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ABSTRACTAlthough the stability of iruit analysis based on partial relutane K has been proved for parallel bus strutures [5℄ and thestrutures with suÆiently disretized ondutors [4℄, the stability for general interonnet topologies has not been proved.This paper proved that full partial relutane matrix and sparsi�ed partial relutane matrix obtained by ignoring smallmutual terms in partial relutane extration is positive de�nite for any interonnet strutures, whih is the neessary andsuÆient ondition for the iruit analysis based on partial relutane to be stable.
1. INTRODUCTIONOn-hip indutane e�et is beoming inreasingly important due to the inrease of lok speed and the derease of wireresistane by using opper tehnology and hierarhial wire width. Capturing on-hip indutane e�et is very diÆult due tounknown iruit return path. The onept of partial indutane proposed by Rosa almost a entury ago [11℄ was introduedby Ruehli to the iruit design �eld in 1972 [12℄. Partial indutane approah avoids the unknown loop problem by assumingvirtual loop losed at in�nity. However, due to the virtual in�nity loop, the mutual partial indutane ouplings are nowamong all the ondutor segments and the resulting partial indutane matrix is extremely dense. Further more, if we sparsifythe matrix by simply trunating the small mutual entries, the resulting partial indutane matrix may not be positive de�niteand thus may be unstable in iruit analysis.Several methods have been proposed to sparsify partial indutane matrix while preserving the iruit stability by makingsome assumptions on the urrent return path, for example, the \shift-trunate" method [8℄ and \return-limited loop indu-tane" onept [13℄. However, the auray of these approahes may vary beause the urrent return path assumptions dependon the interonnet struture.Partial relutane iruit model, or \K-based method", was �rst proposed by Devgan et al in 2000 [5℄. It aptures theon-hip indutane e�et by extrating partial relutane, whih has loality similar to apaitane.Partial relutane was �rst alled K element in [5℄, while the term \suseptane" is used for K element in [3℄ and theterm \relutane" is used in [4℄. However, the term \partial relutane" is more appropriate to represent the inversion ofpartial indutane matrix sine the de�nition of \suseptane" is the imaginary part of admittane and \relutane" is thereiproal of indutane [14℄. Indutane is di�erent from partial indutane, sine the former is a property of losed loopswhile the latter is a property of segments. Similarly, partial relutane is not relutane. If we say indutane is a uxontrolled non-linear funtion of ux vs. urrent, relutane is a urrent ontrolled non-linear funtion of ux vs. urrent.Partial relutane is the inverse of partial indutane and K element is partial relutane. Similar relationship an be foundbetween apaitane and elastane: apaitane is a harge ontrolled non-linear funtion of harge vs. voltage and elastaneis a voltage ontrolled non-linear funtion of harge vs. voltage.Also, later proposed iruit models \VPEC" model in [10℄ [15℄ and \wire dupliate" model in [16℄ are also shown to beequivalent to partial relutane model.Experiments in [5, 3, 2, 7, 4, 15, 16℄ showed that partial relutane has loality so that the faraway mutual partial relutaneare muh smaller ompared with mutual partial indutane. By ignoring small mutual relutane terms, the indutane e�etan be aptured more e�etively.Beause most of the o�-diagonal entries of the partial relutane matrix are negative, it is widely believed that the fulland trunated partial relutane matries are positive de�nite so that the partial relutane based iruit analysis is stable.Devgan et al [5℄ showed it to be true for parallel ondutors with equal lengths beause all the mutual partial relutaneterms in the equal length struture are negative. However, there may be positive o�-diagonal entries in the partial relutanematrix of ondutors with unequal lengths [4℄ and the positive de�niteness stayed unknown for general strutures.Chen et al proved that \the relutane matrix, K, is diagonally dominant and symmetri positive de�nite when all theondutors are suÆiently disretized" in [4℄. But suÆiently disretize all the ondutors introdues too many ondutorsegments thus hurts the performane signi�antly. RBC (Reursive Bisetion Cutting) algorithm proposed in [4℄ uts theinteronnet ondutors and extrat partial relutane adaptively to diminish positive mutual partial relutane. AlthoughRBC algorithm is guaranteed to obtain the partial relutane matrix with only negative o�-diagonal terms, the extration



proess will probably run many times beause utting long ondutors to diminish one mutual partial relutane may introduenew positive mutual relutane. Appendix A shows a simple example that the RBC algorithm will run the extration proesstoo many time to diminish positive mutual terms in partial relutane matrix and hene result in low eÆieny.As it is well known that all o�-diagonal entries of a matrix being negative while the diagonal entries are positive is asuÆient ondition for the matrix being positive de�nite but not a neessary ondition. In this paper, we prove that evenwith positive o�-diagonal entries, the partial relutane matrix is still positive de�nite and the partial relutane based iruitsimulation is stable. With the proof of stability of partial relutane for general interonnet struture, the eÆieny of partialrelutane approah will not be sari�ed by the disretization algorithms.Before presenting the proof of the stability of partial relutane based simulation, we will state the algorithm for extratingand sparsifying partial relutane matrix K in Setion 2. Then we prove that the full partial relutane matrix is positivede�nite in Setion 3 and prove that the trunated partial relutane matrix is positive de�nite in Setion 4. We will giveonluding remarks in Setion 5.
2. OBTAINING SPARSE PARTIAL RELUCTANCE MATRIXIn [5℄, partial relutane matrix K is de�ned as the inverse of partial indutane matrix L.[K℄ = [L℄�1 (1)And from the view of K's physial meaning, another de�nition of K matrix an be stated as in [7℄: \The element Kij isthe urrent owing through the ith ondutor when the magneti vetor potential drop along all ondutors, exept the jth,are set to zero, and the magneti vetor potential drop along the jth ondutor is raised to unit potential." This de�nitionis showed to be equivalent to the de�nition in Eq. 1 and Eq. 2 an illustrate it learer.264 K11 K12 � � �K21 K22 � � �... ... Knn 375264 R A1dl1...R Andln 375 = 264 I1...In 375 (2)From the two de�nitions of partial relutane, there are two approahes for extrating partial relutane matrix K. One isto inverse the partial indutane matrix obtained by indutane extration tool while the other is to put unit vetor potentialdrop integration along the aggressive ondutor i and let vetor potential drop be zero along other ondutors when the itholumn of K matrix is being extrated.If skin-e�et and proximity-e�et are ignored and eah ondutor segment is viewed as only one ondutor �lament, theabove two approah for partial relutane extration are equivalent. We will show that the full partial relutane matrixobtained by relutane extration is positive de�nite in Setion 3.Although iruit simulation using full partial relutane matrix onverges muh faster than full partial indutane matrixdue to its loality, the major speed up by K based iruit analysis is beause small mutual partial relutane an be trunated.Experimental results in [5, 3, 2, 7, 4, 16, 15℄ veri�ed that trunating small mutual relutane terms will enhane the speed ofindutive iruit simulation by at least two orders of magnitude with little auray loss. It is also needed to prove the positivede�niteness of partial relutane matrix after trunating small mutual terms for general ases to expand the onlusion ofabove papers to more ompliated interonnet strutures from parallel bus struture.Before we start to prove the stability of iruit simulation based on partial relutane, it is neessary to desribe thetrunated partial relutane matrix extration proess:1. Set ondutor segment i as aggressor and put it into set Mi.2. Ignore ondutor segments j that the mutual relutane between ondutor i and j are small enough to be trunated.3. Put the ondutors segments that have not been trunated in set Mi.4. Let R Aidli = 1.5. Let R Ajdlj = 0, j 2Mi and j 6= i.6. Calulated the urrent distribution on ondutor i and j (j 2Mi).7. The ith olumn of the sparse partial relutane matrix is obtained: Kij is the the urrent on ondutor j (j = i orj 2Mi), Kij = 0 if j 62Mi.8. Choose another ondutor as aggressor and go to step 1 to �ll another olumn of the partial relutane matrix K.9. Let K = 12 � (K +KT ) to make the sparse partial relutane matrix symmetri.



3. FULL PARTIAL RELUCTANCE MATRIX IS POSITIVE DEFINITEIt is shown that full partial indutane matrix is positive semi-de�nite although trunated partial indutane matrix willnot keep positive semi-de�nite [8℄. In the following, we will prove full partial relutane matrix is positive de�nite.Consider a system with n ondutor segments, the energy stored in a stati magneti �eld equals:ES = 12 Z j �AdV (3)where the integration inludes all the regions with non-zero urrent j. The energy ES an be also represented by themagneti ux density B [9℄, ES = 12�0 Z B2dV (4)Then we have ES > 0 beause B is not always zero in the spae.Suppose the integration of vetor potential drop along the ondutor segments are R A1dl1; R A2dl2; :::; R Andln and theurrent on the ondutor segments are I1; I2; :::; In 1 Assume the urrent density is zero outside the ondutors, ES an beexpressed as Z j � AdV = nXi=1 Ii Z Aidli (5)Let [A℄ = (R A1dl1; R A2dl2; :::; R Andln)T and[I℄ = (I1; I2; :::; In)T , Eq. 5 an be written in vetor form2 � ES = Z j �AdV = [IT ℄ � [A℄ (6)With the de�nition and physial meaning of partial relutane in Eq. 2, Eq. 6 will be2 � ES = [AT ℄ �KT � [A℄ = [AT ℄ �K � [A℄ (7)We an apply the urrent on the ondutor segments to make the ux [A℄ be any n-dimension vetor, so full partialrelutane matrix K is positive de�nite sine [AT ℄ �K � [A℄ > 0 (8)The proof in this setion an be onluded as theorem 1:Theorem 1. The full partial relutane matrix is positive de�nite.
4. TRUNCATED PARTIAL RELUCTANCE MATRIX IS POSITIVE DEFINITEBased on theorem 1 proved in the previous setion, we will prove that sparse (or trunated) partial relutane matrix isalso positive de�nite by indution. Here, we introdue a new term \Minkowski Matrix" [6℄, and it is de�ned as:Definition 1. If all eigenvalues of a square matrix is positive, it is a Minkowski Matrix.Pereptibly, positive de�nite matrix is a symmetri Minkowski Matrix. Sine the trunated partial relutane maynot keep symmetri during our proof, it is appropriate to use Minkowski Matrix instead of positive de�nite matrix.We �rst prove that when only one mutual partial relutane between two ondutors is ignored in relutane extrationproess, the trunated partial relutane matrix is still a Minkowski Matrix. We are using the following lemma to prove thetrunated partial relutane matrix to be a Minkowski Matrix:Lemma 1. A square matrix is a Minkowski Matrix if and only if all the determinants of K's prinipal minors are positive. [6℄Here \prinipal minor" means a sub square matrix on the main diagonal. 2.We use the following notation in the proof:� K: the partial relutane matrix of n ondutor segments without trunation.� L: inversion of K, the full partial indutane matrix of n ondutor segments.� K: the trunated partial relutane matrix of n ondutor segments.1By magneto-quasi-stati approximation, we an ignore the inner produt of urrent and ux whih are not on the diretionalong the ondutor segments2An n� n matrix has n prinipal minors. For example, A = �a11 a12a21 a22�, a11 and A itself are prinipal minors of A but a22 isnot



� L: inversion of K.� K0: the partial relutane matrix of n� 1 ondutor segments without sparsi�ation.� L0: inversion of K0.� Kij : the entry (i; j) of matrix K.� det(K): the determinant of matrix K.� �Kij : the matrix by deleting the ith row and jth olumn from K.� < K >ij : the ofator of K, whih is (�1)i+jdet( �Kij).As theorem 1 in Setion 3, K is positive de�nite, then it is a Minkowski Matrix. So we know that the determinants of K'ssub square matries on the main diagonal are all positive, whih is:8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

K11 > 0det"K11 K12K21 K22# > 0...det266664 K1 1 K1 2 : : : K1n�1K2 1 K2 2 : : : K2n�1... ... . . . ...Kn�1 1 Kn�1 2 : : : Kn�1n�1377775 > 0det(K) > 0
(9)

Suppose the mutual partial relutane K1n is ignored and we obtain the trunated n�n partial relutane matrix K. If theignored mutual relutane is not K1n, we an always renumber the ondutor segments, swap the rows and olumns of K andK to let the ignored mutual relutane numbered as K1n without hanging the nature of the system. When extration thenth olumn of K, we remove ondutor segment 1 �rst, then assume unit vetor potential drop along ondutor segment n andalulate the urrent distribution on ondutor 2; :::; n. It should be notied that not only K1n = 0 is di�erent, K2n; :::;Knnare all di�erent from K2n; :::; Knn beause of the shielding e�et of partial relutane.Sine no ondutor segment is removed when olumns of K are being alulated exept olumn n, the determinants of K'smain diagonal sub-matries keeps the same as K's exept det(K). That is8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

K11 = K11 > 0det"K11 K12K21 K22# = det"K11 K12K21 K22# > 0...det266664 K1 1 K1 2 : : : K1 n�1K2 1 K2 2 : : : K2 n�1... ... . . . ...Kn�1 1 Kn�1 2 : : : Kn�1 n�1377775= det266664 K1 1 K1 2 : : : K1n�1K2 1 K2 2 : : : K2n�1... ... . . . ...Kn�1 1 Kn�1 2 : : : Kn�1n�1377775 > 0
(10)



With Eq. 10, we only need to show det(K) > 0 to prove that K is a Minkowski Matrix. The determinant of K an bealulated by \determinant expansion" [1℄: det(K) =Pni=1Ki n� < K >i n=Pni=1Ki n� < K >i n (11)where < K >i n and < K >i n are ofators of Ki n and Ki n, and they are idential sine the �rst n� 1 olumns of K andK are the same. Reall the relationship of ofator and inversion [6℄, we haveLn i = < K >i ndet(K) (12)Also beause K1 n is trunated, we know K1 n = 0. So the determinant of K equalsdet(K) = det(K) �Pni=1Ki n � Ln i= det(K) �Pni=2Ki n � Ln i (13)By removing ondutor 1, we obtain an (n � 1)-ondutor system and its partial relutane matrix K0. In the (n � 1)-ondutor system, ondutor i is idential with ondutor i+ 1 of the previous n-ondutor system. So the nth olumn of Kan be mapped to the (n� 1)th olumn of K0 asKi n = K0i�1n�1, where i = 2; :::; n (14)And the inversion of K0, the partial indutane matrix L0, will have the following relation with K0n�1Xi=1 K0i n�1 � L0n�1 i = 1 (15)From the physial nature of partial indutane, we know that partial indutane dose not have shielding e�et whenproximity e�et is not signi�ant enough. Then the mutual partial indutane will keep unhanged when other ondutors isremoved from the system. Thus, for L and L0, we haveLn i = L0n�1 i�1, where i = 2; :::; n (16)Combine Eq. 13, Eq. 14, Eq. 15 and Eq. 16, the determinant of K will bedet(K) = det(K) �Pni=2Ki n � Ln i= det(K) �Pni=2K0i�1n�1 � L0n�1 i�1= det(K) �Pn�1i=1 K0i n�1 � L0n�1 i= det(K) (17)And beause det(K) > 0, we also proved that det(K) > 0. Together with Eq. 10, we know that trunated partial relutanematrix by ignoring mutual partial relutane K1n is a Minkowski Matrix through lemma 1. To make the partial relutanematrix symmetri, we need to trunate Kn 1. We swap olumn 1 and n of K and then swap row 1 and n of K, and it is still aMinkowski Matrix beause of the following lemma:Lemma 2. Swapping olumn i and j of a square matrix K and then swapping row i and j of K, the determinant andeigenvalues of K will keep unhanged.By indution, if the partial relutane matrix with more than one entry are trunated, the matrix is a Minkowski Matrixbeause we an trunate one more mutual partial relutane entry eah step, swap the olumns and rows by lemma 2 andkeep the matrix to be Minkowski Matrix. So we have:Lemma 3. The sparse partial relutane matrix, obtained through the extration proess step 1 to 8 in Setion 2, is aMinkowski Matrix.Reall that we will symmetrize the sparse partial relutane matrix K = 12 � (K + KT ) at the last step of extration. Itis easy to �nd that the KT is also a Minkowski Matrix and its eigenvalues are all the same as K. So the symmetri sparsepartial relutane matrix 12 � (K +KT ) is also a Minkowski Matrix, hene it is a positive de�nite matrix.Theorem 2. The sparse partial relutane matrix, obtained through the extration proess in Setion 2, is positive de�nite.By theorem 2, we know the iruit model onstruted from the sparse partial relutane matrix is passive, and hene thepartial relutane based iruit model is stable in simulation for general interonnet struture.In paper [16℄, the iruit model of larger window with multiple aggressors is proposed to enhane the eÆieny by reusethe omputation resoure. Although the partial relutane matrix was not expliitly given out, there is still an equivalentpartial relutane matrix for the iruit model in the paper. From theorem 2, orollary 1 an be easily dedued and then the\group" method, using larger window with multiple aggressors, is also stable for general interonnet strutures. However,selet optimal group window size for unequal length ondutor struture will not be as easy as that for bus struture disussedin [16℄.Corollary 1. The sparse partial relutane matrix, obtained through \group" method proposed in [16℄ is positive de�nite.



5. CONCLUSIONIn this paper, we proved that both full partial relutane matrix and sparse partial relutane matrix having small mutualrelutane trunated are positive de�nite. Then the stability of the partial relutane approah is guaranteed not only inparallel bus struture but also in general interonnet strutures.With the proof in this paper, instead of running the K extration algorithm several times to �nd a sparsi�ed K matrixwithout positive o� diagonal terms, run extration algorithm only one is enough to have a stable iruit model for iruitanalysis.Together with K's loality, the onlusions in paper [5, 7, 3, 2, 4, 16, 15℄ that the partial relutane approah is eÆient,pratial and stable, an be generalized from parallel bus struture or suÆiently disretized struture to any interonnetstruture.
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APPENDIX

A. AN INTERCONNECT EXAMPLE TO ILLUSTRATE RBC ALGORITHMHere is an example that the RBC algorithm (Reursive Bisetion Cutting Algorithm) may spend too many iterations of partialrelutane extration to guarantee against positive mutual partial relutane. Suppose we have two short signal lines near a busstruture and the interonnet wires are ut short enough to obtain aurate result. Figure 1 shows only a part of the struture we areinterested and the alulated partial relutane matrix orresponding to that part is shown in Eq. 18. The dimension of all the wires inthis example are shown in the �gures. The unit for the partial relutane entries in Eq. 18 19 20 is 107H�1.2666664 345 13 �108 0 0 013 345 �108 0 0 0�105 �105 214 �100 0 00 0 �100 217 �100 00 0 0 �100 217 �1000 0 0 0 �102 152 3777775 (18)It an be notied that the mutual partial relutane K12 = K21 = 1:3� 108 > 0 due to the unequal length of the ondutor segments.To guarantee the mutual relutane entries to be negative, RBC algorithm is performed and the bus line ondutor segment loses tothe signal wire segments is ut by half whih is shown in Figure 2.
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2666666664 392 �40 �207 1:5 0 0 0 0�40 392 1:5 �207 0 0 0 0�207 6:8 469 �67 �199 17 0 06:8 �207 �67 469 17 �199 0 00 0 �196 14:1 419 �12 �95 00 0 14:1 �196 �12 419 �95 00 0 0 0 �96 �96 215 �1000 0 0 0 0 0 �102 152
3777777775 (20)The utting by RBC algorithm brings new positive mutual K again and thus another extration proess will be performed again. Inthis example, the iteration will not stop until all the bus wires are ut. If the bus is omposed by 128 parallel ondutors, the extrationalgorithm will run 128 times, whih is not aeptable.


