Model Checking Discounted Temporal
Properties

Luca de Alfaro', Marco Faella'®, Thomas A. Henzinger?, Rupak
Majumdar?, and Mariélle Stoelinga!

! CE, Universitity of California, Santa Cruz, USA
2 EECS, University of California, Berkeley, USA
3 Universita degli Studi di Salerno, Ttaly

University of California, Santa Cruz
Technical Report UCSC-CRL-03-12

October 29, 2003

Abstract. Temporal logic is two-valued: a property is either true or false. When
applied to the analysis of stochastic systems, or of systems with imprecise formal
models, temporal logic is therefore fragile: even small changes in the model can
lead to opposite truth values for the specification. We present a generalization of
the branching-time logic CTL that achieves robustness with respect to model pertur-
bations by giving a quantitative interpretation to predicates and logical operators,
and by discounting the importance of events according to how late they occur.

In every state, the value of a formula is a real number in the interval [0,1], where
1 corresponds to truth and 0 to falsehood. The boolean operators and and or are
replaced by min and max, the path quantifiers E and A determine sup and inf over
all paths from a given state, and the temporal operators F and G specify sup and
inf over a given path; a new operator averages all values along a path. Furthermore,
all path operators are discounted by a parameter that can be chosen to give more
weight to states that are closer to the beginning of the path.

We interpret the resulting logic DCTL over transition systems, Markov chains, and
Markov decision processes. We provide examples and robustness theorems that
demonstrate the usefulness of DcTL for specifying performance properties of sys-
tems. We also present model-checking algorithms, and we show that over proba-
bilistic systems the logic cannot be model-checked via the usual connection to the
mu-calculus.

1 Introduction

Boolean state-transition models are useful for the representation and verifi-
cation of computational systems, such as hardware and software systems. A
boolean state-transition model is a labeled directed graph, whose vertices
represent system states, whose edges represent state changes, and whose
labels represent boolean observations about the system, such as the truth
values of state predicates. Behavioral properties of boolean state-transition
systems can be specified in temporal logic [CGP99,MP91] and verified using
model-checking algorithms [CGP99].

For representing systems that are not purely computational but partly
physical, such as hardware and software that interacts with a physical envi-
ronment, boolean state-transition models are often inadequate. Many quanti-
tative extensions of state-transition models have been proposed for this pur-
pose, such as models that embed state changes into the real time line [AD94]
and models that assign probabilities to state changes. These models typically
contain real numbers, e.g., for representing time or probabilities. Yet previous
research has focused mostly on purely boolean frameworks for the specifica-
tion and verification of quantitative state-transition models, where obser-
vations are truth values of state predicates, and behavioral properties are
based on such boolean observations [Han94,BdA95BHHK00,Kwi03]. These
boolean specification frameworks are fragile with respect to imprecisions in
the model: even arbitrarily small changes in the quantitative models can
cause different truth values for the specification.

We submit that a proper framework for the specification and verifica-
tion of quantitative state-transition models should itself be quantitative. To
start with, we consider observations that do not have boolean truth values,
but real values [Koz83]. Using these quantitative observations, we build a
temporal logic for specifying quantitative temporal properties. A CtL-like
temporal logic has three kinds of operators. The first kind are boolean op-
erators such as “and” and “or” for locally combining the truth values of
boolean observations. These are replaced by “min” and “max” operators for
combining the real values of quantitative observations. In addition, a binary
“average” operator is useful to generate new quantitative observations. The
second kind of constructs are modal operators “always” (O) and “eventually”
(©) for temporally combining the truth values of all boolean observations
along an infinite path. These are replaced by “inf” (“lim min”) and “sup”
(“lim max”) operators over infinite sequences of real values. We introduce a

“lim avg” (A) operator that captures the long-run average value of a quan-
titative observation. For nondeterministic models, where there is a choice
of future behaviors, there is a third kind of construct: the path quantifiers
“for-all-possible-futures” (V) and “for-some-possible-future” (3) turn path
properties into state properties by quantifying over the paths from a given
state. These are replaced by “inf-over-all-possible-futures” and “sup-over-all-
possible-futures.” Once boolean specifications are replaced by quantitative
specifications, it becomes possible to discount the future, that is, to give
more weight to the near future than to the far away future. This principle is
well-understood in economics and in the theory of optimal control [Ber95],
but equally natural in studying quantitative temporal properties of systems.
We call the resulting logic DcTL (“Discounted CTL”). While quantitative
versions of dynamic logics [Koz83|, p-calculi [HK97,McI98, MM02,dAHMO03|
and local Hennessy-Milner logics [DEP02] exist, DCTL is the first temporal
logic in which the basic operators (the temporal operators & and O, along
with the new temporal operator A, and the path quantifiers ¥V and 3) are
given a quantitative interpretation.

We propose two semantics for DCTL: a path semantics, and a fizpoint
semantics. In the (undiscounted) path semantics, the & (resp. O) operator
computes the sup (resp. inf) over a path, and the A operator computes the
long-run average. The discounted versions <., O,, and A, of these operators
weigh the value of a state that occurs k steps in the future by a factor a*,
where a < 1 is the discount factor. The V and 4 operators then combine
these values over the paths: in transition systems, V and 3 simply associate
with each state the inf and sup of the values of the paths leaving a state;
in probabilistic systems, V and 3 associate with each state the least and
greatest expected value of a the value over a path, respectively. Thus, the
path semantics of DCTL is obtained by lifting to a quantitative setting the

classical interpretation of path and state formulas in CTL.

The fizpoint semantics is obtained by lifting to a quantitative setting
the connection between CTL and p-calculus [EL86,CGP99]. In a transition
system, given a set r of states, denote by JPre(r) the set of all states that
have a one-step transition to r. Then, the semantics of 3O for a set of states
r can be defined as the least fixpoint of the equality x = rU3Pre(x), (denoted
px.(r U3Pre(x))). We can lift this definition to a quantitative setting, by
interpreting U as pointwise maximum, and 3Pre(z) as the maximal expected
value of z achievable in one step [IAHMO03]. The discounted semantics 3,7

is obtained simply by multiplying the next-step expectation by «: pz.(rUa-
dPre(x)).

The path and fixpoint semantics coincide
on transition systems, but differ on Markov
chains (and consequently on Markov decision
processes). This is illustrated by the Markov ¢=o0.2
chain depicted at right. Consider the DcTL for-
mula ¢ : 3C,q, for @ = 0.8. According to the
path semantics, there are two paths from s,
each followed with probability 1/2: the first path has discounted sup equal
to 0.8, and the second has discounted sup equal to 0.2; hence, ¢ has value
(0.840.2)/2 = 0.5 at sy. According to the fixpoint semantics, [¢]U0.8-3Pre(q)
has value max{0.2,0.8 - (14 0)/2)} = 0.4 at sg, and this is also the value of
¢ at sg. This example highlights the different perspective taken by the two
semantics. The path semantics of 4C¢ is an “observational” semantics: if ¢
represents, for instance, the level of water in a vessel (0 is empty, 1 is full),
then d<$q is the expected value of the maximum level that occurs along a
system behavior. Such semantics is well suited to system specification. The
fixpoint semantics of 4Cq is a “controlling” semantics: if ¢ represents the
retirement bonus that we receive if we decide to retire, then 3¢¢ is the max-
imal expected bonus we will receive (discounting accounts for inflation). The
difference is that in the fixpoint semantics we must decide when to stop: the
choice of retiring, or working for one more day, corresponds to the choice
between the two sides ¢ and IPre(z) of the the U operator (interpreted as
pointwise maximum) in the fixpoint. In the path semantics, on the other
hand, we have no control over stopping: we can only observe the value of ¢
over infinite runs, and compute the expected value of the sup it reaches. The
fixpoint semantics is better suited to system control: if the goal is to reach a
state with high value of ¢, we must not only reach such a state, but also be
able to stop, once satisfied by a sufficiently high value of ¢, and move on to
some subsequent control goal.

In DcTL, discounting serves two purposes. First, it leads to a notion of
“quality” with which a specification is satisfied. For example, if we wish to
reach a state with high value of ¢, then the undiscounted formula 3¢ is valid
regardless on when a high value of ¢ is reached, whereas 3¢ ,q, for a < 1,
prizes the case where the high ¢ is reached earlier. Likewise, if ¢ represents
the “level of functionality” of a system, then the specification VO,q will
have a value that is higher, the longer the system functions well, even if the

system will eventually always break. Second, discounting is instrumental in
achieving robustness with respect to system perturbations. Indeed, we will
show that for discount factors smaller than 1, the value of DcTL formulas
in both semantics is a continuous function of the values of the numerical
quantities (observations, transition probabilities) of the model.

We present algorithms for model checking both semantics of DCTL over
transition systems, Markov chains, and Markov decision processes. Note that
DcTL is a quantitative logic even when interpreted over purely boolean state-
transition systems, for discount factors less than 1. Over transition systems,
the algorithms for O, and <, are based on iterating quantitative fixpoint
expressions; the main result in this regard is that the iteration always ter-
minates within a finite number of steps which is bounded by the diameter
of the system. The algorithm for A, (discounted long-run average along a
path) is more involved, but still polynomial: it builds on both Karp’s algo-
rithm for computing minimum mean-weight cycles and a discounted version
of Bellman-Ford for computing shortest paths.

For Markov chains and Markov processes, we can model check the fixpoint
semantics of DCTL by relying on a mix of results from optimal control [Ber95]
and quantitative p-calculus [AAHMO3]. On the other hand, model checking
the path semantics of DcTL over Markov chains and Markov decision pro-
cesses requires novel algorithms. Indeed, in spite of the fact that MDPs have
been heavily studied, no algorithms for solving this natural problem — com-
pute the maximal expectation of the sup along a path were previously
known, neither in the discounted, nor in the undiscounted, setting.

In all cases, we show that the model checking problem for DCTL can be
solved in time polynomial in the size of the system. For transition systems
and Markov chains, the time required is also polynomial in the size of the
DctL formula. For Markov decision processes, the time required is instead
exponential in the depth of the DcTL formula, as the bit-wise encoding of
valuations is subject to growing at each nesting of the temporal operators.!

! In practice, unless the algorithms are implemented with arbitrary-precision arithmetic, the
time for DcTL model checking over Markov decision processes is polynomial in the size of the
DcrL formula.

2 Discounted CTL

2.1 Syntax

Let X be a set of propositions and let A be a set of parameters. The DCTL
formulas over (X, A) are generated by the grammar

¢ n=1|T|F[OVS|oNG| 0| B0 [T |V
77/} = <>c¢|Dc¢|Ac¢

where r € Y is a proposition and ¢ € A is a parameter. The formulas
generated by ¢ are state formulas; the formulas generated by ¢ are path
formulas. The DCTL formulas are the state formulas. We say that the formula
¢ is a basic formula if every non-trivial subformula of ¢ is a proposition.

2.2 Semantics for Labeled Transition Systems

We define two semantics for DCTL: the path semantics, and the fixpoint
semantics. In the path semantics, the path operators ¢& and O determine
the discounted sup and inf values over a path, and the 4 and V operators
determine the minimum and maximum values of the path formula over all
paths from a given state. The fixpoint semantics is defined by lifting to a
quantitative setting the usual connection between CTL and p-calculus.

Discount factors. Let A be a set of parameters. A parameter interpretation
of A is a function (-): A — [0,1] which assigns to each parameter a real
between 0 and 1. If 0 < (¢) < 1, then {c) is called a discount factor. The
interpretation (-) is contractive if (c¢) < 1 for all ¢ € A; it is undiscounted if
(c) =1 for all ¢ € A. We write Z4 for the set of parameter interpretations
of A. We denote by |g|, the length of the binary encoding of a number ¢ € Q,
and we denote by [(-)[y = D, 4 [(a)]s the size of the interpretation (-) of A.

Valuations. Let S be a set of states. A wvaluation on S is a function v:
S — [0, 1] which assigns to each state a real between 0 and 1. The valuation
v is boolean if v(s) € {0,1} for all s € S. We write Vg for the set of valuations
on S. We write 0 for the valuation that maps all states to 0, and 1 for the
valuation that maps all states to 1. For two real numbers uq, us and a discount
factor a € [0, 1] we write u; Uuy for max{uy, us}, uy Muy for min{wu;, us}, and
U1 +4 ug for (1 — a)-uy + a-uy. We lift operations on reals to operations on
valuations in a pointwise fashion; for example, for two valuations vy, vy € Vg,
by vy Lve we denote the valuation that maps each state s € S to vy(s)Uwvy(s).

Labeled transition systems. A labeled transition system (LTS) & =
(S,8, X, []) consists of a set S of states, a transition relation §: S — 2°\()
which assigns to each state a nonempty set of successor states, a set X of
propositions, and a function [-]: ¥ — Vg which assigns to each proposition
a valuation. We denote by |0| the value Y _<[d(s)|. The labeled transition
system S is boolean if for all propositions r € X, the valuation [r] is boolean.
A path of S is an infinite sequence sgs;sy ... of states such that s; ;1 € 0(s;)
for all i > 0. Given a state s € S, we write Traj(s) for the set of paths that
start in s.

The path semantics. The DcTL formulas over (X, A) are evaluated with
respect to a labeled transition system & = (5,0, X, [-]) whose propositions
are X, and with respect to a parameter interpretation (-) € Z,. Every state
formula ¢ define a valuation [¢]P € Vs:

P = [r] [01V @o]" =[] L[]

[[T]]p -1 [[¢1 A ¢2]]p = H¢1]]p M H¢2]]p

[F]° =0 [¢1 @ ¢2]° = [D1]P +o) [2]°
e

vIP(s) = f{[Y]°(p) | p € Traj(s)}

where r € Y. Every path formula ¢ assigns a real [¢)]P(p) € [0, 1] to each
path p of &:

(0T (5051 .- = sup{{e) - [81P(s0) | > 0}

Db o) = inf{1— ()1 (1~ [¢°(s0)) | § > 0}
O) S TR 112 0} e <1

[l l0sn.) = {hm»o(,%l SoealdlPls) i) =1

Notice that the limit of the first clause for A, when (¢) — 1 gives the
second clause. If the labeled transition system S is boolean and the parameter
interpretation (-) is undiscounted, then 1 can be interpreted as truth, 0 as
falsehood, and DcTL without the operator A coincides with CTL.

The fixpoint semantics. In this semantics, the DcTL formulas are eval-
uated with respect to a labeled transition system and to a contractive pa-
rameter interpretation (-) € Z4. Given a valuation x € Vg, we denote by
JdPre(z) € Vs the valuation defined by dPre(z)(s) = max{xz(t) | t € d(s)},
and we denote by VPre(z) € Vg the valuation defined by VPre(z)(s) =

6

min{xz(t) | t € §(s)}. The fixpoint semantics [-]* for the propositions, the
constants T and F and the boolean operators is similar to the path seman-
tics, where [-]P is substituted by [-]f. The other operators are defined as
follows:

[3C8]" = pa.([o]" U (0 4y FPre(z)))
[VOBl" = pa.([o]" U (0 4 YPre(z)))
[F0.0]" = pa.([o] M (1 4y IPre(z)))
VO] = pa.([o] M (1 4 YPre(z)))
[BAD] = pa([8]" +) FPre(x)))
VAL = pa.([0]" +) YPre(x)))

Above, for F' : Vg — Vg, the notation pz.F(x) indicates the unique (as
() < 1) valuation z, such that z, = F(z.).

2.3 Semantics for Markov Processes

Given a finite set S, let Distr(S) be the set of probability distributions over
S; for a € Distr(S), we denote by Supp(a) = {s € S | a(s) > 0} the support
of a. A probability distribution a over S is deterministic if a(s) € {0,1} for
all s € S.

Markov decision processes. A Markov decision process (MDP) & =
(S, 7, X, [-]) consists of a set S of states, a probabilistic transition relation
71 8 — 2PB(S)\ () which assigns to each state a finite nonempty set of
probability distributions over the successor states, a set Y of propositions,
and a function [-]: ¥ — Vg which assigns to each proposition a valuation.
The Markov decision process § is boolean if for all propositions r € Y, the
valuation [r] is boolean. A finite (resp. infinite) path of S is a finite (resp.
infinite) sequence s¢s18y...8,, (resp. sps1Sz...) of states such that for all
i < m (resp. i € IN) there is a; € 7(s;) with s;1; € Supp(a;). We denote by
FTraj and Traj the sets of finite and infinite paths of §; for s € S, we denote
by Traj, the infinite paths starting from s.

We denote by |7], the length of the binary encoding of 7, defined by
D ses ZaET(s) ZtESupp(a) |a(t), and we denote by [[-]|, = quz > ses lal(s)]
the size of the binary encoding of [-]. Then, the binary size of S is given by
S = 7+ L]

A strategy m for S is a mapping FTraj — Distr({J,.q7(s)): once
the MDP has followed the path s¢sy...s,, € FTraj, the strategy m pre-
scribes the probability m(sgs; ... $m)(a) of using a next-state distribution

7

a € 7(sm). For all sgs1...s, € FTraj and all a € Distr(S), we require that
Supp(7(sosi ... Sm)) € 7(Sm). Thus, under strategy , after following a finite
path s¢sy...s,, the MDP takes a transition to state s,,.; with probability
> acr(sm) WSm1) T(s0s1 ... 5)(a). We denote by II the set of all strategies
for S. The transition probabilities corresponding to strategy 7, together with
an initial state s, give rise to a probability space (Traj,, Bs, Prl), where B
is the set of measurable subsets of 2™%s and P17 is the probability measure
over B, induced by the next-state transition probabilities described above
[KSK66,Wil91]. For i € IN, the random variable Z; : Traj, — S defined by
Zi(sos1-..) = s; yields state of the stochastic process after i steps. Given a
random variable X over this probability space, we denote its expected value
by EI[X].

Special cases of MDPs: Markov chains and transition systems.
Markov chains and transition systems can be defined as special cases of
Markov decision processes. An MDP § = (S,7,X,][-]) is a Markov chain
if |7(s)| =1 for all s € S. It is customary to specify the probabilistic struc-
ture of a Markov chain via its probability transition matric P = [ps4]sies,
defined for all s,t € S by ps; = a(t), where a is the unique distribution
a € 7(s). An initial state s € S completely determines a probability space
(Traj,, Bs, Pry), and for a random variable X over this probability space, we
let E4[X] denote its expectation. An MDP S = (S, 7, X, [-]) is a transition
system if, for all s € S and all a € 7(s), the distribution a is deterministic;
in that case, we define § : S+ 2% by d(s) = {t € S | Ja € 7(s).a(t) = 1} for
all s € S.

The path semantics. The DcTL formulas over (X, A) are evaluated with
respect to a Markov decision process S = (S, 7, X, [-]) and with respect to a
parameter interpretation (-) € Z,. The semantics [¢]P of a path formula v
is defined as for transition systems; we note that [¢)[P is a random variable
over the probability space (Traj,, B, Pry). Every state formula ¢ defines a
valuation [¢]P € Vg: the cases for propositions, T, F, V, A, and — are as for
transition systems; the case for 3 and V is as follows:

[BolP(s) = sup{ES([01°) | w e 1T}, [Vo[P(s) = inf{EY([¢]°) | = € IT}.

The fixpoint semantics. Given a valuation xz : S — [0,1], we de-
note by JPre(z) : S — [0,1] the valuation defined by JPre(z)(s) =
MaXaer(s) Y e Z(t)a(t), and we denote by VPre(z) : S — [0,1] the valu-
ation defined by VPre(x)(s) = minge,(5) Y ,cq #(t)a(t). With this notation,

8

the fixpoint semantics [-]* is defined by the same clauses as for transition
systems.

2.4 Properties of DcTL

Basic equivalences. For all state formulas ¢;, ¢ over (X, A), all MDPs
with propositions Y, and all contractive parameter interpretations of A
and * € {p,f}, we have the following equivalences: [-3C.¢]* = [VO.—¢]*,
[-30.0]* = [VO.~¢]*. and [-3A0]* = [VA.~¢]* In particular, we see that
A, is self-dual and that a minimalist definition of DcTL will omit one of
{T,F}, one of {V, A}, and one of {3,V, O, O}.

Comparing both semantics. We show that the path and fixpoint seman-
tics coincide over transition systems, and over Markov systems with boolean
propositions (for non-nested formulas), but do not coincide in general over
(non-boolean) Markov chains. This result is surprising, as it indicates that
the standard connection between CTL and p-calculus breaks down as soon
as we consider both probabilistic systems and quantitative valuations. Since
discounting plays no role in the proof of the theorem, so that a similar result
would hold also for the logic without operator A under no discounting. On
the other hand, the theorem states that the two semantics always coincide
for the A, operator.

Theorem 1. The following assertions hold:

1. For all labeled transition systems with propositions Y, all contractive pa-
rameter interpretations of A, and all DCTL formulas ¢ over (X, A), we
have [8]° = [6]"

2. For all boolean Markov decision processes with propositions X, all con-
tractive parameter interpretations of A, and all DCTL formulas ¢ over
(X, A) that contain no nesting of path quantifiers, we have [¢]* = [¢]".

3. There 1s a Markov chain S with propositions Y, a contractive parameter
interpretation A, and a DCTL formula ¢ over (X, A) such that [¢]° #

[

Lemma 1. For all MDPs with propositions Y, all contractive parameter
interpretations of A, and all v € X, we have [3As]P = [FAs]" and
VAP = [VA]t

Robustness. Let § = (5,7, Y, []) and & = (S,7',%X,[]) be two
MDPs on the same state space S and set of atomic propositions Y.
|S, 8" = max,es{max,cx [[r](s) — [r'](s)], MaxXaer(s) Minper(5) D yeg lals’) —
b(s")], maxpe,(s) Miger(s) D geg |a(s’) — b(s')|}. It is not difficult to see that
|, || is a metric. For an MDP S, we write [-]§ and [-]% to denote the semantics
functions defined on S.

Theorem 2. Let (-) be a contractive parameter evaluation.

1. For all € > 0, there is a 0 > 0 such that for all formulas ¢ of DCTL and
all states s € S we have |[p]5(s) — [¢]% (s)| < € for all MDPs S, S’ with
18,8 < 4.

2. Let @ be any set of DCTL formulas such that the mazimum nesting depth
of any formula in @ is k. For all € > 0, there is a 6 > 0 such that for all
formulas ¢ € @ and all states s € S we have |[[p]s(s) — [¢]% (s)| < € for
all MDPs 8, 8" with |S, S| < 9.

Notice that we get the continuity statement for the path semantics only
for sets of formulas with bounded nesting depth. For example, consider a
three state Markov chain & = ({sq, s1, $2}, 7, {r},[:]) such that 7(sq) is the
distribution that chooses s; with probability 1 — ¢ and chooses s, with
probability €, and 7(s;) chooses s; with probability 1 for i = 1,2. Let
[r](s0) = [r](s1) = 0 and [r](s2) = 1. Consider the Markov chain &' which
differs from S in that 7(sq) chooses s; with probability 1. Then |S,S'| = e.
However, consider the formulas (3¢.)"r, for n > 1. Let z,, = [(3C.)"r]%(s0)
(for (¢) = 1). Then z,41 = (1 — €)z, + €, and the limit as n — oo is 1. On
the other hand, [(3)"r]% (so) = 0 for all n.

3 Model Checking DcTL over Transition Systems

The model-checking problem of a DcTL formula ¢ over an LTS § asks to
compute the value [¢](s) for all states s of S (since both semantics of DCTL
coincide over LTSs, we write [-] without superscript). Similar to CTL model
checking [CES83], we recursively consider one of the basic subformulas ¢ of ¢
and compute the valuation [¢]. Then we replace ¢ in ¢ by a new proposition
py with [py] = [¢]. Because of duality, it suffices to focus on model checking
basic formulas of the forms 3., VO r, and VA r, for a proposition r € X,
We fix an LTS § = (5,4, X, [-]) and a discount interpretation (-), and we
write [r] = ¢ and (¢) = a.

10

3.1 Model Checking ¢ (and O)

The fixpoint semantics of DCTL suggests iterative algorithms for evaluat-
ing formulas. In particular, [30.r]" = lim, . v,, where v(s) = ¢(s), and
Unt1(s) = q(s) U amax{v,(s") | s" € §(s)} for all n > 0. Over LTSs, the fix-
point is reached in a finite number of steps, namely, [3C.r] = vg/. To see this,
observe that the value [30.r]f(s), the maximal (discounted) maximum over
all paths from s, is obtained at a state in an acyclic prefix of some path from s.
The argument that [VO.r] = vg, where v,41(s) = q(s) M amax{v,(s") |
s' € 8(s)}, is slightly more involved. The value [VO.r]f(s), the minimal (dis-
counted) maximum over all paths from s, is again obtained at a state s’ in
an acyclic prefix of some path p from s. This is because if some state s” were
repeated on p before ', then the path p' that results from p by infinitely visit-
ing s” (and never visiting s') would achieve a smaller (discounted) maximum
than p.

Lemma 2. The evaluation of the fizpoint formulas for [VO.r]f and [3O.r]f
terminates after at most |S| iterations.

3.2 Model Checking A

Computing [VA.r](s) consists in minimizing the (discounted) average [A.r]
over the paths from s. The (undiscounted) case o = 1 is covered in Theo-
rem 4.1 of [ZP96]: the value [VA;7](s) is the minimum mean weight of a cycle
reachable from s, which can be found using Karp’s algorithm in O(|S|-|4])
time. For a < 1, the reasoning of [ZP96] can be used to show that the min-
imal discounted average is obtained on a path p' from s which, after some
prefix p keeps repeating some simple cycle /. Hence ¢ contains at most |S|
states. To find p’, we use two steps. In the first phase, we find for each state
s the simple cycle ¢ starting at s with the minimal discounted average. In
the second phase, we find the best prefix-cycle combination pf“.

Phase 1. We need to compute L,(s) = min{[A.]?(p) | p € Traj(s),p =
(508182 5,1)%,n < |S|}, where the value [A.r]P(p) is given by =% .

1-a

S at-q(s;). Consider the recursion vg(s, s') = 0 and v, (s, s') = q(s) +
a-min{v,(t,s') | t € 6(s)}. Then v, (s, s') minimizes Y7 a’-q(s;) over all

finite paths sgs;...s, with so = s and s,, = s’. Hence

1—al! * 1—a2° Y 1—alSI-1

Lo(s) = (1 o)min {563 miee) | toon)

11

For a fixed s, computing min{w,(¢,s") | t € §(s)} for all s € S can be done
in O(|6]) time. Therefore, v,,; is obtained from v, in O(|S]* + |S|-|d]) =
O(|S]-|6]) time. Hence, the computation of vjg| and L, requires O(|S|*-|d])
time.

Phase 2. After a prefix of length n, the cost L,(s) of repeating a cycle at
state s has to be discounted by o, which is exactly the factor by which we
discount ¢(s) after taking that prefix. Hence, we modify the original LTS S
into an LTS S*, as follows. For every state s € S, we add a copy s whose
weight wt(5) we set to L,(s); the weights w™(s) of states s € S remain
q(s). Moreover, for every t € S and s € §(t), we add § as a successor to t,
that is, 07 (¢) = 6(t) U{§ | s € §(t)} and §7(8) = {s}. Taking the transition
from ¢ to 5 corresponds to moving to s and repeating the optimal cycle from
there. We can find the value of the optimal prefix-cycle combination starting
from s as the discounted distance from s to S = {5 | s € S} in the modified
graph 8t with weigths w*. Formally, given an LTS S, a state s, a weight
function w: S — R>%, a discount factor a, and a target set T, the minimal
discounted distance from s to T is min{31" "o’ - w(s;) | sos1...50 1 €
FTraj(s), sn—1 € T}. This can be computed by a discounted version of the
Bellman-Ford algorithm for finding shortest paths:

function DiscountedDistance(S,w,a,T) :
for every s € S do
if s €T then d(s) := w(s) else d(s) := oo;
for i :=1 to |S|—1 do
for each s € d(s) do
if d(s) > w(s) + a-d(s') then d(s) := w(s)+a-d(s');
return d.

Like the standard version, discounted Bellman-Ford runs in O(|S|-|4|) time.
Thus, the complexity of computing [VA.r] is dominated by the first phase.
We conclude that the overall complexity of model checking a DcTL formula
is polynomial in the size of the system and the size of the formula.

Theorem 3. Given a DcTL formula ¢, an LTS § = (S,0,P,[-]), and a
discount interpretation (-), the problem of model checking ¢ over S w.r.t. (-)
can be solved in time O(|S|*:|d] - |¢]).

12

4 Model Checking DcTL over Markov Chains

Model checking ¢ and O: First Algorithm. Given a Markov chain
(S,7,X,[-]), with r € X and a parameter interpretation (-), we wish to
evaluate [3O.r]P(s), for all states s € S. As before, let ¢ = [r] and a = (¢).
We give the algorithm for the case a < 1: the case for a = 1 can be solved
along similar lines. When evaluating [3.r]P in a state s, we can start with
the initial estimate of g(s). If s is the state s,.x with the maximum value of ¢,
the initial estimate is the correct value. If s has the second greatest value for
g, the estimate can only be improved if s,,, is hit within a certain number
I of steps, namely before the discount o! becomes smaller than ¢(s)/q(Smax)-
This argument can be recursively applied to all states.

Let s1,...,s, be an ordering of the elements of S such that ¢(s;) >
q(s2) > ... > q(sn). Let P be the stochastic matrix associated with the
chain, with P(i,j) = py,,,. For all 0 < j < i < n, such that q(s;) > 0,
ZEZ%J, with the convention that log, 0 = oo. Let v(s;) =
[FCar]P(s;). Then, v(s1) = q(s1), and we can express the value of v(s;) in
terms of the values v(s),...,v(s;_1). Let K = max{k;; | k;; < oo}, and for
all | > 0, let Bf = {s; | j < iand k;; > l}. Intuitively, B} contains those
states that, if hit after [steps from s;, can influence (increase) the value of

v(s;). For the generic state s;, the following holds.

let k;; = |log,

i—1 ki j
v(s;) = q(si) - stay’ + ZU(SJ') : ZQZ.QO;J: (1)
j=1 =1

where stay’ = Pry, [Aso Z1 € Bj] and iy =
Pry, | Z, =5, A /\fq;1 L & B}n} It is easy to check that stay’ +

Z;;ll Zfzfl gog.’l = 1. In the first phase, we deal with states s; such
that g(s;) > 0. Since the sequence (B{);q is decreasing, it can have at most
|S| different values. It follows that there exist integers b < ... < b’ € IN and
sets X!, ..., X! C S, such that b =1,b = K and, forallk=1,...,m—1
and for all bj, <1 < b,,,, Bj = X]. Notice that we can compute the actual
value of the indices b, ... b, in time O(|S|-log|S|), by ordering the values
ki ; in a non-decreasing fashion and getting rid of the duplicates. Let P}
be the matrix obtained from P by turning the states in X} into absorbing

13

states (sinks). Then,

g0y = (P - (PP (L)t P (BT (i), for b <1< By,
ki j m b2+1*1

l i l 7
> algoj=3 > a'go,
=1 k=1 [=p?

i
m o o))) b1 —bi—1 _
= (Zabk(pf)bl (BB (P e ST al(pg)l)@j)

k

Il
—

=0
I — (aPj)bs beoatl

b pi by pi bh—bY . (P! bi_ bl _o _
« (1) (2) (k*l) I*CYPkZ:

NE

-

Each matrix (P{)" can be computed by repeated squaring in time O(|S|* -

)G, g)-

~
Il
-

log h). Some further calculations show that, for a fixed i, both 3, a'go’

and Zz 1 g0, can be computed in time O(|S|* - log K). The value stay’ is
given by 1 — Z],z goj’l The total complexity of this phase is thus O(|S]" -
log K).

In the second phase we consider those states s; such that ¢(s;) = 0. Let
u be the smallest index ¢ such that ¢(s;) = 0, For each ¢ > u, (1) becomes:

u—1

v(s;) = Zv s;) Za goﬂ

J=1

In this case, 90§,z is the probability of hitting s; after exactly [steps, while in
the meanwhile avoiding all states with indices smaller than u. To efficiently
compute v(s;), we define a stochastic matrix P, from P by adding an absorb-
ing state ¢ and using ¢ to turn all states s; with j < u into transient states.
Also, we set v to be the column vector containing the correct value v(s;), if
1 < u, and zero otherwise. Then,

—_

u—

visi) = vlsi): o (Py)'(i,) = (I — aPy) ™" - 0)(i), (2)

o0

<
Il

where I denotes the identity matrix. Solving the system (2) takes time
O(]S)?) using LUP decomposition. The time spent in the two phases amounts

to O(]S]° - log K).

Second Algorithm. We present a different version of the first phase. The
symbols s1, ..., sn, kij, By, stay’, and goj, are defined as before.

14

Consider again equation 1. For i = 1,...,n, let K; = max{k; 1 i 1}
For states s; such that ¢(s;) > 0, we can compute the values goﬂ as follows
For [> 0, let C} be the event “Z;, ¢ B;”. It holds that gol, = Pry[Z) =
sij{m...mCLl] = Pry,[Z) = s | C{m...mC{,l]-Prsi[roloin

Ci ,]-...-Prg,[Ci]. Foreach j =1,...,i—1and [> 0, let p(s;,[) = Pr,[Z, =
s; | ﬂ \Zm & B!]. In words, p(sj,1) is the probability that, starting in
s;, the system reaches s; after exactly [steps, given that in each previous
step it does not hit states that can influence v(s;). For all j = 1,...,n and
0 <1< K, we can compute Prg,[C! | Cin...NC}] together with p(sj,l)
using the following recursion:

p(S]‘, 1) = P(Zvj)

Pro,[Ci] =Y {p(s:,]) | s & Bi}

1 . i
Pr., [Cz | Cz n Cli—l] 'Z{P(tvj) p(se,1) | st & Bi'}

Pr,[Ciiy [C1N...0C{] = {p(si,1) | s: & Bli+1}

p(sj, 1 +1) =

For a fixed i, the previous recursion takes time O(|S]? - K). Then,

-1
g0, = (s, 1) l_lPrS ci 1 Cin...nCl_y]. (3)
m=1

It follows that, for a fixed 7, all values gogJ can be computed in time O(|S|?-
K). The value stay’ is given by 1 — Zj,l go,- Running this procedure for
every state with nonzero value of ¢ takes thus O(|S]? - K).

If we use the first algorithm for the states s with ¢(s) = 0, we obtain
an alternative algorithm for Model Checking [IF<C.r]P, whose complexity is
O(|S|? - K). Notice that if the matrix P is represented as an |S| x |S| array,
the previous complexity is less than quadratic in the size of the input. Which
algorithm performs better on a given instance of the problem depends clearly
on the ratio M
smaller than 1.

the first algorithm being preferable when the ratio is

Model checking A. Let P be the stochastic matrix representing a Markov
chain (S,7,X,[]) and let (-) be a parameter interpretation. As before, let
re X q=1Ir] and a = (¢). If we let [3A.r] and ¢ denote column vectors,
we obtain the following classical equation [FV97]:

[FAr] =01 —a)- ZaiPiq =(1—-a) (I -aP)q

i>0

15

where [is the identity matrix. Thus, we can compute the value [3Ar](s) for
each state s € S by solving a linear system with |S| variables. This takes time
O(|S['827) using Strassen’s algorithm or O(|S]?) using LUP decomposition.

Complexity of Dcr. Model Checking over Markov Chains. The
overall complexity is polynomial in the size of the system and the size of the
formula. For this result, we assume that the basic operations such as addition
and multiplication can be done in constant time.

Theorem 4. Given a DCTL formula ¢, a Markov chain S = (S, 1, P,[-]),
and a discount interpretation (-), the problem of model checking S w.r.t. ¢
and (-) can be solved in time polynomial in |S|, |[]|s, |{:)|s and |@|.

5 Model Checking DcTL over Markov Decision
Processes

For Markov decision processes, the path and the fixpoint semantics do not
coincide, as stated by Theorem 1: hence, we need to provide algorithms for
both semantics. In view of the duality laws for negation, and in view of the
recursive definition of DCTL, it suffices to provide algorithms for computing
O, YO r, AAr, and VA, r, for a predicate . We consider a Markov de-
cision process S = (S, 7, X, [-]) and a discount interpretation (-); to simplify
the notation, we let [r] = ¢ and (¢) = a.

5.1 Model Checking < in the path Semantics

If @ = 0, then trivially [3C.r[P(s) = [VOr]P(s) = ¢(s) at all s € S, so in
the following we assume 0 < o < 1. The problem of computing [FC.r]P on
an MDP can be viewed as an optimization problem, where the goal is to
maximize the expected value of the sup of ¢ over a path. As a preliminary
step to solve the problem, we note that in general the optimal strategy is
history dependent, that is, the choice of distribution at a state depends in
general on the past sequence of states visited by the path.

Ezxample 1. Consider the system in Figure 1 and assume o = 1. The optimal
choice in state ¢ty depends on whether ¢; was hit or not. If it was, the current
sup is 0.8 and the right choice is a;, because with probability % the sup will
increase to 1. If £, was not hit, the right choice is as, because it gives a certain
gain of 0.8.

16

Fig. 1. An MDP requiring a memory strategy for [3O.r]P(s).

While the above example indicates that the optimal strategy is in general
history-dependent, it also suggests that all a strategy needs to remember is
the sup value that has occurred so far along the path. For 7 € I, s € S, and
x € IR we define

Esup”(s,) = ET[x L sup a'q(Z;)).
i>0

The term x corresponds to the (appropriately discounted) sup value that
has occurred so far in the past of a path. Obviously, [FO.r]P(s) =
Sup,¢c Esup” (s, ¢(s)) and [VO.r]P(s) = inf ey Esup™(s, ¢(s)). For a strat-
egy mand s € S, let Pr(t | s,m) = 32, (, 7(s)(a) a(t) be the probability of
a transition from s to ¢ under 7, and let 7[s| to be the strategy defined by
7[s](p) = 7(sp) for all p € Traj. In words, n[s] is the strategy that behaves
like 7 after an initial transition from s. For all s € S and x € IR, the quantity
Esup” (s, z) satisfies the following recurrence equation:

Esup”(s,z) = « Z Esup™(¢, Ny q(t)) Pr(t | s, m). (4)
a

tes

Intuitively, this recursion can be understood as follows. Under strategy , at a
state s = s, of a path sgsq .. ., the quantity Esup”™(s,,, z) represents the value
of sup;so BT [a'q(Z;)] given that supyc;<,, @ 'q(sm—i) = x. The recursion (4)
then relates Esup” (s, x) to Esup”[s}(t, y) at the successorts t of s, where at ¢
we consider the new conditioning y = x/a Ll q(t), thus discounting x by o~ *
(as s is one step before t), and taking into account the value ¢(s) seen at s.

17

The recursion (4) can be proved as follows.

« Z Esup™(¢, Ty q(t)) Pr(t | s,m)
o

tes

:az By [g LI q(t) Usup a'q(Z;)} Pr(t | s,m)

tes 1>0
- Z E [T L aiq(t) U sup Oaqu(Zi)] Pr(t | s,)
tes >0
= Z Erle [x LI sup a“’lq(Zi)} Pr(t| s,)
tes 120
=K {:r LI sup aiq(Zi)} :

1>0

The idea behind the computation of sup,.,; Esup” (s, ¢(s)) is to turn the re-
currence equation (4) into an optimization problem, where at each s € S
we seek the strategy 7 that maximizes the right hand side. The optimiza-
tion problem to compute these quantities is phrased in terms of the variables
v(s,), representing the value of Esup(s,z). Since we are ultimately inter-
ested in the value of Esup(s,¢(s)) for s € S, and since if > 1 we have
Esup”'(t, x) =z for all t € S and 7’ € I1, it suffices to consider values for
that belong to the finite set X = {q(s)/a* | s € STk € NT¢(s) < af}. We
set up the following set of equations in the variables {v(s,z) | s € SNz € X}:

x if o > 1;
v(s,2) ={ zUa maX Z (t, — ay q(t)) a(t) otherwise. (5)
&}

The following theorem relates the least fixpoint of (5) to [3.r]P.

Theorem 5. Let {v*(s,z) | s € STla € X} be the least (pointwise) fized
point of the set of equations (5). Then, we have [3O.r]P(s) = v*(s,q(s)) for
all s € S.

Proof. We consider an iterative evaluation of the least fixpoint (5), given by
vo(s,z) = x and, for k > 0, by

x if v >1;

Uns1 (5,) = Wt D Ug() alt) otherwise. (6)
oz;gTaXZv - q(t)) a(t) otherwise

18

The proof consists of two parts: (i) showing that for all s € S and z € X
there is a strategy 7* € IT such that ET [z U supy.,<, @'q¢(Z;)] = va(s, 7),
and (i) showing that for all # € IT, all s € S, and all # € X we have
E [z Usupg_ic, @’q(Z;)] < v,(s,2). Once (i) and (ii) are proved, the result
follows from

lim v, = v" lim B[z U sup o'q(Z;)] = ET[z Usup o'q(Z;)).

n— 00 n— 00 0<i<n i>0

We prove only (i), since the proof of (ii) is similar. First, notice that if we
define X' = {q(s)/a* | s € ST1k € IN}, (6) can be written as

Unt1(8,7) = « max Zvn (t, — =y q(t)) a(t) (7)

aGT

Q

for all s € S and x € X'. The strategy 7* is in general a function of (s, z) €
S x X'. We define it inductively: 7§ is arbitrary; for n > 0, 7, first chooses
a distribution a € 7(s) that realizes the maximum in (6), and then upon
a transition from s to some ¢ € S, proceeds as m; from (t, Z U ¢(t)). By
induction, proceeding in analogy with the proof of (4), we have for all n > 0,
all s € S and all z € X"

Unt1(s,2) = maX Zvn (t,— Sy q(t)) a(t)

a€eT(s (6]
—amax E;" {)L su o Zi}at
a€T(s) Z U<i£n q() ()
- max Z E;" {r L aq(t) LU sup oz’“q(Zl)} a(t)
a€T(s 0<i<n
= J??X Z E;" {:r L Os<121£)n a“’lq(ZZ-)] a(t)

— ES”1 [T Ll sup Ofi(](Zi)}a

0<i<n
leading to the desired result. B

To compute [VO.r[P, we simply replace max,e,(s) with minge,(5) in (5), and
again consider the least fixed point. The least fixed points for [3C.r[P and
[VO r]P can be computed by linear programming, following a standard ap-
proach.

19

Theorem 6. The following assertions hold.

1. Consider the following linear programming problem in the set of variables
{v(s,z) | s € STw € X}: minimize Y o> .oy v(s,7) subject to

v(s,r) > v(s,r) >« g o(t, Y q(t)) a(t)
«
tes

forall s € S, all x € X, and all a € 7(s), where v(t,x) is 1 if © > 1
and is v(t,x) otherwise. Denote by {0(s,x) | s € ST x € X} an optimal
solution. Then, v(s,q(s)) = v*(s,q(s)) = [FOr]P(s).

2. Consider the following linear programming problem in the set of variables
{v(s,2),u(s,z) | s € SNa € X}:minimize Y o> cx(v(s,2) —u(s,z))
subject to

v(s,r) > x v(s,x) > u(s,) u(s,z) < a g o(t, Y q(t)) a(t)
a
tes

for all s € S, all x € X, and all a € 7(s), where v(t,x) is 1 if © > 1
and is v(t,z) otherwise. Denote by {0(s,x),u(s,z) | s € SNz € X} an
optimal solution. Then, 0(s,q(s)) = v*(s,q(s)) = [VOr]P(s).

The linear programming problems in the above theorem consist of at most
2-|S|-|X| variables. If & = 1, then | X| = |S|; otherwise, | X| = —|S|log, Gmin,
where ¢, = min{q(s) | s € SMg(s) > 0}. Finally, notice that | X| is linear in
the size of the input encoding of the MDP, if ¢g-values are encoded in binary
notation. This leads to the following result.

Corollary 1. For an MDP § = (S,7,X,[-]) and r € X, the valuations
[FOr]P and [VOr]P can be computed in time polynomial in |S|y and |{c)|.

In addition to linear programming, it is possible to compute [3C.r]P and
[VO.r]P also by value iteration, using (6), as well as by policy iteration,
adapting standard algorithms to the task (see e.g. [Ber95]).

5.2 Model Checking < in the fixpoint semantics.

The computation of [30.r]" and [VO.r]" on an MDP can be performed
by transforming the fixpoints into linear programming problems, following
a standard approach. For example, for [VO.r]! we consider the following
linear programming problem in the set of variables {v(s),u(s) | s € S}:

20

minimize) _o(v(s) — u(s)) subject to v(s) > q(s), v(s) > u(s), and
u(s) < a) ,.qv(t)a(t) for all s € S and all @ € 7(s). Denoting with
{v*(s),u*(s) € R | s € S} an optimal solution, we have [VO.r]i(s) = v*(s)
at all s € S. Again, this can be solved in time polynomial in |S|, and |alp.

Theorem 7. The following assertions hold.

1. Consider the following linear programming problem in the set of variables
{v(s) | s € S}: minimize Y, gv(s) subject to v(s) > ¢(s) and v(s) >
) ,esv(t)a(t) for all s € S and all a € 7(s). Denoting with {v*(s) €
R | s € S} an optimal solution, we have [30.r] (s) = v*(s) at all s € S.

2. Consider the following linear programming problem in the set of variables
{v(s),u(s) | s € S}: minimize Y _(v(s) — u(s)) subject to v(s) > q(s),
v(s) > u(s), and u(s) < a) ,cqv(t)a(t) for all s € S and all a € 7(s).
Denoting with {v*(s),u*(s) € R | s € S} an optimal solution, we have
[VOr]f(s) = v*(s) at all s € S.

Corollary 2. For an MDP § = (S,7,X,[-]) and r € X, the valuations
[3Cr]t and [VO]t can be computed in time polynomial in |S|, and |{c)|p.

5.3 Model Checking A.

In an MDP, for a < 1, we have that [3A.r]? = [FA.r]"; hence, a sin-
gle model-checking algorithm suffices for both semantics. Notice also that
[VAr]P = 1 — [3A.~r]P, so that we need to consider only the path quan-
tifier 4. On the other hand, we must distinguish the case where a < 1 from
the case & = 1 (meaningful only for the path semantics), since the dynamic
programming algorithms required for solving these problems are rather dif-
ferent. For o« < 1, the problem can be solved by the standard methods used
for discounted long-run average problems [Ber95].

Proposition 1. Assume o < 1, and consider the following linear program-
ming problem in the set of variables {v(s) | s € S}: minimize Y _cv(s)
subject to v(s) > (1 —a)q(s) +ad ,.qv(t)a(t) for all s € S and all a € 7(s).
Denoting by {v*(s) | s € S} an optimal solution, we have [3Ar]P(s) = v*(s)
foralls € S.

If & = 1, the problem consists in computing the maximal long-run average
reward (or cost) of an MDP. The classical solutions for this problem, unfortu-
nately, rely on structural assumptions about the MDP [Ber95]: i.e. every state

21

is reachable with positive probability from every other state. These restric-
tions can be overcome, using the methods of [dA97]. The idea is to separately
analyze each mazrimal end component, and then combine the results as an
instance of an undiscounted reachability problem.

5.4 Complexity of DcTL model checking over MDPs.

The following result summarizes the complexity of model-checking DcTL
formulas over MDPs.

Theorem 8. Given a DCTL formula ¢, an MDP S, and a discount inter-
pretation (-), we can compute [¢]P and [¢]" over S for (-) in time polynomial
in |S|y and |(-)|, and exponential in |@|.

The exponential dependency on the length of ¢ is due to the fact that model
checking 3Or and IAr requires polynomial time in |[r]|,, and may produce
valuations [3Cr] and [3Ar] whose binary encoding size is polynomial in
|[7]]s, leading to a potential exponential blow-up of the binary encodings of
the valuations.

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183 235, 1994.

[BAA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Found. of Software Tech. and Theor. Comp. Sci., volume 1026 of Lect.
Notes in Comp. Sci., pages 499 513. Springer-Verlag, 1995.

[Ber95] D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.
Volumes I and II.

[BHHKO00] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time markov chains by transient analysis. In Computer Aided Verifica-
tion, pages 358-372, 2000.

[CES83] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic. In Proc. 10th ACM Symp. Princ. of Prog.
Lang., 1983.

[CGPY99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[dA9T] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997. Technical Report STAN-CS-TR-98-1601.

[IAHMO03] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Discounting the future in systems
theory. In Proc. 30th Int. Colloq. Aut. Lang. Prog., Lect. Notes in Comp. Sci. Springer-
Verlag, 2003.

[DEP02] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled markov pro-
cesses. Information and Computation, 179(2):163 193, 2002.

[EL86] E.A. Emerson and C.L. Lei. Efficient model checking in fragments of the propositional
p-calculus. In Proc. First IEEE Symp. Logic in Comp. Sci., pages 267-278, 1986.

22

[FV97]
[Han94]

[HK97]
[Koz83]
[KSK66]

[Kwi03]

[McI98]

[MMO02]

[MP91]

[Wil91]
[ZP96]

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.
H. Hansson. Time and Probabilities in Formal Design of Distributed Systems. Real-
Time Safety Critical Systems Series. Elsevier, 1994.

M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In Proc.
12th IEEE Symp. Logic in Comp. Sci., pages 111-122, 1997.

D. Kozen. A probabilistic PDL. In Proc. 15th ACM Symp. Theory of Comp., pages
291-297, 1983.

J.G. Kemeny, J.L. Snell, and A.-W. Knapp. Denumerable Markov Chains. D. Van
Nostrand Company, 1966.

M. Kwiatkowska. Model checking for probability and time: From theory to practice. In
Proc. 18th Annual IEEE Symposium on Logic in Computer Science (LICS’03), pages
351 360. IEEE Computer Society Press, 2003.

A. Mclver. Reasoning about efficiency within a probabilitic p-calculus. In Proc. of
PROBMIV, pages 45 58, 1998. Technical Report CSR-98-4, University of Birmingham,
School of Computer Science.

A. Mclver and C. Morgan. Games, probability, and the quantitative p-calculus. In
LPAR 02: Logic Programming, Artificial Intelligence, and Reasoning, LNCS 2514,
pages 292 310. Springer, 2002.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

D. Williams. Probability With Martingales. Cambridge University Press, 1991.

U. Zwick and M. S. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1 2):343 359, 1996.

23

