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ABSTRACTAlthough the stability of 
ir
uit analysis based on partial relu
tan
e K has been proved for parallel bus stru
tures [5℄ and thestru
tures with suÆ
iently dis
retized 
ondu
tors [4℄, the stability for general inter
onne
t topologies has not been proved.This paper proved that full partial relu
tan
e matrix and sparsi�ed partial relu
tan
e matrix obtained by ignoring smallmutual terms in partial relu
tan
e extra
tion is positive de�nite for any inter
onne
t stru
tures, whi
h is the ne
essary andsuÆ
ient 
ondition for the 
ir
uit analysis based on partial relu
tan
e to be stable.
1. INTRODUCTIONOn-
hip indu
tan
e e�e
t is be
oming in
reasingly important due to the in
rease of 
lo
k speed and the de
rease of wireresistan
e by using 
opper te
hnology and hierar
hi
al wire width. Capturing on-
hip indu
tan
e e�e
t is very diÆ
ult due tounknown 
ir
uit return path. The 
on
ept of partial indu
tan
e proposed by Rosa almost a 
entury ago [11℄ was introdu
edby Ruehli to the 
ir
uit design �eld in 1972 [12℄. Partial indu
tan
e approa
h avoids the unknown loop problem by assumingvirtual loop 
losed at in�nity. However, due to the virtual in�nity loop, the mutual partial indu
tan
e 
ouplings are nowamong all the 
ondu
tor segments and the resulting partial indu
tan
e matrix is extremely dense. Further more, if we sparsifythe matrix by simply trun
ating the small mutual entries, the resulting partial indu
tan
e matrix may not be positive de�niteand thus may be unstable in 
ir
uit analysis.Several methods have been proposed to sparsify partial indu
tan
e matrix while preserving the 
ir
uit stability by makingsome assumptions on the 
urrent return path, for example, the \shift-trun
ate" method [8℄ and \return-limited loop indu
-tan
e" 
on
ept [13℄. However, the a

ura
y of these approa
hes may vary be
ause the 
urrent return path assumptions dependon the inter
onne
t stru
ture.Partial relu
tan
e 
ir
uit model, or \K-based method", was �rst proposed by Devgan et al in 2000 [5℄. It 
aptures theon-
hip indu
tan
e e�e
t by extra
ting partial relu
tan
e, whi
h has lo
ality similar to 
apa
itan
e.Partial relu
tan
e was �rst 
alled K element in [5℄, while the term \sus
eptan
e" is used for K element in [3℄ and theterm \relu
tan
e" is used in [4℄. However, the term \partial relu
tan
e" is more appropriate to represent the inversion ofpartial indu
tan
e matrix sin
e the de�nition of \sus
eptan
e" is the imaginary part of admittan
e and \relu
tan
e" is there
ipro
al of indu
tan
e [14℄. Indu
tan
e is di�erent from partial indu
tan
e, sin
e the former is a property of 
losed loopswhile the latter is a property of segments. Similarly, partial relu
tan
e is not relu
tan
e. If we say indu
tan
e is a 
ux
ontrolled non-linear fun
tion of 
ux vs. 
urrent, relu
tan
e is a 
urrent 
ontrolled non-linear fun
tion of 
ux vs. 
urrent.Partial relu
tan
e is the inverse of partial indu
tan
e and K element is partial relu
tan
e. Similar relationship 
an be foundbetween 
apa
itan
e and elastan
e: 
apa
itan
e is a 
harge 
ontrolled non-linear fun
tion of 
harge vs. voltage and elastan
eis a voltage 
ontrolled non-linear fun
tion of 
harge vs. voltage.Also, later proposed 
ir
uit models \VPEC" model in [10℄ [15℄ and \wire dupli
ate" model in [16℄ are also shown to beequivalent to partial relu
tan
e model.Experiments in [5, 3, 2, 7, 4, 15, 16℄ showed that partial relu
tan
e has lo
ality so that the faraway mutual partial relu
tan
eare mu
h smaller 
ompared with mutual partial indu
tan
e. By ignoring small mutual relu
tan
e terms, the indu
tan
e e�e
t
an be 
aptured more e�e
tively.Be
ause most of the o�-diagonal entries of the partial relu
tan
e matrix are negative, it is widely believed that the fulland trun
ated partial relu
tan
e matri
es are positive de�nite so that the partial relu
tan
e based 
ir
uit analysis is stable.Devgan et al [5℄ showed it to be true for parallel 
ondu
tors with equal lengths be
ause all the mutual partial relu
tan
eterms in the equal length stru
ture are negative. However, there may be positive o�-diagonal entries in the partial relu
tan
ematrix of 
ondu
tors with unequal lengths [4℄ and the positive de�niteness stayed unknown for general stru
tures.Chen et al proved that \the relu
tan
e matrix, K, is diagonally dominant and symmetri
 positive de�nite when all the
ondu
tors are suÆ
iently dis
retized" in [4℄. But suÆ
iently dis
retize all the 
ondu
tors introdu
es too many 
ondu
torsegments thus hurts the performan
e signi�
antly. RBC (Re
ursive Bise
tion Cutting) algorithm proposed in [4℄ 
uts theinter
onne
t 
ondu
tors and extra
t partial relu
tan
e adaptively to diminish positive mutual partial relu
tan
e. AlthoughRBC algorithm is guaranteed to obtain the partial relu
tan
e matrix with only negative o�-diagonal terms, the extra
tion



pro
ess will probably run many times be
ause 
utting long 
ondu
tors to diminish one mutual partial relu
tan
e may introdu
enew positive mutual relu
tan
e. Appendix A shows a simple example that the RBC algorithm will run the extra
tion pro
esstoo many time to diminish positive mutual terms in partial relu
tan
e matrix and hen
e result in low eÆ
ien
y.As it is well known that all o�-diagonal entries of a matrix being negative while the diagonal entries are positive is asuÆ
ient 
ondition for the matrix being positive de�nite but not a ne
essary 
ondition. In this paper, we prove that evenwith positive o�-diagonal entries, the partial relu
tan
e matrix is still positive de�nite and the partial relu
tan
e based 
ir
uitsimulation is stable. With the proof of stability of partial relu
tan
e for general inter
onne
t stru
ture, the eÆ
ien
y of partialrelu
tan
e approa
h will not be sa
ri�
ed by the dis
retization algorithms.Before presenting the proof of the stability of partial relu
tan
e based simulation, we will state the algorithm for extra
tingand sparsifying partial relu
tan
e matrix K in Se
tion 2. Then we prove that the full partial relu
tan
e matrix is positivede�nite in Se
tion 3 and prove that the trun
ated partial relu
tan
e matrix is positive de�nite in Se
tion 4. We will give
on
luding remarks in Se
tion 5.
2. OBTAINING SPARSE PARTIAL RELUCTANCE MATRIXIn [5℄, partial relu
tan
e matrix K is de�ned as the inverse of partial indu
tan
e matrix L.[K℄ = [L℄�1 (1)And from the view of K's physi
al meaning, another de�nition of K matrix 
an be stated as in [7℄: \The element Kij isthe 
urrent 
owing through the ith 
ondu
tor when the magneti
 ve
tor potential drop along all 
ondu
tors, ex
ept the jth,are set to zero, and the magneti
 ve
tor potential drop along the jth 
ondu
tor is raised to unit potential." This de�nitionis showed to be equivalent to the de�nition in Eq. 1 and Eq. 2 
an illustrate it 
learer.264 K11 K12 � � �K21 K22 � � �... ... Knn 375264 R A1dl1...R Andln 375 = 264 I1...In 375 (2)From the two de�nitions of partial relu
tan
e, there are two approa
hes for extra
ting partial relu
tan
e matrix K. One isto inverse the partial indu
tan
e matrix obtained by indu
tan
e extra
tion tool while the other is to put unit ve
tor potentialdrop integration along the aggressive 
ondu
tor i and let ve
tor potential drop be zero along other 
ondu
tors when the ith
olumn of K matrix is being extra
ted.If skin-e�e
t and proximity-e�e
t are ignored and ea
h 
ondu
tor segment is viewed as only one 
ondu
tor �lament, theabove two approa
h for partial relu
tan
e extra
tion are equivalent. We will show that the full partial relu
tan
e matrixobtained by relu
tan
e extra
tion is positive de�nite in Se
tion 3.Although 
ir
uit simulation using full partial relu
tan
e matrix 
onverges mu
h faster than full partial indu
tan
e matrixdue to its lo
ality, the major speed up by K based 
ir
uit analysis is be
ause small mutual partial relu
tan
e 
an be trun
ated.Experimental results in [5, 3, 2, 7, 4, 16, 15℄ veri�ed that trun
ating small mutual relu
tan
e terms will enhan
e the speed ofindu
tive 
ir
uit simulation by at least two orders of magnitude with little a

ura
y loss. It is also needed to prove the positivede�niteness of partial relu
tan
e matrix after trun
ating small mutual terms for general 
ases to expand the 
on
lusion ofabove papers to more 
ompli
ated inter
onne
t stru
tures from parallel bus stru
ture.Before we start to prove the stability of 
ir
uit simulation based on partial relu
tan
e, it is ne
essary to des
ribe thetrun
ated partial relu
tan
e matrix extra
tion pro
ess:1. Set 
ondu
tor segment i as aggressor and put it into set Mi.2. Ignore 
ondu
tor segments j that the mutual relu
tan
e between 
ondu
tor i and j are small enough to be trun
ated.3. Put the 
ondu
tors segments that have not been trun
ated in set Mi.4. Let R Aidli = 1.5. Let R Ajdlj = 0, j 2Mi and j 6= i.6. Cal
ulated the 
urrent distribution on 
ondu
tor i and j (j 2Mi).7. The ith 
olumn of the sparse partial relu
tan
e matrix is obtained: Kij is the the 
urrent on 
ondu
tor j (j = i orj 2Mi), Kij = 0 if j 62Mi.8. Choose another 
ondu
tor as aggressor and go to step 1 to �ll another 
olumn of the partial relu
tan
e matrix K.9. Let K = 12 � (K +KT ) to make the sparse partial relu
tan
e matrix symmetri
.



3. FULL PARTIAL RELUCTANCE MATRIX IS POSITIVE DEFINITEIt is shown that full partial indu
tan
e matrix is positive semi-de�nite although trun
ated partial indu
tan
e matrix willnot keep positive semi-de�nite [8℄. In the following, we will prove full partial relu
tan
e matrix is positive de�nite.Consider a system with n 
ondu
tor segments, the energy stored in a stati
 magneti
 �eld equals:ES = 12 Z j �AdV (3)where the integration in
ludes all the regions with non-zero 
urrent j. The energy ES 
an be also represented by themagneti
 
ux density B [9℄, ES = 12�0 Z B2dV (4)Then we have ES > 0 be
ause B is not always zero in the spa
e.Suppose the integration of ve
tor potential drop along the 
ondu
tor segments are R A1dl1; R A2dl2; :::; R Andln and the
urrent on the 
ondu
tor segments are I1; I2; :::; In 1 Assume the 
urrent density is zero outside the 
ondu
tors, ES 
an beexpressed as Z j � AdV = nXi=1 Ii Z Aidli (5)Let [A℄ = (R A1dl1; R A2dl2; :::; R Andln)T and[I℄ = (I1; I2; :::; In)T , Eq. 5 
an be written in ve
tor form2 � ES = Z j �AdV = [IT ℄ � [A℄ (6)With the de�nition and physi
al meaning of partial relu
tan
e in Eq. 2, Eq. 6 will be2 � ES = [AT ℄ �KT � [A℄ = [AT ℄ �K � [A℄ (7)We 
an apply the 
urrent on the 
ondu
tor segments to make the 
ux [A℄ be any n-dimension ve
tor, so full partialrelu
tan
e matrix K is positive de�nite sin
e [AT ℄ �K � [A℄ > 0 (8)The proof in this se
tion 
an be 
on
luded as theorem 1:Theorem 1. The full partial relu
tan
e matrix is positive de�nite.
4. TRUNCATED PARTIAL RELUCTANCE MATRIX IS POSITIVE DEFINITEBased on theorem 1 proved in the previous se
tion, we will prove that sparse (or trun
ated) partial relu
tan
e matrix isalso positive de�nite by indu
tion. Here, we introdu
e a new term \Minkowski Matrix" [6℄, and it is de�ned as:Definition 1. If all eigenvalues of a square matrix is positive, it is a Minkowski Matrix.Per
eptibly, positive de�nite matrix is a symmetri
 Minkowski Matrix. Sin
e the trun
ated partial relu
tan
e maynot keep symmetri
 during our proof, it is appropriate to use Minkowski Matrix instead of positive de�nite matrix.We �rst prove that when only one mutual partial relu
tan
e between two 
ondu
tors is ignored in relu
tan
e extra
tionpro
ess, the trun
ated partial relu
tan
e matrix is still a Minkowski Matrix. We are using the following lemma to prove thetrun
ated partial relu
tan
e matrix to be a Minkowski Matrix:Lemma 1. A square matrix is a Minkowski Matrix if and only if all the determinants of K's prin
ipal minors are positive. [6℄Here \prin
ipal minor" means a sub square matrix on the main diagonal. 2.We use the following notation in the proof:� K: the partial relu
tan
e matrix of n 
ondu
tor segments without trun
ation.� L: inversion of K, the full partial indu
tan
e matrix of n 
ondu
tor segments.� K: the trun
ated partial relu
tan
e matrix of n 
ondu
tor segments.1By magneto-quasi-stati
 approximation, we 
an ignore the inner produ
t of 
urrent and 
ux whi
h are not on the dire
tionalong the 
ondu
tor segments2An n� n matrix has n prin
ipal minors. For example, A = �a11 a12a21 a22�, a11 and A itself are prin
ipal minors of A but a22 isnot



� L: inversion of K.� K0: the partial relu
tan
e matrix of n� 1 
ondu
tor segments without sparsi�
ation.� L0: inversion of K0.� Kij : the entry (i; j) of matrix K.� det(K): the determinant of matrix K.� �Kij : the matrix by deleting the ith row and jth 
olumn from K.� < K >ij : the 
ofa
tor of K, whi
h is (�1)i+jdet( �Kij).As theorem 1 in Se
tion 3, K is positive de�nite, then it is a Minkowski Matrix. So we know that the determinants of K'ssub square matri
es on the main diagonal are all positive, whi
h is:8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

K11 > 0det"K11 K12K21 K22# > 0...det266664 K1 1 K1 2 : : : K1n�1K2 1 K2 2 : : : K2n�1... ... . . . ...Kn�1 1 Kn�1 2 : : : Kn�1n�1377775 > 0det(K) > 0
(9)

Suppose the mutual partial relu
tan
e K1n is ignored and we obtain the trun
ated n�n partial relu
tan
e matrix K. If theignored mutual relu
tan
e is not K1n, we 
an always renumber the 
ondu
tor segments, swap the rows and 
olumns of K andK to let the ignored mutual relu
tan
e numbered as K1n without 
hanging the nature of the system. When extra
tion thenth 
olumn of K, we remove 
ondu
tor segment 1 �rst, then assume unit ve
tor potential drop along 
ondu
tor segment n and
al
ulate the 
urrent distribution on 
ondu
tor 2; :::; n. It should be noti
ed that not only K1n = 0 is di�erent, K2n; :::;Knnare all di�erent from K2n; :::; Knn be
ause of the shielding e�e
t of partial relu
tan
e.Sin
e no 
ondu
tor segment is removed when 
olumns of K are being 
al
ulated ex
ept 
olumn n, the determinants of K'smain diagonal sub-matri
es keeps the same as K's ex
ept det(K). That is8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

K11 = K11 > 0det"K11 K12K21 K22# = det"K11 K12K21 K22# > 0...det266664 K1 1 K1 2 : : : K1 n�1K2 1 K2 2 : : : K2 n�1... ... . . . ...Kn�1 1 Kn�1 2 : : : Kn�1 n�1377775= det266664 K1 1 K1 2 : : : K1n�1K2 1 K2 2 : : : K2n�1... ... . . . ...Kn�1 1 Kn�1 2 : : : Kn�1n�1377775 > 0
(10)



With Eq. 10, we only need to show det(K) > 0 to prove that K is a Minkowski Matrix. The determinant of K 
an be
al
ulated by \determinant expansion" [1℄: det(K) =Pni=1Ki n� < K >i n=Pni=1Ki n� < K >i n (11)where < K >i n and < K >i n are 
ofa
tors of Ki n and Ki n, and they are identi
al sin
e the �rst n� 1 
olumns of K andK are the same. Re
all the relationship of 
ofa
tor and inversion [6℄, we haveLn i = < K >i ndet(K) (12)Also be
ause K1 n is trun
ated, we know K1 n = 0. So the determinant of K equalsdet(K) = det(K) �Pni=1Ki n � Ln i= det(K) �Pni=2Ki n � Ln i (13)By removing 
ondu
tor 1, we obtain an (n � 1)-
ondu
tor system and its partial relu
tan
e matrix K0. In the (n � 1)-
ondu
tor system, 
ondu
tor i is identi
al with 
ondu
tor i+ 1 of the previous n-
ondu
tor system. So the nth 
olumn of K
an be mapped to the (n� 1)th 
olumn of K0 asKi n = K0i�1n�1, where i = 2; :::; n (14)And the inversion of K0, the partial indu
tan
e matrix L0, will have the following relation with K0n�1Xi=1 K0i n�1 � L0n�1 i = 1 (15)From the physi
al nature of partial indu
tan
e, we know that partial indu
tan
e dose not have shielding e�e
t whenproximity e�e
t is not signi�
ant enough. Then the mutual partial indu
tan
e will keep un
hanged when other 
ondu
tors isremoved from the system. Thus, for L and L0, we haveLn i = L0n�1 i�1, where i = 2; :::; n (16)Combine Eq. 13, Eq. 14, Eq. 15 and Eq. 16, the determinant of K will bedet(K) = det(K) �Pni=2Ki n � Ln i= det(K) �Pni=2K0i�1n�1 � L0n�1 i�1= det(K) �Pn�1i=1 K0i n�1 � L0n�1 i= det(K) (17)And be
ause det(K) > 0, we also proved that det(K) > 0. Together with Eq. 10, we know that trun
ated partial relu
tan
ematrix by ignoring mutual partial relu
tan
e K1n is a Minkowski Matrix through lemma 1. To make the partial relu
tan
ematrix symmetri
, we need to trun
ate Kn 1. We swap 
olumn 1 and n of K and then swap row 1 and n of K, and it is still aMinkowski Matrix be
ause of the following lemma:Lemma 2. Swapping 
olumn i and j of a square matrix K and then swapping row i and j of K, the determinant andeigenvalues of K will keep un
hanged.By indu
tion, if the partial relu
tan
e matrix with more than one entry are trun
ated, the matrix is a Minkowski Matrixbe
ause we 
an trun
ate one more mutual partial relu
tan
e entry ea
h step, swap the 
olumns and rows by lemma 2 andkeep the matrix to be Minkowski Matrix. So we have:Lemma 3. The sparse partial relu
tan
e matrix, obtained through the extra
tion pro
ess step 1 to 8 in Se
tion 2, is aMinkowski Matrix.Re
all that we will symmetrize the sparse partial relu
tan
e matrix K = 12 � (K + KT ) at the last step of extra
tion. Itis easy to �nd that the KT is also a Minkowski Matrix and its eigenvalues are all the same as K. So the symmetri
 sparsepartial relu
tan
e matrix 12 � (K +KT ) is also a Minkowski Matrix, hen
e it is a positive de�nite matrix.Theorem 2. The sparse partial relu
tan
e matrix, obtained through the extra
tion pro
ess in Se
tion 2, is positive de�nite.By theorem 2, we know the 
ir
uit model 
onstru
ted from the sparse partial relu
tan
e matrix is passive, and hen
e thepartial relu
tan
e based 
ir
uit model is stable in simulation for general inter
onne
t stru
ture.In paper [16℄, the 
ir
uit model of larger window with multiple aggressors is proposed to enhan
e the eÆ
ien
y by reusethe 
omputation resour
e. Although the partial relu
tan
e matrix was not expli
itly given out, there is still an equivalentpartial relu
tan
e matrix for the 
ir
uit model in the paper. From theorem 2, 
orollary 1 
an be easily dedu
ed and then the\group" method, using larger window with multiple aggressors, is also stable for general inter
onne
t stru
tures. However,sele
t optimal group window size for unequal length 
ondu
tor stru
ture will not be as easy as that for bus stru
ture dis
ussedin [16℄.Corollary 1. The sparse partial relu
tan
e matrix, obtained through \group" method proposed in [16℄ is positive de�nite.



5. CONCLUSIONIn this paper, we proved that both full partial relu
tan
e matrix and sparse partial relu
tan
e matrix having small mutualrelu
tan
e trun
ated are positive de�nite. Then the stability of the partial relu
tan
e approa
h is guaranteed not only inparallel bus stru
ture but also in general inter
onne
t stru
tures.With the proof in this paper, instead of running the K extra
tion algorithm several times to �nd a sparsi�ed K matrixwithout positive o� diagonal terms, run extra
tion algorithm only on
e is enough to have a stable 
ir
uit model for 
ir
uitanalysis.Together with K's lo
ality, the 
on
lusions in paper [5, 7, 3, 2, 4, 16, 15℄ that the partial relu
tan
e approa
h is eÆ
ient,pra
ti
al and stable, 
an be generalized from parallel bus stru
ture or suÆ
iently dis
retized stru
ture to any inter
onne
tstru
ture.
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APPENDIX

A. AN INTERCONNECT EXAMPLE TO ILLUSTRATE RBC ALGORITHMHere is an example that the RBC algorithm (Re
ursive Bise
tion Cutting Algorithm) may spend too many iterations of partialrelu
tan
e extra
tion to guarantee against positive mutual partial relu
tan
e. Suppose we have two short signal lines near a busstru
ture and the inter
onne
t wires are 
ut short enough to obtain a

urate result. Figure 1 shows only a part of the stru
ture we areinterested and the 
al
ulated partial relu
tan
e matrix 
orresponding to that part is shown in Eq. 18. The dimension of all the wires inthis example are shown in the �gures. The unit for the partial relu
tan
e entries in Eq. 18 19 20 is 107H�1.2666664 345 13 �108 0 0 013 345 �108 0 0 0�105 �105 214 �100 0 00 0 �100 217 �100 00 0 0 �100 217 �1000 0 0 0 �102 152 3777775 (18)It 
an be noti
ed that the mutual partial relu
tan
e K12 = K21 = 1:3� 108 > 0 due to the unequal length of the 
ondu
tor segments.To guarantee the mutual relu
tan
e entries to be negative, RBC algorithm is performed and the bus line 
ondu
tor segment 
loses tothe signal wire segments is 
ut by half whi
h is shown in Figure 2.
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es new positive mutual relu
tan
e K32 and K41 in Eq. 19 so that the longest 
ondu
tor in 
urrentwindow will be 
ut by half and the extra
tion pro
ess will have to run again.
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ess will be performed again. Inthis example, the iteration will not stop until all the bus wires are 
ut. If the bus is 
omposed by 128 parallel 
ondu
tors, the extra
tionalgorithm will run 128 times, whi
h is not a

eptable.


