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Abstract

A new technique for generating and losslessly compressing region boundaries in digital images is
presented. Region boundaries are generated by finding a minimal set of pixels required to differentiate
each region from neighboring regions. An enhanced, pixel-based, differential chain code is used to encode
the generated boundaries. We utilized run-length encoding of links and introduce the techniques of
dynamic template switching and extended vector templates. These features allow accurate region boundary
representation using a minimal number of links while retaining the inherent simplicity of traditional chain
codes.

The results show that the boundary generation and encoding approach is able to encode all possible
region boundary conditions when pixels are used as region boundaries. The results compare well to
other pixel-based encoders (in bits-per-symbol) despite the fact our encoder contains extra information
embedded in the chain code. The bit-encoding rates of the boundaries are relatively low compared to
the number of pixels in the images over a test image set. Despite the addition of multiple features to
the boundary encoder, the chain coder remains relatively simple. The technique of dynamic template
switching was shown to improve the bit-encoding rate of the generated region boundaries.
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1 Introduction

The goal of image partition coding is to represent the partitioned image using minimal
information, while allowing it to be accurately reconstructed. The general approach is to encode
the boundaries of each region in order to delineate any one region from neighboring regions.
Efficient representation of region boundaries reduces the number of bits required to encode
them.

Boundaries lines, or contours, can be represented with polynomials of varying degree but are
more often represented by chain codes [6]. The direction toward the next “entity” in the chain
forms a chain link. Chain codes are classified as either edge-based' or pizel-based?. The chains
in edge-based codes are formed from the notion of boundaries between pixels. By their nature,
edge-based chain codes are constrained to using a 4-connected pixel model for link directions.
The chains in pixel-based chain codes are formed from pixels and can utilize an 8-connected
pixel model. The functional difference between edge and pixel-based chain codes is that pixel-
based codes are able to use an 8-connected pixel model for link directions while link directions
in edge-based codes are constrained to using a 4-connected pixel model.

The numerous published works describing or utilizing chain codes can be classified into three
categories: line coders, region boundary coders, or image partition coders. Line coders [7, 12]
make up the least complex of chain coding applications since they are concerned only with
encoding simple chains. Region boundary coders [8, 3, 16] build upon the techniques associated
with line coders. The requirement of encoding the boundaries of regions, or closed contours, as
opposed to encoding only contour lines, adds complexity to standard line coders. Image partition
encoders are the most complex applications that utilize chain codes. This is mainly because of the
added challenges appearing when the encoding of adjacent regions is required. Image partition
coders apply chain coding methods and various techniques to locate and represent all possible
region characteristics. Our discussion is focused on image partition coders since representing
every region in the partition is required.

Relatively few published works deal with region boundary coding of partitioned images.
Unfortunately, the common trend in these works is to mention the boundary coding methods
only in passing [10]. Attention instead is focused on overall compression results, rather than to
details of boundary encoding methods. The impressive compression results stated in these works
possibly attenuates the need for efficient boundary representation. On the other hand, several
works dealing with image partition coding become exceedingly complex [4, 18, 21]. These works
are of little relevance to our discussion since developing techniques that preserve the original
simplicity of chain codes is preferred. A common trend in works requiring the encoding of region
boundaries is exemplified in [13]. This work assumes a bit-per-pixel value as a cost for encoding
region boundaries but fails to provide details as to how region boundaries are generated or
encoded.

The need to efficiently represent region boundaries prevents the most basic approach from

'"Edge-based chain codes are also known as NESW (North-East-South-West) codes [5], crack codes [9], and
MAE (move along edge) codes [20].
?Pixel-based chain codes are also known as MTC (move through center) codes [20].



consideration. A simple method to represent region boundaries is to encode the boundary
“entities” of each region in the partition [19]. When pixels are used as region boundaries,
this encoding method requires the coding of pixels on each side of the edge that separates
regions. In the case where pixel edges are used as boundaries, each boundary edge requires
two traversals for proper region representation. Unfortunately, the simplicity of this approach
introduces unnecessary redundancy to the image partition coder.

A straight-forward method occasionally used to encode pixel boundaries is a raster neigh-
borhood coding [11]. These approaches are inherently pixel-based in that region boundaries are
considered black pixels on a white background. The image is treated as a binary image and
chain coding is not required. Several published applications use this JBIG-type approach in
their implementations [2, 17]. The major drawback of these works is that the representation of

certain region characteristics is either impossible or unduly complex.

2 Overview

The image partition coder presented by Ausbeck [1] is possibly the best described work
regarding image partition coding. Ausbeck’s image partition coder is able to code any type
of region® without introducing unreasonable complexity to the coder. This coder, however,
uses edge-based chain coding with its notion of separators to represent region boundaries, thus
constraining the coder to using a 4-connected pixel model.

Fig. 1 shows that edge-based chain codes are not always the most efficient approach for
boundary representation. Fig. 1(a) shows an image fragment with two regions indicated by
shaded pixels. Fig. 1(b) and (c) show how the boundary of Fig. 1(a) is encoded using edge and
pixel-based chain codes with arrows indicating the “entities” representing region boundaries.
The edge-based approach of Fig. 1(b) requires eleven chain links to encode while the pixel-based
approach of Fig. 1(c) requires six links.

The main purpose of this chapter is to describe a image partition coder as robust as Ausbeck’s
work while using a pixel-based chain code. This approach to image partition coding is known to
be more complex than image partition coders utilizing edge-based codes [5], primarily because
seemingly complex region boundary characteristics are created when pixels are used to delineate
regions. This chapter describes these characteristics and presents methods to simplify their
encoding. An introduction to several of the topics described in this chapter appears in [14].

The image partition coder we present incorporates the simplicity and efficiency of chain cod-
ing in the context of encoding a complete image partition. The image partition coder is centered
around a lossless, two-pass, pixel-based, differential chain code. The chain code retains the in-
herent simplicity of chain coding, while adding extended features to optimally represent region
boundary characteristics. The chain code introduces dynamic template switching, extended vec-
tor templates, and template realignment to represent chain link statistics more accurately. The
chain code also provides a solution to the classic backtracking problem associated with chain

3This coder, however, must divide single regions that contain two pixels connected by an 8-connection only
into two separate regions.



(a)

Figure 1: An example showing the advantage of pixel-based chain coding over edge-based chain

coding. (a) shows a portion of an image with two regions differentiated by shaded pixels and
a darkened boundary line. (b) and (c) use arrows to show the links required to encode the
boundary of (a) using an edge-based and pixel-based chain code, respectively.

codes. All chain start and termination information is embedded within the chain code and
relative addressing is used extensively to improve coding efficiency. The chain code’s extended
features are general enough for use in any chain coding application. The new chain code is well
structured and is modeled with a context-free grammar in Appendix A.

Fig. 2 shows the process of image partition coding is divided into three areas: 1) border
image extraction, 2) region boundary mapping, and 3) region boundary encoding. Border image
extraction generates region boundaries based on the region image. Region boundary mapping
locates and records boundary pixels in the border image. Region boundary encoding generates
symbols used to describe the mapped region boundary pixels. Each of these areas are described
in the following sections.

Border Image Region Boundary Region Boundary
Extraction Mapping Encoding

Figure 2: The three steps in image partition coding.

2.1 Keywords and Definitions

The following terms represent a short list of terms used to clarify the description of the image
partition coder. A complete list of terms used in this work appears in the glossary.

region image: an image partitioned into a set of non-overlapping regions. Each
region is defined by the set of pixels belonging to that region and each pixel belongs

to only one region.



hole: a region that is adjacent to only one other region.

border image: an image where every pixel is either a boundary pixel or a non-
boundary pixel. The set of boundary pixels that collectively delineate the regions in
the partition. Boundary and non-boundary pixels are equivalent to the terms on and
off or black and white pixels used by other contour encoding schemes. The boundary
pixels in the border image are used to reconstruct the original region image.

boundary pixels: or bizels, are pixels used to delineate each region from other
regions in the image.

boundary objects: or bobs, are sets of connected bixels in the border image. Each
bixel in a bob is able to reach any other bixel in the bob by following a path of
contiguous bixels.

hole boundary objects: or hole-bobs, are boundary objects delineated with hole
regions.

backtracking: a condition associated with contour coding which causes the coder
to associate multiple links with a single pixel. Fig. 3 shows the inherent differences
between backtracking for pixel and edge-based chain codes. Fig. 3(a) is a region
image fragment containing two regions with boundary lines indicated by darkened
pixel edges. Fig. 3(b) and Fig. 3(c) use arrows to indicate required links for a pixel-
based and edge-based chain code, respectively. This example demonstrates that
several boundary “entities” are encoded more than once for both edge and pixel-
based codes.

Figure 3: An example of the backtracking problem associated with chain codes. (a) shows a
portion of a region image with boundary lines indicated with darkened edges. (b) and (c) show
the inefficiencies inherent in encoding region boundaries with both edge and pixel-based codes,

respectively.



3 Border Image Extraction

Border image extraction is used to generate a border image containing a minimal number
of bixels. Moreover, bobs in the border image contain as few bixels as possible, but are able to
reconstruct the regions they delineate.

Border image extraction is driven by the border image creation algorithm. This algorithm
finds the set of pixels bounding each region in the region image. These boundary pixels, or
bixels, delineate each region from its neighboring regions. The border image creation algorithm
searches for member pixels of the current region representing the last line of pixels before entering
into another region. The algorithm recursively grows each region until a region’s boundary is
discovered. Discovering a region boundary halts the recursion. Bixels are assigned only if the
pixels halting the recursion are members of the region being processed. Previously discovered
bixels are necessarily members of previously processed regions. Regions are processed in the
order the are encountered using raster scan order. Fig. 4 shows pseudo-code for the border
image creation algorithm.

Fig. 5(a) and (b) show a region image and its associated border image, respectively. Shaded
pixels in the border image of Fig. 5(b) are bixels for the various regions. The two bobs in
Fig. 5(b) are comprised of all the bixels in the border image. The numbers appearing in the
unshaded pixel locations of Fig. 5(b) represent the first pixels encountered in each region and
are used as starting points for the region growing process. The numbered pixels show the order
that the algorithm encounters and grows the regions using raster scan order. We refer to this
order as region-scan order.

The border image creation algorithm is applied to hole regions separately from non-hole
regions. Separate consideration of hole regions exploits the fact that chains representing holes
are shorter if the bixels describing hole regions are members of that region. Using an interior bixel
as a starting point for region border creation forces the hole to be bounded by pixels belonging
to the hole. Fig. 6 demonstrates that bounding regions with non-member bixels requires more
bixels than bounding the same region with member bixels. The region image in Fig. 6(a) shows
an image containing one hole region. Fig. 6(b) and Fig. 6(c) demonstrate the number of bixels
required to bound the hole if the hole is bounded using inside and outside bixels, respectively.
In this example, it requires four less bixels to bound the hole from inside bixels as opposed to
the outside bixels.

4 Region Boundary Mapping

After the border image is extracted from the region image, each bixel in every bob in the
border image is located and recorded. Mapping denotes the process of locating bixels and
storing pertinent information associated with them. Region boundary mapping and region
boundary coding are independent processes, which makes this a two-pass technique. The first
pass processes bobs in the border image and constructs a list of mapped bixels. The second
pass converts the list of bixels to actual code. Region boundary encoding and the advantages of
using a two-pass approach are described in Section 5.
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/* Ng(p) represents every pixel (D4 = 1) in the neighborhood of pixel p */
CREATE_BORDER _IMAGE(region_image,border_image)
{
for each (pixel p in region_image) {
if (region_image(p) # PROCESSED); {
EXTRACT_REGION_BIXELS(p, label(p));

EXTRACT _REGION _BIXELS(p, label)

{
region_image(p)«PROCESSED;
for each (p' € N¢(p)) {
if (border_image(p’) # PROCESSED)
{
if (region_image(p') # label) {
border_image(p)<«+BIXEL;
}
else {
EXTRACT _REGION_BIXELS(p', label);
}
}
}
}

Figure 4: The border image creation algorithm.



(a) (b)

Figure 5: An example of a region image and its associated border image. (a) is a region image
containing four regions and (b) shows the associated border image containing two bobs. The

shaded pixels of (b) are the bixels of the regions in (a).
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Figure 6: An example showing the benefits of using bixels belonging to the hole to represent the
hole region. (a) shows a region image containing one hole. (b) and (c) shows the bixels required
to represent the hole if hole region bixels and if bixels from the surrounding region are used to

represent the hole region, respectively.



4.1 Searching for Bobs

Region boundary mapping begins by scanning the border image searching for bixels. The
first bixel found is the starting bixel for the current bob. Bob processing continues until all bixels
in the bob are processed. Border image scanning then continues searching for unprocessed bixels.
Region boundary mapping is complete when every bixel in the border image is mapped.

4.2 Next-direction Searching

Two different modes are required for finding the direction of the next bixel in the chain*. The
search sequence for the bixels associated with each region is established after finding the initial
bixel of a region and before searching for the next bixel in that region. The search sequence is
either a clockwise (CW) or counter-clockwise (CCW) search and is assigned based on the region
labels of local pixels. Search sequences are used by the next-direction finders to locate the next
bixel in the bob being processed. Next-direction finders operate by searching as left or right
as possible for the CW and CCW next-direction finders, respectively. This border following
technique is an extension of the border following algorithm of Morrin [15]. Morrin’s approach
is modified to search for boundary pixels belonging to only one region at a time.

Fig. 7 shows two types of next-direction finders. Fig. 7(a) is a region image with three regions
and Fig. 7(b) is its associated border image. Bixels A and B in Fig. 7(b) are the first bixels
processed in their respective regions. The next-direction finder searches as left as possible for
new bixels using a CW search sequence at A. A new search sequence is established after bixels
in the first region are processed and before processing the second region. The next-direction
finder searches as right as possible using a CCW search sequence at B.
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Figure 7: An example showing the two next-direction finders. (a) shows a region image with
three regions and (b) is the associated border image. The shaded pixels in (b) are the bixels
associated with the region image. Bixel A employs a clockwise search sequence for next-direction
finding in its associated region while B uses a counter-clockwise search sequence.

“Searching for the next “entity” in the chain is often referred to as border following.



The next-direction finder’s search sequence is based on the location of the previously dis-
covered bixels. Since starting bixels inherently have no previous direction, the initial search
sequence is established based on the region labels of pixels neighboring the starting bixel. Fig. 8
shows how the search sequence changes based on the orientation of the previous bixel in the
chain. Fig. 8(a) shows a portion of a region image with letters indicating different regions and
shaded squares representing bixels. Fig. 8(b) shows the search sequencing based on a previ-
ous direction of South. Fig. 8(c) shows the search sequencing based on a previous direction of
Southeast. The numbers near the small arrow indicate the order used to examine local pixels in
the search bixels. This example uses a clockwise search sequence in its next-direction finder.
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Figure 8: An example showing the next-direction finding using a CW search sequence. (a) shows
a portion of a region image with labels A and B differentiating the regions and shaded squared
representing the bixels. (b) and (c¢) show the search sequencing based on a previous directions
of South and Southeast, respectively. The shading of bixels in (b) and (c) lighten as bixels are
processed. The numbers near arrow points represent the order that directions are searched when
to locating the next bixel in the bob.

4.3 Bixel Types

Each bixel in the border image is classified as either a standard or non-standard bixel. Bixel
classification is determined during region boundary mapping. Standard bixels form links in the
bixel chain by providing directional information to locate the next bixel in the chain. Non-
standard bixels contain extra information in addition to directional information. A standard
bixel contains only two bixels in its local neighborhood. One bixel is the previously discovered
bixel and the other is the next link in the bixel chain. Non-standard bixels are used to represent
more complex characteristics present in the border image.

4.3.1 Non-standard Bixels

Non-standard bixels are discovered in both the region boundary mapping and region bound-
ary encoding phase. The non-standard bixels found during region boundary mapping are re-
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quired to represent the boundaries of regions. Non-standard bixels appearing during region
boundary encoding are assigned based on certain characteristics of the bixel chain. These as-
signments are made to increase coding efficiency as described in Section 5. The non-standard
bixels associated with region boundary mapping are described below.

Finish Bixels: bixels indicating no undiscovered bixels are connected to the current
bixel. There are two types of finish bixels: temp-finish bixels and final-finish bix-
els. Temp-finish bixels indicate a dead-end in bixel processing. In this case, region
boundary mapping restarts at some other non-contiguous bixel in the bob. Final-
finish bixels indicate the end of processing for bixels in the current region. Examples
of temp-finish and final-finish bixels are shown in Fig. 9. In this figure, boundary
mapping progresses from bixel x to y and onto A. Bixel A is a temp-finish bixel
because there are no other contiguous and non-processed bixels belonging to that
region after A is mapped. Once A is processed, boundary mapping continues at B.
Bixel C is a final-finish bixel because all other bixels in the current region have been
mapped. Finish bixels contain no directional information.

Restart Bixels: bixels where the region boundary mapping restarts after a temp-
finish bixel is encountered. There is necessarily one restart bixel for every temp-finish
bixel. Fig. 9 shows an example of a restart bixel. Bixel B is a restart bixel and is
where processing for the region continues once the temp-finish bixel A is processed.
The restart bixel B is discovered by and associated with the bixel x. The next link in
the chain after x is y and the chain continues on to A. The restart temp-finish bixel
pair enables the chain code to encode boundaries without resorting to backtracking.
Extra information associated with restart bixels is the direction from the finding
bixel to the restart bixel.

Newstart Bixels: indicate a bixel is found that is not a member of the current
region being mapped. Newstart bixels indicate the discovery of a new region. Pro-
cessing of this new region begins after region boundary mapping for the current
region is complete. Fig. 10 shows an example of a newstart bixel. In this figure,
bixel x discovers bixel A in its neighborhood. Bixel A becomes the newstart bixel
since its region label is different from the region currently being processed. Region
boundary mapping continues with y being the next bixel discovered after x. Extra
information associated with newstart bixels is the direction from the finding bixel to
the newstart bixel.

Seed Bixels: bixels used to indicate pixels required to start the decoders region
growing process in areas that otherwise would be grown improperly. The decoder
uses seed bixels to continue growing regions that are cut-off by the bixels of that
region. Fig. 11 shows an example of two instances requiring seed bixels to ensure

11



(a) (b)

Figure 9: An example showing finish bixels and a restart bixel. (a) shows a region image
containing two regions, (b) shows the associated border image with examples of a temp-finish
bixel A, a restart bixel B, and a final-finish bixel C. Region boundary mapping proceeds from
bixel x to y, and onto temp-finish bixel A. Region boundary mapping restarts at bixel B and
eventually terminates at final-finish bixel C.

(a) (b)

Figure 10: An example showing a newstart bixel. (a) shows a region image containing three
regions and (b) shows the associated border image with a newstart bixel A. The newstart bixel
A is associated with the finding bixel x. Bixel mapping continues with the mapping of bixel y.

12



proper region image reconstruction. In this figure, bixel x is the first pizel discovered
in the region. This pixel is marked by the seed bixel A and region growing starts
for the pixels of that region beginning at x. In the second image region, the growing
process ends at the pixel labeled y. Seed bixel B marks pixel z as a seed to restart the
growing process in the remaining portion of the region. Extra information associated
with seed bixels is the direction from the seed bixel to the pixel where the seeding
occurs.

(a) (b)

Figure 11: An example showing two situations where seed bixels are required. (a) is a region
image containing three regions and (b) shows the associated border image with seed bixels
labeled A and B. Seed bixels A and B are used to indicate that pixels x and y continue the
region growing process in the decoder for the associated regions.

Hole Bixels: A hole bixel indicates the current bixel is used as an anchor for a hole
region. Hole bixels have no extra information associated with them. Hole processing
is described in Section 4.5.

4.4 The Region Boundary Mapping Algorithm

As each bixel is mapped, a bixel object is created and added to a list of previously mapped
bixels. The bixel object contains information used by the region boundary encoding phase to
encode the bob as described in Section 5. Bixel objects contain queues to store occurrences of
non-standard bixels associated with bixels. Each bob in the border image is represented by a
list of bixels.

A flowchart for the region boundary mapping algorithm is shown in Fig. 12. The algorithm
starts in the upper-left corner of the border image and searches for bixels using raster scan order.
The first bixel found becomes the starting bixel for that bob. For each new region encountered,
a search sequence is established for next-direction finding. The search sequence is established
after starting, restarts, and newstart bixels. Every bixel encountered is examined to determine
if extra properties need to be assigned to it. The bixel is first examined to determine if it
is a hole or seed bixel, respectively. Next, the local neighborhood is examined to determine

13



if newstart bixels are present; newstarts bixels are added to the newstart queue. Each bixel
in the local neighborhood that is neither the previously processed bixel or the next bixel in
the chain is a potential restart bixel; restart bixels are added to the restart stack. Processing
continues until no more bixels are found contiguous to the current bixel. The current bixel is
then either a temp-finish or final-finish bixel. When a temp-finish bixel is encountered, potential
restart bixels are popped off the restart stack in a search for valid restart bixels; valid restart
bixels are bixels on the restart stack that are not previously processed. If a temp-finish bixel is
encountered, a valid restart must exist. When a final-finish bixel is encountered, the status of
the newstart queue is examined. Bob processing continues if the newstart queue is non-empty.
Bob processing begins from the newstart bixel removed from the queue when the newstart queue
is non-empty. An empty newstart queue indicates the processing of the current bob is complete.
In this case, the raster scan order search for bixels in the border image is resumed. If there are
other non-processed bobs in the image, a new bixel list is created and processing starts on the
new bob.

4.5 Hole Region Mapping

The number of bits required to encode hole-bobs is reduced by using relative starting lo-
cations [5]. The probability of saving bits is increased when non-hole bixels are present in
the image. Since hole regions are by definition contiguous to only one other region, non-hole
bobs are not connected to other hole-bobs. The general solution to encoding a hole would be
to encode the starting point of each hole as is done with non-hole bobs. This would require
log, [(rows * cols)] bits to encode each hole-bob starting bixel. The number of bits is reduced
by encoding hole-bobs after all non-hole-bobs are encoded which allows for the use of starting
locations relative to other non-hole bixels.

As initially described in section 4.3.1, hole-bob starting locations are anchored by hole bixels
in non-hole bobs. Hole-bobs are anchored after all non-hole-bobs are generated to increase
the efficiency of locating hole starting bixels. Fig. 13 shows an example of how hole-bobs are
anchored and relative addressing is applied. Fig. 13(a) is a region image with one hole and three
non-hole regions. The bob with the three non-hole regions is shown in Fig. 13(b). The hole-bob
associated with the hole of Fig. 13(a) is shown in Fig. 13(c). The hole-bob can be anchored by
one of the bixels A, B or C from the non-hole-bob, as shown in Fig. 13(d). The dotted lines
of Fig. 13(d) represent the linear distances measured in pixels associated with A, B, and C
relative to hole-bob starting bixel r. The spans of pixels from A to x, B to y, and C to z are
the possible locations of the hole starting bixels. The non-hole-bob bixel associated with the
shortest of the three spans, is assigned as the hole bixel.

The number of bits required to store the distance from the non-hole bixel to the start location
of the hole bixel is calculated as shown in Eqn. 1. The distance in pixels to the hole starting
pixel is encoded using the number of bits specified by Eqn. 1. Fig. 13 is used to demonstrate
how the encoder applies Eqn. 1 this calculation. The encoder knows bixel r in Fig. 13(b) is the
start bixel for the hole. The direction to the start bixel of the hole is also known. The pixel
labeled x is the maximum distance away the hole starting bixel could be located in the southern

14
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Figure 12: Flowchart for the region boundary mapping algorithm.
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(a) (b) () (d)

Figure 13: An example showing how hole-bobs are anchored and relative addressing is applied.
(a) shows a region image containing four regions including one hole region. (b) and (c) show
the bobs associated with the non-hole and hole regions, respectively. (d) shows the associated
border image with the potential hole bixels marked A, B, and C. Pixels labeled x, y, and z are
the most distant possible locations of hole start bixels from potential hole bixels A, B, and C,
respectively. The hole bixel is chosen based on the minimum span in pixels from A to x, B to
y, and C to z.

direction. The value of Dy, in Eqn. 1 is represented by the pixel distances from A to x, B to y,
and C to z for the individual calculations. The distance from bixel A to pixel x is greater than
the distance from bixel C to pixel z. The distance from B to y is the least of these distances.
Although the hole-bobs can be anchored by bixels A, B, or C, the optimal to choice in this
example is C due to the shorter span of pixels in which the hole starting pixel could be located.

By = logy[Dy] (1)
where
D;, = Distance (in pixels) to nearest non-hole bixel or image edge
B, = Number of bits used to store Dy,

The example in Fig. 13 represents the general case for anchoring hole-bobs. In this example,
the linear span of pixels are delineated by the edges of the image. These distances can also be
delimited by the bixels of other regions. The encoder searches for the shortest distance from a
non-hole bixels to another non-hole bixel or the edge of the image. The search for the shortest
distance can use any of the four linear directions® expanding outward from a hole-bob starting
bixel.

The encoder stores all non-hole bob information prior to storing hole bob information. Hole
bob information is stored in the order the hole bixels are encountered during region boundary
mapping. Hole-bob representation is identical to the previously described representation of

non-hole bobs.

5The four directions result from linear pairings of the eight directions in the 8-connected pixel model.

16



5 Region Boundary Encoding

Bixels are ready for encoding after every bixel in the border image is mapped. Every mapped
bixel is designated as either a standard or non-standard bixel. At this point, an opportunity
exists to change the information associated with the bixels. Bixels previously designated as stan-
dard may become non-standard by assigning them extra properties. Bixels previously classified
as non-standard can have even more properties associated with them.

Region boundary mapping creates lists of bixels that represent regions in the partition.
During region encoding, it is possible to examine these lists to extract runs of bixels. This
enables the chain coder to run-length encode (RLE) bixels by assigning extra properties to
bixels. The next section describe the conditions where RLE is applied.

5.1 Encoding Phase Non-Standard Bixels

Below are the two non-standard bixels assigned during region boundary encoding. Bixels
are not limited to the number of non-standard conditions associated with them.

Finish-Run Bixels: indicate the previous direction encoded continues until the
bixel chain either collides with a previously encoded bixel or until an edge of the
image is reached. This allows the encoder to avoid explicitly coding the remaining
bixels in that portion of the chain. Since bixels in the finish-run are implicitly encoded
as part of the run, the bixels in the finish-run must not contain non-standard bixels
discovered during region boundary mapping. Fig. 14 shows an example of two types
of finish-runs. In this figure, the encoder notes that the direction from x to A is
the same as the remaining bixels up to final-finish bixel y. Bixel A is marked as a
finish-run bixel. A similar case exists for finish-run bixel B. The direction from r to
B is the same as every next direction until the final-finish bixel s. Finish-run bixels
use the direction of the previous link as the direction of the run and have no extra
information associated with them.

Direction-Run Bixels: indicate the previous direction encoded continues for a
designated number of bixels. An example of direction run bixels are shown in Fig. 15
shows an example of direction run bixels. In this figure, the direction from x to A
is repeated until y is encountered. The encoder marks bixel A as a direction-run
bixel and encodes the length of the run to y. Normal processing proceeds from
y. Direction runs allow the encoder to avoid explicit coding of the bixels between
A and y. Since bixels in the finish-run are implicitly encoded as part of the run,
the bixels in the finish-run must not contain non-standard bixels discovered during
region boundary mapping. Direction-run bixels use the direction of the previous link
for the run direction and require no other information for encoding. The run-lengths
are preset in the model and are encoded as either short or long runs.
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(a) (b)

Figure 14: An example showing the two types finish-run bixels. (a) shows a region image
containing three regions and (b) shows the associated border image with the two types of finish-
run bixels labeled A and B. The direction from x to A is the same direction for all bixels up to
the final-finish bixel y. Similarly, the direction from r to B is the same direction for all bixels up
to the final-finish bixel s. Bixels between A and y and between B and s do not require explicit

coding.

(a) (b)

Figure 15: An example of a direction-run bixel. (a) shows a region image containing two regions
and (b) shows the associated border image with a direction-run bixel labeled A. The direction
from x to A is the same as every next-direction to the y. Bixels between A and y do not require

explicit coding.
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5.2 Image Partition Coding Example

The three-step process of image partition coding are demonstrated in Fig. 16. The left-most
image shows an image partition containing two regions. The middle image shows the border
image associated with the original partition in the left-most image with bixels indicated with
shading. The bixel locations contain numbers to show the order of processing and arrows to
indicate the next direction traversed in the chain. Three types of non-standard bixels appear in
the middle image and are labeled accordingly. The right-most portion of Fig. 16 shows the bixel
list generated from the border image. The numbers in the right-most image correspond to the
numbers listed in the border image. The shaded bixels in the middle image likewise correspond
the shaded squares in the right-most image. The arrows from the middle image are represented
by direction indicators appearing in the shaded squares in the right-most image. Non-standard
bixels in the right-most image are represented with the extra information in the boxes connected
to the right-side of the right-most image.

The image partition coding example of Fig. 16 indicates how the backtracking problem is
avoided. Bixel mapping temporarily stops at the temp-finish bixel in middle image of Fig. 16.
Bixel mapping continues at the restart bixel thus avoiding backtracking through bixels label 4
and 5.

5.3 Dynamic Template Switching (DTS)

Although chain codes historically only use one link direction template, characteristics of the
chain to be encoded are tracked more closely if unused template vectors are not considered. The
chain coder uses one of four link vector templates to encode each region boundary. The template
that best matches the characteristics of the region boundary to be encoded is chosen. Directions
for the next bixel in the chain are monitored during region boundary mapping allowing the
encoder to choose the template that best matches the next-direction characteristics of region
boundaries. Template choice is provided as side information by the encoder prior to encoding
each region boundary. Fig. 17(a) shows the standard chain coding template while Fig. 17(b)-(e)
show the four templates available for region boundary encoding. The template of Fig. 17(a) is

used in special situations as described in Section 5.4.

5.4 Template Realignment and Extended Vector Templates

Fig. 17 demonstrates a unique feature of the region boundary encoder. Differential chain
coding is a common method of removing redundancy from the directions to the next link in
the chain. The chain coder uses a differential approach combined with templates containing
extended South direction vectors. The chain coder becomes differential by applying a novel
technique we refer to as template realignment (TR).

During processing of the bixel lists, the current template is realigned so that the South
direction is oriented to the direction of the previously encoded link. Using the template of
Fig. 17(a), and not allowing for backtracking, would render this approach equivalent to standard
differential coding. The new approach, however, differs from differential coding because the
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Figure 16: A detailed example of image partition encoding. The left-most image shows the re-
gions in a partitioned image. The middle image shows the resulting bixels (shaded squares) after
the region boundary extraction algorithm is applied. The arrows represent the next directions
traversed in the chain and the numbers indicate the order in which bixels are processed. Three
types of non-standard bixels are labeled in the middle image. The right-most diagram shows
the resulting bixel list. The numbers and directions in the right-most image correspond to the
numbers and arrows in middle image, respectively. Non-standard bixels are indicated with the
extra information attached to the right of the bixel.
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Figure 17: An example showing a set of link vector templates. (a) is the standard chain coding
template used to describe directions of the next links in the chain. The other templates serve the
same process yet are made functionally differential by template realignment. The dotted vertical
line in the middle top square of each template for (b)-(e) represents the previous direction in
the chain.
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extended South direction vectors can be used. The extended South direction vector found in
the extended vector templates (EVTs) can then be used to take advantage of the skew found in

6. Template realignment combined with

the probability distribution of the next link directions
extended vector templates allow the encoding of multiple bixels in any direction using a single
link, while adding only one additional vector to the link vector template. The realigned template
direction, d,, is calculated using Eqn. 2. In Eqn. 2, d;_; and d; are the true previous and next
directions, respectively. dg is the numerical value associated with the South direction and Dy

is the number of directions in the pixel connectivity model.

dr = (di,1 - dz + dS + Nd) mod Nd (2)

Fig. 18 demonstrates how templates are realigned after a single link is encoded. In Fig. 18(a),
the template is aligned with to the previous direction of South. The next-link direction in the
chain is Southeast. Fig. 18(b) shows the new template alignment after the Southeast direction

is encoded. Fig. 18 shows how the extended South direction vectors are applied in any direction.

|
¢ A O s
sSw S SE |
S2 w Sw \S
N

S2

(a) (b)

Figure 18: An example of template realignment after encoding a single link. (a) shows how the
template is aligned after the previous link direction of South is encoded. (b) shows how the
template is realigned after the direction of Southeast is encoded.

Fig. 19 demonstrates how a standard chain coder and a chain coder using template realign-
ment encode a chain. In Fig. 19(a), a sequence of bixels is shown with arrows representing
template direction vectors to the next link in the chain. Fig. 19(b) and Fig. 19(c) show the di-
rections the standard template of Fig. 17(a) and the extended vector template of Fig. 17(c) use
to encoded the bixels of Fig. 19(a). After each link is encoded, the South direction is realigned
with the previous directions traversed. When the extended vector template is used, chain links
labeled x do not require coding.

The bixel sequence in Fig. 19(a) could be encoded using a standard chain code, a standard

differential chain code, or the template realigned codes described above. The entropy associated

8Skew in the probability distribution exists because next-link directions are correlated to previous link direc-

tions.
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with the bixels in Fig. 19(a) is 2.34, 1.79, and 2.27 with respect to these three techniques.
Despite the higher entropy associated with the new technique when compared to the the standard
differential technique, the new technique encodes the sequence with less total bits. The total
bits required by the standard differential coder is 32.3 bits compared to 31.8 bits for the new

technique.
‘ S S
L E | SE N E | SW X
S N SW X
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> S E N SE SwW| E
S NE S3 X
S NE X X
S NE X S3
] E | NE E | SE

(a) (b) (c)

Figure 19: An example showing a chain encoding sequence using an extended vector template
and template realignment. (a) is a sequence of bixels with vectors indicating the direction of
the next bixel in the chain. (b) shows the standard chain code direction assignments associated
with the vectors in (a) and (c) shows the direction assignments using template realignment with
the extended template of Fig. 17(b). Bixels labeled x are not explicitly encoded in the chain of

(c).

5.5 Region Image Reconstruction

Reconstruction of the region image is a two-step process. The first step decodes the region
boundaries and reconstructs the original border image. The second step generates the original
region image from the decoded border image. Region image reconstruction is the reversal of
the encoding process minus the region boundary mapping algorithm described in Section 4.
Decoding is therefore faster than encoding which renders the codec asymmetrical. The output
of the decoding process is the original region image.

6 Results and Comments

The image partition encodes region boundaries using an adaptive binary arithmetic coder.
Each symbol is encoded via a sequence of binary decisions structured as a binary tree. Counts
of previous decisions are stored for each tree node and are used as decision probabilities.

Table 1 shows the breakdown of image partition encoding entities for the lena, tripod, and
peppers test images. The fifth column in Table 1 is the total number of non-standard bixels.

The terms N,,; and N, are the number of newstart and restart bixels, respectively. The terms
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Np, and Ny4 list the number of hole and seed bixels, respectively. The terms Ny, Ny, and Ny,
are the number of finish, finish-run, and direction-run bixels, respectively.

Table 2 shows the number and type of templates used for the lena, tripod, and peppers
test images. Templates B-E correspond to the templates shown in Fig. 17(b)-(e) respectively.
The template of Fig. 17(a) is used for the first bixel in a bob and for directions required by
non-standard bixels only, and therefore is not listed in this table.

ima’ge H Nregs ‘ Nbobs ‘ Nbim ‘ NNS ‘ Nh ‘ an ‘ Nrs ‘ Nsd ‘ an ‘ Nfr ‘ Ndr ‘
lena 57 4 4551 | 175 1 51 38 11 54 0 20
tripod 41 1 3884 | 80 2 37 10 7 20 3 1
peppers 74 3 4625 | 175 4 66 35 15 47 2 6
Table 1: Bixel content and description for three test images.
image H regions ‘ bobs ‘ bixels ‘ templt B | templt C | templt D | templt E
lena o7 4 4551 27 4 11 14
tripod 41 1 3884 21 3 4 12
peppers 74 3 4625 30 10 6 27

Table 2: Template selection breakdown for the three test images.

Table 3 shows the results of applying the image partition encoder to the test image set. The
second column lists normalized image size (NIS) for each image. The NIS is value calculated by
dividing the number of pixels in the image by 65,536, the number of pixels in a 256x256 image.
The terms N,, Ny, Ny, and Nj list the number of regions, bixels, bobs, and holes for each
image. The column labeled “base” represents the baseline coder which is differential, but does
not apply extended vector templates (EVT), dynamic template switching (DTS), or run-length
encoding (RLE). The next four columns show results from varied applications of these three
techniques. The first row in Table 3 list the techniques applied for each encoding experiment.
Bits-per-symbol (bps) is used to measure results in these five experiments. The final column
of Table 3 lists the bits-per-pixel (bpp) value required to encode the region boundaries. This
result is based upon the experiment that applied only DTS (column 11) in the image partition
encoder.

The experiment that added only EVT to the encoder (Table 3, column 8) causes decreased
compression performance. Smoother boundaries would render this technique more effective.
A similar general degradation of results are seen when RLE is added to the DTS and EVT
experiment (Table 3, column 10). Once again, the efficacy of RLE techniques is increased in
images containing high quantities of straight edges. The most effective of the three techniques
is DTS since overall results improved when only DTS was applied. This result provides the new
“baseline” image partition encoder for the test image set. The column that lists average results
for only DTS represents a 8.9% improvement in compression over the average baseline result.
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RLE
DTS | DTS | DTS
base | EVT | EVT | EVT
image ‘ NIS ‘ N, Ny, ‘ Ny ‘ Np, ‘ bps ‘ bps ‘ bps bps ‘ bps ‘ bpp
lena 1.00 57 | 4551 4 11222 229 | 212 | 212 | 1.99 | 0.138
tripod 1.00 41 | 3384 1 21226 | 225 | 2.16 | 2.16 | 2.07 | 0.107
peppers | 1.00 74 | 4625 3 41228 | 237 | 2.17 | 2.15 | 2.03 | 0.143
air 1.00 53 | 3040 9 31237 | 244 | 223 | 2.25 | 2.12 | 0.098
boat 1.00 68 | 4409 6 6| 245 | 2.51 | 2.32 | 2.32 | 2.19 | 0.147
fern 2.93 68 | 6891 8 41233 | 240 | 2.28 | 2.29 | 2.21 | 0.081
bigsurl | 3.46 70 | 8364 2 6232 | 239 | 2.27 | 2.27 | 2.17 | 0.080
ucsc3flr | 3.46 || 125 | 14085 5 6| 1.75 | 1.84 | 1.70 | 1.71 | 1.54 | 0.096
ucsc_bdl | 3.46 42 | 5367 5 5| 170 | 1.78 | 1.67 | 1.70 | 1.57 | 0.038
ucsc_scl | 3.46 || 128 | 13078 | 11 91205 | 215 | 2.04 | 2.04 | 1.89 | 0.109
ucsc_trl | 3.46 45 | 5326 5 11199 209 | 1.93 | 1.95 | 1.77 | 0.042
st_sky 3.62 || 142 | 14325 9 6206 | 215 | 2.03 | 2.03 | 1.86 | 0.113
big sur2 | 3.90 82 | 9468 5 23| 213 | 2.17 | 2.14 | 2.14 | 2.03 | 0.075
big surd | 3.90 99 | 9465 3| 22| 242 | 250 | 2.41 | 2.41 | 2.32 | 0.086
balloon | 6.33 92 | 6863 4 3| 1.78 | 1.86 | 1.64 | 1.69 | 1.47 | 0.035
girl 6.33 || 265 | 25137 | 19| 11 | 2.13 | 2.12 | 2.02 | 2.03 | 1.89 | 0.115
AVG [ 3.08] 90| 8648 | 6.2 7.0 [ 214 | 221 | 2.07 [ 2.08 | 1.95 | 0.094

Table 3: Information and results for boundary encoding of the test images.

24




6.1 Pixel-based Boundary Encoding

The image partition coder is designed for the general case which enables it to encode all
possible region characteristics associated with partitioned images. Unfortunately, accounting for
all possible conditions is not always optimal. In particular, there are several region characteristics
that degrade coder performance.

The encoding of non-standard bixels degrades coder performance. If the non-standard bixel
count is minimized, coder performance improves. Placing restrictions on region characteristics
is one method of reducing the non-standard pixel count. Constraining regions to be at least two
pixels wide eliminates the need to assign seed bixels. Regions wider than two pixels combined
with boundary smoothing, as discussed below, would remove the need to assign newstart bixels.
These constraints similarly would reduce the need to assigned finish bixels. Collectively, adding
constraints to regions improves results, but likewise compromises the generality of the encoder.

An interesting boundary characteristic that the encoder handles is shown in Fig. 20. Fig. 20(a)
shows a region image with five regions. All of the lower regions are one pixel wide. Fig. 20(b)
shows the corresponding border image. Every pixel in the lower portion of the border image is
marked as a bixel. The encoder is able to handle this boundary case, but does so at the cost of
efficiency. This example demonstrates an extreme case but a similar ”bunching” of bixels does
appear in border images at a smaller scale. This effect is removed when pixel-wide regions are
not present in the region image.

(a) (b)

Figure 20: An example showing an region image and associated border image. This shows how
pixel-wide regions can cause a “bunching” effect in the border image. (a) is the region image
and (b) shows that most of the pixels in the border image are classified as bixels (shown as
pixels with shading) in order to represent the region image.

6.2 Two-pass Image Partition Encoding

The image partition coder described in this chapter uses a two-pass approach for two reasons.
First, the coder is to be able to choose the best template to encode each of the region bound-
aries. A one-pass approach would be required to use the most general template that included
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all possible directions. Second, a two-pass approach enables the encoder to apply run-length
encoding. It is possible to implement the encoder with run-length encoding by buffering chain
links before coding. This approach, however, would increase the complexity of the encoder and
likewise assume qualities of a two-pass approach.

6.3 Other Pixel-based Encoding Schemes

The results of the chain encoder compare favorably with results stated in other edge-based
chain coding approaches. For example, Ester and Algazi [5] reported average coding rates of
1.874 bps using a QM-code with a zero-order model depth. It should be noted, however, that
these results are for link directions only, and do not include other side information such as
chain start and chain termination data. The stated results for experiments using higher order
modeling suggest further performance remains to be extracted in our image partition encoder.

Conducting a fair comparison of the results reported by chain encoding schemes is challeng-
ing. First, pixel-based chain codes generally encode region using fewer symbols than edge-based
schemes as demonstrated in Fig. 1. This causes the bps metric to be less meaningful when the
number of symbols required to encode the image is not considered. Second, chain encoding
performance is highly dependent upon the chains being encoded. A fair comparison can only be
made when the same chain is encoded by all methods being compared.

7 Conclusion

We presented a technique to generate pixel-based region boundaries and a baseline image
partition encoder utilizing a pixel-based, differential chain coder. The results showed that the
bit encoding rates of the boundaries are relatively low compared to the number of pixels in
the image over a test image set. Our results compared well to other pixel-based encoders (in
bits-per-symbol) despite the fact our encoder contains extra information embedded in the chain
code. Despite the addition of several features to the boundary encoder, the chain coder retained
the simplicity of chain codes described in early works on the subject. The technique of dynamic
template switching was shown to improve the bit-encoding rate of the generated boundaries.
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A Image Partition Coding Language Specification

This appendix contains the Backus-Knorr Language specification for the language used by the
image partition coder. The grammar listed below uses bold face for terminals and the normal
font for nonterminals. The start symbol is listed first.

Border_Image ::= bobs

bobs ::=
bob
| bobs, bob

bob ::=
bixel_list

bixel_list ::=
bixels
| bixel_list, bixels

bixels ::=
standard_bixel

| nonstandard_bixel

non_standard_bixel ::=
mapping_phase_nonstandard_bixel
| encoding_phase_nonstandard_bixel

mapping_phase_non _standard_bixel ::=
restart_bixel
| newstart_bixel
| seed_bixel
| hole_bixel
| temp-finish_bixel
| final-finish_bixel

encoding_phase_non_standard_bixel ::=

direction_run
| finish_run_bixel
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