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ember 12, 2002Computer Engineering DepartmentUniversity of CaliforniaSanta Cruz, CA 95064Abstra
tDespite the Watershed Transform's (WST) tenden
y to oversegment, it has be
ome a widely usedmethod to segment images. In most published WST appli
ations, gradient magnitude thresholding(GMT) is applied as a method to 
ontrol WST oversegmentation. GMT is relatively fast and simpleand redu
es WST region 
ount without losing important edge information in the original image. Regionredu
tion via GMT, however, is 
on�ned to smooth areas of the image. In this paper we present a newmethod to 
ontrol WST oversegmentation whi
h we refer to as marklet 
oupling �ltering (MCF). Thisnovel te
hnique 
ontrols WST oversegmentation in non-smooth image areas. The term marklet refersto a regional minima in the gradient image 
omprising of one pixel. Region 
ount is redu
ed when twoadjoining marklets are 
ombined to form a single marker. Two di�erent types of MCFs and are des
ribed.We demonstrate the ability of the MCF to 
ontrol WST oversegmentation without 
ompromising shapeinformation in the original image.The results show that the number of regions in the partitioned image are signi�
antly redu
ed byapplying MCF. These results are presented after a GMT appli
ation with a modest threshold value. Theresults also show that important edge information from the original image is preserved. Both qualitativeand quantitative results are provided.Keywords: watershed transform, oversegmentation, marker, regional minima.



1 Introdu
tionThe Watershed Transform's (WST) known tenden
y to oversegment presents a major 
hal-lenge when used for image segmentation. Oversegmentation redu
es the average region size overthe partition. This in turn redu
es the probability that any one region represents a visuallyimportant feature in the image. In order to in
rease the probability that regions 
orrespondto visually signi�
ant features, some form of region merging is applied after WST pro
essing.Region merging algorithms, however, are 
omputationally expensive and do not guarantee viableresults.Gradient magnitude thresholding (GMT) provides an automati
 method of oversegmentation
ontrol for WSTs. The wide use of GMT in published WST appli
ations attests to its eÆ
a
yin 
ontrol oversegmentation. GMT, however, is limited to 
ontrolling oversegmentation in thesmooth areas of the image. Te
hniques su
h as low-pass �ltering of the original grays
ale im-age [3℄ are 
ommonly applied as an aid to redu
ing the generation of regions attributed to noise.These te
hniques, however, have the undesirable e�e
t of redu
ing viable shape information fromthe original image.This paper des
ribes the te
hnique of marklet 
oupling �ltering (MCF) used to automati
allyredu
e WST oversegmentation. Similar to GMT, MCFs are applied prior to the a
tual WSTalgorithm. MCFs are not dependent upon GMT and 
an be applied regardless of whether GMTis used. MCFs independently redu
e the number of markers generated without signi�
antly in-
reasing the time or spa
e 
omplexity of WST prepro
essing. The resulting watershed-generatedpartition is fun
tionally equivalent to the partition generated by an unaltered WST appli
ation.In this work, we use the algorithm of Beu
her and Meyer [1℄ in 
onjun
tion with the pre-pro
essing algorithm des
ribed by Dobrin et al. [2℄. This parti
ular WST algorithm generates a
omplete tessellation of the image and does not assign pixels to watershed lines. Implementationdetails are provided where appropriate but we assume the reader is familiar with the 
on
epts ofimmersion simulation-based WSTs. Referen
e [4℄ provides a 
omplete introdu
tion to immersionsimulation-based WSTs.2 Immersion Simulation WST OverviewFig. 1 shows the four steps required for an appli
ation of an immersion simulation-basedWST. This diagram shows three steps of prepro
essing followed by the a
tual WST. The �rststep generates a gradient image based on the original grays
ale image. The next step designates
ertain portions of the image as regional minima whi
h be
ome the pri
k-points for the ensuingimmersion simulation. The initial pixel queuing step adds pixels to the ordered queue to 
reatea starting state for the WST. The �nal step is the a
tual WST.2.1 Gradient Image GenerationThe �rst step in WST pro
essing generates a gradient image based on the original grays
aleimage. Ea
h pixel in the grays
ale image, I, is mapped to a value representing the dis
rete1
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ess 
ow of the immersion simulation-based WST algorithm.gradient magnitude at its lo
ation. This mapping forms the gradient image X, i.e., rf : I ! X.Ea
h pixel p in I is mapped to X by the fun
tionrf whi
h approximates the gradient magnitudeat p. Gradient magnitude thresholding is applied during the generation of the gradient imageand essentially a
ts as a low magnitude 
lipping operation. Further des
ription and dis
ussionof gradient magnitude thresholding is found in [3℄.2.2 Regional Minima Dete
tionThe appli
ation of the WST requires lo
ating and labeling regional minima in the gradientimage. Regional minima represent the pri
k-points used in immersion simulation-based WSTsand serve as seed points for the region growing pro
ess. Ea
h pri
k-point spawns the growthof a 
at
hment basin, and ea
h 
at
hment basin 
ontains only one pri
k-point. Although pri
k-points 
an be 
hosen by an outside user, we limit the dis
ussion to automati
 regional minimadete
tion te
hniques.The �rst work by Dobrin et al. [2℄ presented an algorithm for regional minima dete
tion.Regional minima are not expli
itly assigned by the Dobrin's regional minima dete
tion algorithm.In the Dobrin et al. approa
h, the algorithm instead lo
ates and marks pixels that do not �tthe de�nition of lo
al minima. These pixels are labeled as not a regional minimum, or NARMs.The gradient image, X, is transformed into an image where ea
h pixel is either a NARM orthe initial value assigned by the algorithm. Pixels 
ontaining initial values are then 
onsideredregional minima. This pro
edure 
reates a \sea" of NARMs interspersed with \islands" ofregional minima. This de�nition of regional minima renders the analogy of \pri
k-points" fromimmersion simulation models misleading sin
e the minima are not 
onstrained to being singlepixels, or \points". Instead, a single regional minima 
an be as small as a single pixel or as largeas a major portion of the image. In this paper, we use the term markers synonymously withregional minima.3 Marklet Coupling Filters (MCF)As shown in Fig. 1, the se
ond step in applying a WST is the dete
tion of regional minima,M . The resulting marker image, IM , is a binary image where ea
h pixel p 2Mi or p = NARM.Pixels with low gradient values 
orrespond to smooth areas of the grays
ale image and tend to
luster in large markers. This 
hara
teristi
 is magni�ed when gradient magnitude thresholdingis applied. Most natural images 
ontain large areas of pixels exhibiting low gradient values whi
hare eventually grouped into large 
at
hment basins. Consequently, large portions of the imagebe
ome asso
iated with a relatively small number of regional minima. Conversely, there tends2



lena (256x256) tripod (256x256) peppers (256x256)Figure 2: The test images.to be a high density of regional minima in areas of the image 
ontaining high spatial frequen
ies.The size of these markers tends to be smaller than markers found in smooth areas of the image.These smaller markers are generally less important than larger markers and 
an be 
ombinedwith other small and lo
al markers in the image without losing salient shape information in the�nal partition. This leads to a new approa
h for redu
ing the marker 
ount prior to applyingthe a
tual WST algorithm.The new te
hnique targets only small markers whi
h we refer to as marklets. A marklet,denoted by _M , is a regional minimum 
omprising of a single pixel. The marklet image, I _M ,is formed from markers in the marker image by I _M = fMi j kMik = 1 for Mi 2 IMg withi = f1; 2; : : : ; kg where k is the number of markers in the marker image. Thus, I _M � IM .Marklets that are lo
ated a short distan
e from other marklets are 
ombined to form a singlemarker. Ea
h of these 
ombinations redu
es the region 
ount by one. Sin
e no marker is removedfrom the image, edge information 
ontained in the asso
iated regions is retained. The numberof pixels involved in the initial queuing pro
ess 
hanges only slightly.Fig. 2 shows the original lena, tripod, and peppers test images. Fig. 3(a)-(
) shows themarker images asso
iated with the lena, tripod, and peppers test images, respe
tively. Themarker image is a binary image where every pixel is either a marker or a NARM; the dark areasof these images represent the markers. Fig. 3(d)-(f) shows the marklet images asso
iated withFig. 3(a)-(
), respe
tively. The marklet image, I _M , is a binary image where every pixel is eithera marklet or a non-marklet1. Fig. 3(g)-(i) shows a partial histogram of marker 
ardinality forea
h image. The �rst entry in the histograms are not drawn to s
ale but a
tual 
ounts are listedin parenthesis next to that entry. Ea
h histogram shares the same general shape with marklets
omprising a 
onsiderable portion of the total marker 
ount.We present two types of MCFs: D5 and D7, whi
h are designed to work on the same imagein two-step pro
ess. The D5 MCF provides an initial level of marklet redu
tion and 
an befollowed by the D7 MCF, whi
h provides a se
ond level of marklet redu
tion. Fig. 4 shows thatthe D5 MCF must be applied prior to the D7 MCF. The D5 MCF is applied before the D7 MCFsin
e the eÆ
ien
y of both �lters is based upon known spa
ing of the marklets in I _M . Applying1In this 
ase, the non-marklet is either a NARM or a marker with M > 1.3
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) show markers as dark areas. (d)-(f) are the marklet images, I _M , and (g)-(i) are partialhistograms of marker sizes for the images of (a)-(
), respe
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Gradient ImageFigure 4: Modi�ed pro
ess 
ow of the immersion simulation-based WST. This �gures shows thestages where D5 and D7 MCFs are applied.the D5 MCF does not require the subsequent appli
ation of the D7 MCF.By de�nition, ea
h marklet is bordered by eight NARMs whi
h ensures that marklets areseparated by a D8 � 2. This also implies that any two marklets separated by a 
hessboarddistan
e2 of D8 = 2 
an be 
onne
ted by pla
ing a single marklet between them. After theappli
ation of the D5 MCF, remaining marklets are then separated by a D8 � 3. This in-turnallows marklets separated by a distan
e D8 = 3 to be 
onne
ted by the addition of two pixelsbetween them. The use of D8 as a distan
e measure 
auses the region of support for the D5 andD7 MCFs to be 5x5 and 7x7, respe
tively. The \D" in the �lter names represents the diameterof the �lters as des
ribed below.Fig. 5(a) shows the template used to apply a D5 MCF to a marklet lo
ated at lo
ation X.The template uses a 5x5 region of support 
entered about pixel lo
ation p. Eqn. 1 des
ribesthe operation of the D5 MCF. The D5 MCF is implemented by passing the template over ea
hpixel in I _M in a method reminis
ent of 
onvolution. The implementation is eÆ
ient sin
e notevery template lo
ation with D8 = 2 from pixel p requires examination. Not examining everypixel lo
ation allows the templates of Fig. 5 to 
onsider only pixels in the lower half of thetemplates; only shaded the pixels on the template edges are evaluated. The D5 MCF e�e
tivelyadds a marklet to I _M between two existing marklets. The additional marklet transforms thetwo existing marklets into a marker, Mnew, with jMnewj � 3.The D7 MCF is similarly de�ned in Eqn. 2. The D7 �lter is applied after the D5 MCFso that ea
h marklet is ne
essarily separated by D8 = 3. The 
oupling of marklets requiresthe addition of two marklets to join marklets on the perimeter of the 7x7 template 
entered atmarklet p.
if I _M(p) � _M then 8>>>><>>>>: I _M (q)! _M when I _M (j) = _M with j = f1; 2gI _M (r)! _M when I _M (j) = _M with j = f3; 4gI _M (s)! _M when I _M (j) = _M with j = f5gI _M (t)! _M when I _M (j) = _M with j = f6; 7; 8g (1)

if I _M (p) � _M then 8>>>><>>>>: I _M (q); I _M (a)! _M when I _M (j) = _M with j = f1; 2gI _M (r); I _M (b)! _M when I _M (j) = _M with j = f3; 4; 5gI _M (s); I _M (
)! _M when I _M (j) = _M with j = f6; 7; 8gI _M (t); I _M (d)! _M when I _M (j) = _M with j = f9; 10; 11; 12g (2)2Chessboard and 
ity-blo
k distan
es are denoted by D8 and D4, respe
tively.5
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(a) (b)Figure 5: The 5x5 and 7x7 templates used by the D5 and D7 marklet 
oupling �lters.3.1 Example MCF Appli
ationFig. 6 demonstrates a D5 MCF appli
ation and shows it e�e
ts on the initial pixel queuingstep. Fig. 6(a) shows a marklet image I _M with seven marklets, indi
ated by dark �lled squares.Fig. 6(b) shows whi
h pixels are involved in initial pixel queuing (i.e., with hash lines). Fig. 6(
)shows the result of a D5 MCF with 
oupling pixels shown with gray �ll. Fig. 6(d) shows theresult of initial pixel queuing obtained from the MCF modi�ed image. Three newly queuedpixels appear as indi
ated by the presen
e of �lled 
ir
les in the respe
tive pixel lo
ations. Thetwo new markers 
reated from the sets of marklets have 
ardinalities of three and �ve. Thetwo marklets appearing in the upper-right 
orner of the image are una�e
ted by the D5 MCFappli
ation sin
e the distan
e between them D8 > 2. These two marklets are 
oupled if the D7MCF is applied. Results for the D7 MCF are similar but are not shown.
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(a) (b) (
) (d)Figure 6: A demonstration of initial pixel queuing before and after MCF pro
essing. (a) showsa marklet image 
ontaining seven marklets. The hashed pixels in (b) show whi
h pixels in (a)are involved in initial pixel queuing. The lighter �lled pixels in (
) show the marklets added bythe appli
ation of the D5 MCF. The pixels with �lled 
ir
les in (d) are pixels queued after theD5 MCF that were not queued in (b). 6



Appli
ations of the D5 and D7 MCFs to the lena, tripod, and peppers test images are shownin Fig. 7 and Fig. 8, respe
tively. Images (a)-(
) in both �gures show the a�e
t that D5 and D7MCFs have on the marklet images. It is evident that many of the marklets from the originalmarklet images of Fig. 3(a)-(
) were 
ombined to form markers. Images in (d)-(f) of Fig. 7 andFig. 8 show the borders of the resulting 
at
hment basins after the WST appli
ation.Fig. 7(g)-(i) and Fig. 8(g)-(i) show the histograms of marker sizes in pixel of the resultingmarkers. Markers one pixel in size are not shown to s
ale, but a
tual 
ounts are listed inparenthesis besides the 
orresponding bar. Table 1 lists quantitative results.The third and fourth 
olumns of Table 1 list the total number of markers and marklets inthe images, respe
tively. The �fth 
olumn lists the marklet totals as a per
entage of the totalmarker 
ount. Column six shows the drop in marklet 
ount after D5 and D7 MCF appli
ation.Column seven lists the per
ent drop in region 
ount resulting from the MCF appli
ations relativeto the total region 
ount. % % redu
tionmarklet # in regionsFig. # # of total 
oupled fromimage 9 markers marklets markers marklets baseline 
ommentslena (a) 859 599 69.7 - - baseline(d) 741 394 53.2 205 13.7 post D5 MCF(g) 645 223 34.6 376 24.9 post D7 MCFtripod (b) 1343 1049 78.1 - - baseline(e) 1062 570 53.7 479 20.9 post D5 MCF(h) 897 295 33.1 754 33.2 post D7 MCFpeppers (
) 751 498 66.3 - - baseline(f) 681 366 53.7 132 9.3 post D5 MCF(i) 617 245 39.7 253 17.8 post D7 MCFTable 1: Results obtained from applying D5 and D7 MCF to test images.Fig. 9 shows the region boundaries of the test images both before and after the appli
ation ofthe D5 and D7 MCFs. Fig. 9(a)-(
) are region borders with no MCF. Fig. 9(d)-(f) and Fig. 9(g)-(i) show region boundaries after D5 and D7 MCF, respe
tively. The images of Fig. 9(d)-(i) arethe same region boundary images appearing in Fig. 7(d)-(f) and Fig. 8(d)-(f), repeated here for
omparison. These images show that little shape information from the original image is lostwhile signi�
ant per
entages of regions were removed from the busiest areas of the image.3.2 MCF Spa
e and Time ComplexitiesAppli
ations of the D5 and D7 MCF require an extra s
an through the image to sear
h formarklets. Assume the image 
ontains m rows and n 
olumns with N = m � n. The image s
anfor the D5 MCF runs in O([n�4℄�[m�2℄) time whi
h is the time required to sear
h for marklets.When a marklet is lo
ated, sear
hing for new marklets 
an advan
e by two 
olumn pixels sin
e7
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(g) (h) (i)Figure 7: An example showing the 
hanges in I _M after D5 MCF appli
ation. (a)-(
) show
hanges in the original marker image, (d)-(f) show the borders of the asso
iated 
at
hmentbasins after the D5 MCF appli
ation and (g)-(i) are partial histograms of marker sizes.
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(g) (h) (i)Figure 8: An example showing the 
hanges in I _M after D7 MCF appli
ation. (a)-(
) show
hanges in the original marker image, (d)-(f) show the borders of the asso
iated 
at
hmentbasins after the D7 MCF appli
ation and (g)-(i) are partial histograms of marker sizes.
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(a) (b) (
)

(d) (e) (f)

(g) (h) (i)Figure 9: An example of watershed region boundaries showing the e�e
ts of D5 and D7 MCFfor the lena, tripod, and peppers images. (a)-(
) are the baseline images. (d)-(f) show theregion boundaries after pro
essing with the D5 MCF. (g)-(i) show the region boundaries afterpro
essing with the D7 MCF. Table 1 lists the 
orresponding quantitative results.10



by de�nition no marklet is adja
ent to another marklet. The worst 
ase s
an o

urs when nomarklets are present. For similar reasons, the D7 MCF runs in O([n�6℄� [m�3℄) time. Despitethe extra pro
essing time required for these MCFs, the overall O(N) run-time 
omplexity of theWST does not 
hange. Appli
ation of both the D5 and D7 MCF require memory to store themarklet image. When both MCFs are applied, the same memory is used for both �lters. In this
ase, the �nal memory requirement is in
reased by N .4 Con
luding RemarksThe results show that the number of regions in the �nal partition 
an be signi�
antly redu
edby the appli
ation of marklet 
oupling �lters. This region redu
tion is fo
used in the spatiallya
tive regions of the image. Sin
e no marker information is removed from the image, the MCFsare able to redu
e region 
ount without sa
ri�
ing visually important regions from the �nalpartition. The MCFs are applied to the image after applying gradient magnitude thresholdingwith a modest threshold value. MCFs do not 
hange the run-time 
omplexity of the WST, andrequire only a slight in
rease in spa
e 
omplexity.Referen
es[1℄ S. Beu
her and F. Meyer. The Morphologi
al Approa
h to Segmentation: the WatershedTransformation. In Mathemati
al Morphology in Image Pro
essing, pages 443{481. Mar
elDekker, 1993.[2℄ B. Dobrin, T. Viero, and M. Gabbouj. Fast Watershed Algorithms: Analysis and Extensions.In Pro
. Nonlinear Image Pro
essing V, volume 1769, pages 209{220. SPIE, February 1994.[3℄ K. Haris, S. Efstratiadis, N. Maglaveras, and A. Katsaggelos. Hybrid Image Segmenta-tion Using Watersheds and Fast Region Merging. IEEE Transa
tions on Image Pro
essing,7(12):1684{1699, De
ember 1998.[4℄ L. Vin
ent and P. Soille. Watersheds in Digital Spa
es: An EÆ
ient Algorithm Basedon Immersion Simulations. IEEE Transa
tions Pattern Analysis and Ma
hine Intelligen
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