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Abstract— This paper provides a method to directly extractK
element, orpartial reluctance from the physical meaning of partial
reluctance. The approach of directK extraction reveals the local-
ity nature of partial reluctance and explains why inductance effect
can be captured by sparseK matrix without knowing the current
loop first. We use a 3-D discretization of a magneto-quasi-static
integral formulation to simulate the current distribution and get
the frequency dependent partial reluctance matrixK and resis-
tance R. Directly extracting partial reluctance gives a clearer
view of partial reluctance’s physical meaning and avoids invert-
ing the partial inductance matrix before running simulation and
reduction based onRKC model. Also, benefiting from the lo-
cality of the partial reluctance, a hierarchical shieldingtechnique
is used in the extraction and it brings a great speed up. The re-
sult from examples shows advantages in direct partial reluctance
extraction with shielding techniques over the traditional partial
reluctance extraction by invertingL.

I. I NTRODUCTION

As clock speed increases and less resistive wires are used
to enhance on-chip signal propagation speed, inductance ef-
fect of on-chip interconnect is becoming more and more im-
portant. However, capturing on-chip inductance effect is very
difficult because of unknown circuit return path. Ruehli in-
troduced the concept of partial inductance developed by Rosa
[12] to the circuit design field [13] to avoid the unknown loop
problem. But since the partial inductance is based on the vir-
tual loop closed at infinity, the coupling are now among all
the conductor segments so that the resulting partial inductance
matrix is extremely dense. Due to this global effect of dense
partial inductance matrix, people are facing many difficulties
on extracting on-chip parasitic parameter and simulating on-
chip interconnect withRLC model.

Many work had been done to make the partial inductance
sparse, such as the “shift-truncate” method [11] and “return-
limited loop inductance” concept [14]. However, the accuracy
of these approaches are not guaranteed under different inter-
connect topology because current return paths need to be as-
sumed prior to the extraction while the return paths may not be
true.

Fortunately, the inverse of partial inductance matrix, thepar-
tial reluctance matrix, has locality and stability [5]. The new
circuit element, the partial reluctance, orK element, was first
introduced by Devganet al [5]. In [8], Ji et al developed a new

circuit simulation tool,KSim, by incorporating theK element.
Since the locality and stability of partial reluctance matrix K,
KSim can achieve much higher performance than today’s cir-
cuit simulation tools based onRLC model.

Other approaches based on the concept of partial reluctance
such as “double inversion” by Beattieet al in [2] and “induct-
wise” by Chenet al in [4] are also proposed and great advan-
tages overRLC model are shown in their work. And Zheng
et al had done some work on model order reduction forRKC
model in [15].

Ji et al illustrated the locality and positive definiteness of
partial reluctance for parallel equal length bus structures in [8].
But as pointed out by Chenet al in [4], some off-diagonal re-
luctance terms may be positive in unequal lengths parallel con-
ductor hence the proof ofK ’s locality and stability by Jiet al
will not be valid for general cases. We will show the locality
of partial reluctance from the view of directK extraction, or
the physical meaning of partial reluctance.

The previous approaches [4] [8] to extract partial reluctance
are to divide the circuit into some smaller parts, get the partial
inductance matricesL of each one from available extraction
tool such as FastHenry [10], inverse theL matrices to theK
matrices and combine the smallK matrices to a big one for the
input ofRKC simulation tools. It is clear that the matrix in-
version is costly, and developing extraction method for directly
catching partial reluctance becomes necessary.

Also, the partial reluctance shares many features with ca-
pacitance because one uni-directional magnetic problem can
be transformed in to an electric problem [4]. So direct partial
reluctance extraction may utilize some techniques used in ca-
pacitance extraction and gain the advantage over inductance
extraction. This paper uses the hierarchical shielding algo-
rithm, which was similar to the technique used in capacitance
extraction [9], to accelerate the partial reluctance extraction.

The following section will give an overview about the back-
ground of partial reluctance. Section III illustrates the local-
ity of partial reluctance by from its direct extraction approach,
or K ’s physical definition. Section IV discusses some details
of partial reluctance direct extraction, such as skin effect in
high frequency. Hierarchical shielding algorithm to accelerate
partial reluctance extraction is presented in section V andthe
experimental results are given in section VI to show the advan-
tage of directK extraction. Finally, section VII concludes this
paper.



II. PHYSICAL BACKGROUND OF PARTIAL RELUCTANCE

In [5], partial reluctance matrixK is defined as the inverse
of partial inductance matrixL.[K℄ = [L℄�1 (1)

The magnetic vector potential,A, is defined asr�A = �Hr � A = 0 (2)

Then by magneto-quasistatic approximation [6] and sinu-
soidal steady-state assumption, the vector potential has the fol-
lowing relation to the current distributionJ(r)A(r) = �04� ZV 0 J(r0)k~ri � ~rjkdv0 (3)

whereV 0 is the volume of all conductors. ThenAij , the vector
potential on conductor segmenti due to the current on conduc-
tor segmentj isAij = �04�aj Zaj Zlj Ijd~ljk~ri � ~rjkdaj (4)

wherelj andaj are the length and the cross section area of
filament j. Ij is the current on conductor segmentj. AndAi, the vector potential on conductor segmenti due to all the
current in the system, isAi = nXj=1Aij (5)

Also we know that with magneto-quasistatic approximation,
the partial inductance between two conductor segmentsi andj is as follows [13]Lij = �04�aiaj [Zai Zaj Zli Zlj d~lid~ljk~ri � ~rjkdaidaj ℄ (6)

With the definition of magnetic vector potential in Eq. (2)
and zero transverse current on the conductors,Ai distributes
uniformly on the cross-section of conductor segmenti. So the
magnetic vector potential along a conductor segment can be
simply wrote down as1ai Z Z Aidaidli = Z Aidli (7)

Thus, ann conductor linear system of partial inductance will
be 264 L11 L12 � � �L21 L22 � � �

...
... Lnn 375264 I1

...In 375 = 264 R A1dl1
...R Andln 375 (8)

Therefore, with Eq. (1) and Eq. (8), the partial reluctance
matrix will be in the following linear equations,264 K11 K12 � � �K21 K22 � � �

...
... Knn 375264 R A1dl1

...R Andln 375 = 264 I1
...In 375 (9)

From Eq. (9), we know that if we set the magnetic vector
potential drop along conductor segmenti to 1 and others to 0,
the current on the conductor segments equals theith column of
the partial reluctance matrixK. This gives us another defini-
tion ofK matrix [8]: “The elementKij is the current flowing
through theith conductor when the magnetic vector potential
drop along all conductors, except thejth, are set to zero, and
the magnetic vector potential drop along thejth conductor is
raised to unit potential.” This definition gives us the physical
meaning of partial reluctance and makes it possible to extract
partial reluctance directly instead of inverse the partialinduc-
tance matrixL.

The approach for directly extractingK element is to put unit
vector potential drop along the aggressive conductori and let
vector potential drop be zero on other conductors when we
want to extract theith column ofK matrix. I.e. letR Aidli = 1R Ajdlj = 0; j 6= i (10)

Then based on Eq. (9),Kji equalsIj , the current on con-
ductor segmentj. So the target to extract partial reluctance
becomes calculating the current distribution.

Here, we should clarify some concept about reluctance and
partial reluctance.Partial inductance is different frominduc-
tance, which is a property of closed loops. Similarly,partial
reluctance is not reluctance. If we say inductance is a flux
controlled non-linear function of flux vs. current,reluctance
is a current controlled non-linear function of flux vs. current.
Linear reluctance is the inverse oflinear inductance andK el-
ement ispartial reluctance. Similar relationship can be found
betweencapacitance andelastance: capacitance is a charge
controlled non-linear function of charge vs. voltage andelas-
tance is a voltage controlled non-linear function of charge vs.
voltage.

III. L OCALITY OF PARTIAL RELUCTANCE

Although it avoids unknown current return loop problem,
partial inductance makes the inductance effect global. As it is
well known, the loop inductance is not global because the cur-
rent actually returns in nearby wires for on-chip interconnects
[1]. This shows that the inductance effect, or, magnetic inter-
actions of on-chip interconnects should be local in nature and
it is the artifical assumptions that cause the on-chip inductance
effect global.

Partial inductance extraction under PEEC model [13] shows
the reason that the mutual partial inductance decays slowly.
As in Fig. 1, during partial inductance extraction, we apply
unit current on the aggressive conductor by the unit current
source at infinity, and force the current to be zero by applying
zero current sources on the victim conductors. Since we force
the current only on the aggressor and its virtual return loopat
infinity, the magenitic coupling effect exists in the whole space.

Partial reluctance is a different story in the view of its phys-
ical meaning, or direct extraction method. As in Fig. 2, we
apply unit vector potential drop on the aggressive conductor
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Fig. 1. Partial inductance extraction under PEEC model (The dashedline
means the current return loop and the current sources are at infinity.)
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Fig. 2. Partial reluctance extraction by its physical meaning (Thedashed line
means the current return loop and the voltage sources are at infinity.)

by a voltage source at infinity, and force the vector potential
drop on other conductors to be zero by applying negative volt-
age sources on the victim conductors to cancel the magenitic
field induced by the aggressor current. Although the return
loop and voltage sources are still at infinity, the currents on
the victims in the negative direction actually form the virtual
current return loops and thus the faraway magenitic fields are
mostly canceled.

The “virtual current return loops” formed naturally when
unit or zero flux are forced on the conductors and they need
not to be known prior to the extraction. This allows that theK approach has wider application area and better result than
other inductance sparsification technics which current return

loop need to to assumed first. However, to accelerate partial
reluctance extraction (either by traditionalL inverse or by di-
rect extraction), some assumptions on current return loop are
also needed to use local windowing or similar methods.

IV. D ETAILS IN EXTRACTING PARTIAL RELUCTANCE

In most cases, the resistance of the conductors is not negli-
gible, which results in more complex partial reluctance extrac-
tion.

Since the current is not uniformly distributed at high fre-
quency, we need to mesh the conductors into filaments to sim-
ulate the current distribution. With the magneto-quasi-static
assumption, we can assume that the current within the conduc-
tors flows parallel to their surfaces because there is no charge
accumulation on the conductor surfaces. So the the conductor
can be divided into a bundle of parallel filaments with rectan-
gular cross-section and the current flows only along the length
direction of the filaments.

Current flow direction 

Fig. 3. An example of non-uniformly mesh 2 conductor segments into 2x5x3
filaments

It is well known that the current flows near the surface of
the conductor because of skin effect. So we mesh the conduc-
tor segments non-uniformly. Fig. 3 gives an example of two
parallel conductors been meshed into5� 3 filaments each.

With the sinusoidal steady-state assumption, for a system
with n conductors at the frequency of2�!, the current vectorI 2 Cn and voltage drop vectorV 2 Cn on the conductors can
be expressed as (R + j!L)I = V (11)

whereR;L 2 Rn�n are the resistance matrix and the partial
inductance matrix of the system respectively. Transforming
Eq. (11) and combining it with the definition of partial reluc-
tance matrixK in Eq. (1), we havej!I = K(V �RI) (12)

Notice thatV � RI is ann � 1 vector and if we set entryi
of V � RI to one and the other entries to zero, by computing
the resulting current vectorI , we can get theith column ofK,



which equals toj!I . Also we can get the scalar potential dropV on each conductor and compute the equivalent resistance.
Since we are more interested in the partial reluctance matrixK rather than the resistance matrixR, we set entryi of V �RI to j! and the others to zero. Then the resulting current

distributionI equals columni of K.
With the definition of vector potentialA in Eq. (2) and Fara-

day’s Law in sinusoidal steady-state, we haveE = �j!A�r� (13)

where� is the scalar potential andE is the electronic field.
Since the current flow is parallel to the surface of the conduc-
tor, we can only considerE, A andr� along the length of
the conductor. Integrate both sides of Eq. (13) along the length
direction of the conductor from one enda to the other endb,
we haveVab = �(�b ��a) = j! Z ba Adl +E � lab (14)

As E contributes to the resistive potential drop fromJ =�E, we have E � lab = RI (15)

Combine Eq. (14) and Eq. (15)V �RI = j! Z ba Adl (16)

So setting theV � RI to j! on the aggressive conductor and
others to zero is the same as setting the vector potential drop
along the aggressive conductor to one and others to zero, which
is consistent with the secondary definition of partial reluctance
and the approach for extracting partial reluctance we stated in
section II.

Assuming each filament is thin enough that the current can
be approximated uniformly distributed inside the filament,Îi
andV̂i 1, the current and the potential drop on filamenti, can
be given R̂iiÎi + j! mXj=1 L̂ij Îj = V̂i (17)

wherem is the number of the filaments. The filament’s DC
resistancêRii can be givenR̂ii = li�âi (18)

where� is the conductivity of the conductors and the mutual
partial inductance between the filaments (or self partial induc-
tance if i = j) L̂ij has the following formulation similar to
Eq. (6)L̂ij = �04�âiâj [Zâi Zâj Zli Zlj d~lid~ljk~ri � ~rjkdâidâj ℄ (19)1Here we use a little hat^to distinguish the symbols for filaments from the
symbols for conductor segments.

Because uniform distributed current is assumed inside the
filaments, Eq. (19) can be accurately integrated by Hoer’s for-
mula [7].

Eq. (17) can be written in matrix form(R̂ + j!L̂)Î = V̂ (20)

whereR̂ is anm � m diagonal matrix and̂L is anm � m
matrix. They are known when the conductors are meshed into
filaments. Î 2 Cm is the vector of current on the filaments,
which is what we want to know and̂V 2 Cm is the vector of
potential drop on them filaments.

Because the transverse current is zero, the potential drop on
different filaments of a same conductor are equal. By defining
the mesh incidence matrixM 2 Rn�m asMij = 1 when
filamentj is in conductori andMji = 0 otherwise, we haveV̂ = M tV (21)

and I =MÎ (22)

Since the partial reluctance matrixK and resistance matrixR are real, the resulting currentI must be real when the vector
potential drop

R Adli is set to1 on the aggressor and0 on the
victim. I.e. Iim = 0 (23)

Also the real part of potential dropV contributes the poten-
tial drop caused by the electric fieldE and its image part con-
tributes the potential drop caused by the magnetic field

R Adl,
which are set to1 or 0 for computingK matrix. Then Eq. (20)
can be separated into two equations� R̂Îre � !L̂Îim = V̂re = M tVre!L̂Îre + R̂Îim = V̂im = !M t R Adl (24)

whereÎ = Îre+jÎim, V̂ = V̂re+jV̂im andV = Vre+jVim =Vre + j! R Adl.
Eq. (24) and Eq. (23) can be put together in matrix form24 R̂ �!L̂ �M t!L̂ R̂ 00 M 0 3524 ÎreÎimVre 35 = 24 0!M t R Adl0 35

(25)
Then we will haveÎre, Îim and V̂re by solving linear

Eq. (25) and get the current on the conductor segmentsI =MÎ . The ith column of partial reluctance matrixK equalsI and the equivalent resistance of conductor segmenti at the
frequency of2�! is given byRii = Re(Vi)=Ii.

The mutual partial inductance of two filaments can be got
by a simple closed formula under the condition that the cur-
rent flow is uniform inside each conductor filament. This is
because other conductors in the space have no effect on the
mutual partial inductance between the two filaments. How-
ever, other conductors do have effect on the mutual partial re-
luctance between two filaments. Since then, it is impossibleto
find a simple direct formula for the mutual partial reluctance of


