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t. Temporal logi
 is two-valued: a property is either true or false. Whenapplied to the analysis of sto
hasti
 systems, or of systems with impre
ise formalmodels, temporal logi
 is therefore fragile: even small 
hanges in the model 
anlead to opposite truth values for the spe
i�
ation. We present a generalization ofthe bran
hing-time logi
 Ctl that a
hieves robustness with respe
t to model pertur-bations by giving a quantitative interpretation to predi
ates and logi
al operators,and by dis
ounting the importan
e of events a

ording to how late they o

ur.In every state, the value of a formula is a real number in the interval [0,1℄, where1 
orresponds to truth and 0 to falsehood. The boolean operators and and or arerepla
ed by min and max, the path quanti�ers E and A determine sup and inf overall paths from a given state, and the temporal operators F and G spe
ify sup andinf over a given path; a new operator averages all values along a path. Furthermore,all path operators are dis
ounted by a parameter that 
an be 
hosen to give moreweight to states that are 
loser to the beginning of the path.We interpret the resulting logi
 D
tl over transition systems, Markov 
hains, andMarkov de
ision pro
esses. We provide examples and robustness theorems thatdemonstrate the usefulness of D
tl for spe
ifying performan
e properties of sys-tems. We also present model-
he
king algorithms, and we show that over proba-bilisti
 systems the logi
 
annot be model-
he
ked via the usual 
onne
tion to themu-
al
ulus.



1 Introdu
tionBoolean state-transition models are useful for the representation and veri�-
ation of 
omputational systems, su
h as hardware and software systems. Aboolean state-transition model is a labeled dire
ted graph, whose verti
esrepresent system states, whose edges represent state 
hanges, and whoselabels represent boolean observations about the system, su
h as the truthvalues of state predi
ates. Behavioral properties of boolean state-transitionsystems 
an be spe
i�ed in temporal logi
 [CGP99,MP91℄ and veri�ed usingmodel-
he
king algorithms [CGP99℄.For representing systems that are not purely 
omputational but partlyphysi
al, su
h as hardware and software that intera
ts with a physi
al envi-ronment, boolean state-transition models are often inadequate. Many quanti-tative extensions of state-transition models have been proposed for this pur-pose, su
h as models that embed state 
hanges into the real time line [AD94℄and models that assign probabilities to state 
hanges. These models typi
ally
ontain real numbers, e.g., for representing time or probabilities. Yet previousresear
h has fo
used mostly on purely boolean frameworks for the spe
i�
a-tion and veri�
ation of quantitative state-transition models, where obser-vations are truth values of state predi
ates, and behavioral properties arebased on su
h boolean observations [Han94,BdA95,BHHK00,Kwi03℄. Theseboolean spe
i�
ation frameworks are fragile with respe
t to impre
isions inthe model: even arbitrarily small 
hanges in the quantitative models 
an
ause di�erent truth values for the spe
i�
ation.We submit that a proper framework for the spe
i�
ation and veri�
a-tion of quantitative state-transition models should itself be quantitative. Tostart with, we 
onsider observations that do not have boolean truth values,but real values [Koz83℄. Using these quantitative observations, we build atemporal logi
 for spe
ifying quantitative temporal properties. A Ctl-liketemporal logi
 has three kinds of operators. The �rst kind are boolean op-erators su
h as \and" and \or" for lo
ally 
ombining the truth values ofboolean observations. These are repla
ed by \min" and \max" operators for
ombining the real values of quantitative observations. In addition, a binary\average" operator is useful to generate new quantitative observations. These
ond kind of 
onstru
ts are modal operators \always" (2) and \eventually"(3) for temporally 
ombining the truth values of all boolean observationsalong an in�nite path. These are repla
ed by \inf" (\lim min") and \sup"(\lim max") operators over in�nite sequen
es of real values. We introdu
e a1



\lim avg" (4) operator that 
aptures the long-run average value of a quan-titative observation. For nondeterministi
 models, where there is a 
hoi
eof future behaviors, there is a third kind of 
onstru
t: the path quanti�ers\for-all-possible-futures" (8) and \for-some-possible-future" (9) turn pathproperties into state properties by quantifying over the paths from a givenstate. These are repla
ed by \inf-over-all-possible-futures" and \sup-over-all-possible-futures." On
e boolean spe
i�
ations are repla
ed by quantitativespe
i�
ations, it be
omes possible to dis
ount the future, that is, to givemore weight to the near future than to the far away future. This prin
iple iswell-understood in e
onomi
s and in the theory of optimal 
ontrol [Ber95℄,but equally natural in studying quantitative temporal properties of systems.We 
all the resulting logi
 D
tl (\Dis
ounted Ctl"). While quantitativeversions of dynami
 logi
s [Koz83℄, �-
al
uli [HK97,M
I98,MM02,dAHM03℄and lo
al Hennessy-Milner logi
s [DEP02℄ exist, D
tl is the �rst temporallogi
 in whi
h the basi
 operators (the temporal operators 3 and 2, alongwith the new temporal operator 4, and the path quanti�ers 8 and 9) aregiven a quantitative interpretation.We propose two semanti
s for D
tl: a path semanti
s, and a �xpointsemanti
s. In the (undis
ounted) path semanti
s, the 3 (resp. 2) operator
omputes the sup (resp. inf) over a path, and the 4 operator 
omputes thelong-run average. The dis
ounted versions 3�, 2�, and4� of these operatorsweigh the value of a state that o

urs k steps in the future by a fa
tor �k,where � � 1 is the dis
ount fa
tor. The 8 and 9 operators then 
ombinethese values over the paths: in transition systems, 8 and 9 simply asso
iatewith ea
h state the inf and sup of the values of the paths leaving a state;in probabilisti
 systems, 8 and 9 asso
iate with ea
h state the least andgreatest expe
ted value of a the value over a path, respe
tively. Thus, thepath semanti
s of D
tl is obtained by lifting to a quantitative setting the
lassi
al interpretation of path and state formulas in Ctl.The �xpoint semanti
s is obtained by lifting to a quantitative settingthe 
onne
tion between Ctl and �-
al
ulus [EL86,CGP99℄. In a transitionsystem, given a set r of states, denote by 9Pre(r) the set of all states thathave a one-step transition to r. Then, the semanti
s of 93r for a set of statesr 
an be de�ned as the least �xpoint of the equality x = r[9Pre(x), (denoted�x:(r [ 9Pre(x)) ). We 
an lift this de�nition to a quantitative setting, byinterpreting [ as pointwise maximum, and 9Pre(x) as the maximal expe
tedvalue of x a
hievable in one step [dAHM03℄. The dis
ounted semanti
s 93�r2



is obtained simply by multiplying the next-step expe
tation by �: �x:(r[� �9Pre(x)). s0 s1s2 1q = 0q = 0:2 11/21/2 q = 1The path and �xpoint semanti
s 
oin
ideon transition systems, but di�er on Markov
hains (and 
onsequently on Markov de
isionpro
esses). This is illustrated by the Markov
hain depi
ted at right. Consider theD
tl for-mula � : 93�q, for � = 0:8. A

ording to thepath semanti
s, there are two paths from s0,ea
h followed with probability 1/2: the �rst path has dis
ounted sup equalto 0.8, and the se
ond has dis
ounted sup equal to 0.2; hen
e, � has value(0:8+0:2)=2 = 0:5 at s0. A

ording to the �xpoint semanti
s, [q℄[0:8�9Pre(q)has value maxf0:2; 0:8 � (1 + 0)=2)g = 0:4 at s0, and this is also the value of� at s0. This example highlights the di�erent perspe
tive taken by the twosemanti
s. The path semanti
s of 93q is an \observational" semanti
s: if qrepresents, for instan
e, the level of water in a vessel (0 is empty, 1 is full),then 93q is the expe
ted value of the maximum level that o

urs along asystem behavior. Su
h semanti
s is well suited to system spe
i�
ation. The�xpoint semanti
s of 93q is a \
ontrolling" semanti
s: if q represents theretirement bonus that we re
eive if we de
ide to retire, then 93q is the max-imal expe
ted bonus we will re
eive (dis
ounting a

ounts for in
ation). Thedi�eren
e is that in the �xpoint semanti
s we must de
ide when to stop: the
hoi
e of retiring, or working for one more day, 
orresponds to the 
hoi
ebetween the two sides q and 9Pre(x) of the the [ operator (interpreted aspointwise maximum) in the �xpoint. In the path semanti
s, on the otherhand, we have no 
ontrol over stopping: we 
an only observe the value of qover in�nite runs, and 
ompute the expe
ted value of the sup it rea
hes. The�xpoint semanti
s is better suited to system 
ontrol: if the goal is to rea
h astate with high value of q, we must not only rea
h su
h a state, but also beable to stop, on
e satis�ed by a suÆ
iently high value of q, and move on tosome subsequent 
ontrol goal.In D
tl, dis
ounting serves two purposes. First, it leads to a notion of\quality" with whi
h a spe
i�
ation is satis�ed. For example, if we wish torea
h a state with high value of q, then the undis
ounted formula 93q is validregardless on when a high value of q is rea
hed, whereas 93�q, for � < 1,prizes the 
ase where the high q is rea
hed earlier. Likewise, if q representsthe \level of fun
tionality" of a system, then the spe
i�
ation 82�q willhave a value that is higher, the longer the system fun
tions well, even if the3



system will eventually always break. Se
ond, dis
ounting is instrumental ina
hieving robustness with respe
t to system perturbations. Indeed, we willshow that for dis
ount fa
tors smaller than 1, the value of D
tl formulasin both semanti
s is a 
ontinuous fun
tion of the values of the numeri
alquantities (observations, transition probabilities) of the model.We present algorithms for model 
he
king both semanti
s of D
tl overtransition systems, Markov 
hains, and Markov de
ision pro
esses. Note thatD
tl is a quantitative logi
 even when interpreted over purely boolean state-transition systems, for dis
ount fa
tors less than 1. Over transition systems,the algorithms for 2� and 3� are based on iterating quantitative �xpointexpressions; the main result in this regard is that the iteration always ter-minates within a �nite number of steps whi
h is bounded by the diameterof the system. The algorithm for 4� (dis
ounted long-run average along apath) is more involved, but still polynomial: it builds on both Karp's algo-rithm for 
omputing minimum mean-weight 
y
les and a dis
ounted versionof Bellman-Ford for 
omputing shortest paths.For Markov 
hains and Markov pro
esses, we 
an model 
he
k the �xpointsemanti
s ofD
tl by relying on a mix of results from optimal 
ontrol [Ber95℄and quantitative �-
al
ulus [dAHM03℄. On the other hand, model 
he
kingthe path semanti
s of D
tl over Markov 
hains and Markov de
ision pro-
esses requires novel algorithms. Indeed, in spite of the fa
t that MDPs havebeen heavily studied, no algorithms for solving this natural problem | 
om-pute the maximal expe
tation of the sup along a path | were previouslyknown, neither in the dis
ounted, nor in the undis
ounted, setting.In all 
ases, we show that the model 
he
king problem for D
tl 
an besolved in time polynomial in the size of the system. For transition systemsand Markov 
hains, the time required is also polynomial in the size of theD
tl formula. For Markov de
ision pro
esses, the time required is insteadexponential in the depth of the D
tl formula, as the bit-wise en
oding ofvaluations is subje
t to growing at ea
h nesting of the temporal operators.11 In pra
ti
e, unless the algorithms are implemented with arbitrary-pre
ision arithmeti
, thetime for D
tl model 
he
king over Markov de
ision pro
esses is polynomial in the size of theD
tl formula. 4



2 Dis
ounted Ctl2.1 SyntaxLet � be a set of propositions and let A be a set of parameters. The D
tlformulas over (�;A) are generated by the grammar� ::= r j t j f j � _ � j � ^ � j :� j ��
 � j 9 j 8  ::= 3
� j 2
� j 4
�where r 2 � is a proposition and 
 2 A is a parameter. The formulasgenerated by � are state formulas; the formulas generated by  are pathformulas. TheD
tl formulas are the state formulas. We say that the formula� is a basi
 formula if every non-trivial subformula of � is a proposition.2.2 Semanti
s for Labeled Transition SystemsWe de�ne two semanti
s for D
tl: the path semanti
s, and the �xpointsemanti
s. In the path semanti
s, the path operators 3 and 2 determinethe dis
ounted sup and inf values over a path, and the 9 and 8 operatorsdetermine the minimum and maximum values of the path formula over allpaths from a given state. The �xpoint semanti
s is de�ned by lifting to aquantitative setting the usual 
onne
tion between Ctl and �-
al
ulus.Dis
ount fa
tors. Let A be a set of parameters. A parameter interpretationof A is a fun
tion h�i: A ! [0; 1℄ whi
h assigns to ea
h parameter a realbetween 0 and 1. If 0 < h
i < 1, then h
i is 
alled a dis
ount fa
tor. Theinterpretation h�i is 
ontra
tive if h
i < 1 for all 
 2 A; it is undis
ounted ifh
i = 1 for all 
 2 A. We write IA for the set of parameter interpretationsof A. We denote by jqjb the length of the binary en
oding of a number q 2 Q,and we denote by jh�ijb =Pa2A jhaijb the size of the interpretation h�i of A.Valuations. Let S be a set of states. A valuation on S is a fun
tion v:S ! [0; 1℄ whi
h assigns to ea
h state a real between 0 and 1. The valuationv is boolean if v(s) 2 f0; 1g for all s 2 S. We write VS for the set of valuationson S. We write 0 for the valuation that maps all states to 0, and 1 for thevaluation that maps all states to 1. For two real numbers u1; u2 and a dis
ountfa
tor � 2 [0; 1℄ we write u1tu2 for maxfu1; u2g, u1uu2 for minfu1; u2g, andu1 +� u2 for (1 � �)�u1 + ��u2. We lift operations on reals to operations onvaluations in a pointwise fashion; for example, for two valuations v1; v2 2 VS,by v1tv2 we denote the valuation that maps ea
h state s 2 S to v1(s)tv2(s).5



Labeled transition systems. A labeled transition system (LTS) S =(S; Æ; �; [�℄) 
onsists of a set S of states, a transition relation Æ: S ! 2Sn;whi
h assigns to ea
h state a nonempty set of su

essor states, a set � ofpropositions, and a fun
tion [�℄: � ! VS whi
h assigns to ea
h propositiona valuation. We denote by jÆj the value Ps2S jÆ(s)j. The labeled transitionsystem S is boolean if for all propositions r 2 �, the valuation [r℄ is boolean.A path of S is an in�nite sequen
e s0s1s2 : : : of states su
h that si+1 2 Æ(si)for all i � 0. Given a state s 2 S, we write Traj (s) for the set of paths thatstart in s.The path semanti
s. The D
tl formulas over (�;A) are evaluated withrespe
t to a labeled transition system S = (S; Æ; �; [�℄) whose propositionsare �, and with respe
t to a parameter interpretation h�i 2 IA. Every stateformula � de�ne a valuation [[�℄℄p 2 VS:[[r℄℄p = [r℄[[t℄℄p = 1[[f℄℄p = 0[[:�℄℄p = 1� [[�℄℄p [[�1 _ �2℄℄p = [[�1℄℄p t [[�2℄℄p[[�1 ^ �2℄℄p = [[�1℄℄p u [[�2℄℄p[[�1 �
 �2℄℄p = [[�1℄℄p +h
i [[�2℄℄p[[9 ℄℄p(s) = supf[[ ℄℄p(�) j � 2 Traj (s)g[[8 ℄℄p(s) = inff[[ ℄℄p(�) j � 2 Traj (s)gwhere r 2 �. Every path formula  assigns a real [[ ℄℄p(�) 2 [0; 1℄ to ea
hpath � of S:[[3
�℄℄p(s0s1 : : :) = supfh
ii � [[�℄℄p(si) j i � 0g[[2
�℄℄p(s0s1 : : :) = inff1� h
ii � (1� [[�℄℄p(si)) j i � 0g[[4
�℄℄p(s0s1 : : :) = ( (1� h
i) �Pfh
ii � [[�℄℄p(si) j i � 0g if h
i < 1;limi�0( 1i+1 �P0�j�i[[�℄℄p(sj)) if h
i = 1:Noti
e that the limit of the �rst 
lause for 4
 when h
i ! 1 gives these
ond 
lause. If the labeled transition system S is boolean and the parameterinterpretation h�i is undis
ounted, then 1 
an be interpreted as truth, 0 asfalsehood, and D
tl without the operator 4 
oin
ides with Ctl.The �xpoint semanti
s. In this semanti
s, the D
tl formulas are eval-uated with respe
t to a labeled transition system and to a 
ontra
tive pa-rameter interpretation h�i 2 IA. Given a valuation x 2 VS, we denote by9Pre(x) 2 VS the valuation de�ned by 9Pre(x)(s) = maxfx(t) j t 2 Æ(s)g,and we denote by 8Pre(x) 2 VS the valuation de�ned by 8Pre(x)(s) =6



minfx(t) j t 2 Æ(s)g. The �xpoint semanti
s [[�℄℄f for the propositions, the
onstants t and f and the boolean operators is similar to the path seman-ti
s, where [[�℄℄p is substituted by [[�℄℄f . The other operators are de�ned asfollows: [[93
�℄℄f = �x:([[�℄℄f t (0+h
i 9Pre(x)))[[83
�℄℄f = �x:([[�℄℄f t (0+h
i 8Pre(x)))[[92
�℄℄f = �x:([[�℄℄f u (1+h
i 9Pre(x)))[[82
�℄℄f = �x:([[�℄℄f u (1+h
i 8Pre(x)))[[94
�℄℄f = �x:([[�℄℄f +h
i 9Pre(x)))[[84
�℄℄f = �x:([[�℄℄f +h
i 8Pre(x)))Above, for F : VS ! VS, the notation �x:F (x) indi
ates the unique (ash
i < 1) valuation x� su
h that x� = F (x�).2.3 Semanti
s for Markov Pro
essesGiven a �nite set S, let Distr(S) be the set of probability distributions overS; for a 2 Distr(S), we denote by Supp(a) = fs 2 S j a(s) > 0g the supportof a. A probability distribution a over S is deterministi
 if a(s) 2 f0; 1g forall s 2 S.Markov de
ision pro
esses. A Markov de
ision pro
ess (MDP) S =(S; �; �; [�℄) 
onsists of a set S of states, a probabilisti
 transition relation� : S ! 2Distr(S) n ;, whi
h assigns to ea
h state a �nite nonempty set ofprobability distributions over the su

essor states, a set � of propositions,and a fun
tion [�℄: � ! VS whi
h assigns to ea
h proposition a valuation.The Markov de
ision pro
ess S is boolean if for all propositions r 2 �, thevaluation [r℄ is boolean. A �nite (resp. in�nite) path of S is a �nite (resp.in�nite) sequen
e s0s1s2 : : : sm (resp. s0s1s2 : : :) of states su
h that for alli < m (resp. i 2 IN) there is ai 2 �(si) with si+1 2 Supp(ai). We denote byFTraj and Traj the sets of �nite and in�nite paths of S; for s 2 S, we denoteby Traj s the in�nite paths starting from s.We denote by j� jb the length of the binary en
oding of � , de�ned byPs2SPa2�(s)Pt2Supp(a) ja(t)jb, and we denote by j[�℄jb =Pq2�Ps2S j[q℄(s)jbthe size of the binary en
oding of [�℄. Then, the binary size of S is given byjSjb = j� jb + j[�℄jb.A strategy � for S is a mapping FTraj ! Distr(Ss2S �(s)): on
ethe MDP has followed the path s0s1 : : : sm 2 FTraj , the strategy � pre-s
ribes the probability �(s0s1 : : : sm)(a) of using a next-state distribution7



a 2 �(sm). For all s0s1 : : : sm 2 FTraj and all a 2 Distr(S), we require thatSupp(�(s0s1 : : : sm)) � �(sm). Thus, under strategy �, after following a �nitepath s0s1 : : : sm the MDP takes a transition to state sm+1 with probabilityPa2�(sm) a(sm+1) �(s0s1 : : : sm)(a). We denote by � the set of all strategiesfor S. The transition probabilities 
orresponding to strategy �, together withan initial state s, give rise to a probability spa
e (Traj s;Bs;Pr�s ), where Bsis the set of measurable subsets of 2Traj s , and Pr�s is the probability measureover Bs indu
ed by the next-state transition probabilities des
ribed above[KSK66,Wil91℄. For i 2 IN, the random variable Zi : Traj s ! S de�ned byZi(s0s1 : : :) = si yields state of the sto
hasti
 pro
ess after i steps. Given arandom variable X over this probability spa
e, we denote its expe
ted valueby E�s [X℄.Spe
ial 
ases of MDPs: Markov 
hains and transition systems.Markov 
hains and transition systems 
an be de�ned as spe
ial 
ases ofMarkov de
ision pro
esses. An MDP S = (S; �; �; [�℄) is a Markov 
hainif j�(s)j = 1 for all s 2 S. It is 
ustomary to spe
ify the probabilisti
 stru
-ture of a Markov 
hain via its probability transition matrix P = [ps;t℄s;t2S,de�ned for all s; t 2 S by ps;t = a(t), where a is the unique distributiona 2 �(s). An initial state s 2 S 
ompletely determines a probability spa
e(Traj s;Bs;Prs), and for a random variable X over this probability spa
e, welet Es[X℄ denote its expe
tation. An MDP S = (S; �; �; [�℄) is a transitionsystem if, for all s 2 S and all a 2 �(s), the distribution a is deterministi
;in that 
ase, we de�ne Æ : S 7! 2S by Æ(s) = ft 2 S j 9a 2 �(s):a(t) = 1g forall s 2 S.The path semanti
s. The D
tl formulas over (�;A) are evaluated withrespe
t to a Markov de
ision pro
ess S = (S; �; �; [�℄) and with respe
t to aparameter interpretation h�i 2 IA. The semanti
s [[ ℄℄p of a path formula  is de�ned as for transition systems; we note that [[ ℄℄p is a random variableover the probability spa
e (Traj s;Bs;Prs). Every state formula � de�nes avaluation [[�℄℄p 2 VS: the 
ases for propositions, t, f, _, ^, and : are as fortransition systems; the 
ase for 9 and 8 is as follows:[[9 ℄℄p(s) = supfE�s ([[ ℄℄p) j � 2 �g; [[8 ℄℄p(s) = inffE�s ([[ ℄℄p) j � 2 �g:The �xpoint semanti
s. Given a valuation x : S ! [0; 1℄, we de-note by 9Pre(x) : S ! [0; 1℄ the valuation de�ned by 9Pre(x)(s) =maxa2�(s)Pt2S x(t)a(t), and we denote by 8Pre(x) : S ! [0; 1℄ the valu-ation de�ned by 8Pre(x)(s) = mina2�(s)Pt2S x(t)a(t). With this notation,8



the �xpoint semanti
s [[�℄℄f is de�ned by the same 
lauses as for transitionsystems.2.4 Properties of D
tlBasi
 equivalen
es. For all state formulas �1, �2 over (�;A), all MDPswith propositions �, and all 
ontra
tive parameter interpretations of Aand � 2 fp; fg, we have the following equivalen
es: [[:93
�℄℄� = [[82
:�℄℄�,[[:92
�℄℄� = [[83
:�℄℄�: and [[:94
�℄℄� = [[84
:�℄℄� In parti
ular, we see that4
 is self-dual and that a minimalist de�nition of D
tl will omit one offt; fg, one of f_;^g, and one of f9; 8;3;2g.Comparing both semanti
s. We show that the path and �xpoint seman-ti
s 
oin
ide over transition systems, and over Markov systems with booleanpropositions (for non-nested formulas), but do not 
oin
ide in general over(non-boolean) Markov 
hains. This result is surprising, as it indi
ates thatthe standard 
onne
tion between Ctl and �-
al
ulus breaks down as soonas we 
onsider both probabilisti
 systems and quantitative valuations. Sin
edis
ounting plays no role in the proof of the theorem, so that a similar resultwould hold also for the logi
 without operator 4 under no dis
ounting. Onthe other hand, the theorem states that the two semanti
s always 
oin
idefor the 4
 operator.Theorem 1. The following assertions hold:1. For all labeled transition systems with propositions �, all 
ontra
tive pa-rameter interpretations of A, and all D
tl formulas � over (�;A), wehave [[�℄℄p = [[�℄℄f .2. For all boolean Markov de
ision pro
esses with propositions �, all 
on-tra
tive parameter interpretations of A, and all D
tl formulas � over(�;A) that 
ontain no nesting of path quanti�ers, we have [[�℄℄p = [[�℄℄f .3. There is a Markov 
hain S with propositions �, a 
ontra
tive parameterinterpretation A, and a D
tl formula � over (�;A) su
h that [[�℄℄p 6=[[�℄℄f .Lemma 1. For all MDPs with propositions �, all 
ontra
tive parameterinterpretations of A, and all r 2 �, we have [[94
r℄℄p = [[94
r℄℄f and[[84
r℄℄p = [[84
r℄℄f . 9



Robustness. Let S = (S; �; �; [�℄) and S 0 = (S; � 0; �; [�℄0) be twoMDPs on the same state spa
e S and set of atomi
 propositions �.jjS;S 0jj = maxs2Sfmaxr2� j[r℄(s)� [r0℄(s)j;maxa2�(s)minb2� 0(s)Ps02S ja(s0) �b(s0)j;maxb2� 0(s)mina2�(s)Ps02S ja(s0) � b(s0)jg. It is not diÆ
ult to see thatjj; jj is a metri
. For an MDP S, we write [[�℄℄fS and [[�℄℄pS to denote the semanti
sfun
tions de�ned on S.Theorem 2. Let h�i be a 
ontra
tive parameter evaluation.1. For all � > 0, there is a Æ > 0 su
h that for all formulas ' of DCTL andall states s 2 S we have j[['℄℄fS(s)� [['℄℄fS0(s)j � � for all MDPs S;S 0 withjjS;S 0jj � Æ.2. Let � be any set of DCTL formulas su
h that the maximum nesting depthof any formula in � is k. For all � > 0, there is a Æ > 0 su
h that for allformulas ' 2 � and all states s 2 S we have j[['℄℄pS(s)� [['℄℄pS0(s)j � � forall MDPs S;S 0 with jjS;S 0jj � Æ.Noti
e that we get the 
ontinuity statement for the path semanti
s onlyfor sets of formulas with bounded nesting depth. For example, 
onsider athree state Markov 
hain S = (fs0; s1; s2g; �; frg; [�℄) su
h that �(s0) is thedistribution that 
hooses s1 with probability 1 � � and 
hooses s2 withprobability �, and �(si) 
hooses si with probability 1 for i = 1; 2. Let[r℄(s0) = [r℄(s1) = 0 and [r℄(s2) = 1. Consider the Markov 
hain S 0 whi
hdi�ers from S in that �(s0) 
hooses s1 with probability 1. Then jjS;S 0jj = �.However, 
onsider the formulas (93
)nr, for n � 1. Let xn = [[(93
)nr℄℄pS(s0)(for h
i = 1). Then xn+1 = (1 � �)xn + �, and the limit as n ! 1 is 1. Onthe other hand, [[(93)nr℄℄pS0(s0) = 0 for all n.3 Model Che
king D
tl over Transition SystemsThe model-
he
king problem of a D
tl formula � over an LTS S asks to
ompute the value [[�℄℄(s) for all states s of S (sin
e both semanti
s of D
tl
oin
ide over LTSs, we write [[�℄℄ without supers
ript). Similar to Ctl model
he
king [CES83℄, we re
ursively 
onsider one of the basi
 subformulas  of �and 
ompute the valuation [[ ℄℄. Then we repla
e  in � by a new propositionp with [p ℄ = [[ ℄℄. Be
ause of duality, it suÆ
es to fo
us on model 
he
kingbasi
 formulas of the forms 93
r, 83
r, and 84
r, for a proposition r 2 �.We �x an LTS S = (S; Æ; �; [�℄) and a dis
ount interpretation h�i, and wewrite [r℄ = q and h
i = �. 10



3.1 Model Che
king 3 (and 2)The �xpoint semanti
s of D
tl suggests iterative algorithms for evaluat-ing formulas. In parti
ular, [[93
r℄℄f = limn!1 vn, where v0(s) = q(s), andvn+1(s) = q(s) t �maxfvn(s0) j s0 2 Æ(s)g for all n � 0. Over LTSs, the �x-point is rea
hed in a �nite number of steps, namely, [[93
r℄℄ = vjSj. To see this,observe that the value [[93
r℄℄f(s), the maximal (dis
ounted) maximum overall paths from s, is obtained at a state in an a
y
li
 pre�x of some path from s.The argument that [[83
r℄℄ = vjSj, where vn+1(s) = q(s) u �maxfvn(s0) js0 2 Æ(s)g, is slightly more involved. The value [[83
r℄℄f(s), the minimal (dis-
ounted) maximum over all paths from s, is again obtained at a state s0 inan a
y
li
 pre�x of some path � from s. This is be
ause if some state s00 wererepeated on � before s0, then the path �0 that results from � by in�nitely visit-ing s00 (and never visiting s0) would a
hieve a smaller (dis
ounted) maximumthan �.Lemma 2. The evaluation of the �xpoint formulas for [[83
r℄℄f and [[93
r℄℄fterminates after at most jSj iterations.3.2 Model Che
king 4Computing [[84
r℄℄(s) 
onsists in minimizing the (dis
ounted) average [[4
r℄℄over the paths from s. The (undis
ounted) 
ase � = 1 is 
overed in Theo-rem 4.1 of [ZP96℄: the value [[841r℄℄(s) is the minimummean weight of a 
y
lerea
hable from s, whi
h 
an be found using Karp's algorithm in O(jSj�jÆj)time. For � < 1, the reasoning of [ZP96℄ 
an be used to show that the min-imal dis
ounted average is obtained on a path �0 from s whi
h, after somepre�x � keeps repeating some simple 
y
le `. Hen
e ` 
ontains at most jSjstates. To �nd �0, we use two steps. In the �rst phase, we �nd for ea
h states the simple 
y
le ` starting at s with the minimal dis
ounted average. Inthe se
ond phase, we �nd the best pre�x-
y
le 
ombination �`!.Phase 1. We need to 
ompute L�(s) = minf[[4
r℄℄p(�) j � 2 Traj (s); � =(s0s1s2 : : : sn�1)!; n � jSjg, where the value [[4
r℄℄p(�) is given by 1��1��n �Pn�1i=0 �i�q(si). Consider the re
ursion v0(s; s0) = 0 and vn+1(s; s0) = q(s) +��minfvn(t; s0) j t 2 Æ(s)g. Then vn(s; s0) minimizes Pn�1i=0 �i�q(si) over all�nite paths s0s1 : : : sn with s0 = s and sn = s0. Hen
eL�(s) = (1� �)�minn v1(s;s)1��1 ; v2(s;s)1��2 ; : : : ; vjSj�1(s;s)1��jSj�1 o :11



For a �xed s0, 
omputing minfvn(t; s0) j t 2 Æ(s)g for all s 2 S 
an be donein O(jÆj) time. Therefore, vn+1 is obtained from vn in O(jSj2 + jSj�jÆj) =O(jSj�jÆj) time. Hen
e, the 
omputation of vjSj and L� requires O(jSj2�jÆj)time.Phase 2. After a pre�x of length n, the 
ost L�(s) of repeating a 
y
le atstate s has to be dis
ounted by �n, whi
h is exa
tly the fa
tor by whi
h wedis
ount q(s) after taking that pre�x. Hen
e, we modify the original LTS Sinto an LTS S+, as follows. For every state s 2 S, we add a 
opy bs whoseweight w+(ŝ) we set to L�(s); the weights w+(s) of states s 2 S remainq(s). Moreover, for every t 2 S and s 2 Æ(t), we add bs as a su

essor to t,that is, Æ+(t) = Æ(t) [ fŝ j s 2 Æ(t)g and Æ+(ŝ) = fŝg. Taking the transitionfrom t to bs 
orresponds to moving to s and repeating the optimal 
y
le fromthere. We 
an �nd the value of the optimal pre�x-
y
le 
ombination startingfrom s as the dis
ounted distan
e from s to Ŝ = fŝ j s 2 Sg in the modi�edgraph S+ with weigths w+. Formally, given an LTS S, a state s, a weightfun
tion w: S ! R�0 , a dis
ount fa
tor �, and a target set T , the minimaldis
ounted distan
e from s to T is minfPn�1i=0 �i � w(si) j s0s1 : : : sn�1 2FTraj (s); sn�1 2 Tg. This 
an be 
omputed by a dis
ounted version of theBellman-Ford algorithm for �nding shortest paths:fun
tion Dis
ountedDistan
e(S; w; �; T ) :for every s 2 S doif s 2 T then d(s) := w(s) else d(s) := 1;for i := 1 to jSj � 1 dofor ea
h s0 2 Æ(s) doif d(s) > w(s) + � � d(s0) then d(s) := w(s) + � � d(s0);return d.Like the standard version, dis
ounted Bellman-Ford runs in O(jSj�jÆj) time.Thus, the 
omplexity of 
omputing [[84
r℄℄ is dominated by the �rst phase.We 
on
lude that the overall 
omplexity of model 
he
king a D
tl formulais polynomial in the size of the system and the size of the formula.Theorem 3. Given a D
tl formula �, an LTS S = (S; Æ; P; [�℄), and adis
ount interpretation h�i, the problem of model 
he
king � over S w.r.t. h�i
an be solved in time O(jSj2�jÆj � j�j).12



4 Model Che
king D
tl over Markov ChainsModel 
he
king 3 and 2: First Algorithm. Given a Markov 
hain(S; �; �; [�℄), with r 2 �, and a parameter interpretation h�i, we wish toevaluate [[93
r℄℄p(s), for all states s 2 S. As before, let q = [r℄ and � = h
i.We give the algorithm for the 
ase � < 1: the 
ase for � = 1 
an be solvedalong similar lines. When evaluating [[93
r℄℄p in a state s, we 
an start withthe initial estimate of q(s). If s is the state smax with the maximum value of q,the initial estimate is the 
orre
t value. If s has the se
ond greatest value forq, the estimate 
an only be improved if smax is hit within a 
ertain numberl of steps, namely before the dis
ount �l be
omes smaller than q(s)=q(smax).This argument 
an be re
ursively applied to all states.Let s1; : : : ; sn be an ordering of the elements of S su
h that q(s1) �q(s2) � : : : � q(sn). Let P be the sto
hasti
 matrix asso
iated with the
hain, with P (i; j) = psi;sj . For all 0 � j < i � n, su
h that q(si) > 0,let ki;j = blog� q(si)q(sj)
, with the 
onvention that log� 0 = 1. Let v(si) =[[93�r℄℄p(si). Then, v(s1) = q(s1), and we 
an express the value of v(si) interms of the values v(s1); : : : ; v(si�1). Let K = maxfki;j j ki;j <1g, and forall l > 0, let Bil = fsj j j < i and ki;j � lg. Intuitively, Bil 
ontains thosestates that, if hit after l steps from si, 
an in
uen
e (in
rease) the value ofv(si). For the generi
 state si, the following holds.v(si) = q(si) � stay i + i�1Xj=1 v(sj) � ki;jXl=1 �lgoij;l; (1)where stay i = Prsi �Vl>0Zl 62 Bil� and goij;l =Prsi hZl = sj ^Vl�1m=1 Zm 62 Bimi. It is easy to 
he
k that stay i +Pi�1j=1Pki;jl=1 goij;l = 1. In the �rst phase, we deal with states si su
hthat q(si) > 0. Sin
e the sequen
e (Bil )l>0 is de
reasing, it 
an have at mostjSj di�erent values. It follows that there exist integers bi1 � : : : � bim 2 IN andsets X i1; : : : ; X im � S, su
h that bi1 = 1, bim = K and, for all k = 1; : : : ; m� 1and for all bik � l < bik+1, Bil = X ik. Noti
e that we 
an 
ompute the a
tualvalue of the indi
es bi1; : : : ; bim in time O(jSj � log jSj), by ordering the valueski;j in a non-de
reasing fashion and getting rid of the dupli
ates. Let P ikbe the matrix obtained from P by turning the states in X ik into absorbing13



states (sinks). Then,goij;l = �(P i1)bi1 � (P i2)bi2�bi1 � : : : � (P ik�1)bik�1�bik�2 � (P ik)l�bik� (i; j); for bik � l < bik+1:ki;jXl=1 �lgoij;l = mXk=1 bik+1�1Xl=bik �lgoij;l= � mXk=1�bik (P i1)bi1 � (P i2)bi2�bi1 � : : : � (P ik�1)bik�1�bik�2 � bik+1�bik�1Xl=0 �l(P ik)l�(i; j)= � mXk=1�bik (P i1)bi1 � (P i2)bi2�bi1 � : : : � (P ik�1)bik�1�bik�2 � I � (�P ik)bik�bik�1+1I � �P ik �(i; j):Ea
h matrix (P ik)h 
an be 
omputed by repeated squaring in time O(jSj3 �log h). Some further 
al
ulations show that, for a �xed i, both Pki;jl=1 �lgoij;land Pki;jl=1 goij;l 
an be 
omputed in time O(jSj4 � logK). The value stay i isgiven by 1 �Pj;l goij;l. The total 
omplexity of this phase is thus O(jSj5 �logK).In the se
ond phase we 
onsider those states si su
h that q(si) = 0. Letu be the smallest index i su
h that q(si) = 0, For ea
h i � u, (1) be
omes:v(si) = u�1Xj=1 v(sj) � 1Xl=1 �lgoij;l:In this 
ase, goij;l is the probability of hitting sj after exa
tly l steps, while inthe meanwhile avoiding all states with indi
es smaller than u. To eÆ
iently
ompute v(si), we de�ne a sto
hasti
 matrix P0 from P by adding an absorb-ing state t and using t to turn all states sj with j < u into transient states.Also, we set �v to be the 
olumn ve
tor 
ontaining the 
orre
t value v(si), ifi < u, and zero otherwise. Then,v(si) = u�1Xj=1 v(sj) � 1Xl=1 �l � (P0)l(i; j) = ((I � �P0)�1 � �v)(i); (2)where I denotes the identity matrix. Solving the system (2) takes timeO(jSj3) using LUP de
omposition. The time spent in the two phases amountsto O(jSj5 � logK).Se
ond Algorithm. We present a di�erent version of the �rst phase. Thesymbols s1; : : : ; sn, ki;j, Bil , stay i, and goij;l are de�ned as before.14



Consider again equation 1. For i = 1; : : : ; n, let Ki = maxfki;1; : : : ; ki;i�1g.For states si su
h that q(si) > 0, we 
an 
ompute the values goij;l as follows.For l > 0, let Cil be the event \Zl 62 Bil". It holds that goij;l = Prsi[Zl =sj \ Ci1 \ : : : \ Cil�1℄ = Prsi[Zl = sj j Ci1 \ : : : \ Cil�1℄ � Prsi [Cil�1 j Ci1 \ : : : \Cil�2℄ � : : : �Prsi [Ci1℄. For ea
h j = 1; : : : ; i�1 and l > 0, let p(sj; l) = Prsi[Zl =sj j Tl�1m=1 Zm 62 Bim℄. In words, p(sj; l) is the probability that, starting insi, the system rea
hes sj after exa
tly l steps, given that in ea
h previousstep it does not hit states that 
an in
uen
e v(si). For all j = 1; : : : ; n and0 < l � K, we 
an 
ompute Prsi[Cil j Ci1 \ : : : \ Cil�1℄ together with p(sj; l)using the following re
ursion:p(sj ; 1) = P (i; j)Prsi [Ci1℄ =Xfp(st; l) j st 62 Bi1gp(sj ; l+ 1) = 1Prsi [Cil j Ci1 \ : : : \ Cil�1℄ �XfP (t; j) � p(st; l) j st 62 BilgPrsi [Cil+1 j Ci1 \ : : : \ Cil ℄ =Xfp(st; l) j st 62 Bil+1gFor a �xed i, the previous re
ursion takes time O(jSj2 �K). Then,goij;l = p(sj; l) � l�1Ym=1Prsi �Cim j Ci1 \ : : : \ Cim�1� : (3)It follows that, for a �xed i, all values goij;l 
an be 
omputed in time O(jSj2 �K). The value stay i is given by 1 �Pj;l goij;l. Running this pro
edure forevery state with nonzero value of q takes thus O(jSj3 �K).If we use the �rst algorithm for the states s with q(s) = 0, we obtainan alternative algorithm for Model Che
king [[93
r℄℄p, whose 
omplexity isO(jSj3 �K). Noti
e that if the matrix P is represented as an jSj � jSj array,the previous 
omplexity is less than quadrati
 in the size of the input. Whi
halgorithm performs better on a given instan
e of the problem depends 
learlyon the ratio jSj2�logKK , the �rst algorithm being preferable when the ratio issmaller than 1.Model 
he
king 4. Let P be the sto
hasti
 matrix representing a Markov
hain (S; �; �; [�℄) and let h�i be a parameter interpretation. As before, letr 2 �, q = [r℄ and � = h
i. If we let [[94
r℄℄ and q denote 
olumn ve
tors,we obtain the following 
lassi
al equation [FV97℄:[[94
r℄℄ = (1� �) �Xi�0 �iP iq = (1� �) � (I � �P )�1q;15



where I is the identity matrix. Thus, we 
an 
ompute the value [[94
r℄℄(s) forea
h state s 2 S by solving a linear system with jSj variables. This takes timeO(jSjlog2 7) using Strassen's algorithm or O(jSj3) using LUP de
omposition.Complexity of D
tl Model Che
king over Markov Chains. Theoverall 
omplexity is polynomial in the size of the system and the size of theformula. For this result, we assume that the basi
 operations su
h as additionand multipli
ation 
an be done in 
onstant time.Theorem 4. Given a D
tl formula �, a Markov 
hain S = (S; �; P; [�℄),and a dis
ount interpretation h�i, the problem of model 
he
king S w.r.t. �and h�i 
an be solved in time polynomial in jSj, j[�℄jb, jh�ijb and j�j.5 Model Che
king D
tl over Markov De
isionPro
essesFor Markov de
ision pro
esses, the path and the �xpoint semanti
s do not
oin
ide, as stated by Theorem 1: hen
e, we need to provide algorithms forboth semanti
s. In view of the duality laws for negation, and in view of there
ursive de�nition of D
tl, it suÆ
es to provide algorithms for 
omputing93
r, 83
r, 94
r, and 84
r, for a predi
ate r. We 
onsider a Markov de-
ision pro
ess S = (S; �; �; [�℄) and a dis
ount interpretation h�i; to simplifythe notation, we let [r℄ = q and h
i = �.5.1 Model Che
king 3 in the path Semanti
sIf � = 0, then trivially [[93
r℄℄p(s) = [[83
r℄℄p(s) = q(s) at all s 2 S, so inthe following we assume 0 < � � 1. The problem of 
omputing [[93
r℄℄p onan MDP 
an be viewed as an optimization problem, where the goal is tomaximize the expe
ted value of the sup of q over a path. As a preliminarystep to solve the problem, we note that in general the optimal strategy ishistory dependent, that is, the 
hoi
e of distribution at a state depends ingeneral on the past sequen
e of states visited by the path.Example 1. Consider the system in Figure 1 and assume � = 1. The optimal
hoi
e in state t2 depends on whether t1 was hit or not. If it was, the 
urrentsup is 0:8 and the right 
hoi
e is a1, be
ause with probability 12 the sup willin
rease to 1. If t2 was not hit, the right 
hoi
e is a2, be
ause it gives a 
ertaingain of 0:8. 16



s2s q = 0t1q = 0 t5t4t31/21/2 q = 1q = 0:8q = 0q = 0:8 a1a2Fig. 1. An MDP requiring a memory strategy for [[93
r℄℄p(s).While the above example indi
ates that the optimal strategy is in generalhistory-dependent, it also suggests that all a strategy needs to remember isthe sup value that has o

urred so far along the path. For � 2 �, s 2 S, andx 2 IR we de�ne Esup�(s; x) = E�s [x t supi>0 �iq(Zi)℄:The term x 
orresponds to the (appropriately dis
ounted) sup value thathas o

urred so far in the past of a path. Obviously, [[93
r℄℄p(s) =sup�2� Esup�(s; q(s)) and [[83
r℄℄p(s) = inf�2� Esup�(s; q(s)). For a strat-egy � and s 2 S, let Pr(t j s; �) =Pa2�(s) �(s)(a) a(t) be the probability ofa transition from s to t under �, and let �[s℄ to be the strategy de�ned by�[s℄(�) = �(s�) for all � 2 Traj . In words, �[s℄ is the strategy that behaveslike � after an initial transition from s. For all s 2 S and x 2 IR, the quantityEsup�(s; x) satis�es the following re
urren
e equation:Esup�(s; x) = �Xt2S Esup�[s℄(t; x� t q(t)) Pr(t j s; �): (4)Intuitively, this re
ursion 
an be understood as follows. Under strategy �, at astate s = sm of a path s0s1 : : :, the quantity Esup�(sm; x) represents the valueof supi>0E�sm[�iq(Zi)℄ given that sup0�i�m ��iq(sm�i) = x. The re
ursion (4)then relates Esup�(s; x) to Esup�[s℄(t; y) at the su

essorts t of s, where at twe 
onsider the new 
onditioning y = x=� t q(t), thus dis
ounting x by ��1(as s is one step before t), and taking into a

ount the value q(s) seen at s.17



The re
ursion (4) 
an be proved as follows.�Xt2S Esup�[s℄(t; x� t q(t)) Pr(t j s; �)=�Xt2S E�[s℄t hx� t q(t) t supi>0 �iq(Zi)iPr(t j s; �)=Xt2S E�[s℄t hx t �q(t) t supi>0 �i+1q(Zi)iPr(t j s; �)=Xt2S E�[s℄t hx t supi�0 �i+1q(Zi)iPr(t j s; �)=E�shx t supi>0 �iq(Zi)i:The idea behind the 
omputation of sup�2� Esup�(s; q(s)) is to turn the re-
urren
e equation (4) into an optimization problem, where at ea
h s 2 Swe seek the strategy � that maximizes the right hand side. The optimiza-tion problem to 
ompute these quantities is phrased in terms of the variablesv(s; x), representing the value of Esup(s; x). Sin
e we are ultimately inter-ested in the value of Esup(s; q(s)) for s 2 S, and sin
e if x � 1 we haveEsup�0(t; x) = x for all t 2 S and �0 2 �, it suÆ
es to 
onsider values for xthat belong to the �nite set X = fq(s)=�k j s 2 S u k 2 IN u q(s) < �kg. Weset up the following set of equations in the variables fv(s; x) j s 2 Sux 2 Xg:v(s; x) = 8<:x if x � 1;x t � maxa2�(s)Xt2S v(t; x� t q(t)) a(t) otherwise. (5)The following theorem relates the least �xpoint of (5) to [[93
r℄℄p.Theorem 5. Let fv�(s; x) j s 2 S u x 2 Xg be the least (pointwise) �xedpoint of the set of equations (5). Then, we have [[93
r℄℄p(s) = v�(s; q(s)) forall s 2 S.Proof. We 
onsider an iterative evaluation of the least �xpoint (5), given byv0(s; x) = x and, for k � 0, byvn+1(s; x) = 8<:x if x � 1;� maxa2�(s)Xt2S vn(t; x� t q(t)) a(t) otherwise. (6)18



The proof 
onsists of two parts: (i) showing that for all s 2 S and x 2 Xthere is a strategy �� 2 � su
h that E��s [x t sup0<i�n �iq(Zi)℄ = vn(s; x),and (ii) showing that for all � 2 �, all s 2 S, and all x 2 X we haveE�s [x t sup0<i�n �iq(Zi)℄ � vn(s; x). On
e (i) and (ii) are proved, the resultfollows fromlimn!1 vn = v� limn!1E�s [x t sup0�i�n�iq(Zi)℄ = E�s [x t supi�0 �iq(Zi)℄:We prove only (i), sin
e the proof of (ii) is similar. First, noti
e that if wede�ne X 0 = fq(s)=�k j s 2 S u k 2 INg, (6) 
an be written asvn+1(s; x) = � maxa2�(s)Xt2S vn(t; x� t q(t)) a(t) (7)for all s 2 S and x 2 X 0. The strategy �� is in general a fun
tion of hs; xi 2S�X 0. We de�ne it indu
tively: ��0 is arbitrary; for n � 0, ��n+1 �rst 
hoosesa distribution a 2 �(s) that realizes the maximum in (6), and then upona transition from s to some t 2 S, pro
eeds as ��n from ht; x� t q(t)i. Byindu
tion, pro
eeding in analogy with the proof of (4), we have for all n � 0,all s 2 S and all x 2 X 0:vn+1(s; x) = � maxa2�(s)Xt2S vn(t; x� t q(t)) a(t)= � maxa2�(s)Xt2S E��nt hx� t q(t) t sup0<i�n�iq(Zi)i a(t)= maxa2�(s)Xt2S E��nt hx t �q(t) t sup0<i�n�i+1q(Zi)i a(t)= maxa2�(s)Xt2S E��nt hx t sup0�i�n�i+1q(Zi)i a(t)= E��n+1s hx t sup0<i�n�iq(Zi)i;leading to the desired result.To 
ompute [[83
r℄℄p, we simply repla
e maxa2�(s) with mina2�(s) in (5), andagain 
onsider the least �xed point. The least �xed points for [[93
r℄℄p and[[83
r℄℄p 
an be 
omputed by linear programming, following a standard ap-proa
h. 19



Theorem 6. The following assertions hold.1. Consider the following linear programming problem in the set of variablesfv(s; x) j s 2 S u x 2 Xg: minimize Ps2SPx2X v(s; x) subje
t tov(s; x) � x v(s; x) � �Xt2S ~v(t; x� t q(t)) a(t)for all s 2 S, all x 2 X, and all a 2 �(s), where ~v(t; x) is 1 if x � 1and is v(t; x) otherwise. Denote by fv̂(s; x) j s 2 S u x 2 Xg an optimalsolution. Then, v̂(s; q(s)) = v�(s; q(s)) = [[93
r℄℄p(s).2. Consider the following linear programming problem in the set of variablesfv(s; x); u(s; x) j s 2 S ux 2 Xg: minimizePs2SPx2X(v(s; x)�u(s; x))subje
t tov(s; x) � x v(s; x) � u(s; x) u(s; x) � �Xt2S ~v(t; x� t q(t)) a(t)for all s 2 S, all x 2 X, and all a 2 �(s), where ~v(t; x) is 1 if x � 1and is v(t; x) otherwise. Denote by fv̂(s; x); û(s; x) j s 2 S u x 2 Xg anoptimal solution. Then, v̂(s; q(s)) = v�(s; q(s)) = [[83
r℄℄p(s).The linear programming problems in the above theorem 
onsist of at most2�jSj�jXj variables. If � = 1, then jXj = jSj; otherwise, jXj = �jSj log� qmin ,where qmin = minfq(s) j s 2 Suq(s) > 0g. Finally, noti
e that jXj is linear inthe size of the input en
oding of the MDP, if q-values are en
oded in binarynotation. This leads to the following result.Corollary 1. For an MDP S = (S; �; �; [�℄) and r 2 �, the valuations[[93
r℄℄p and [[83
r℄℄p 
an be 
omputed in time polynomial in jSjb and jh
ijb.In addition to linear programming, it is possible to 
ompute [[93
r℄℄p and[[83
r℄℄p also by value iteration, using (6), as well as by poli
y iteration,adapting standard algorithms to the task (see e.g. [Ber95℄).5.2 Model Che
king 3 in the �xpoint semanti
s.The 
omputation of [[93
r℄℄f and [[83
r℄℄f on an MDP 
an be performedby transforming the �xpoints into linear programming problems, followinga standard approa
h. For example, for [[83
r℄℄f we 
onsider the followinglinear programming problem in the set of variables fv(s); u(s) j s 2 Sg:20



minimize Ps2S(v(s) � u(s)) subje
t to v(s) � q(s), v(s) � u(s), andu(s) � �Pt2S v(t)a(t) for all s 2 S and all a 2 �(s). Denoting withfv�(s); u�(s) 2 IR j s 2 Sg an optimal solution, we have [[83
r℄℄f(s) = v�(s)at all s 2 S. Again, this 
an be solved in time polynomial in jSjb and j�jb.Theorem 7. The following assertions hold.1. Consider the following linear programming problem in the set of variablesfv(s) j s 2 Sg: minimize Ps2S v(s) subje
t to v(s) � q(s) and v(s) ��Pt2S v(t)a(t) for all s 2 S and all a 2 �(s). Denoting with fv�(s) 2IR j s 2 Sg an optimal solution, we have [[93
r℄℄f(s) = v�(s) at all s 2 S.2. Consider the following linear programming problem in the set of variablesfv(s); u(s) j s 2 Sg: minimize Ps2S(v(s)� u(s)) subje
t to v(s) � q(s),v(s) � u(s), and u(s) � �Pt2S v(t)a(t) for all s 2 S and all a 2 �(s).Denoting with fv�(s); u�(s) 2 IR j s 2 Sg an optimal solution, we have[[83
r℄℄f(s) = v�(s) at all s 2 S.Corollary 2. For an MDP S = (S; �; �; [�℄) and r 2 �, the valuations[[93
r℄℄f and [[83
r℄℄f 
an be 
omputed in time polynomial in jSjb and jh
ijb.5.3 Model Che
king 4.In an MDP, for � < 1, we have that [[94
r℄℄p = [[94
r℄℄f ; hen
e, a sin-gle model-
he
king algorithm suÆ
es for both semanti
s. Noti
e also that[[84
r℄℄p = 1 � [[94
:r℄℄p, so that we need to 
onsider only the path quan-ti�er 9. On the other hand, we must distinguish the 
ase where � < 1 fromthe 
ase � = 1 (meaningful only for the path semanti
s), sin
e the dynami
programming algorithms required for solving these problems are rather dif-ferent. For � < 1, the problem 
an be solved by the standard methods usedfor dis
ounted long-run average problems [Ber95℄.Proposition 1. Assume � < 1, and 
onsider the following linear program-ming problem in the set of variables fv(s) j s 2 Sg: minimize Ps2S v(s)subje
t to v(s) � (1��)q(s)+�Pt2S v(t)a(t) for all s 2 S and all a 2 �(s).Denoting by fv�(s) j s 2 Sg an optimal solution, we have [[94
r℄℄p(s) = v�(s)for all s 2 S.If � = 1, the problem 
onsists in 
omputing the maximal long-run averagereward (or 
ost) of an MDP. The 
lassi
al solutions for this problem, unfortu-nately, rely on stru
tural assumptions about the MDP [Ber95℄: i.e. every state21



is rea
hable with positive probability from every other state. These restri
-tions 
an be over
ome, using the methods of [dA97℄. The idea is to separatelyanalyze ea
h maximal end 
omponent, and then 
ombine the results as aninstan
e of an undis
ounted rea
hability problem.5.4 Complexity of D
tl model 
he
king over MDPs.The following result summarizes the 
omplexity of model-
he
king D
tlformulas over MDPs.Theorem 8. Given a D
tl formula �, an MDP S, and a dis
ount inter-pretation h�i, we 
an 
ompute [[�℄℄p and [[�℄℄f over S for h�i in time polynomialin jSjb and jh�ijb and exponential in j�j.The exponential dependen
y on the length of � is due to the fa
t that model
he
king 93r and 94r requires polynomial time in j[r℄jb, and may produ
evaluations [[93r℄℄ and [[94r℄℄ whose binary en
oding size is polynomial inj[r℄jb, leading to a potential exponential blow-up of the binary en
odings ofthe valuations.Referen
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