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ABSTRACT

The gap between CPU speeds and the speed of the technologigding the data is
increasing. This causes the performance of processes tontied by the performance
of the storage devices, the networks and the buses. Fumherrthe number of CPUs
that share these data access resources is growing expmlyer@iaching, prefetching and
parallelism are some of the techniques used today to coge I¥@t latency and system
scalability to support more users.

This paper describes the two major contributions of our amgeesearch on distributed
data access. The first contribution is the design of the §eoEambedded Networks (SEN)
architecture that aims to improve user response times aadlslity on the Internet by
better distribution of caches. SEN architecture is comgaxfetrusted routers embedded
with volatile and non—volatile storage that snoop bypagsibjects for caching. Requests
are checked by every hop, thus ensuring the transmisside@ldsest copy on the data path
and load reduction at the upstream. The two main controlrmaas of other architectures,
connection establishment and continuous cache commiarisatdo not exist in SEN.

The second contribution is the design of adaptive cachihgrees using multiple ex-
perts, called ACME, that manage the SEN caches and furthgroire the hit rates over
static caching techniques. Machine learning algorithnesuaed to rate and select the cur-
rent best policies or mixtures of policies via weight updabased on their recent success.
Each adaptive cache node can tune itself based on the wdriklobserves. Since no cache
databases or synchronization messages are exchangedftivig, the clusters composed
of these nodes will be exceedingly scalable and manageable.

We propose to extend our preliminary designs and analysisardirections. The first
is to compare the Storage Embedded Networks (SEN) with tistirx hierarchical and
distributed cache clusters in terms of user response tinst®/ork bandwidth usage, server
load reductions and scalability. For this part we will rurgka scale simulations over real-
istic topologies using real web proxy, file system and ravk diaces. We will start these
comparisons with static caching techniques. In the secarndag will introduce the adap-
tive caching techniques to eliminate manual tuning and mlatopological placement of
static caches. We will measure the performance improvesrgained by using the adap-
tive technigues and probe the performance limits by theadedptimal algorithms. We will
also quantify the time and space complexities of our scheReal system implementations
will help us optimize our designs.

Keywords: Simulation, multi-level caches, web hierarchy, distrdmjtadaptive, topology
generator, filtering, heterogeneous caching.
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4 1. Introduction

1. Introduction

The number of users connected to the Internet is growing rexpitally. Satisfying so many
users with fast response times or “low latencies” while sgarently saving network bandwidth
demands efficient distributed caching techniques. Thealatass latency problem in a single host
is related to the discrepancy between the processor and/@isgpeeds [28, 86, 90, 89, 87]. In
remote data accesses the network latency is added to thaté@cl at the servers [28, 7] further
reducing the performance of the applications. Interndficranalysis has shown that latency has
improved, but not exponentially, from 500 ms to 100 ms andealoss rates have dropped from
25% to 5% since 1993 [3].

Providing persistency of data along the path of traversti eproper consistency vision enables
reuse of the objects thus avoiding useless retransmissiohis approach reduces user response
times as well as reducing the bandwidth usage in the netwaakitze processing power usage on
the server side, allowing resources that were once spewt doplicative work for sending the same
objects over and over to be allocated to provide richer aura@d higher quality service for all.
Sources of redundancy in the Internet include undetectekigbaetransmissions, client sharing and
poor version management [74]. The adverse effect of thebwmdancies will increase because of
the increases in the number of mobile and wireless clieméssifies [48] and percentage of dynamic
objects. Exploiting any correlations and duplicationsamatn the requests is crucial.

SEN devices are routers with embedded volatile (DRAM) amutvalatile (MRAM [72], disk,
MEMS [51]) storage to be used for object caching via objecbging in trusted routers. Requests
are checked by every hop, thus ensuring the transmissidmeaflbsest copy on the path and load
reduction at the upstream. Our vision is the use of storagsipdlly embedded into the network
device to save the overheads of extra messaging with exieanhe engines [36]. We use globally
unique content—derived naming for object identificatiod dafine a new object transport protocol to
carry the objects. There have been great efforts to provadkable caching solutions that cooperate
by exchanging messages with peers [33, 40, 45] or by inquaicentral database to locate cached
copies of objects [67]. However, scalability has remaireedd a major concern.

Enormous research efforts have also been put into chaiaotethe Web [7, 21] and file sys-
tem [86] workloads and many static cache replacement pslicave been invented. Today, robust
static policies that work well with a wide variety of worklds are embedded into the systems [59,
20, 84]. Unfortunately, these policies cannot adapt to gharin workload and network topology
and become suboptimal [99] when the conditions change.

Many factors increase the complexity of today’s system$ id5vhich caching is used. First,
the characteristics of workloads change over short andpenigds of time. Second, workloads mix
when a system simultaneously serves multiple workloademgéed by heterogeneous applications.
Third, the characteristics of access to metadata and datdifferent. Finally, as the location of a
cache node in the network topology changes the observedaaorkhanges. This load is different
from the load seen at the edges. This is called the “filterffec® [8]. Recent research shows that
these filtering effects [8] in a hierarchy of caches can clkahg nature of an otherwise predictable
workload such that the higher layers are effectively use]@82, 27]. In these complex scenarios
analytical modeling is daunting, manual tuning is tedioi¥] [and making wrong decisions has
extreme monetary and performance costs.

Our machine-learning—based adaptive caching scheme (AG&/Eotivated by these chal-
lenges of making caching decisions within complex systemreal-time and under dynamic con-
ditions. We consider all previous cache replacement dlyos to be experts and register them into
a pool with initially equal weights. When a new algorithmrisénted we add it to our expert pool



and let it prove its success. We do not invent any new cacHaaement algorithms, but use the
existing ones more effectively. As the requests are madadyglients and the workload proceeds,
the weights of experts are automatically changed by the atatipnally simple but powerful ma-
chine learning algorithms based on their success on sdlenttrics such as thdt rate or thebyte

hit rate. Hit rate is the percentage of all the documents accessduelslients that are found in the
cache and byte hit rate is the percentage of all the bytesseddhat are found in the cache. Each
adaptive node is a self—governing or “autonomous” entitync& no cache databases or synchro-
nization messages are exchanged the clusters composegsefahtonomous cache nodes will be
exceedingly scalable and manageable. Machine learnimgithigns [56, 70] have previously been
successfully used in addressing non-trivial operatingesys problems [54, 55] such as the disk
spin—down problem in mobile computers.

In Section 2 we review the current state of caching in fileesyst and web proxies. In Section 3
we introduce our Storage Embedded Network (SEN) architectin Section 4 we focus on the
adaptive cache design and in Section 5 we present some prafimmesults. In Section 6 we propose
extensions to our current work and we conclude in Section 7.



6 2. Related Work

2. Related Work

Caching is used at all data access paths [101] and at allabetr levels (file/record, block)
in modern storage architectures as illustrated in Figute Blowever, most caches still depend on
robust static cache replacement algorithms such as Leasinie Used (LRU) to decide on the
objects to be ejected.

In this section we will review previous research in cachingaur major groups. First, we will
look at static cache replacement policies. Second, we &ilew caches in a single host. Third, we
will examine some popular distributed file systems and theegsd issues with distributed systems.
Fourth, we will analyze the hierarchical and distributedoveaches. At the end we will have an
overview of prefetching, which attacks the same problemaabing.

2.1 Static Policies

Table 2.1 lists some very popular and recently proposedr@iand the policies that use these
criteria to make local replacement decisions. Randomi-Firgirst-Out (FIFO) and Last-In-First-
Out (LIFO) do not require any information about the objectdé replaced. Time, frequency and
object size are the most commonly used criteria for localaegment decisions. Least Recently
Used (LRU) uses recency of access as the sole criteria flaomment, while Least Frequently Used
(LFU) uses frequency of access. SIZE replaces the larggsttaddnd Greedy-Dual-Size (GDS) [59,
29] replaces the object with the smallest kQy=Ci/S + L, whereC; is the retrieval cost§ is the
size and L is a running age factor. GDS with Frequency (GD36]) §dds the frequency of access,
F, into the same equation and replaces the object with thdesh&kyK; = (C; x F)/S + L. LFU
with Dynamic Aging (LFUDA) replaces the object with minimug = (C; x F) + L [20]. Lowest
Relative Value (LRV) [84] makes a cost—benefit analysis gisive access time, access frequency
and size information about objects.

Hashing or more complex Bloom filters [45] on object IDs arenfpreferred for local decisions
in the building blocks of a global system of caches. If the &>l implies that the neighboring

Application

©
File/Record| Layer

f;;fg;ﬁ% Fid FSSy)steﬂ

©

Block| aggregation

C

Storage Devices (disk, ..)

Block Layer

Figure 2.1: Access paths from applications to the storagece®e (Slightly modified
version of SNIA Shared Storage Model access paths graphcimo8et.6 [101]). Caches
are used at all layers. Today timetworkcan also go between any of these layers and
boxes.
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| criteria | algorithm |
- Random, FIFO, LIFO
time LRU, MRU, GDS, GDSF, LFUDA, LRV
freq LFU, MFU, GDSF, LRV, LFUDA
size SIZE, GDS, GDSF, LRV
retrieval cost GDS, GDSF, LFUDA, LRV
ID Hash, Bloom filter
hop-count -
QoS priority Stor-serv

Table 2.1: An extended taxonomy of existing and proposeteaeplacement policies.

node should be caching that object then it could be replacekly. Hop-counts provide another
set of criteria that can passively provide an indication e togical location of a cache without
resorting to full location-awareness. Up-stream hop coan¢ a loose measure of how far a cache
is from the closest data source, while down-stream hop sdndicate logical distance from clients.
Recent research [103] points to the benefits of keeping adexf@ccess latency history per object,
providing yet another potential caching criterion (e.gs wise not to discard items from the cache
that are very costly to retrieve). Stor-serv [35] proposasl@y of Service (QoS) ideas used in
networking to be applied to storage systems for giving diiféiated services.

Table 2.1 does not intend to cover all the proposed algosthather, our goal is to show two
things. First, the possible criteria and the ways to use thenendless, therefore we need a flexible
design for integrating new criteria. Second, the trend icheareplacement algorithms is towards
finding the functions that unite all the criteria in a singkeylor value. Other taxonomies of time,
frequency and size based policies are presented in pride [58; 34].

2.2 Caching and Adaptivity in Local File Systems

Linux has a dynamic cache space management [24] that us@sitiery memory unused by
the kernel and other processes. If the requirement for pyimmeemory increases, the space allowed
for buffering is reduced down to a minimum of 16 pages. Fiterded memory page caching is
used for read operations and block buffer caching is usewiite operations. Blocks are kept in
buffer cachewhich is a circular doubly linked LRU list [88]. Other cachare thénode cachdhat
is used to look upnodestructures using the device/inode number keysrame cach¢also known
as thedirectory cachg that associates inode numbers to filenames. Both cachesaraged by
LRU replacement algorithm.

Roselliet al. [86] found that even small caches can sharply decrease aigktraffic but even
very large caches have limited effectiveness in reduciegrdad misses beyond a point and this
point is workload dependent. Thus in general there is no @agpr the claim that disk traffic is
dominated by writes when large caches are employed [89].

Hybrid Adaptive Caching (HAC) [32] combines the virtues aige and object caching by
adaptively mixing them, while avoiding their disadvantageObject caching discards objects in
a page that are cold.¢. not used) while keeping the hot objects. HAC compacts theohfatcts
freeing some memory pages, thus reducing the high bookkgepierhead of object caching. HAC
was shown to outperform object caching.

Khalid and Obaidat have recently proposed neural-netwadedh cache replacement algo-
rithms [79, 62] for eliminating inactive cache lines and iagkd 8.71% improvement over LRU.
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Jacobet al. give an analytical model for hardware related design of nigrheerarchies [58]. Pro-
cessor caches and hardware related optimizations are the gtope of this research.

2.3 Caching and Adaptivity in Distributed File Systems (DF$

Distributed file systems that allow clients to cache file datal also allow sharing need to
provide cache consistencya coherent view of multiple copies of data and metadat&1]1 They
also need to have compleache managemembutines to decide “which cache should or does
hold what” [101]. Another challenge for DFS @vailability that refers to tolerating partial system
failures.

The file caches of Sprite DFS [77] change dynamically in raspdo changes in virtual memory
requirements. Measurements of Sprite by Badeal. [22] in 1991 showed that about 60% of the
data bytes were read from client caches and average file ciheavas around 7 Mbytes out of 24
Mbytes of main memory.

Andrew File System (AFS) [57] has two separate caches fdustand data and both are
governed by the Least Recently Used (LRU) algorithm. Staaghe holds information such as
file sizes and modification times and responds quickigtésystem calls. AFS transfers chunks of
files and caches them in the data cache on the client locataljstovide scalability.

In the Serverless File System (xFS) [16] any machine car st@che or control any block of
data. If the data block is not cached locally the managerriswted to query whether another client
has cached this data. If the request could be satisfied frathanclient’s cache then the blocks are
directly forwarded from client to client to improve scaldlyi Otherwise, the correct stripe groups
and the correct storage servers are found and the data isvestr Cooperative caching [40] by
Dahlin et al. compares four different techniques for cooperation betwdints and servers in a
Local Area Network (LAN). These systems do not mention alaokgiptively changing their caching
policy to track the changes in workloads as will be descrilpeitiis paper.

Lots of focus has been made on providing consistency in DRAHS the modifications to
the file in the cache are only reflected to servers when thesfitdoised. Theallback mechanism
assures cache consistency and reduces the load on senedlung the cache validation traffic.
XFS has @oken—basedache consistency on a per—block basis. Before modificati@block a
client has to acquire its write ownership. In token—basegut@gches the server grants and recalls
the read—write and read—only tokens. Client flushes ity dhidcks to the server upon recall of its
token. Sprite [77] makes write—shared files uncacheabldlasites the caches when the cached files
are opened by other clients. Zebra Striped DFS [53] followes $prite approach for consistency.
Frangipani [95]-Petal [68] use locks for coherency anddsas deal with client failures. Many of
these efforts conclude that write—sharing is rare enoughittis reasonable to pick the simplest
consistency mechanism.

OceanStore [67] project aims to design is a global-scaleigient storage by elaborate replica-
tion, data location, consistency, access control andwatsiorage components. OceanStore design
conceptually mentions about “promiscuously caching nofliesting replicas of objects and a prob-
abilistic algorithm attempting to find the objects near te thquesting machines”. We believe, SEN
architecture is a perfect match for providing such an intftecture. However, SEN does not deal
with deep-archival and concurrent update issues.

Parallel file systems also try to alleviate the I/O perforeeand scalability problems [64, 38,
78, 73], but are out of the scope of our current research.
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2.4 Hierarchical and Distributed Web Caching

Web caches exploit reference locality [7] and allow sharathdiccess. Hierarchical proxies
such as Harvest Squid [33, 94] improve scalability over flathes. They define parent-child
relationships between the layers of the cache hierarchy filthming a tree topology from bottom
(leaf) to top layers. Clients connect to the leaf caches amettty send their requests to them. It
is the duty of these leaf caches to find and return the reqiiedtiects. If the requested object is
not found locally, the leaf cache connects to its parenteactd this parent to its own parent until
the object is found; otherwise the last parent cache cosriedhe server on behalf of the client.
The object is retrieved and transported back to the cliemtmwultiple store-and-forwards through
the various proxy caches. Unfortunately, it usually takesylgeographical distances and multiple
network hops to go to the upper layers. The rule of thumb i$ {84void network hops because
of the delay and uncertainty they introduce in the retriesevice. Upper layer caches can also
easily become bottleneck nodes with long request queueseapdnse times, since they support
exponentially more clients [94]. Thus it is possible to gdtitin the caching system, but still
perform poorly in response times due to the other overhe88& nodes do not setup connections
and they forward requests as normal routers in case theytdwme information about the requested
object.

Misses become the ultimate worst case in hierarchical pspxsince all the time spent in
making proofs of nonexistence. The rule violated here is‘timésses should not be delayed” [94].
Tremendous research has been put into efficiently summgri@5] and disseminating lists of
cached objects among cache clusters, and some have beassutdn improving over basic
hierarchical proxy performance. Approaches that exchamfgemation inherently limit scalability
because every client action becomes a new piece of infoomati hint to be exchanged in the
cluster.

By enabling persistence within the network nodes, SENseléato the clients to smoothly
pull the data towards the edges, allowing unreferenced taséowly move back to its ultimate
persistence in the server. Even compulsory (first time) esi€ould be avoided by pushing popular
content on some paths, making SEN of interest to ContentiRigibn Networks (CDNSs) [1, 2] that
currently provide persistence by establishing data cerattiover the world. The two main control
overheads, connection establishment and continuous cachmunications, do not exist in SEN.
The benefits of SEN are therefore similar but superior togtaxshieved by proxies.

Rodrigueset al. compare hierarchical and distributed web caching archites [85]. They
found that hierarchical caching achieves shorter conmetines, reduces bandwidth usage, but can
easily become highly congested at the higher layers. Digtd caching has shorter transmission
times, but the connection times, bandwidth usage and adirtive costs are increased. They
propose a hybrid scheme where there is a caching hierarcthycantain number of caches that
cooperate at each level of the hierarchy using distributeghing techniques.

Adaptive web caching [71] proposes that nearby cachessafigure themselves into a mesh
of overlapping multicast groups and exchange messagesatelothe nearby copies of requested
data and to find out about topology changes. Scalability wasagr goal in this design, but
due to the vast amount of objects flowing on the Internet Iétsomtrol messages still need to
be exchanged [94, 36]. There are also some other deploymabiems with IP multicast [43]. In
Summary Cache [45] and OceanStore [67] nodes use Bloonsfitiesummarize the contents of a
group of caches.

Virtual cache management by Arlét al.[20] divides the proxy cache space into static partitions
and lets a few successful policies work on separate pansiti®@bjects evicted from one partition go
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to the next until they are moved out of the cache. Their resiibw that the performance is bound
by the performance of the best partition [20].

Wong et al. [102] demonstrated the benefits of using demotions in a @-legche that repre-
sented client caches and a disk array cache. Demote openatiges ejected objects one more hop
away from the client instead of discarding them, thus priogjcbetterexclusive cachingo avoid
useless duplications. This creates the effect of havindamge unified cache. They also tried using
different policies at different levels and found that LRURM-Demotes was the most successful.
However, demotions cause extra network overhead and asiliean LAN or Storage Area Net-
works (SAN) with high-speed connections. Busgtrial. also report that the use of heterogeneous
policies [27] improves hit rates over usage of same staticypom multi—-level caches [76].

In this paper, we confine our analysis to adaptive replacéempelicies for objects with static
content. Detailed research on consistency issues in wdhngacan be found in related previous
work [105, 30]. We also leave out the effects of distributecking [25, 67] in file systems.

2.5 Prefetching

Prefetching is a technique to bring objects closer to the GEfdre they are requested. Proba-
bilistic techniques and frequency—based access histoaies been widely used in the past to per-
form prefetching [52, 96]. Recently, program—-based susmresiodels have been proposed to do
file prefetching. In these models names of applications see as hints for prefetching [104].

On their web analysis Kroeget al. [66] found that prefetching can offer more than twice the
improvement of caching, but is still limited in its abilityp treduce latency. With their workload
26% of the latency reduction was due to caching, 57% due fetgreng and 60% when both were
employed.

Within the context of prefetching, adaptivity is used foffeu cache management to dynami-
cally decide on the proportion of the memory to be allocatedte prefetched objects. If prefetch-
ing uses too much memory the buffer cache may be starved andsés too little memory then
there is not enough space to benefit from prefetching.

Prefetching tries to improve the data access latenciesasistaching. But, it is a subject
orthogonal to caching and is out of the scope of this reseai@btails on prefetching [52, 96,
65, 104] and other types of file aggregations aggregation4@pcan be found in prior systems
work.
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3. Storage Embedded Networks (SEN)

Providing improved response times to exponentially insiregga number of users is an ongoing
research challenge. Latency is incurred either becausebjleets are physically stored far away or
because they are highly popular and create hot spots of netwad server load. Storage Embedded
Networks (SEN) bring data closer to the clients and enabta dharing, thus reducing latency,
network load and server load. Other clusters of caches atsease the performance over a single
cache [17], however the trade—offs are the challenges inptmdty, scalability, availability and
administration [46].

SEN devices are routers with embedded volatile and nortikktorage to be used for object
caching in trusted routers. Requests are checked by eventig ensuring the transmission of the
closest copy on the path and load reduction at the upstreamahedookup is run in parallel with
the route lookup, so that the basic forwarding task is notatéed. The operation of SEN routers is
simple. The clients make requests usin@U OID,of fset> pairs via object transports described
in Section 3.2. SEN routers snoop both the bypassing rexjaest data objects. If a local copy of
the object exists, a SEN node responds by sending this lopg) otherwise it forwards the requests
without delaying them as normal routers do. Similar to theakkzed [1] web sites, applications
that want to make good use of SEN caching will have to inclimeGlobally Unique Obiject ID
(GUOID) of the embedded objects.

If caches on a path hold the same elements then a miss in oherofwill also result a miss in
the other ones. This is calladclusive caching102]. We would like to achieve as mu@xclusive
cachingas possible between the collaborating caches, so the rchistethe effect of a one big
unified cache to the users. We will used heterogeneous amdivaelaaching techniques to provide
exclusive caching. Many of the proposed architectures dohimg clusters or hierarchies involve
periodic message exchanges that may limit their scalpbikt good cluster is formed when all
unit caches in the cluster first do their best with the worllltlzey observe and are able to change
characteristics as their workload changes. After thisastfucture other intelligent techniques such
as pushing or prefetching can also be utilized.

Adaptive caching techniques will be used to improve the diiés of SEN caches over static
caching. If the caching SEN node changes location by a chiartipe routing tables becoming an
intermediate node, then adaptive policy will shift to dgtithe requirements of this new location.
Therefore, adaptive caching is also very beneficial for ieobodes. Since our scheme requires
no explicit message or periodic database exchanges it is s@lable and allows the flexible
construction of large SEN clusters.

For Content Delivery Networks (CDN) choosing the corregiveethat will lead to the fastest
response to the client requests is a big challenge, eslyetimthe complexity of the real Inter-
net” [61]. Measurements by Johnsehal. [61] show that neither of the two major commercial
CDN services [1, 2] choose the optimal server consistelily.nope that SENs will provide a ben-
eficial infrastructure for content delivery and push caghlty both providing the persistence and
ensuring the delivery of closest copies on the network pa®&N infrastructure will alleviate the
configuration, tuning and management complexities that €ide today.

3.1 Globally Unique Object Identification (GUOID)

To exploit correlations between client requests, a SENablgjgche needs to identify all objects
in a globally unique fashion, independent of sessions, ections, applications and protocol spe-
cific packet sequence numbers. Therefore, we choose to esmittent-derived Globally Unique
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Object Identification (GUOID) [6] to achieve connection épgndent naming. Content Derived
Naming [6] scheme uses secure hash functions to derive @&tt&bpame from its content. Our
calculations show that a 160 bit GUOID such as that genetayesHA-1 [18] could be used for

long periods of time with very small probability of name dias.

Whenever an object is modified, it essentially becomes a figecband is given a new GUOID
value [81]. The clients make requests usingsUOID, offset> pairs. As with the case of web
pages, many objects have other embedded objects, mostigitiaf content, which do not change
during the update operation of the initially retrieved irithgy page. An update operation may only
change the GUOID of the top-level object; if so, only thatembjwould need to be retransmitted.
Upon reception, clients can hash the contents and compameshlt against the expected GUOID
of the object to checKata integrity

3.2 Object Transports

We propose two possible transports for transferring andhiogcobjects within SEN clusters.
The first approach is an Open Systems Interconnection (G814 (transport layer) solution that
we call Object Transport Protocol (OTP). OTP runs on top offJIP and carries objects identified
by GUOIDs. OTP is not a totally new concept, but a generatimabf the Real Time Protocol
(RTP) [93], which is successfully being employed today toycaeal-time traffic on the Internet.
RTP introduces object awareness by tagging each packetavgtbbally unique Synchronization
Source (SSRC) identifier and a time-offset for the real-tpagload being carried. However, these
specific fields make RTP suitable only for real-time traffitstead, the OTP header keeps a generic
20 byte GUOID for the object and an offset value for the pableiig transmitted. Type and priority
are other useful fields included in OTP header for applicasipecific optimization and Quality of
Service (QoS) differentiation, respectively.

The second approach is an OSI Layer 3 (network layer) saiutiat uses IP options for the
exchange of GUOIDs and other useful information. An IP apisolution was also proposed for
providing Active Networking [100] services. The disadvaes of IP options solutions are quoted
as the limited header space (40 bytes maximum) and the piekperience on the slow acceptance
and slow deployment. The IP options solution, like OTP, iskiaaard compatible. However, a
caching service employing IP options solution will stillageto be explicitly enabled by the hosts
and routers just like the IP Explicit Congestion NotificatiECN) [82] service, until it becomes a
common practice.

Backwards compatibility of new technologies is importastce it allows incremental deploy-
ment without disrupting the technologies in place. SENemiaire backwards compatible with the
standard routers in use today, since current routers wildod IP packets as is without looking for
OTP headers. This makes deployment of SEN devices an evmduyi process, where each added
SEN router enhances the caching capabilities of the Intetdewever, GUOID naming has to be
used by those clients and servers that want to benefit from &ieNing.

3.3 Other SEN Related Technologies

We have seen hierarchical proxies and distributed systan$ection 2. This section reviews
other specialized services that provide similar benefithab of SEN generic architecture.
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3.3.1 Packet Level Caching

Wireless links with high Bit Error Rates (BER), frequent petlosses, temporary disconnec-
tions and limited bandwidth can degrade transport perfogaadramatically. The situation gets
worse when mobility is added; WAN traffic analysis [80] shaivat even on wired links there are
many forms of “pathological” network behaviors that reguietransmissions. Unless packets are
cached on the way, they will have to traverse the WAN linksr@ral over again. There is potential
for packet level reuse in this situation. Indirect TCP (I-)J23], the Snoop protocol [12] and
client-side TCP (C-TCP) [60] are some of the solutions psepdor network level packet caching
and retransmissions. However, all these solutions are @& Jession and cannot capture correla-
tions between applications, other local hosts and hostshdited globally. SEN considers packets
to be offsets of objects, therefore embracing support fohicey at the packet level and reducing the
need for WAN retransmissions. Compared to previous saistiSEN is a generic, easy to deploy,
cheap and effective solution that automatically encapssiithe specialized wireless and mobility
solutions. There are also solutions that propose the dettading and compression of data [74].

3.3.2 |IP Multicast

IP multicast is another mechanism for the delivery of conteith reduction in network traffic.
IP multicast does not have any redundancy in terms of sendinltiple copies of packets over the
same link, since packets traverse to the edge routers andjétesent to the multicast address. SEN
avoids redundant packet transmissions on the paths fromerseto clients, as does IP multicast.
However, IP multicast solutions proposed urge senders egglvers to be online at the same time
on the same multicast IP address. This strict promptnessyarahronization requirement violates
the demographics of streaming media (audio, video), whesmers may wish to start receiving
the same content with various time-shifts. SEN allows timeof time—shifts between requests and
is therefore superior to IP multicast. This anytime, anyseh@@e. ad-hoc) multicast capability is a
beneficial side effect of the scalable persistency for dbjecthe SEN design. Diatt al. analyze
other issues for the IP multicast service that have limiteddmmercial deployment [43].

3.3.3 Layer4 (L4) and Layer5 (L5) Switches

L4 switches [49] look deeply into the network packets to datee the types of requests (e.g.
HTTP) and L5 devices look more deeply to see what messagdseang carried by these requests
(e.g. Uniform Resource Locators). These switches act aswvggts to tunnel certain traffic types
to the associated port numbers of external cache engintearthapecialized for this type of traffic.
These solutions focus on a few popular protocols and workeaetiges of the network because of
the processing overhead involved. There is also the ovdrbkaxtra messaging with the external
cache engines [36]. SEN supports caching for different gygias by identifying all types as generic
objects.

Slice architecture by Andersaet al.[13] provides network file service in LANs with network—
attached storageauproxy is a component in Slice L5 protocol that provides cotitbased request
switching. pyproxy is implemented as an IP packet filter and can residéhfvthe networks”, but it
must still reside (logically) at the end of a connection.
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4. Design of an Adaptive Caching Scheme

“But if he will not hear thee, then take with thee one or two dhat in the mouth of
two or three witnesses every word may be established.” M&ttl6
Adapitivity to changing conditions requires multiple chaeaistics to be embedded in one sys-

tem. This is also true for an adaptive caching system. Thezefve will have gool of static cache
replacement algorithms with different characteristicglézide on how to behave based on the ob-
served workload. The challenge is to join the relatively kveedictions of so many experts into one
highly—accurate prediction [92]. Expert systems [69],cfpeally machine learning algorithms [56,
70] have been successfully used for this purpose in the pasilte non—trivial operating systems
problems [54, 55].

4.1 Rationale

As the characteristics of the workload change over time (eis, hours, days) the hit rates
of the static policies become suboptimal. In caching resetlte performance of different static
replacement policies are usually measured by keeping alativairunning average for the hit rate
or byte hit rates. These values are reported after the “wapirperiod as the performance of that
static policy for a given cache size and workload. Howeviewa measure the hit rates of these
policies in subregions of the request stream we see thateabkepwlicy for different subregions
maybe different as illustrated in Figure 4.1 and we call #vidtching Choosing the “best current”
policy is preferable over choosing the “best overall” pylitthe costs of achieving the former can
be justified with its benefits. We define the difference betwtbe hit rates of the best current policy
and a particular static policy as “the loss” of that statiiggo The cumulative results hide the recent
successes or losses of static policies.

Figure 4.1 shows the existence of switching in real worksoasing Digital Equipment Corpo-
ration (DEC) web proxy trace [4]. This proxy served 14,000rkgtations in DEC in 1996. We
used trace of date 9/16/96 for this test. Twelve policiesewiested at the same time using each
64 MBytes of cache space. Only the three, four dominant jgslibecame the best and extensively
appeared in the graph, therefore we just show these polidibe byte hit rates are measured in
windows of 500 requests and only the best policy is plottedeézh window. We see that the best
policy keeps changing for different time slots.

Figure 4.2 is similar to Figure 4.1, but it explicitly showtbyte hit rate of the best overall static
policy (LRU). The colored spikes on top of the LRU byte hilemindicate that very frequently some
other policies were better than LRU. The cumulative aver@gbe difference between the byte hit
rate of best policy and particular static policie®. the loss of static policies, were calculated.
The byte hit rate loss was around 3% for LRU and 5% for both LALADd GDSF. Our goal is to
develop an automated scheme that will be able to eithertdalecurrent best static policy or create
a more successful hybrid policy by mixing the availableistpblicies.

It is vital that the opinion of each expert is heard and cozr®d at all times. If a highly
opinionated group or decision—maker ignores the decisifitise experts that have made weak or
unsuccessful predictions in the past, then group may rartlvet danger of only following one strong
static expert (i.emonopoly. When the conditions change to favor the previously weglegs this
“so—called adaptive” system is bound to collapse since lteenatives have been starved during the
course of events.
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Switching of Best Policies in DEC trace, window size = 500, 64 MB cache
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Figure 4.1: This graph shows the existence of switching eftist current policy in the
DEC trace. The byte hit rate of the best policies with last &@fuests are plotted as bars.
The cache size is 64 MBytes.

To illustrate this concept we wrote a simple synthetic ratjggeam that favors LRU algorithm
until 500 seconds and then changes characteristic to fd¥®& &gorithm as seen in Figure 4.3. We
see that a good adaptive algorithm implementation (Figa)ddbks at the recent success to quickly
switch to using the SIZE policy maintaining a continuoushhigt rate. Figure 4.3b shows that an
implementation that only looks at the past performance aaewitch to the other good policies
when the conditions change and is bound to be as good as tradl dest fixed policy. SIZE policy
has to exceed the overall maximum hit rate of the LRU poligytticss switch to happen. The careful
reader will notice that these two cases are actually the swept that the success history we look
at in the second case is limited to a fixed number of requestsdd on being all the history. How
big or small the window or length of success history shouldskan open research question that we
will investigate.

Another concern is the amount of information in the workloagkh adaptive algorithm based
on learning will have its limits when the workload is complgt random, since learning works
whenever there iat least soménformation in the form of repetitive patterns. Howevergawith
random request streams there is hope for improvement. Tdhisswe created another synthetic
load where 4096 unique objects were being requested witm@om uniform distribution with
one second inter-arrivals for one day or 86400 seconds. ides f variable size objects were
uniformly distributed between [0,64 KBytes] and fixed sitjeats were all 64 KBytes. The cache
size was chosen to be 4 MBytes, which is 1464..563% of the unique document space for fixed
size case. Size—based algorithms are more successfulhgitratiable object sizes in terms of hit
rates (Fig. 4.4a), since they can replace big objects amtrhote small objects. All policies perform
similar when the objects are fixed size (Fig. 4.4b) and thedié is exactlycachesize/unique-doc-
spacex 1.563%. An adaptive algorithm can exploit these facts wittamy human intervention.
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Best static policy for DEC trace, window size = 500, 64 MB cache
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Figure 4.2: In this graph the byte hit rates of best statiGcpolLRU) is plotted. The
colored spikes on top of the LRU byte hit rate bars show thatettwere some other
policies better than LRU during that time period. The heigheach spike indicates the
percentage of byte hits we lost by using only LRU. Cumulativerage loss for LRU was
around 3%. For LFUDA and GDSF the average cumulative lossamasnd 5%. The
cache size is again 64 MBytes.

One should note that the high hit rates in variable size cas@tiguarantee higbyte hit rates
which may be a better metric for representing the improvemanuser response times. In fixed
size case, hit rates and byte hit rates will also be the samperagentage. The selection of the metric
that leads improvediser response timesnd thus improved user satisfaction is crucial. We will
investigate different metrics.

Our implementations follow two intuitive directions. Thestidirection is a voting mechanism
that emphasizes on findingdemocraticor compromised solution to the caching problem [69]. The
second direction is motivated by the games played in natudedepends on survival of the fittest,
wherefitnessis determined by the success of the cache policy in redubiagntean client response
times. Ideas from machine learning are used in all the destfollowed. The simulated rollover
algorithm described at the end of this section combinesalgbod features of these concepts.

4.2 Voting Mechanism

Figure 4.5 illustrates the major components of our weightaihg—based adaptive design. We
define a pool ofirtual cacheseach simulating a single static cache replacement polidyaarobject
ordering. Virtual caches act as if they own the whole physitaeal cache, but they only keep
object header information; not the actual data. On eachesichey indicate theipredictionsto
the ACME (Adaptive Caching using Multiple Experts) modul®]. In the current implementation
virtual caches simply say whether they would have got a hib{iniss (0) if they were the real cache
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Figure 4.3: Hit rate results for a synthetic workload thattsles characteristic after 500
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Figure 4.4: Hit rate results of 12 static policies for randaniform workload with (a)
variable size and (b) fixed size objects.

and this is considered as that policy’s prediction. AltHoudpjects are ordered with the highest
weighted—vote in this implementation, the true outcomenlg oompared to the hit/miss prediction,

but

not the weighted—vote. Both the caching and replacesraeatdone based on votes. The objects

with the highest weighted—votes stay in the cache. Theipslihat predict the workload well are
rewarded by an increase in their weight and the policiesld@t to wrong decisions are punished
by a decrease in their weight using the machine learningithgas described in this section. Over
time the real cache ordering will look like the ordering oftual caches with the highest weights,

but

will still be a mixture of multiple policies.
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Figure 4.5: Design of Adaptive Caching using Multiple EXpdACME). Virtual caches
make predictions on whether objects should be cached @aep! A weighted average of
these predictions defines the master policy that managesdaheache. The real outcomes
are compared to the predictions and used for weight updéthe @irtual policies.

4.3 Game Theoretic Approaches

We also apply various ideas from the Game Theory to the adgaptching problem. For
example, adynamic boundary adaptatiois achieved by placing two cache replacement policies
in one shared cache space and letting them playgeof waror rope pullinggame to adjust the
boundary between them. The strength of a policy is deteminlmeits hit rate or byte hit rate
performance. Every time a policy gets a hit it grabs a cenp@rcentage of the opponent’'s cache
space. If the other policy also gets a hit it can get its spao.bin this experiment we found that
if one policy is good for enough time to starve the others liyrig their spaces then there is no
return, since the inferior policies cannot prove their @sscanymore. Figure 4.6 show the cache
space ownership and hit rate results for a 2 policy game. ASKEakes over the cache it becomes
much harder for LFUDA to regain control.

Policies that perform well in terms of hit rates may be wonsd¢erms of byte hit rates. For
example, in cases where we measured success based on #te &g ultimate performance measure
we have noticed that our byte hit rates suffered. If loss lsutated based on th&izesof objects
that were hit or missed, then the policies with better bytedies would be favored.

Another game possibility is to define a third partyresource manageo determine the amount
of cache space owned by each policy. Imagine all cache psliasspeciescompeting for food
(documents or objects) in habitat (cache). Thefitnessof a species is based on how well it
eats. This will be related to its hit rate or byte hit rate s The frequency of a species in
the population depends on its fitness and highly fit specigspuopulate, thus starving the others if
there is no controlling force over them. Preserving theetsris crucial, since a drastic change in
the environmental conditions may wipe-out a previoushyhhidit species favoring the previously
weaker ones. In nature this is done by finedatorsthat probabilistically prey on the most frequent
or easy to catch species. Predators protect diversity oingnexmong species by avoiding the most
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Figure 4.6: Dynamic boundaries may cause the initially iofepolicy to be quickly

starved to zero weight.
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Figure 4.7: There are several trade—offs in the predatagde#\ good design both has
to avoid duplications of objects in the cache and avoid assigthe unsuccessful policies
the most popular objects as this would cause an unfair iaflatf their weight making
them look like successful policies.

fit species from starving the others. Our predatoResource Manageamplementation illustrated
in Figure 4.7 assigns the objects to caches and managesspztes. However, there is a trade—off
between these two duties. Since the cache space is valuatanmot allow duplications, therefore
we have to decide which policy gets to manage certain pagaforiunately, a lucky draw at the
beginning may assign a popular page to a weak policy and ¢hisseolicy’s weight to be unfairly
inflated due to numerous hits. To avoid these problems we elefipool ofvirtual cacheseach
simulating a single cache policy and object ordering. \dfcaches act as if they have the whole
cache, but they only keep object header information; nogtieal data.

4.4 Machine Learning Algorithms

In machine learning terminology “experts” are algorithnesg( LRU) that make predictions,
denoted by the vectog. In the current implementation caching experts simply sagtiver they
would have got a hit (1) or miss (0) if they were the real caahethis is considered as that policy’s
prediction. We refer the users to Section 4.5 for implemtonadetails, since this section intends to
give a generic overview of experts, updates and other madéarning concepts. Weights of experts



20 4. Design of an Adaptive Caching Scheme

(w;) represent the quality of predictions. Théaster Algorithm[55] predicts with a weighted
average)é) of the experts’ predictions:

Vi = %W (4.2)

The weights of the policies are generally initialized etyuabw; = 1/N, where N is the number
of experts. Instead of a constant initialization, past égpee on the success of policies may also
be used to bias the initialization vector. However, one khowake sure that this process is done in
an automated fashion, but not via manual tuning.

Depending on the true outcomeg)( which in caching case is hits and misses, we ifoss
For example a simple loss function may thmss{yQ,yt) = (y; —w)?, called thesquare loss Then
this loss is used to update the weights. Many formdoss updatehave been proposed in the
literature [70, 97]. Th&ovk Updatd97] given below is a generalized version\weighted—Majority
algorithm by Littlestone and Warmuth [70].

efnxLoss _
Weigi =W i—g—— fori=1,....N (4.2)
i—1 Wt+1,i
where parameten is called thelearning rateand the summation in the denominator provides
normalization of weights between [0,1]. The weights at tinaee multiplied with the exponential
factor to obtain the new weights to be used at timel.

Because of the exponential factor in the formula it is cladrtteat the loss updates learn too fast,
but do not recover fast enough [56]. Therefore, with lossalgsl the weights of many experts can
quickly become zero or very close to zero. Left with venjdittrust or cache space these inferior
algorithms are never ever given a chance to prove their ssdoghe future Share algorithm$56]
try to ensure that weights do not quickly become zero, so dhainferior policy can recover its
lost weight if it starts performing well. In the Share algbm each policy is forced to contribute a
loss—proportional part of their weight into a pool:

n

— Loss .
pool = 1-(1-a) Wit (4.3)
by )
wherea denotes thaharing rate After this sharing, the pool is redistributed by giving efjshares
to all policies:

Wer1i = (1—0)Whpa + Ni_l(pool— OWy) fori=1,...,N (4.4)

However, because of the additional operations needed tare Stigorithm is computationally
more intensive than the simple loss updates. A cost—bemetfigsis will be required for comparison.

Machine learning algorithms [56, 70] have successfullynbased in addressing non-trivial
operating systems problems [55] such as the disk—spin dowailgm in mobile computers. To
conserve precious battery power, mobile computer harcedrare spun down after a certain time-
out period. Unfortunately, spinning a disk back up consumese energy per unit time than
normal operation. The optimal adaptive on-line algorithiould spin down the disk immediately
if the upcoming idle period would exceed the spin down coghefdisk. This would provide the
maximum power savings for a given workload, while never spig down a disk for idle periods
that are too short to justify the additional cost of spinningp again. The goal of adaptive disk
spin-down algorithms is to approach the behavior of thisnoglt algorithm by observing the disk
activity and dynamically adjusting the disk time—out. Hbbid et al. used Share algorithm to



4.5. Simulated Rollover Algorithm 21

attack the problem and this work resulted in the most powfesient adaptive algorithm to date and
was “often using less than half the energy consumed by aatdrathe minute time—out” [55, 54].
This success motivated our research in handling adaptieRirog in complex, dynamic systems.
Other details can be found in our previous work [50] and othachine learning literature [97, 56,
70, 54, 55].

4.5 Simulated Rollover Algorithm

Switching the control of physical cache from one best pdiicgnother quickly between the two
consecutive regions of a request stream is a challengithg Eisere is some latency between the
time when the current best algorithm is found and the timenithe contents and the ordering of the
real cache closely resemble that of the current best poli6y. [Simulated rollover algorithm [50]
tries to minimize this latency as much as possible.

We have two separate Virtual Policy Pools (VPP), VPP1 and2/Bach pool has the same set
of policies all with equal virtual cache sizes which are aspal to the physical cache size. The
virtual policies only keep the metadata for the objects thveyld cache along with an identifier
for the physical objects in the physical cache. The metade¢ghead of this implementation is
considerable, but could be improved.

The first set of virtual policies, those in VPP1, act in the saway as those described in
Figure 4.5 and are only used for weight update purposes. Wieerthey miss an object they
are punished with a weight decrease and then all the weightseaormalized to add up to one
as shown in Figure 4.8. Over time the successful policieshawe larger weights. All policies in
VPP1 directly observe the request stream and may chooseporketadata for different objects.

The second set of virtual policies, those in VPP2, are usamdperatively act as theaster
policy that governs the physical cache space. The policies in tukgnly keep metadata for those
objects in the physical cache, but are allowed to order tmgitadata independently. During the
warm-up period, the caches fill with the objects that arealit missed {.e. compulsory misses)
and retrieved from the server. Since all policies in VPP2enassumed to have the same virtual
cache size, the set of objects cached at this period will lbésexactly the same. Whenever the
physical cache is full, some objects need to be replaced fhenphysical cache to make room for
the incoming ones. The weight distribution line shown inufe4.8 issandomly sampletb choose
a policy. We replace from the physical cache by the rule of gulicy. Since this method allows
us to impose multiple virtual orderings on the same set ofsmlay objects that can be quickly
changed, we call this algorithm “simulated rollover” [50h a sense we make the physical cache
look as close as possible to the physical cache of the basintwirtual policy cache. Successful
policies have larger weights and are thus more likely to bbected as the policy that will govern
the physical cache at any given instant. The selected potdigates which object or objects
should be ejected and then all the other policies in VPP2 dilseghoice releasing the record of
the selected objects from their queues. This algorithm escbsest implementable algorithm to
an “optimally switching” algorithm with infinite lookahegabwer. Initial simulation results show
that its performance is much better than the other adaptierses. Figures 4.9 and 4.10 give the
pseudo—code describing this algorithm.

4.6 Experimental Setup and Description of Workloads

We started implementing our adaptive caching algorithma a®dule in thens network sim-
ulator [44] to be able to easily construct complex cache lgies and to make good use of the
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WLRU WMRU WGDSF WGD*
0 0.5 1

Figure 4.8: Weights of policies are attached to each otheéranormalized after updates
to add up to one. A random sampling of this line between (0,ll)s&lect one of the
algorithms. Good algorithms have higher weights thus grdistically higher chance of
being selected.

Definitions For Simulated Rollover Algorithm

Physical cache= Physical memory where real data for objects
is stored

Virtual Policy (VP) = a policy that gives an ordering of object
by using only the headers of objects

VPP1 (Virtual Policy Pool 1) = the set of VPs where each VP|
orders objects seen in the request stream

VPP2 (Virtual Policy Pool 2) = the set of VPs where each VP|
orders objects kept in the physical cache

7]

Figure 4.9: Definitions for the simulated rollover algoritrdescribed below.

validated TCP/IP and Ethernet models. Although this im@etation was realistic for measuring
client response times the simulations quickly became delmgitk, because of the computational
needs. Even the simplest simulations were taking long gera time. Therefore we chose to im-
plement our own simple cache simulator in C++. We impleng it different cache replacement
policies in our simulator including RAND, LRU, MRU, FIFO, ED, LFU, MFU, SIZE, GDS,
GDSF, LFUDA, GD*. This long list was implemented for com@eéss although some of these
policies are never used in modern systems. Inferior paiory be useful in mixtures. Table 2.1
summarizes most of these policies. In addition to these vpdeimented LFUDA [20] and Greedy-
Dual* [59] policies.

We are using various workloads to test the performance ofadaiptive caching algorithms.
The random workload used for Figure 4.4 was generated bylsisguipts. For web tests we are
using both synthetic and real proxy traces. ProWwGen wotkisa synthetic Web proxy workload
generated by the ProwGen program developed by Busari arichiélon [26, 27]. RTP trace [5]
is a one day log of HTTP requests to a major proxy cache at Résdaangle Park (RTP) in the
Squid national caching hierarchy by National Lab of Appliddtwork Research (NLANR). We
used the trace of date July-05-2001 with 198,453 requestsaing to 330 MBytes of unique data
and HR» of 52%. DEC traces were described in Section 2.1. In our taacieive we also have other
proxy (UCB, NLANR, EPA, NASA) and file system traces. For exde) the Berkeley trace [86]
we used in previous research [50] includes file system lea#d collected from a mix of Unix and
NT machines in undergraduate labs of Berkeley CS departarahts also called an “instructional
workload”. We are only looking at the READ calls to test théeefiveness of caching on reads.
Most of the reads are small (a few hundred bytes), since fatwithe time it is the file meta-data
that gets read.
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Simulated Rollover Algorithm

AddN VPstoVPP1L;
foreachV P € VPPL set weight/p < 1/N;
AddN VPstoVPP2;

foreachrequest
id + document requested;
if id ¢ physical cache then
fetchid;
while insufficient space foid in physical cachelo
randomly choos¥ P using current weights;
VP chooses object to evict from physical cache;
foreachV P € VPP2 evictx;
foreachV P € VPP2 cachdd;
else
foreachV P € VPP2 informV P of a hit onid;

foreachVP e VPPL
if id ¢ VPthen
Lossp ¢+ 1;
while insufficient space foid in VP cachedo
V P evicts the least desirable object fraff® cache;
VP cachesd,;
else
Lossp < O;
InformV P of a hit onid;
foreachVP e VPPL
UpdateW, p usingLoss p and formula 2;

Figure 4.10: Pseudo—code for the adaptive algorithm thest tvgo virtual policy pools and
simulated rollover. A list of the abbreviations used in thdgire is given in Figure 4.9.
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5. Preliminary Results

In this section we present the hit rate results and compasisd static and adaptive policies
using real Web proxy and file system traces. We first reviewexteind the efforts in heterogeneous
caching.

5.1 Static Heterogeneous

Heterogeneous caches improve total hit rates in multiHesehes without any communication
between the peers. Our autonomous caches address the sasteprHowever, choosing good
policy pairs manually can be complicated even in a simple&}icache topology as we will see in
this section. This motivates our goal of making these deassin an automated fashion.

Figure 5.1 shows a simple 2—level cache that can be extendmayN levels. If caches are of
the same size and if they hold exactly the same elements thassan one of them will also result
a miss in the other ones. This is callegdlusive caching102] and makes upper levels useless. This
is usually the case when the same cache replacement poligedat all levels. We would like
to achieve as muchxclusive cachingl02] as possible between the collaborating caches, so that
the cluster has the effect of a one big unified cache to thesusésing heterogeneous caches has
been demonstrated to improve exclusivity in multi-levadhes by Busari and Williamson [27] and
Wonget al.[102]. Wonget al. also demonstrated the benefits of using demotions in a 2dacbe
that represented client caches and a disk array cache.

Demote operation moves ejected objects one more hop awaytfie client instead of dis-
carding them, thus resulting in different objects to be eacn different but topologically close
caches. This creates the effect of having one large unifiekdecarhey found LRU-MRU-Demote
combination to be the most successful triple in combinatiofionly LRU and MRU policies. How-
ever, they recommend the demotions to be used in Local Ard¢adlies (LAN) or Storage Area
Networks (SAN) with high-speed connections, since it reggliextra network resources to move
objects between caches.

We extended the work of Busari and Williamson [27] and tesledermutations of 12 different
policies in our expert pool in a simple 2—level cache each 4MBin size as shown in Figure 5.1.
We used their ProwGen workload for compatibility. ProwGeorkload is a synthetic Web proxy
workload generated by the ProwGen program developed byrBaisd Williamson [27] and used
in their previous web caching research. We used this tookt@ate a workload including 200,000
requests using Zipf slope of 0.75 and Pareto tail index of 273

Table 5.1 shows the results for 5 of these policies. Firatrool gives the hit rate for the first
level caches. GDSF has the highest hit rate (54.41%) witRPtb@&/Gen workload described above.
Note that when the same policy is used at the second lexgl (RU-LRUthe hit rates are minimal.
The third column shows the policy that matched well with tbéqy at the first level and performed
the best at the second level. Our results agree with the queviesults and the best match is
always a policy different than the policy in the first levelorrexample, with this workload using

Miss Hit

Cuf e w8
| S N : |

Figure 5.1: A simple N level cache. The object request ointlresulted in &it in the
second level and was responded locally.
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| Policy | HR-Levell | HR-Level2 Same Policy| HR-Level2 Best Other | Best Total |

LRU 42.70 0.37 7.76 (GD?) 50.46
LFU 36.79 5.25 19.36 (GDSF) 56.15
GDSF 54.41 1.72 1.75 (GDS) 56.16
LFUDA 46.75 2.49 8.47 (GD?) 55.22
GD* 52.98 0.63 2.36 (GDSF) 55.34

Table 5.1: Hit rate results in a 2—-level cache using ProwGerklad with 200,000
requests. Hit Rate (HR) of policies at the first level cachgivien in column 2. Column
3 lists the second level HR when the same policy is used. GoHushows the benefit of
using a different policy at the second level by giving theutessof best other policy. The
best other policy is always different than the first levelippland provides considerable
improvements over the usage of same policy in both levels.

GD* at the second level of a 2-level cache with LRU at the fiestel improves overall hit rate
by 7.76%. Also note that as the hit rate of the policy in thet fiesel approaches to maximum
possible hit rates (H&®) the hit rates at the second level drop drastically. AXL122 matrix of all
combinations and the total hit rate results in the fourtluouoi revealed that there are many good and
bad combinations and manual tuning or guessing these pdiegd even in a simple 2—level cache.
The success of pairs is also workload dependent. Therefmeare motivated to use automated
processes employing machine learning algorithms.

5.2 Web Proxy Trace Results

All the results presented in this section use the SimulateliofRer Algorithm with various
updates such as Vovk loss update and Variable Share poobksestid in Section 4. For the web
tests we are using real proxy traces described in SectiorHgare 5.2 shows the RTP trace hit rate
results as the workload proceeds in the 2—level cache faalMar Share adaptive policy and with 2
policies (LRU & LFU) in each level’s pool. Although we had n@asstical information about the
data the adaptive policy performed almost as good as therhmiticy (LRU) at the first level and
averaging as good as both policies at the second level.c $@licies are results of long workload
analysis research and we use their expertise effectivelyumdesign. Also note that LFU was
better than LRU at all times at the second level, which rel&tghe benefits of using heterogeneous
policies [27] in multi-level caches described in the pregigection.

One drawback of Share algorithm is its additional compateti overhead over the Vovk loss
update. Although excluded in Figure 5.2 for clarity Vovk ptiee algorithm performed just as good
as the Share algorithm without the extra overhead. This wa$irmed by other workloads we
tested. Therefore, we only used the simple Vovk update ®rakt of the experiments in this paper.

Weight adjustments in the 2—-level adaptive cache that auEl$sSDF policy to the previous
LRU and LFU pool is given in Figure 5.3 for RTP workload. We #eat while in the first the level
the adaptive choice was very decisive on GDSF policy, thécehwas a mixture of the workloads
in second level because of the change in workload charaftesrthe first level. We could not have
guessed and used any simple static or static—heterogepebciges at this level.

In Figure 5.4 we see the hit rate results of the realcache@RIF, LRU and LFU in the virtual
policy pools using the RTP workload. We understand thatehening rate) improves the hit rate
whenever there is something new to learn. So in the first lebmre GDSF was a clear winner
learning faster or slower did not change this fact thus thopmance of real cache much. In level
two we see that the hit rates slowly go up and then down, buthiich, as we tung. This parameter
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Comparison of Fixed Policies and Adaptive-Share Algorithm Comparison of Fixed Policies and Adaptive-Share Algorithm
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Figure 5.2: In a 2-level cache with RTP workload the adapdilgorithm was able to
perform almost as good as the best policy in the first levelsigtitly better until request
number 120,000 in the second level without any statistinalkedge of the data.
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Figure 5.3: The machine learning algorithms provide autechaesponse to workloads
via weight adjustments of the static experts. In part (a) GB&s a clear winner in terms
of hit rates, so it was assigned a high weight for most timesairt (b) the workload did
not favor any specific policy so a mixture was chosen by thgtadascheme.

may need to be tuned for specific workloads. This is unddsiraince it violates the spirit of our
fully—automated design goals.

In Figure 5.5 we see that the sharing ratdoes not have an affect in the first level performance
with RTP workload and only had small improvements in the sddevel. This conclusion says
that for this workload Share algorithm is not much differémn the simple Vovk update and the
additional computational costs exceed its benefits.

In Figure 5.6 we see that asincreases from 0.1 to 0.5 the weights of the three policiag st
to converge around 0.33, a perfect 1/N sharing for 3 polidi&se could also compare these two to
Figure 5.3b, where the share rate was 0.001.

Figure 5.7 shows the Digital Equipment Corporation (DEChyseoxy trace [4] hit rate results.
We used the trace of date Sep-16-1996 with 1,245,260 rexj(®24,616 unique) accessing to
approximately 6 Gbytes of unique data with HRf 57.87%. Adaptive policy using Vovk update
managed to perform a few percents better than the best fiXaxy.pbhis is due to the capability of
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Figure 5.4. Effect ofn, the learning rate, on performance. (a) Since GDSF was a clea
winner in the first level cache the learning rate did not dffbe results much. (b) In
the second level the hit rate slightly increased and thenced asn was increasing.
This indicates that there may be benefit from adjustirigased on the arrival rate of the
workload when there is not any clearly winning policy.
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Figure 5.5: Effect of, the sharing rate, on the hit rate. There is no clear patterthe
affect ofa.

adaptive policy to switch to other policies in short timeipds when another policy is favored by
the workload.

Figure 5.8 shows the final hit rate results of the same DE@tfacdifferent cache sizes. 64
Mbyte cache size accounts for 1% of the total unique dataespéle show that the adaptive policy
made its selections automatically and even achieved to tieabletter than the best fixed policy
with all cache sizes and at both levels of the 2—level cache.

5.3 File System Trace Results

File system traces were gathered using Carnegie Mellonddsity’'s DFSTrace system [75].
The tests covered five systems for durations ranging fronmglesiday to over a year. The traces
represent varied workloads, particulafozart a personal workstatiorlyes a system with the
largest number of userflvoraka system with the largest proportion of write activity, addrber
a server with the highest number of system calls per secorelwilVonly present the results for
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Figure 5.6: As share rate increases from 0.001 in (a) to 0.)rweights of policies
converge to a perfect 1/N parameter, N being the number adipslin the pool. In this
case we have 3 policies in the pool, thus the weights stadneerge to 0.33.
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Figure 5.7: Hit rate comparisons of the static policies dmadaptive policy for DEC-
9/16/96 trace using 8 MBytes of memory at each level of the&Hcache. Adaptive
policy was even slightly better than the best static policy.

the year longlvestrace, which includes 3,464,314 requests. The results tfeers looked very
similar. These traces provide information at the systethleeel, and represent the original stream
of access events not filtered through any intervening cadfmthese CMU traces we are measuring
file accesses based on file open requests. This assumesabpetiagranularity for the analysis, we
focus on patterns of file requests and are not concerned mtith-file access patterns.
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performance of the best fixed expert.
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6. Proposed Work

Our current designs and implementations constitute ordpfgrof concepts. We will extend
tour current research in two major areas. The first area dedicomparison of Storage Embedded
Networks (SEN) using heterogeneous and adaptive cachitighig@rarchical caches. For this part
we will run large scale trace—driven simulations with retidi network topologies. We will compare
the average client response times, network bandwidth usageer load reductions , scalability and
load distribution of these two systems. The second area impement adaptive caching in the
memory management modules of real file system and web prahesaReal implementations will
enforce us to minimize space and computational overheatismake performance trade—offs.

6.1 Storage Embedded Networks versus Hierarchical and Digbuted Caching

We have discussed SEN and other caching architectures preélimus sections. To summarize,
hierarchical proxies have performance bottlenecks at fipeulayers because of the exponentially
increasing number of users they serve. Distributed caclseshave a hierarchical structure, but
the data is only kept at the edges by the clients. Upper lgystshandle the control messages
carrying object advertisements and object locations. Téa dransfers occur between clients.
Although client to client transmissions take shorter tirhe tonnection times and administrative
costs are higher. Adaptive web caching proposes that cdoh@smulticast groups to exchange
the object location information. SENs do not establishdrighies and do not have the connection
establishment and communication costs.

To compare the advantages and disadvantages of using SEMtaochitectures for distributed
data access we will run large scale simulations using tealetwork topologies such as UCSC
network topology in Figure 6.1a and national caching highis in Figure 6.1b. We will parse real
web proxy and file system traces to obtain request streamdipet and play requests coming from
hundreds to thousands of clients at the edges of the netWdekwvill measure user response times,
network bandwidth usage and server load of both architestur

We will also create thdélash—crowdscenarios, which occur frequently on the Internet. Flash—
crowd is an unexpected flood of requests experienced by a isebls our simulations, we will
generate the same situation by sending a flood of requestsitgla server. We will measure and
compare the load distribution capabilities of SEN and tesdrchies.

The raw disk workload we are planning to test over SEN is otigbénterest, because of its
benefits for emerging network—attached storage systenjsafi¥ the Internet SCSI (ISCSI) [91]
transport. We will use SEN and ACME for reliable transpori®CSI packets carrying raw disk
data and measure the throughput of data transfers.

ISCSI [91] is a transport protocol for SCSI block command [441 that operates on top of
TCP/IP. ISCSI maps or encapsulates the SCSI commands inB3IF @ackets and then carries
them over to the remote network—attached targets. SCSbqobtvas designed for short distance
and reliable buses. Now there is a question on how ISCSI wiflgpm over Wide Area Networks
(WAN) with high Round Trip Times (RTT) and high jitteice. variance in latency.

In SENs RTT of the lost or corrupted packets will be reducethtoRTT of few hops because
of the persistence on the path. Like many applications rtvattached storage devices and ISCSI
require reliable transmission over WAN, but do not want tffesithe performance overhead of TCP.
However, because of the amount and content of the data #esfér they are less flexible for losses
and performance degradations. SEN can reliably carry ra@l8@ta over IP with no Forward Error
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Figure 6.1: Various network topologies to be tested for ymaceived performance and
scalability analysis. (a) UCSC network topology comparisaith seven SEN routers
versus two proxies in FrontDoor and School of Engineerim@Ep (b) Another topology:
national hierarchical caches simplified from a prior workD&Enziget al. [41].

Correction (FEC). A scheme similar to FEC by DigitalFounthic. [42] demonstrates an order of
magnitude improvement of bulk data transfer throughput &vaN.

6.2 Implementation of Adaptive Caching in Linux

Our preliminary results indicate that adaptive caching lbaimmplemented using multiple tech-
nigues and even the simplest weight update mechanismsdpreviough adaptivity to the system.
However, the benefits gained from more complex algorithreshat worth their cost in some cases.
The time complexity of our current implementationNsO(n), whereN denotes the number of
policies in the pool. The complexities of all virtual poks were assumed to be same &{a),
since they all use linked lists of objects. Intuitively,gmuch increase in cost would also require a
factor of N improvements in the user response times to be feasible. HoWw€PU cycles are less
expensive than the user's time and are getting cheaper. &¥actor of two improvement in user
response times would be a significant achievement. Theldsadsaasimilar space overhead of our
techniques, but this issue is less problematic becauses@ntiall size of object headers. To under-
stand all the detailed design issues we will implement nractd@arning based adaptivity in memory
management module of Linux or FreeBSD operating systemis. Wil give us more insight about
the benefits of adaptivity in a single host.

To improve the computational overhead some inferior pedichay be switched off after a while.
However, this would take us back to using a few static pdici&he only difference from static
policies is that the mixture obtained would be well tunedfarinitially observed workload. Indeed,
for a workload that is guaranteed to stay the same this isebedpproach. However, the workloads
we see in SEN will be more dynamic than a simple steady recpiesstm. Therefore, we will have
to continuously and automatically observe the workloasmmarize the information we receive,
periodically update the weights and reflect the changesaartaster policy. If our periods are too
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Unique Document Space

Figure 6.2: It is possible to parse request streams baseuearalgorithmic content and

then use this information to recreate request streams afahee nature, but of adjustable
length. This approach may lead to close to realistic syithesce generation that is

especially useful for adaptivity benchmarks.

long then the adaptive policy sticks to the policy with thghast maximum hit rate in that period
of the request stream. Switching between policies becorasgeh If the periods are too small,
(e.g.per request updates), then the updates are too erratic ardi#ptive algorithm cannot decide
which policy to chose.

Real implementations will also require the use of more effitidata structures than simple
linked lists. We may resort to using the B—tree [37] and thetige [83] structures used in file
systems [16] and databases. A Unified Buffer Management (YB&eme for FreeBSD was
implemented and tested by Kiet al. [63] and user response times were improved by 67.2% (with
an average of 28.7%).

The selection of the metric that leads improved user resptinges is also crucial. Until this
point our focus was on defining a basic design whose succeds loe evaluated. We started with
a discrete hit (1) and miss(0) criteria and tbljective functiorwas to “always get hits”. The
difference between the real and objective functions wdedadhe loss and was used as a feedback
to adjust the system. However, not all hits and misses araledie are already investigating
different functions of th@bject sizdor improved byte hit rates and observing the effects okdéht
functions on user response times.

There is ongoing research in our machine learning group Btaioning hybrid policiesvia
complex mixing or “meta—mixing” methods. The most significautcome of this research would
be if hybrids only using simple policies such as LRU, LFU abaltperform more complex policies
such as GDSF. We will collaborate with them to understandhtiere and limits of hybrid policies.

6.3 Workload Characterization and Benchmarking

Another goal is to use the results of ACME policy mixing to erstand the nature of various
workloads and to reconstruct similar synthetic workloadisadjustable length for trace—driven
simulations. We may be able to use the weight update inféom#&d run a backwards induction and
through usage of “stack distances” [7, 59] create sequenicelsject requests that would generate
similar hit rate results. These types of workloads will esgly be useful for benchmarking the
adaptivity of new algorithms, since the characteristicsldde changed in a controlled fashion.

Figure 6.2 shows the unique document space covered by tieegicies using the same cache
size. The documents that will be selected by multiple pediavill fall in the intersection regions
of the sets. For example, a document that is getting requesgsfrequently will both be selected
by LRU and LFU algorithms due to its recency and frequencycekas, respectively. The adaptive
policy in this figure can be thought of as a circle of the sarme,$iut that can move around following
the request stream in the unique document space.
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7. Conclusions

We presented Storage Embedded Networks (SEN) architeahdedaptive caching schemes
applicable to single and multiple processor systems. SENiges improvements over hierarchical
and distributed caches and adaptive caching helps with tieagement of SEN caches when
complex dynamic workloads are serviced. Our autonomousesagse machine learning algorithms
to collaborate with a pool of caching experts to tune theweseto the observed workload. Since
no cache databases or synchronization messages are esxdhiduegclusters composed of these
autonomous cache nodes will be scalable and manageable.m@hbods will be useful for all
distributed Web, file system, database and content dels@&mices.

We proposed to extend our work in two major areas, first thepaoieon of SEN with exist-
ing distributed caching and second the real system implétien and improvement of adaptive
algorithms. Both contributions of this paper are novel téghes. We will explore the possible
interactions between our technigues and other emergingonietd—storage systems such as NASD
and ISCSI. This research may also lead to interesting wadkicharacterization and adaptivity
benchmarking tools.

Some researchers and businesses predict that all cactstensywill be useless due to the
immense customization of web content by both the clientsthadcontent providers. However,
we believe that the dynamic part of the content constitutestiyithe text portion of the documents
composed of many images and text. The bulk of the data thatrisfered is still in static images and
static text. In their extensive Web proxy workload chardztgion in 1999 spanning 5 months and
117 million requests Arlitt et al. [20] reported that 92% dfthe requests accounting for 96% of the
data transferred was cacheable and high hit rates werevachiyy proxies. Surveys of WWW [98]
from 1997 to 1999 showed that the size of the static contertherweb has grown exponentially
(approximately 15% per month). It is also known that web viaaks follow a Zipf popularity
distribution [39, 7, 21, 27], which also indicates that thevill still be sharing in future and we
will continue to benefit from caching. There are also proploselutions for caching the dynamic
content [31].

7.1 Summary of Benefits

Adaptive and autonomous caching improves:

e Performance SEN and ACME together provide the best possible fixed or thizerrent
strategy anytime, anywhere thus giving the users fastesiilple response times.

e Adaptivity our systems govern themselves based on their locationeimébwork topology
and the observed workload. Our biggest contribution willthe elimination of tedious
manual tuning from modern storage systeianagebilityandFlexibility are also improved
at the same time.

e Scalability this is the key to success in a global scenario. Our proposeithods do not
have any communication overheads, therefore provide ldeatagowth on the Internet. The
backward compatibility vision in SEN routers allow its deypinent to beevolutionary

e Efficiency a new system should not incur overheads and costs thateexseaeenefits. We
believe the simple, but powerful machine learning algonshwill provide a strong base for
efficient adaptive caching design.
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