) with si+1 2 Supp(ai). We denote byFTraj and Traj the sets of �nite and in�nite paths of S; for s 2 S, we denoteby Traj s the in�nite paths starting from s.We denote by j� jb the length of the binary enoding of � , de�ned byPs2SPa2�(s)Pt2Supp(a) ja(t)jb, and we denote by j[�℄jb =Pq2�Ps2S j[q℄(s)jbthe size of the binary enoding of [�℄. Then, the binary size of S is given byjSjb = j� jb + j[�℄jb.A strategy � for S is a mapping FTraj ! Distr(Ss2S �(s)): onethe MDP has followed the path s0s1 : : : sm 2 FTraj , the strategy � pre-sribes the probability �(s0s1 : : : sm)(a) of using a next-state distribution7



a 2 �(sm). For all s0s1 : : : sm 2 FTraj and all a 2 Distr(S), we require thatSupp(�(s0s1 : : : sm)) � �(sm). Thus, under strategy �, after following a �nitepath s0s1 : : : sm the MDP takes a transition to state sm+1 with probabilityPa2�(sm) a(sm+1) �(s0s1 : : : sm)(a). We denote by � the set of all strategiesfor S. The transition probabilities orresponding to strategy �, together withan initial state s, give rise to a probability spae (Traj s;Bs;Pr�s ), where Bsis the set of measurable subsets of 2Traj s , and Pr�s is the probability measureover Bs indued by the next-state transition probabilities desribed above[KSK66,Wil91℄. For i 2 IN, the random variable Zi : Traj s ! S de�ned byZi(s0s1 : : :) = si yields state of the stohasti proess after i steps. Given arandom variable X over this probability spae, we denote its expeted valueby E�s [X℄.Speial ases of MDPs: Markov hains and transition systems.Markov hains and transition systems an be de�ned as speial ases ofMarkov deision proesses. An MDP S = (S; �; �; [�℄) is a Markov hainif j�(s)j = 1 for all s 2 S. It is ustomary to speify the probabilisti stru-ture of a Markov hain via its probability transition matrix P = [ps;t℄s;t2S,de�ned for all s; t 2 S by ps;t = a(t), where a is the unique distributiona 2 �(s). An initial state s 2 S ompletely determines a probability spae(Traj s;Bs;Prs), and for a random variable X over this probability spae, welet Es[X℄ denote its expetation. An MDP S = (S; �; �; [�℄) is a transitionsystem if, for all s 2 S and all a 2 �(s), the distribution a is deterministi;in that ase, we de�ne Æ : S 7! 2S by Æ(s) = ft 2 S j 9a 2 �(s):a(t) = 1g forall s 2 S.The path semantis. The Dtl formulas over (�;A) are evaluated withrespet to a Markov deision proess S = (S; �; �; [�℄) and with respet to aparameter interpretation h�i 2 IA. The semantis [[ ℄℄p of a path formula  is de�ned as for transition systems; we note that [[ ℄℄p is a random variableover the probability spae (Traj s;Bs;Prs). Every state formula � de�nes avaluation [[�℄℄p 2 VS: the ases for propositions, t, f, _, ^, and : are as fortransition systems; the ase for 9 and 8 is as follows:[[9 ℄℄p(s) = supfE�s ([[ ℄℄p) j � 2 �g; [[8 ℄℄p(s) = inffE�s ([[ ℄℄p) j � 2 �g:The �xpoint semantis. Given a valuation x : S ! [0; 1℄, we de-note by 9Pre(x) : S ! [0; 1℄ the valuation de�ned by 9Pre(x)(s) =maxa2�(s)Pt2S x(t)a(t), and we denote by 8Pre(x) : S ! [0; 1℄ the valu-ation de�ned by 8Pre(x)(s) = mina2�(s)Pt2S x(t)a(t). With this notation,8



the �xpoint semantis [[�℄℄f is de�ned by the same lauses as for transitionsystems.2.4 Properties of DtlBasi equivalenes. For all state formulas �1, �2 over (�;A), all MDPswith propositions �, and all ontrative parameter interpretations of Aand � 2 fp; fg, we have the following equivalenes: [[:93�℄℄� = [[82:�℄℄�,[[:92�℄℄� = [[83:�℄℄�: and [[:94�℄℄� = [[84:�℄℄� In partiular, we see that4 is self-dual and that a minimalist de�nition of Dtl will omit one offt; fg, one of f_;^g, and one of f9; 8;3;2g.Comparing both semantis. We show that the path and �xpoint seman-tis oinide over transition systems, and over Markov systems with booleanpropositions (for non-nested formulas), but do not oinide in general over(non-boolean) Markov hains. This result is surprising, as it indiates thatthe standard onnetion between Ctl and �-alulus breaks down as soonas we onsider both probabilisti systems and quantitative valuations. Sinedisounting plays no role in the proof of the theorem, so that a similar resultwould hold also for the logi without operator 4 under no disounting. Onthe other hand, the theorem states that the two semantis always oinidefor the 4 operator.Theorem 1. The following assertions hold:1. For all labeled transition systems with propositions �, all ontrative pa-rameter interpretations of A, and all Dtl formulas � over (�;A), wehave [[�℄℄p = [[�℄℄f .2. For all boolean Markov deision proesses with propositions �, all on-trative parameter interpretations of A, and all Dtl formulas � over(�;A) that ontain no nesting of path quanti�ers, we have [[�℄℄p = [[�℄℄f .3. There is a Markov hain S with propositions �, a ontrative parameterinterpretation A, and a Dtl formula � over (�;A) suh that [[�℄℄p 6=[[�℄℄f .Lemma 1. For all MDPs with propositions �, all ontrative parameterinterpretations of A, and all r 2 �, we have [[94r℄℄p = [[94r℄℄f and[[84r℄℄p = [[84r℄℄f . 9



Robustness. Let S = (S; �; �; [�℄) and S 0 = (S; � 0; �; [�℄0) be twoMDPs on the same state spae S and set of atomi propositions �.jjS;S 0jj = maxs2Sfmaxr2� j[r℄(s)� [r0℄(s)j;maxa2�(s)minb2� 0(s)Ps02S ja(s0) �b(s0)j;maxb2� 0(s)mina2�(s)Ps02S ja(s0) � b(s0)jg. It is not diÆult to see thatjj; jj is a metri. For an MDP S, we write [[�℄℄fS and [[�℄℄pS to denote the semantisfuntions de�ned on S.Theorem 2. Let h�i be a ontrative parameter evaluation.1. For all � > 0, there is a Æ > 0 suh that for all formulas ' of DCTL andall states s 2 S we have j[['℄℄fS(s)� [['℄℄fS0(s)j � � for all MDPs S;S 0 withjjS;S 0jj � Æ.2. Let � be any set of DCTL formulas suh that the maximum nesting depthof any formula in � is k. For all � > 0, there is a Æ > 0 suh that for allformulas ' 2 � and all states s 2 S we have j[['℄℄pS(s)� [['℄℄pS0(s)j � � forall MDPs S;S 0 with jjS;S 0jj � Æ.Notie that we get the ontinuity statement for the path semantis onlyfor sets of formulas with bounded nesting depth. For example, onsider athree state Markov hain S = (fs0; s1; s2g; �; frg; [�℄) suh that �(s0) is thedistribution that hooses s1 with probability 1 � � and hooses s2 withprobability �, and �(si) hooses si with probability 1 for i = 1; 2. Let[r℄(s0) = [r℄(s1) = 0 and [r℄(s2) = 1. Consider the Markov hain S 0 whihdi�ers from S in that �(s0) hooses s1 with probability 1. Then jjS;S 0jj = �.However, onsider the formulas (93)nr, for n � 1. Let xn = [[(93)nr℄℄pS(s0)(for hi = 1). Then xn+1 = (1 � �)xn + �, and the limit as n ! 1 is 1. Onthe other hand, [[(93)nr℄℄pS0(s0) = 0 for all n.3 Model Cheking Dtl over Transition SystemsThe model-heking problem of a Dtl formula � over an LTS S asks toompute the value [[�℄℄(s) for all states s of S (sine both semantis of Dtloinide over LTSs, we write [[�℄℄ without supersript). Similar to Ctl modelheking [CES83℄, we reursively onsider one of the basi subformulas  of �and ompute the valuation [[ ℄℄. Then we replae  in � by a new propositionp with [p ℄ = [[ ℄℄. Beause of duality, it suÆes to fous on model hekingbasi formulas of the forms 93r, 83r, and 84r, for a proposition r 2 �.We �x an LTS S = (S; Æ; �; [�℄) and a disount interpretation h�i, and wewrite [r℄ = q and hi = �. 10



3.1 Model Cheking 3 (and 2)The �xpoint semantis of Dtl suggests iterative algorithms for evaluat-ing formulas. In partiular, [[93r℄℄f = limn!1 vn, where v0(s) = q(s), andvn+1(s) = q(s) t �maxfvn(s0) j s0 2 Æ(s)g for all n � 0. Over LTSs, the �x-point is reahed in a �nite number of steps, namely, [[93r℄℄ = vjSj. To see this,observe that the value [[93r℄℄f(s), the maximal (disounted) maximum overall paths from s, is obtained at a state in an ayli pre�x of some path from s.The argument that [[83r℄℄ = vjSj, where vn+1(s) = q(s) u �maxfvn(s0) js0 2 Æ(s)g, is slightly more involved. The value [[83r℄℄f(s), the minimal (dis-ounted) maximum over all paths from s, is again obtained at a state s0 inan ayli pre�x of some path � from s. This is beause if some state s00 wererepeated on � before s0, then the path �0 that results from � by in�nitely visit-ing s00 (and never visiting s0) would ahieve a smaller (disounted) maximumthan �.Lemma 2. The evaluation of the �xpoint formulas for [[83r℄℄f and [[93r℄℄fterminates after at most jSj iterations.3.2 Model Cheking 4Computing [[84r℄℄(s) onsists in minimizing the (disounted) average [[4r℄℄over the paths from s. The (undisounted) ase � = 1 is overed in Theo-rem 4.1 of [ZP96℄: the value [[841r℄℄(s) is the minimummean weight of a ylereahable from s, whih an be found using Karp's algorithm in O(jSj�jÆj)time. For � < 1, the reasoning of [ZP96℄ an be used to show that the min-imal disounted average is obtained on a path �0 from s whih, after somepre�x � keeps repeating some simple yle `. Hene ` ontains at most jSjstates. To �nd �0, we use two steps. In the �rst phase, we �nd for eah states the simple yle ` starting at s with the minimal disounted average. Inthe seond phase, we �nd the best pre�x-yle ombination �`!.Phase 1. We need to ompute L�(s) = minf[[4r℄℄p(�) j � 2 Traj (s); � =(s0s1s2 : : : sn�1)!; n � jSjg, where the value [[4r℄℄p(�) is given by 1��1��n �Pn�1i=0 �i�q(si). Consider the reursion v0(s; s0) = 0 and vn+1(s; s0) = q(s) +��minfvn(t; s0) j t 2 Æ(s)g. Then vn(s; s0) minimizes Pn�1i=0 �i�q(si) over all�nite paths s0s1 : : : sn with s0 = s and sn = s0. HeneL�(s) = (1� �)�minn v1(s;s)1��1 ; v2(s;s)1��2 ; : : : ; vjSj�1(s;s)1��jSj�1 o :11



For a �xed s0, omputing minfvn(t; s0) j t 2 Æ(s)g for all s 2 S an be donein O(jÆj) time. Therefore, vn+1 is obtained from vn in O(jSj2 + jSj�jÆj) =O(jSj�jÆj) time. Hene, the omputation of vjSj and L� requires O(jSj2�jÆj)time.Phase 2. After a pre�x of length n, the ost L�(s) of repeating a yle atstate s has to be disounted by �n, whih is exatly the fator by whih wedisount q(s) after taking that pre�x. Hene, we modify the original LTS Sinto an LTS S+, as follows. For every state s 2 S, we add a opy bs whoseweight w+(ŝ) we set to L�(s); the weights w+(s) of states s 2 S remainq(s). Moreover, for every t 2 S and s 2 Æ(t), we add bs as a suessor to t,that is, Æ+(t) = Æ(t) [ fŝ j s 2 Æ(t)g and Æ+(ŝ) = fŝg. Taking the transitionfrom t to bs orresponds to moving to s and repeating the optimal yle fromthere. We an �nd the value of the optimal pre�x-yle ombination startingfrom s as the disounted distane from s to Ŝ = fŝ j s 2 Sg in the modi�edgraph S+ with weigths w+. Formally, given an LTS S, a state s, a weightfuntion w: S ! R�0 , a disount fator �, and a target set T , the minimaldisounted distane from s to T is minfPn�1i=0 �i � w(si) j s0s1 : : : sn�1 2FTraj (s); sn�1 2 Tg. This an be omputed by a disounted version of theBellman-Ford algorithm for �nding shortest paths:funtion DisountedDistane(S; w; �; T ) :for every s 2 S doif s 2 T then d(s) := w(s) else d(s) := 1;for i := 1 to jSj � 1 dofor eah s0 2 Æ(s) doif d(s) > w(s) + � � d(s0) then d(s) := w(s) + � � d(s0);return d.Like the standard version, disounted Bellman-Ford runs in O(jSj�jÆj) time.Thus, the omplexity of omputing [[84r℄℄ is dominated by the �rst phase.We onlude that the overall omplexity of model heking a Dtl formulais polynomial in the size of the system and the size of the formula.Theorem 3. Given a Dtl formula �, an LTS S = (S; Æ; P; [�℄), and adisount interpretation h�i, the problem of model heking � over S w.r.t. h�ian be solved in time O(jSj2�jÆj � j�j).12



4 Model Cheking Dtl over Markov ChainsModel heking 3 and 2: First Algorithm. Given a Markov hain(S; �; �; [�℄), with r 2 �, and a parameter interpretation h�i, we wish toevaluate [[93r℄℄p(s), for all states s 2 S. As before, let q = [r℄ and � = hi.We give the algorithm for the ase � < 1: the ase for � = 1 an be solvedalong similar lines. When evaluating [[93r℄℄p in a state s, we an start withthe initial estimate of q(s). If s is the state smax with the maximum value of q,the initial estimate is the orret value. If s has the seond greatest value forq, the estimate an only be improved if smax is hit within a ertain numberl of steps, namely before the disount �l beomes smaller than q(s)=q(smax).This argument an be reursively applied to all states.Let s1; : : : ; sn be an ordering of the elements of S suh that q(s1) �q(s2) � : : : � q(sn). Let P be the stohasti matrix assoiated with thehain, with P (i; j) = psi;sj . For all 0 � j < i � n, suh that q(si) > 0,let ki;j = blog� q(si)q(sj), with the onvention that log� 0 = 1. Let v(si) =[[93�r℄℄p(si). Then, v(s1) = q(s1), and we an express the value of v(si) interms of the values v(s1); : : : ; v(si�1). Let K = maxfki;j j ki;j <1g, and forall l > 0, let Bil = fsj j j < i and ki;j � lg. Intuitively, Bil ontains thosestates that, if hit after l steps from si, an inuene (inrease) the value ofv(si). For the generi state si, the following holds.v(si) = q(si) � stay i + i�1Xj=1 v(sj) � ki;jXl=1 �lgoij;l; (1)where stay i = Prsi �Vl>0Zl 62 Bil� and goij;l =Prsi hZl = sj ^Vl�1m=1 Zm 62 Bimi. It is easy to hek that stay i +Pi�1j=1Pki;jl=1 goij;l = 1. In the �rst phase, we deal with states si suhthat q(si) > 0. Sine the sequene (Bil )l>0 is dereasing, it an have at mostjSj di�erent values. It follows that there exist integers bi1 � : : : � bim 2 IN andsets X i1; : : : ; X im � S, suh that bi1 = 1, bim = K and, for all k = 1; : : : ; m� 1and for all bik � l < bik+1, Bil = X ik. Notie that we an ompute the atualvalue of the indies bi1; : : : ; bim in time O(jSj � log jSj), by ordering the valueski;j in a non-dereasing fashion and getting rid of the dupliates. Let P ikbe the matrix obtained from P by turning the states in X ik into absorbing13



states (sinks). Then,goij;l = �(P i1)bi1 � (P i2)bi2�bi1 � : : : � (P ik�1)bik�1�bik�2 � (P ik)l�bik� (i; j); for bik � l < bik+1:ki;jXl=1 �lgoij;l = mXk=1 bik+1�1Xl=bik �lgoij;l= � mXk=1�bik (P i1)bi1 � (P i2)bi2�bi1 � : : : � (P ik�1)bik�1�bik�2 � bik+1�bik�1Xl=0 �l(P ik)l�(i; j)= � mXk=1�bik (P i1)bi1 � (P i2)bi2�bi1 � : : : � (P ik�1)bik�1�bik�2 � I � (�P ik)bik�bik�1+1I � �P ik �(i; j):Eah matrix (P ik)h an be omputed by repeated squaring in time O(jSj3 �log h). Some further alulations show that, for a �xed i, both Pki;jl=1 �lgoij;land Pki;jl=1 goij;l an be omputed in time O(jSj4 � logK). The value stay i isgiven by 1 �Pj;l goij;l. The total omplexity of this phase is thus O(jSj5 �logK).In the seond phase we onsider those states si suh that q(si) = 0. Letu be the smallest index i suh that q(si) = 0, For eah i � u, (1) beomes:v(si) = u�1Xj=1 v(sj) � 1Xl=1 �lgoij;l:In this ase, goij;l is the probability of hitting sj after exatly l steps, while inthe meanwhile avoiding all states with indies smaller than u. To eÆientlyompute v(si), we de�ne a stohasti matrix P0 from P by adding an absorb-ing state t and using t to turn all states sj with j < u into transient states.Also, we set �v to be the olumn vetor ontaining the orret value v(si), ifi < u, and zero otherwise. Then,v(si) = u�1Xj=1 v(sj) � 1Xl=1 �l � (P0)l(i; j) = ((I � �P0)�1 � �v)(i); (2)where I denotes the identity matrix. Solving the system (2) takes timeO(jSj3) using LUP deomposition. The time spent in the two phases amountsto O(jSj5 � logK).Seond Algorithm. We present a di�erent version of the �rst phase. Thesymbols s1; : : : ; sn, ki;j, Bil , stay i, and goij;l are de�ned as before.14



Consider again equation 1. For i = 1; : : : ; n, let Ki = maxfki;1; : : : ; ki;i�1g.For states si suh that q(si) > 0, we an ompute the values goij;l as follows.For l > 0, let Cil be the event \Zl 62 Bil". It holds that goij;l = Prsi[Zl =sj \ Ci1 \ : : : \ Cil�1℄ = Prsi[Zl = sj j Ci1 \ : : : \ Cil�1℄ � Prsi [Cil�1 j Ci1 \ : : : \Cil�2℄ � : : : �Prsi [Ci1℄. For eah j = 1; : : : ; i�1 and l > 0, let p(sj; l) = Prsi[Zl =sj j Tl�1m=1 Zm 62 Bim℄. In words, p(sj; l) is the probability that, starting insi, the system reahes sj after exatly l steps, given that in eah previousstep it does not hit states that an inuene v(si). For all j = 1; : : : ; n and0 < l � K, we an ompute Prsi[Cil j Ci1 \ : : : \ Cil�1℄ together with p(sj; l)using the following reursion:p(sj ; 1) = P (i; j)Prsi [Ci1℄ =Xfp(st; l) j st 62 Bi1gp(sj ; l+ 1) = 1Prsi [Cil j Ci1 \ : : : \ Cil�1℄ �XfP (t; j) � p(st; l) j st 62 BilgPrsi [Cil+1 j Ci1 \ : : : \ Cil ℄ =Xfp(st; l) j st 62 Bil+1gFor a �xed i, the previous reursion takes time O(jSj2 �K). Then,goij;l = p(sj; l) � l�1Ym=1Prsi �Cim j Ci1 \ : : : \ Cim�1� : (3)It follows that, for a �xed i, all values goij;l an be omputed in time O(jSj2 �K). The value stay i is given by 1 �Pj;l goij;l. Running this proedure forevery state with nonzero value of q takes thus O(jSj3 �K).If we use the �rst algorithm for the states s with q(s) = 0, we obtainan alternative algorithm for Model Cheking [[93r℄℄p, whose omplexity isO(jSj3 �K). Notie that if the matrix P is represented as an jSj � jSj array,the previous omplexity is less than quadrati in the size of the input. Whihalgorithm performs better on a given instane of the problem depends learlyon the ratio jSj2�logKK , the �rst algorithm being preferable when the ratio issmaller than 1.Model heking 4. Let P be the stohasti matrix representing a Markovhain (S; �; �; [�℄) and let h�i be a parameter interpretation. As before, letr 2 �, q = [r℄ and � = hi. If we let [[94r℄℄ and q denote olumn vetors,we obtain the following lassial equation [FV97℄:[[94r℄℄ = (1� �) �Xi�0 �iP iq = (1� �) � (I � �P )�1q;15



where I is the identity matrix. Thus, we an ompute the value [[94r℄℄(s) foreah state s 2 S by solving a linear system with jSj variables. This takes timeO(jSjlog2 7) using Strassen's algorithm or O(jSj3) using LUP deomposition.Complexity of Dtl Model Cheking over Markov Chains. Theoverall omplexity is polynomial in the size of the system and the size of theformula. For this result, we assume that the basi operations suh as additionand multipliation an be done in onstant time.Theorem 4. Given a Dtl formula �, a Markov hain S = (S; �; P; [�℄),and a disount interpretation h�i, the problem of model heking S w.r.t. �and h�i an be solved in time polynomial in jSj, j[�℄jb, jh�ijb and j�j.5 Model Cheking Dtl over Markov DeisionProessesFor Markov deision proesses, the path and the �xpoint semantis do notoinide, as stated by Theorem 1: hene, we need to provide algorithms forboth semantis. In view of the duality laws for negation, and in view of thereursive de�nition of Dtl, it suÆes to provide algorithms for omputing93r, 83r, 94r, and 84r, for a prediate r. We onsider a Markov de-ision proess S = (S; �; �; [�℄) and a disount interpretation h�i; to simplifythe notation, we let [r℄ = q and hi = �.5.1 Model Cheking 3 in the path SemantisIf � = 0, then trivially [[93r℄℄p(s) = [[83r℄℄p(s) = q(s) at all s 2 S, so inthe following we assume 0 < � � 1. The problem of omputing [[93r℄℄p onan MDP an be viewed as an optimization problem, where the goal is tomaximize the expeted value of the sup of q over a path. As a preliminarystep to solve the problem, we note that in general the optimal strategy ishistory dependent, that is, the hoie of distribution at a state depends ingeneral on the past sequene of states visited by the path.Example 1. Consider the system in Figure 1 and assume � = 1. The optimalhoie in state t2 depends on whether t1 was hit or not. If it was, the urrentsup is 0:8 and the right hoie is a1, beause with probability 12 the sup willinrease to 1. If t2 was not hit, the right hoie is a2, beause it gives a ertaingain of 0:8. 16



s2s q = 0t1q = 0 t5t4t31/21/2 q = 1q = 0:8q = 0q = 0:8 a1a2Fig. 1. An MDP requiring a memory strategy for [[93r℄℄p(s).While the above example indiates that the optimal strategy is in generalhistory-dependent, it also suggests that all a strategy needs to remember isthe sup value that has ourred so far along the path. For � 2 �, s 2 S, andx 2 IR we de�ne Esup�(s; x) = E�s [x t supi>0 �iq(Zi)℄:The term x orresponds to the (appropriately disounted) sup value thathas ourred so far in the past of a path. Obviously, [[93r℄℄p(s) =sup�2� Esup�(s; q(s)) and [[83r℄℄p(s) = inf�2� Esup�(s; q(s)). For a strat-egy � and s 2 S, let Pr(t j s; �) =Pa2�(s) �(s)(a) a(t) be the probability ofa transition from s to t under �, and let �[s℄ to be the strategy de�ned by�[s℄(�) = �(s�) for all � 2 Traj . In words, �[s℄ is the strategy that behaveslike � after an initial transition from s. For all s 2 S and x 2 IR, the quantityEsup�(s; x) satis�es the following reurrene equation:Esup�(s; x) = �Xt2S Esup�[s℄(t; x� t q(t)) Pr(t j s; �): (4)Intuitively, this reursion an be understood as follows. Under strategy �, at astate s = sm of a path s0s1 : : :, the quantity Esup�(sm; x) represents the valueof supi>0E�sm[�iq(Zi)℄ given that sup0�i�m ��iq(sm�i) = x. The reursion (4)then relates Esup�(s; x) to Esup�[s℄(t; y) at the suessorts t of s, where at twe onsider the new onditioning y = x=� t q(t), thus disounting x by ��1(as s is one step before t), and taking into aount the value q(s) seen at s.17



The reursion (4) an be proved as follows.�Xt2S Esup�[s℄(t; x� t q(t)) Pr(t j s; �)=�Xt2S E�[s℄t hx� t q(t) t supi>0 �iq(Zi)iPr(t j s; �)=Xt2S E�[s℄t hx t �q(t) t supi>0 �i+1q(Zi)iPr(t j s; �)=Xt2S E�[s℄t hx t supi�0 �i+1q(Zi)iPr(t j s; �)=E�shx t supi>0 �iq(Zi)i:The idea behind the omputation of sup�2� Esup�(s; q(s)) is to turn the re-urrene equation (4) into an optimization problem, where at eah s 2 Swe seek the strategy � that maximizes the right hand side. The optimiza-tion problem to ompute these quantities is phrased in terms of the variablesv(s; x), representing the value of Esup(s; x). Sine we are ultimately inter-ested in the value of Esup(s; q(s)) for s 2 S, and sine if x � 1 we haveEsup�0(t; x) = x for all t 2 S and �0 2 �, it suÆes to onsider values for xthat belong to the �nite set X = fq(s)=�k j s 2 S u k 2 IN u q(s) < �kg. Weset up the following set of equations in the variables fv(s; x) j s 2 Sux 2 Xg:v(s; x) = 8<:x if x � 1;x t � maxa2�(s)Xt2S v(t; x� t q(t)) a(t) otherwise. (5)The following theorem relates the least �xpoint of (5) to [[93r℄℄p.Theorem 5. Let fv�(s; x) j s 2 S u x 2 Xg be the least (pointwise) �xedpoint of the set of equations (5). Then, we have [[93r℄℄p(s) = v�(s; q(s)) forall s 2 S.Proof. We onsider an iterative evaluation of the least �xpoint (5), given byv0(s; x) = x and, for k � 0, byvn+1(s; x) = 8<:x if x � 1;� maxa2�(s)Xt2S vn(t; x� t q(t)) a(t) otherwise. (6)18



The proof onsists of two parts: (i) showing that for all s 2 S and x 2 Xthere is a strategy �� 2 � suh that E��s [x t sup0<i�n �iq(Zi)℄ = vn(s; x),and (ii) showing that for all � 2 �, all s 2 S, and all x 2 X we haveE�s [x t sup0<i�n �iq(Zi)℄ � vn(s; x). One (i) and (ii) are proved, the resultfollows fromlimn!1 vn = v� limn!1E�s [x t sup0�i�n�iq(Zi)℄ = E�s [x t supi�0 �iq(Zi)℄:We prove only (i), sine the proof of (ii) is similar. First, notie that if wede�ne X 0 = fq(s)=�k j s 2 S u k 2 INg, (6) an be written asvn+1(s; x) = � maxa2�(s)Xt2S vn(t; x� t q(t)) a(t) (7)for all s 2 S and x 2 X 0. The strategy �� is in general a funtion of hs; xi 2S�X 0. We de�ne it indutively: ��0 is arbitrary; for n � 0, ��n+1 �rst hoosesa distribution a 2 �(s) that realizes the maximum in (6), and then upona transition from s to some t 2 S, proeeds as ��n from ht; x� t q(t)i. Byindution, proeeding in analogy with the proof of (4), we have for all n � 0,all s 2 S and all x 2 X 0:vn+1(s; x) = � maxa2�(s)Xt2S vn(t; x� t q(t)) a(t)= � maxa2�(s)Xt2S E��nt hx� t q(t) t sup0<i�n�iq(Zi)i a(t)= maxa2�(s)Xt2S E��nt hx t �q(t) t sup0<i�n�i+1q(Zi)i a(t)= maxa2�(s)Xt2S E��nt hx t sup0�i�n�i+1q(Zi)i a(t)= E��n+1s hx t sup0<i�n�iq(Zi)i;leading to the desired result.To ompute [[83r℄℄p, we simply replae maxa2�(s) with mina2�(s) in (5), andagain onsider the least �xed point. The least �xed points for [[93r℄℄p and[[83r℄℄p an be omputed by linear programming, following a standard ap-proah. 19



Theorem 6. The following assertions hold.1. Consider the following linear programming problem in the set of variablesfv(s; x) j s 2 S u x 2 Xg: minimize Ps2SPx2X v(s; x) subjet tov(s; x) � x v(s; x) � �Xt2S ~v(t; x� t q(t)) a(t)for all s 2 S, all x 2 X, and all a 2 �(s), where ~v(t; x) is 1 if x � 1and is v(t; x) otherwise. Denote by fv̂(s; x) j s 2 S u x 2 Xg an optimalsolution. Then, v̂(s; q(s)) = v�(s; q(s)) = [[93r℄℄p(s).2. Consider the following linear programming problem in the set of variablesfv(s; x); u(s; x) j s 2 S ux 2 Xg: minimizePs2SPx2X(v(s; x)�u(s; x))subjet tov(s; x) � x v(s; x) � u(s; x) u(s; x) � �Xt2S ~v(t; x� t q(t)) a(t)for all s 2 S, all x 2 X, and all a 2 �(s), where ~v(t; x) is 1 if x � 1and is v(t; x) otherwise. Denote by fv̂(s; x); û(s; x) j s 2 S u x 2 Xg anoptimal solution. Then, v̂(s; q(s)) = v�(s; q(s)) = [[83r℄℄p(s).The linear programming problems in the above theorem onsist of at most2�jSj�jXj variables. If � = 1, then jXj = jSj; otherwise, jXj = �jSj log� qmin ,where qmin = minfq(s) j s 2 Suq(s) > 0g. Finally, notie that jXj is linear inthe size of the input enoding of the MDP, if q-values are enoded in binarynotation. This leads to the following result.Corollary 1. For an MDP S = (S; �; �; [�℄) and r 2 �, the valuations[[93r℄℄p and [[83r℄℄p an be omputed in time polynomial in jSjb and jhijb.In addition to linear programming, it is possible to ompute [[93r℄℄p and[[83r℄℄p also by value iteration, using (6), as well as by poliy iteration,adapting standard algorithms to the task (see e.g. [Ber95℄).5.2 Model Cheking 3 in the �xpoint semantis.The omputation of [[93r℄℄f and [[83r℄℄f on an MDP an be performedby transforming the �xpoints into linear programming problems, followinga standard approah. For example, for [[83r℄℄f we onsider the followinglinear programming problem in the set of variables fv(s); u(s) j s 2 Sg:20
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