
Fast Marker Count Redutionfor Watershed TransformsBryan J. MealyUCSC-CRL-02-38Deember 12, 2002Computer Engineering DepartmentUniversity of CaliforniaSanta Cruz, CA 95064AbstratDespite the Watershed Transform's (WST) tendeny to oversegment, it has beome a widely usedmethod to segment images. In most published WST appliations, gradient magnitude thresholding(GMT) is applied as a method to ontrol WST oversegmentation. GMT is relatively fast and simpleand redues WST region ount without losing important edge information in the original image. Regionredution via GMT, however, is on�ned to smooth areas of the image. In this paper we present a newmethod to ontrol WST oversegmentation whih we refer to as marklet oupling �ltering (MCF). Thisnovel tehnique ontrols WST oversegmentation in non-smooth image areas. The term marklet refersto a regional minima in the gradient image omprising of one pixel. Region ount is redued when twoadjoining marklets are ombined to form a single marker. Two di�erent types of MCFs and are desribed.We demonstrate the ability of the MCF to ontrol WST oversegmentation without ompromising shapeinformation in the original image.The results show that the number of regions in the partitioned image are signi�antly redued byapplying MCF. These results are presented after a GMT appliation with a modest threshold value. Theresults also show that important edge information from the original image is preserved. Both qualitativeand quantitative results are provided.Keywords: watershed transform, oversegmentation, marker, regional minima.



1 IntrodutionThe Watershed Transform's (WST) known tendeny to oversegment presents a major hal-lenge when used for image segmentation. Oversegmentation redues the average region size overthe partition. This in turn redues the probability that any one region represents a visuallyimportant feature in the image. In order to inrease the probability that regions orrespondto visually signi�ant features, some form of region merging is applied after WST proessing.Region merging algorithms, however, are omputationally expensive and do not guarantee viableresults.Gradient magnitude thresholding (GMT) provides an automati method of oversegmentationontrol for WSTs. The wide use of GMT in published WST appliations attests to its eÆayin ontrol oversegmentation. GMT, however, is limited to ontrolling oversegmentation in thesmooth areas of the image. Tehniques suh as low-pass �ltering of the original graysale im-age [3℄ are ommonly applied as an aid to reduing the generation of regions attributed to noise.These tehniques, however, have the undesirable e�et of reduing viable shape information fromthe original image.This paper desribes the tehnique of marklet oupling �ltering (MCF) used to automatiallyredue WST oversegmentation. Similar to GMT, MCFs are applied prior to the atual WSTalgorithm. MCFs are not dependent upon GMT and an be applied regardless of whether GMTis used. MCFs independently redue the number of markers generated without signi�antly in-reasing the time or spae omplexity of WST preproessing. The resulting watershed-generatedpartition is funtionally equivalent to the partition generated by an unaltered WST appliation.In this work, we use the algorithm of Beuher and Meyer [1℄ in onjuntion with the pre-proessing algorithm desribed by Dobrin et al. [2℄. This partiular WST algorithm generates aomplete tessellation of the image and does not assign pixels to watershed lines. Implementationdetails are provided where appropriate but we assume the reader is familiar with the onepts ofimmersion simulation-based WSTs. Referene [4℄ provides a omplete introdution to immersionsimulation-based WSTs.2 Immersion Simulation WST OverviewFig. 1 shows the four steps required for an appliation of an immersion simulation-basedWST. This diagram shows three steps of preproessing followed by the atual WST. The �rststep generates a gradient image based on the original graysale image. The next step designatesertain portions of the image as regional minima whih beome the prik-points for the ensuingimmersion simulation. The initial pixel queuing step adds pixels to the ordered queue to reatea starting state for the WST. The �nal step is the atual WST.2.1 Gradient Image GenerationThe �rst step in WST proessing generates a gradient image based on the original graysaleimage. Eah pixel in the graysale image, I, is mapped to a value representing the disrete1
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QueuingFigure 1: Proess ow of the immersion simulation-based WST algorithm.gradient magnitude at its loation. This mapping forms the gradient image X, i.e., rf : I ! X.Eah pixel p in I is mapped to X by the funtionrf whih approximates the gradient magnitudeat p. Gradient magnitude thresholding is applied during the generation of the gradient imageand essentially ats as a low magnitude lipping operation. Further desription and disussionof gradient magnitude thresholding is found in [3℄.2.2 Regional Minima DetetionThe appliation of the WST requires loating and labeling regional minima in the gradientimage. Regional minima represent the prik-points used in immersion simulation-based WSTsand serve as seed points for the region growing proess. Eah prik-point spawns the growthof a athment basin, and eah athment basin ontains only one prik-point. Although prik-points an be hosen by an outside user, we limit the disussion to automati regional minimadetetion tehniques.The �rst work by Dobrin et al. [2℄ presented an algorithm for regional minima detetion.Regional minima are not expliitly assigned by the Dobrin's regional minima detetion algorithm.In the Dobrin et al. approah, the algorithm instead loates and marks pixels that do not �tthe de�nition of loal minima. These pixels are labeled as not a regional minimum, or NARMs.The gradient image, X, is transformed into an image where eah pixel is either a NARM orthe initial value assigned by the algorithm. Pixels ontaining initial values are then onsideredregional minima. This proedure reates a \sea" of NARMs interspersed with \islands" ofregional minima. This de�nition of regional minima renders the analogy of \prik-points" fromimmersion simulation models misleading sine the minima are not onstrained to being singlepixels, or \points". Instead, a single regional minima an be as small as a single pixel or as largeas a major portion of the image. In this paper, we use the term markers synonymously withregional minima.3 Marklet Coupling Filters (MCF)As shown in Fig. 1, the seond step in applying a WST is the detetion of regional minima,M . The resulting marker image, IM , is a binary image where eah pixel p 2Mi or p = NARM.Pixels with low gradient values orrespond to smooth areas of the graysale image and tend toluster in large markers. This harateristi is magni�ed when gradient magnitude thresholdingis applied. Most natural images ontain large areas of pixels exhibiting low gradient values whihare eventually grouped into large athment basins. Consequently, large portions of the imagebeome assoiated with a relatively small number of regional minima. Conversely, there tends2



lena (256x256) tripod (256x256) peppers (256x256)Figure 2: The test images.to be a high density of regional minima in areas of the image ontaining high spatial frequenies.The size of these markers tends to be smaller than markers found in smooth areas of the image.These smaller markers are generally less important than larger markers and an be ombinedwith other small and loal markers in the image without losing salient shape information in the�nal partition. This leads to a new approah for reduing the marker ount prior to applyingthe atual WST algorithm.The new tehnique targets only small markers whih we refer to as marklets. A marklet,denoted by _M , is a regional minimum omprising of a single pixel. The marklet image, I _M ,is formed from markers in the marker image by I _M = fMi j kMik = 1 for Mi 2 IMg withi = f1; 2; : : : ; kg where k is the number of markers in the marker image. Thus, I _M � IM .Marklets that are loated a short distane from other marklets are ombined to form a singlemarker. Eah of these ombinations redues the region ount by one. Sine no marker is removedfrom the image, edge information ontained in the assoiated regions is retained. The numberof pixels involved in the initial queuing proess hanges only slightly.Fig. 2 shows the original lena, tripod, and peppers test images. Fig. 3(a)-() shows themarker images assoiated with the lena, tripod, and peppers test images, respetively. Themarker image is a binary image where every pixel is either a marker or a NARM; the dark areasof these images represent the markers. Fig. 3(d)-(f) shows the marklet images assoiated withFig. 3(a)-(), respetively. The marklet image, I _M , is a binary image where every pixel is eithera marklet or a non-marklet1. Fig. 3(g)-(i) shows a partial histogram of marker ardinality foreah image. The �rst entry in the histograms are not drawn to sale but atual ounts are listedin parenthesis next to that entry. Eah histogram shares the same general shape with markletsomprising a onsiderable portion of the total marker ount.We present two types of MCFs: D5 and D7, whih are designed to work on the same imagein two-step proess. The D5 MCF provides an initial level of marklet redution and an befollowed by the D7 MCF, whih provides a seond level of marklet redution. Fig. 4 shows thatthe D5 MCF must be applied prior to the D7 MCF. The D5 MCF is applied before the D7 MCFsine the eÆieny of both �lters is based upon known spaing of the marklets in I _M . Applying1In this ase, the non-marklet is either a NARM or a marker with M > 1.3
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(g) (h) (i)Figure 3: An example showing the markers assoiated with images lena, tripod, and peppers.(a)-() show markers as dark areas. (d)-(f) are the marklet images, I _M , and (g)-(i) are partialhistograms of marker sizes for the images of (a)-(), respetively.
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Gradient ImageFigure 4: Modi�ed proess ow of the immersion simulation-based WST. This �gures shows thestages where D5 and D7 MCFs are applied.the D5 MCF does not require the subsequent appliation of the D7 MCF.By de�nition, eah marklet is bordered by eight NARMs whih ensures that marklets areseparated by a D8 � 2. This also implies that any two marklets separated by a hessboarddistane2 of D8 = 2 an be onneted by plaing a single marklet between them. After theappliation of the D5 MCF, remaining marklets are then separated by a D8 � 3. This in-turnallows marklets separated by a distane D8 = 3 to be onneted by the addition of two pixelsbetween them. The use of D8 as a distane measure auses the region of support for the D5 andD7 MCFs to be 5x5 and 7x7, respetively. The \D" in the �lter names represents the diameterof the �lters as desribed below.Fig. 5(a) shows the template used to apply a D5 MCF to a marklet loated at loation X.The template uses a 5x5 region of support entered about pixel loation p. Eqn. 1 desribesthe operation of the D5 MCF. The D5 MCF is implemented by passing the template over eahpixel in I _M in a method reminisent of onvolution. The implementation is eÆient sine notevery template loation with D8 = 2 from pixel p requires examination. Not examining everypixel loation allows the templates of Fig. 5 to onsider only pixels in the lower half of thetemplates; only shaded the pixels on the template edges are evaluated. The D5 MCF e�etivelyadds a marklet to I _M between two existing marklets. The additional marklet transforms thetwo existing marklets into a marker, Mnew, with jMnewj � 3.The D7 MCF is similarly de�ned in Eqn. 2. The D7 �lter is applied after the D5 MCFso that eah marklet is neessarily separated by D8 = 3. The oupling of marklets requiresthe addition of two marklets to join marklets on the perimeter of the 7x7 template entered atmarklet p.
if I _M(p) � _M then 8>>>><>>>>: I _M (q)! _M when I _M (j) = _M with j = f1; 2gI _M (r)! _M when I _M (j) = _M with j = f3; 4gI _M (s)! _M when I _M (j) = _M with j = f5gI _M (t)! _M when I _M (j) = _M with j = f6; 7; 8g (1)

if I _M (p) � _M then 8>>>><>>>>: I _M (q); I _M (a)! _M when I _M (j) = _M with j = f1; 2gI _M (r); I _M (b)! _M when I _M (j) = _M with j = f3; 4; 5gI _M (s); I _M ()! _M when I _M (j) = _M with j = f6; 7; 8gI _M (t); I _M (d)! _M when I _M (j) = _M with j = f9; 10; 11; 12g (2)2Chessboard and ity-blok distanes are denoted by D8 and D4, respetively.5
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(a) (b)Figure 5: The 5x5 and 7x7 templates used by the D5 and D7 marklet oupling �lters.3.1 Example MCF AppliationFig. 6 demonstrates a D5 MCF appliation and shows it e�ets on the initial pixel queuingstep. Fig. 6(a) shows a marklet image I _M with seven marklets, indiated by dark �lled squares.Fig. 6(b) shows whih pixels are involved in initial pixel queuing (i.e., with hash lines). Fig. 6()shows the result of a D5 MCF with oupling pixels shown with gray �ll. Fig. 6(d) shows theresult of initial pixel queuing obtained from the MCF modi�ed image. Three newly queuedpixels appear as indiated by the presene of �lled irles in the respetive pixel loations. Thetwo new markers reated from the sets of marklets have ardinalities of three and �ve. Thetwo marklets appearing in the upper-right orner of the image are una�eted by the D5 MCFappliation sine the distane between them D8 > 2. These two marklets are oupled if the D7MCF is applied. Results for the D7 MCF are similar but are not shown.
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(a) (b) () (d)Figure 6: A demonstration of initial pixel queuing before and after MCF proessing. (a) showsa marklet image ontaining seven marklets. The hashed pixels in (b) show whih pixels in (a)are involved in initial pixel queuing. The lighter �lled pixels in () show the marklets added bythe appliation of the D5 MCF. The pixels with �lled irles in (d) are pixels queued after theD5 MCF that were not queued in (b). 6



Appliations of the D5 and D7 MCFs to the lena, tripod, and peppers test images are shownin Fig. 7 and Fig. 8, respetively. Images (a)-() in both �gures show the a�et that D5 and D7MCFs have on the marklet images. It is evident that many of the marklets from the originalmarklet images of Fig. 3(a)-() were ombined to form markers. Images in (d)-(f) of Fig. 7 andFig. 8 show the borders of the resulting athment basins after the WST appliation.Fig. 7(g)-(i) and Fig. 8(g)-(i) show the histograms of marker sizes in pixel of the resultingmarkers. Markers one pixel in size are not shown to sale, but atual ounts are listed inparenthesis besides the orresponding bar. Table 1 lists quantitative results.The third and fourth olumns of Table 1 list the total number of markers and marklets inthe images, respetively. The �fth olumn lists the marklet totals as a perentage of the totalmarker ount. Column six shows the drop in marklet ount after D5 and D7 MCF appliation.Column seven lists the perent drop in region ount resulting from the MCF appliations relativeto the total region ount. % % redutionmarklet # in regionsFig. # # of total oupled fromimage 9 markers marklets markers marklets baseline ommentslena (a) 859 599 69.7 - - baseline(d) 741 394 53.2 205 13.7 post D5 MCF(g) 645 223 34.6 376 24.9 post D7 MCFtripod (b) 1343 1049 78.1 - - baseline(e) 1062 570 53.7 479 20.9 post D5 MCF(h) 897 295 33.1 754 33.2 post D7 MCFpeppers () 751 498 66.3 - - baseline(f) 681 366 53.7 132 9.3 post D5 MCF(i) 617 245 39.7 253 17.8 post D7 MCFTable 1: Results obtained from applying D5 and D7 MCF to test images.Fig. 9 shows the region boundaries of the test images both before and after the appliation ofthe D5 and D7 MCFs. Fig. 9(a)-() are region borders with no MCF. Fig. 9(d)-(f) and Fig. 9(g)-(i) show region boundaries after D5 and D7 MCF, respetively. The images of Fig. 9(d)-(i) arethe same region boundary images appearing in Fig. 7(d)-(f) and Fig. 8(d)-(f), repeated here foromparison. These images show that little shape information from the original image is lostwhile signi�ant perentages of regions were removed from the busiest areas of the image.3.2 MCF Spae and Time ComplexitiesAppliations of the D5 and D7 MCF require an extra san through the image to searh formarklets. Assume the image ontains m rows and n olumns with N = m � n. The image sanfor the D5 MCF runs in O([n�4℄�[m�2℄) time whih is the time required to searh for marklets.When a marklet is loated, searhing for new marklets an advane by two olumn pixels sine7
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(g) (h) (i)Figure 7: An example showing the hanges in I _M after D5 MCF appliation. (a)-() showhanges in the original marker image, (d)-(f) show the borders of the assoiated athmentbasins after the D5 MCF appliation and (g)-(i) are partial histograms of marker sizes.
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(g) (h) (i)Figure 8: An example showing the hanges in I _M after D7 MCF appliation. (a)-() showhanges in the original marker image, (d)-(f) show the borders of the assoiated athmentbasins after the D7 MCF appliation and (g)-(i) are partial histograms of marker sizes.
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(g) (h) (i)Figure 9: An example of watershed region boundaries showing the e�ets of D5 and D7 MCFfor the lena, tripod, and peppers images. (a)-() are the baseline images. (d)-(f) show theregion boundaries after proessing with the D5 MCF. (g)-(i) show the region boundaries afterproessing with the D7 MCF. Table 1 lists the orresponding quantitative results.10



by de�nition no marklet is adjaent to another marklet. The worst ase san ours when nomarklets are present. For similar reasons, the D7 MCF runs in O([n�6℄� [m�3℄) time. Despitethe extra proessing time required for these MCFs, the overall O(N) run-time omplexity of theWST does not hange. Appliation of both the D5 and D7 MCF require memory to store themarklet image. When both MCFs are applied, the same memory is used for both �lters. In thisase, the �nal memory requirement is inreased by N .4 Conluding RemarksThe results show that the number of regions in the �nal partition an be signi�antly reduedby the appliation of marklet oupling �lters. This region redution is foused in the spatiallyative regions of the image. Sine no marker information is removed from the image, the MCFsare able to redue region ount without sari�ing visually important regions from the �nalpartition. The MCFs are applied to the image after applying gradient magnitude thresholdingwith a modest threshold value. MCFs do not hange the run-time omplexity of the WST, andrequire only a slight inrease in spae omplexity.Referenes[1℄ S. Beuher and F. Meyer. The Morphologial Approah to Segmentation: the WatershedTransformation. In Mathematial Morphology in Image Proessing, pages 443{481. MarelDekker, 1993.[2℄ B. Dobrin, T. Viero, and M. Gabbouj. Fast Watershed Algorithms: Analysis and Extensions.In Pro. Nonlinear Image Proessing V, volume 1769, pages 209{220. SPIE, February 1994.[3℄ K. Haris, S. Efstratiadis, N. Maglaveras, and A. Katsaggelos. Hybrid Image Segmenta-tion Using Watersheds and Fast Region Merging. IEEE Transations on Image Proessing,7(12):1684{1699, Deember 1998.[4℄ L. Vinent and P. Soille. Watersheds in Digital Spaes: An EÆient Algorithm Basedon Immersion Simulations. IEEE Transations Pattern Analysis and Mahine Intelligene,13(6):583{598, June 1991.
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