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Abstract

As storage systems scale to thousands of disks, data distribution and load balancing become increasingly
important. We present an algorithm for allocating data objects to disks as a system as it grows from a few
disks to hundreds or thousands. A client using our algorithm can locate a data object in microseconds
without consulting a central server or maintaining a full mapping of objects or buckets to disks. Despite
requiring little global configuration data, our algorithm is probabilistically optimal in both distributing data
evenly and minimizing data movement when new storage is added to the system. Moreover, our algorithm
support weighted allocation and variable levels of object replication, both of which are needed to efficiently
support growing systems while technology changes.



1 Introduction

As the prevalence of large distributed systems and clusters of commodity machines has grown, significant
research has been devoted toward designing scalable distributed storage systems. Scalability for such sys-
tems has typically been limited to allowing the construction of a very large system in a single step, rather
than the slow accretion over time of components into a large system. This bias is reflected in techniques for
ensuring data distribution and reliability that assume the entire system configuration is known when each
object is first written to a disk. In modern storage systems, however, configuration changes over time as new
disks are added to supply needed capacity or bandwidth.

The increasing popularity of network-attached storage devices (NASDs) [9], which allow the use of
thousands of “smart disks” directly attached to the network, has complicated storage system design. In
NASD-based systems, disks may be added by connecting them to the network, but efficiently utilizing the
additional storage may be difficult. Such systems cannot rely on central servers because doing so would
introduce scalability and reliability problems. It is also impossible for each client to maintain detailed
information about the entire system because of the number of devices involved.

Our research addresses this problem by providing an algorithm for a client to map any object to a disk
using a small amount of infrequently-updated information. Our algorithm distributes objects to disks evenly,
redistributing as few objects as possible when new disks are added to preserve this even distribution. Our
algorithm is very fast, and scales with the number of disk groups added to the system. For example, a
1000 disk system in which disks were added ten at a time would run in time proportional to 100. In such a
system, a modern client would require about 10 µs to map an object to a disk. Because there is no central
directory, clients can do this computation in parallel, allowing thousands of clients to access thousands of
disks simultaneously.

Our algorithm also enables the construction of highly reliable systems. Objects may have an arbitrary,
adjustable degree of replication, allowing storage systems to replicate data sufficiently to reduce the risk of
data loss. Replicas are distributed evenly to all of the disks in the system, so the load from a failed disk is
distributed evenly to all other disks in the system. As a result, there is little performance loss when a large
system loses one or two disks.

Even with all of these benefits, our algorithm is simple. It requires fewer than 100 lines of C code,
reducing the likelihood that a bug will cause an object to be mapped to the wrong server. Each client need
only keep a table of all of the servers in the system, storing the network address and a few bytes of additional
information for each server. In a system with thousands of clients, a small, simple distribution mechanism
is a big advantage.

2 Related Work

Litwin, et al. describe a class of data structures and algorithms on those data structures which the authors
dubbed Scalable Distributed Data Structures (SDDS) [18]. There are three main properties which a data
structure must meet in order to be considered a SDDS.

1. A file expands to new servers gracefully, and only when servers already used are efficiently loaded.

2. There is no master site that object address computations must go through, e.g., to access a centralized
directory.

3. The file access and maintenance primitives, e.g., search, insertion, split, etc., never require atomic
updates to multiple clients.
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While the second and third properties are clearly important for highly scalable data structures designed
to place objects over hundreds or thousands of disks, the first property, as it stands, could be considered a
limitation. In essence, a file which grows to new servers based on storage demands rather than on resource
availability will present a very difficult administration problem.

Often, an administrator wants to add disks to a storage cluster and immediately rebalance the objects in
the cluster to take advantage of the new disks for increased parallelism. An administrator does not want to
wait for the system to decide to take advantage of the new resources based on algorithmic characteristics
and parameters that they do not understand. This is a fundamental flaw in all of the LH* variants.

Furthermore, Linear Hashing and LH* variants split buckets (disks in this case) in half, so that on
average, half of the objects on a split disk will be moved to a new, empty, disk. Moving half of the objects
from one disk to another causes wide differences in the number of objects stored on different disks in the
cluster, and results in suboptimal disk utilization [2]. Splitting in LH* will also result in a “hot spot” of disk
and network activity between the splitting node and the recipient. Our algorithm, on the other hand, always
moves a statistically optimal number of objects from every disk in the system to every new disks, rather than
from one disk to one disk.

LH* variants such as LH*M [17], LH*G [19], LH*S [16], LH*SA [15], and LH*RS [20] describe tech-
niques for increasing availability of data or storage efficiency by using mirroring, striping and checksums,
Reed Solomon codes and other standard techniques in conjunction with the basic LH* algorithm. Our al-
gorithm can also easily take advantage of these standard techniques, although that is not the focus of this
paper.

Furthermore the LH* variants do not provide a mechanism for weighting different disks to take ad-
vantage of disks with heterogeneous capacity of throughput. This is a reasonable requirement for storage
clusters which grow over time: we always want to add the highest performance or highest capacity disks to
our cluster. Our algorithm allows weighting of disks.

Kröll and Widmayer [12] propose another SDDS that they call Distributed Random Trees (DRTs). DRTs
are optimized for more complex queries such as range queries and and closest match, rather than the simple
primary key lookup supported by our algorithm and LH*. Additionally, DRTs support server weighting.
Because they are SDDS’s, however, they have the same difficulties with data-driven reorganization (as
opposed to administrator-driven reorganization) as do LH* variants. In addition, the authors present no
algorithm for data replication, although metadata replication is discussed extensively. Finally, although they
provide no statements regarding the average case performance of their data structure, DRT has worst-case
performance which is linear in the the number of disks in the cluster. In another paper, the authors prove
a lower bound of Ω(

√
m) on the average case performance of any tree based SDDS [13], where m is the

number of objects stored by the system. Our algorithm has performance which is O(n log n) in the number
of groups of disks added; if disks are added in large groups, as is often the case, then performance will be
nearly constant time.

Vinralek, Brietbart and Weikum [2] discuss a distributed file organization which resolves the issues of
disk utilization (load) in LH*. They do not, however, propose any solution for data replication.

Peer-to-peer systems such as CFS [7], PAST [22], Gnutella [21], and FreeNet [4] assume that storage
nodes are extremely unreliable. Consequently, data has a very high degree of replication. Furthermore,
most of these systems make no attempt to guarantee long term persistence of stored objects. In some cases,
objects may be “garbage collected” at any time by users who no longer want to store particular objects
on their node, and in others, objects which are seldom used are automatically discarded. Because of the
unreliability of individual nodes, these systems use replication for high availability, and are less concerned
with maintaining balanced performance across the entire system.

Other large scale persistent storage systems such as Farsite [1, 8] and OceanStore [14] ensure more
file system-like semantics. Objects placed in the file system are guaranteed (within some probability of
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Figure 1: A typical NASD-based storage system

failure) to remain in the file system until they are explicitly removed (if removal is supported). OceanStore
guarantees reliability by a very high degree of replication. The inefficiencies which are introduced by
the peer-to-peer and wide are storage systems in order to address security, reliability in the face of highly
unstable nodes, and client mobility (among other things), introduce far too much overhead for a tightly
coupled mass object storage system.

Distributed file systems such as AFS [11] use a client server model. These systems typically use repli-
cation at each storage node, such as RAID [3], as well as client caching to achieve reliability. Scaling is
typically done by adding volumes as demand for capacity grows. This strategy for scaling can result in very
poor load balancing, and requires too much maintenance for large disk arrays. In addition, it does not solve
the problem of balancing object placement.

3 Object Placement Algorithm

We have developed an object placement algorithm that organizes data optimally over a system of disks or
servers while allowing online reorganization in order to take advantage of newly available resources. The
algorithm allows replication to be determined on a per-object basis, and permits weighting to distribute
objects unevenly to best utilize different performance characteristics for different servers in the system. The
algorithm is completely decentralized and has very minimal storage overhead and minimal computational
requirements.

3.1 Object-based Storage Systems

NASD-based storage systems are built from large numbers of relatively small disks attached to a high band-
width network, as shown in Figure 1. Often, NASD disks manage their own storage allocation, allowing
clients to store objects rather than blocks on the disks. Objects can be any size and may have any 64-bit
name, allowing the disk to store an object anywhere it can find space. If the object name space is partitioned
among the clients, several clients can store different objects on a single disk without the need for distributed
locking. In contrast, blocks must be a fixed size and must be stored at a particular location on disk, requiring
the use of a distributed locking scheme to control allocation. NASD devices that support an object interface
are called object-based storage devices (OBSDs)2 [23]. We assume that the storage system on which our
algorithm runs is built from OBSDs.

Our discussion of the algorithm assumes that each object can be mapped to a key x. While each object
must have a unique identifier in the system, the key used for our algorithm not be unique for each object.

2OBSDs may also be called object-based disks (OBDs).
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j = c
while (object not mapped)

seed a random number generator with the object’s key x
advance the random number generator j steps.
generate a random number 0 ≤ z < n j +m j

if z ≥ m j

j = j−1
else

map the object to server n j + z mod m j

Figure 2: Algorithm for mapping objects to servers without replication or weighting.

Instead, objects are mapped to a “set” that may contain hundreds or thousands of objects, all of which share
the key x while having different identifiers. Once the algorithm has located the set in which an object resides,
that set may be searched for the desired object; this search can be done locally on the OBSD and the object
returned to the client. By restricting the magnitude of x to a relatively small number, perhaps 106–107,
we make the object balancing described in Section 6.1 simpler to implement without losing the desirable
balancing characteristics of the algorithm.

Most previous work has assumed either that storage is static, or that storage is added for additional
capacity. We believe that additional storage will be necessary as much for additional performance as for
capacity, requiring that objects be redistributed to new disks. If objects are not rebalanced when storage is
added, newly created objects will be more likely to be stored on new disks. Since new objects are more
likely to be referenced, this will leave the existing disks underutilized.

We assume that disks are added to the system in clusters, with the jth cluster of disks containing m j

disks. If a system contains N objects and n j = ∑ j−1
i=0 mi disks, adding m more disks will require that we

relocate N × m
n j+m objects to the new disks to preserve the balanced load. For all of our algorithms, we

assume that existing clusters are numbered 0 . . . c− 1, and that we are adding cluster c. The cth cluster
contains mc disks, with nc disks already in the system.

3.2 Basic Algorithm

We will call disks servers since this algorithm might be used to distribute data over an object database
or other more complex service. Our algorithm operates on the basic principle that in order to move the
(statistically) optimal number of objects into a new cluster of servers, then for a given object we can simply
pick a pseudo-random integer z such that 0 ≤ z < nc + mc. If z < mc, then the object in question moves to
the new cluster. Our algorithm is applied recursively: each time we add a new cluster of servers, we add
another step in the lookup process. To find a particular object, we work backwards through the clusters,
starting at the most recently added, deciding whether the object would have been moved to that cluster. The
basic algorithm for determining the placement of some object with key x, before making considerations for
object replication, and weighting is shown in Figure 2.

We use a uniform random number generator which allows “jump-ahead”: the next s numbers generated
by the generator can be skipped, and the s+1st number can be generated directly. The generator which we
use can be advanced s steps in O(log s) time, but we are currently exploring generators which can generate
parametric random numbers in O(1) time, as described in Section 5.1.

Using a simple inductive proof, we can show that the expected number of objects placed in the new
cluster by this basic algorithm is mc

nc+mc
×N, and that objects will be randomly distributed uniformly over all

of the servers after the reorganization.
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In the base case, all objects should clearly go to the first cluster since n0 = 0, meaning that m0
n0+m0

×N = N.
Furthermore, since z comes from a uniform distribution and each object will be placed on server 0 + z
mod m0 = z mod m0, the probability of choosing a given server is 1

m0
. Thus each server has an equal

probability of being chosen, so the objects will be distributed uniformly over all of the servers after placing
them on the first cluster.

For the induction step, assume that N objects are randomly distributed uniformly over nc servers divided
into c−1 clusters, and we add cluster c containing mc servers. We will optimally place mc

nc+mc
×N objects in

cluster c.
Since each random number 0 ≤ z < nc +mc is equally likely, we have a probability of mc

nc+mc
of moving

any given object to a server in cluster c. With N objects, the total number of objects moved to a server in
cluster c is mc

nc+mc
×N—the optimal value.

Since the N objects in the system are distributed uniformly over nc servers by our inductive hypothesis,
a relocated object has an equal probability of coming from any of nc servers. The expected number of
objects moved from any given server S (where 0 ≤ S < nc ) is mc

nc+mc
· 1

nc
·N. so the expected number of

objects remaining on any server S will be 1
nc

(

1− mc
nc+mc

)

·N = N
nc+mc

. Since the expected number of objects

placed in cluster c is mc
nc+mc

·N, the expected number of objects placed on a given server in cluster c is
1

mc
· mc

nc+mc
·N = N

nc+mc
.

Because the expected number of objects on any server in the system is N
nc+mc

, the distribution of objects
in the system remains uniform. Since the decision regarding which objects to move and where to move them
is made using a pseudo-random process, the distribution of objects in the system also remains random.

4 Cluster Weighting and Replication

Simply distributing objects to uniform clusters is not sufficient for large-scale storage systems. In practice,
large clusters of disks will require weighting to allow newer disks, which are likely to be faster and larger,
to contain a higher proportion of objects than existing servers. Such clusters will also need replication to
overcome the frequent disk failures that will occur in clusters of thousands of servers.

4.1 Cluster Weighting

In most systems, clusters of servers have different properties—newer servers are faster and have more ca-
pacity. We must therefore add weighting to the algorithm to allow some server clusters to contain a higher
proportion of objects than others. To accomplish this, we use a weight adjustment factor w j for every cluster
j. This factor will likely be a number which describes the power (such as capacity, throughput, or some
combination of the two) of the server. For example, if clusters are weighted by the capacity of the drives,
and each drive in the first cluster is 60 gigabytes, and each drive in the second cluster is 100 gigabytes, then
w0 might be initialized to 60, and w1 might be initialized to 100. We then use m′

j = m jw j in place of m j and

n′j = ∑ j−1
i=0 m′

i in place of n j in Figure 2. Once an object’s cluster has been selected, it can be mapped to a
server by n j + v modm j, as done in the basic algorithm.

The use of 64-bit integers and arithmetic allows for very large systems; a 1,000 terabyte system that
weights by gigabytes will have a total weight of only 1 million. If weights are naturally fractional (as for
bandwidth, perhaps), they can all be scaled by a constant factor cw to ensure that all w j remain integers.
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j = c
while object is not mapped

seed a random number generator with the object’s key x
advance the generator j steps
m′

j = m jw j

n′j = ∑ j−1
i=0 m′

i

generate a random number 0 ≤ z < (n′j +m′
j)

choose a random prime number p ≥ m′
j

v = x+ z+ r× p
z′ = (z+ r× p) mod (n′j +m′

j)

if m j ≥ R and z′ < m′
j

map the object to server n j +(v mod m j)
else if m j < R and z′ < R ·w j and v mod R < m j

map the object to server n j +(v mod R).
else

j = j−1

Figure 3: Algorithm for mapping objects to servers with replication and weighting.

4.2 Replication

The algorithm becomes slightly more complicated when we add replication because we must guarantee that
no two replicas of an object are placed on the same server, while still allowing the optimal placement and
migration of objects to new server clusters.

This version of the algorithm, shown in Figure 3, relies on the fact that multiplying some number n
mod m by a prime p which is larger than m defines a bijection between the ordered set S = {0 . . .m−1} and
some permutation of S [6]. Furthermore, the number of unique bijections is equal to the number of elements
of S which are relatively prime to m. In other words, multiplying by a prime larger than m permutes the
elements of S in one of φ(m) ways, where φ(·) is the Euler Phi function [6], as described in Section 4.3.

Again, x is the key of the object being placed, c is the number of clusters, n j is the total number of
servers in the first j− 1 clusters, and m j is the number of servers in cluster j, where j ∈ {0 . . . c− 1}. Let
R equal the maximum degree of replication for an object, and r ∈ {0 . . .R−1} be the replica number of the
object in question. z and s are pseudo-random values used by the algorithm.

The algorithm also assumes that m0 ≥ R. That is, the number of servers in the first cluster is at least
as large as the maximum degree of replication. This makes intuitive sense since if it were not true, there
would not be a sufficient number of servers available to accommodate all of the replicas of an object when
the system is first brought online.

In the case where m j < R, our algorithm (intuitively speaking) first pretends that the cluster is of size R.
It then selects only those object replicas which would be allocated to the first m j servers in our imaginary
cluster or R servers. In this way, we can avoid mapping more than one replica to the same server. When

m j < R, the number of objects which get mapped into cluster j is w j ·R
n′j+m′

j
· m j

R =
m′

j

n′j+m′
j
, so the R factor cancels

completely.
Let the total weight in the system W be ∑c−1

i=0 wimi. The fraction of the total weight possessed by a server
in cluster j is thus wi

W . We must therefore show that the expected number of object replicas owned by some
server j is w j

W ·N ·R.
We also must show that no two replicas of the same object get placed on the same server. Again, we

can prove these facts using induction. We omit the proof that the objects remain distributed over the other
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(x+z)mod m

(r*p) mod m

mod m

Figure 4: The mapping of the order set of integers {0, . . . ,m j − 1} to a permutation of that set using the
function f (x) = (x+ z+ r× p) mod m j

clusters according to their weights, since the argument is essentially identical to that in the basic algorithm
described in Section 3.2.

In the base case, n′0 = 0, and z′ is modulus n′0 + m′
0 = m′

0 (and hence z′ < m′
0). Since we require that

the first cluster have at least R servers, we will always map the object to server n0 + (v mod m0) = v
mod m0 which is in the first cluster, as described in Figure 3. v is a pseudo-random number (because z
is pseudo-random), so an object has an even chance of being placed on any of the m0 servers in cluster
0. Therefore, the expected number of objects placed on a given server when there is only one cluster is
1

m0
·N ·R = w0

w0m0
·N ·R = w0

W ·N ·R, which is what we wanted to prove.
Now,

[x+ z+ r× p]≡m0 [x+ z]+ [r× p].

We can therefore examine the (x+ z) mod m0 term, and the (r× p) mod m0 term separately.
Recall that x is the key of an object. Since x and z can be any value, both of which are (potentially)

different for each object, but the same for each replica of the object, x + z can be viewed as defining a
random offset within the m0 servers in the first cluster from which to start placing objects.

p and m1 are relatively prime, so by the Chinese Remainder Theorem [6], for a given y, [r× p] ≡m0 y
has a unique solution mod m0. In other words, p defines a bijection from the ordered set {0, . . . ,m0 − 1}
to some permutation of that set.

Thus we can think of (x+ z+ r× p) mod m0 as denoting some permutation of the set {0, . . . ,m0 −1},
shifted by (x + z) mod m0.3 In other words, if we rotate the the last element to the first position x + z
times, then we have the set defined by f (x) = (x + z + r× p) mod m0. Since this is also a permutation of
{0, . . . ,m0−1}, and since r < m0, each replica of an object maps to a unique server, as shown in Figure 4.

For the induction step, assume that N objects are randomly distributed uniformly over nc servers divided
into c−1 clusters. Furthermore, assume each cluster is weighted by some per-server (unnormalized) weight
w j where 0 ≤ j < c, and that all of the object replicas in the system are distributed randomly over all of the
servers according to each server’s respective weight (defined by the server’s cluster).

If we add a cluster j containing m j servers, then w j ·m j is the total weight allocated to cluster j. Since
a given object replica is placed in cluster j with probability w j ·m j

W , the expected number of objects placed in
cluster j is w jm j

W ·N ·R. As in the base case, the object replicas will be distributed over the servers in cluster j
uniformly, so the expected number of number of object replicas allocated to a server in cluster j is w j

W ·N ·R,
which is what we wanted to show.

3The number of unique permutations of {0, . . . ,m0 −1} which can be obtained by multiplying by a coprime of m0 is equal to
the Euler Phi Function φ(m0), as described in Section 4.3.

7



Since p defines a bijection between the ordered set {0, . . . ,m j − 1} and some permutation of that set,
each replica which gets placed in cluster j gets placed on a unique server. Note that at most m j out of R
replicas of a given object can be placed in cluster j, since the other R−m j replicas will be mapped mod R
to values which are greater than or equal to m j when m j < R.

Thus, our algorithm moves the optimal number of algorithms to cluster j, and no two replicas of the
same object get placed on the same server.

4.3 Choosing Prime Numbers

Our algorithm uses a random prime number, which must be known by every server and client in the system.
It is sufficient to choose a random prime from a large pool of primes. This prime p will be relatively prime
to any modulus m < p, as will p mod m. Furthermore, choosing a random prime and computing p mod m
is statistically equivalent to making a uniform draw from the set of integers in the set {0, . . . ,m−1} which
are also relatively prime to m. A proof of this is beyond the scope of this paper.

The number of integers in the set {0, . . . ,m−1} which are relatively prime to m (these relatively prime
integers will be called coprimes for the remainder of this section)is described by the Euler Phi Function:

φ(m) = m∏
p|m

p−1
p

where p|m means the set of all p such that p is a factor of m[6].
Since φ(m) < m! when m > 2, the number of bijections described by the set of coprimes to m is smaller

in general than the number of possible permutations of a set of integers {0, . . . ,m− 1}. It is also beyond
the scope of this paper to show precise statistical impact of this difference. The practical impact of this
difference can be seen, however, in Figure 6(c).

5 Performance and Operating Characteristics

5.1 Theoretical Complexity

In this section we demonstrate that our algorithm has time complexity of O(n · r) where n is the number of
server additions made, and r is the time in which it takes to generate an appropriate random number. The
algorithm that we are currently using to generate random numbers takes O(logn) time. This can theoretically
be reduced to O(1).

As noted in Section 4.3, appropriate prime numbers can be chosen in O(1) time, and the rest of the
operations other than those related to generating random numbers are arithmetic, so every operation besides
those used for generating random numbers runs in O(1) time.

The algorithm for seeding and actually generating random numbers is also constant time [24]. The
algorithm for “jumpahead,” or advancing the random number generator a given number of steps without
calculating intermediate values, however takes O(logn) time. Specifically, the algorithm for jumpahead
requires modular exponentiation, which is known to run in O(logn) time [6]. Since we must jump ahead by
the cluster group number each iteration, each iteration of the algorithm takes, on average O(logn) time.

In the worst case, an object replica will be placed in the first server cluster, in which case the algorithm
must examine every cluster to determine where the object belongs. The average case depends on the size
and weighting of the different clusters, and so does not present a good metric for performance. If the weight
and clusters sizes are distributed evenly, then clearly we will need, on average n

2 iterations. However, we
believe that newer clusters will tend to have higher weight, so that in the average case, we only need to
calculate logn iterations.
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Figure 5: Time for looking up an object versus the number of server clusters in the system. All times
computed on an Intel Pentium III 450.

Rather than using jumpahead to generate statistically random hash values that are parameterized by the
server cluster number, we have examined another approach using parametric random number generators [5].
These random number generators are popular for distributed random number generation. By parameterizing
the generated sequence, the generators can assign a different parameter to each processor in a cluster, while
using the same seed. This guarantees unique, deterministic pseudo-random number sequences for each
processor.

One simple method, based on Linear Congruence Generators [5], allows the parameterization to occur
in O(1) time. LCGs, however, are notorious for generating numbers which all lie on a higher dimensional
hyperplane, and thus are strongly correlated for some purposes. Unfortunately, this correlation results in
very poor distribution of objects in our algorithm, and so LCGs are unusable.

We are currently examining other more sophisticated generators, but as a final note, our algorithm does
actually support O(n) operation, but this is mostly of theoretical interest. O(n) operation can be achieved as
follows: On the first iteration, seed the generator and advance it n steps, as would normally be done. Next
instead of re-seeding the generator and advancing it n− 1 steps, retain the state of the generator (do not
reseed it), and then advance it the period of the generator (in this case, the maximum value of an unsigned
long integer) minus 1. Since the period of the generator is a known quantity which does not depend on n,
this can be done in O(1) time. Of course, its hard to imagine a distributed storage device with 232−1 nodes,
apart from perhaps some sort of nano-scale device, so the classification as O(n) is of academic interest only.

5.2 Performance

In order to understand the real world performance of our algorithm, we tested the average time per lookup
under many different configurations. First, we ran a test in which 40,000 object replicas were placed into
configurations starting with 10 servers in a single cluster to isolate the effect of server addition. We timed
these 40000 lookups, and then added clusters of servers, 10 servers at a time, and timed the same 40,000
lookups over the new server organization. In Figure 5(a), we can see that the line for lookups under this
configuration grows faster than linear, but much slower than n log n.

In Figure 5(b), there are two lines which grow approximately logarithmically. Since disk capacity has
been growing exponentially [10], we also consider the performance of the algorithm when the weight of
(and hence number of object assigned to) new clusters grows exponentially. The bottom line illustrates a
5% growth in capacity between cluster additions, and the middle line represents a 1% growth.
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(c) One server fails in a system with 2 clusters of 5
servers, and 1 cluster of 12 servers. The failed server
is in the the cluster of 12 servers.
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(d) One server fails in a system with 4 clusters of 5
servers, where object replicas are distributed to adjacent
servers

Figure 6: The distribution of the replicas of objects stored on a failed server, where the server fails under
different system configurations. A total of 300,000 objects are stored in the system.

The weighting of new servers can therefore significantly improve the performance of the our algorithm.
This is consistent with the predictions made in Section 5.1.

5.3 Failure Resilience

When a server fails, clients must read and write to other servers for each of the objects stored on the failed
server. If the replicas for a particular server are all stored on the same set of servers, i. e. if all of the replicas
for objects on server 3 are stored on server 4 and server 5, then a server failure will cause the read load on
the “mirror servers” to increase by a factor of R

R−1 , where R is the degree of object replication. This value
assumes that the replicated clients are not using quorums for reads, in which case, all mirrors participate in
reads, so that there will be no increase in load. This is a false benefit however, since it is achieved by using
resources inefficiently during normal operation; R

R−1 can be a severe burden when R is 2–3, as likely will be
used in large-scale systems. In order to minimize the load on servers during a failure, our algorithm places
replicas of objects pseudo-randomly, so that when a server fails, the load on the failed server is absorbed by
every other server in the system.

Figure 6(a) shows a histogram of the distribution of objects which replicate objects on server 6. In this
case the load is very uniform, as it is in Figure 6(a), where the weight of each server cluster increases. In
Figure 6(c), we see several spikes, and several servers which have no replicas of objects on server 6. This
occurs because the cluster with which server 6 was added is of size 12, which is a composite number (
3×22 = 12 ). Depending on the degree of replication and the number of distinct prime factors of the size of
the cluster, if the size of a cluster is composite, some “empty spots” may occur in the cluster.

Even in when the number is a composite number, the objects are distributed relatively uniformly over
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most of the servers. Clearly such a distribution is far superior to a simplistic sequential distribution as
illustrated in Figure 6(d), since a few servers in the system (R−1 where R is the degree of replication, to be
exact) will take on any of the load from the failed server.

Our algorithm distributes load from failed servers very close to uniformly over all of the working servers
in the system.

6 Operational Issues

Our algorithm easily supports two desirable features for large-scale storage systems: online reconfiguration
for load balancing, and variable degrees of replication for different objects.

6.1 Online Reconfiguration

Our algorithm easily allows load balancing to be done online while the system is still servicing object
requests. The basic mechanism is to identify all of the “sets” that will move from an existing disk to a new
one; this can be done by iterating over all possible values of x to identify those sets that will move. Note that
our balancing algorithm will never move any objects from one existing disk to another existing disk; objects
are only moved to new disks. This identification pass is very quick, particularly when compared to the time
required to actually copy objects from one disk to another. During the process of adding disks, there are two
basic reasons why the client might not locate the object at the correct server.

First, server clusters may have been reconfigured, but the client may not have updated its algorithm
configuration and server map. In that case, the client can receive an updated configuration from the server
from which it requested the object in question, and then re-run our algorithm using the new configuration.

Second, the client may have the most recent configuration, but the desired object has not yet been moved
to the correct server. In that case, if the client thought that the object replica should be located in cluster j,
but did not find it, it can simply continue searching as if cluster j had not been added yet. Once it finds the
object, it can write the object in the correct location and delete it from the old one.

Different semantics for object locking and configuration locking will be necessary depending on other
parameters in the system, such as the commit protocol used, but our algorithm is equally suited for online
or batch reorganization.

6.2 Adjustable Replication

Our algorithm allows the degree of replication of an object, or all of the objects to vary over time with
the following constraint—when the system is initially configured, the administrator must set the maximum
degree of replication. This value can be no more than the size of the initial cluster (since we must have a
unique location in which to place all replicas). The client can then decide on a per object basis how many
replicas to place. If it places fewer than the maximum number possible, the spots for the remaining replicas
can be used if a higher degree of replication is desired at a later time. Practically speaking, a client might
use per-file metadata to determine the degree of replication of the different objects which compose a file in
an OBSD.

7 Conclusions

The algorithm we have proposed exhibits excellent performance and distributes data in a highly reliable
way. It also provides for optimal utilization of storage, and allows for heterogeneous clusters of servers. In
addition, by using replica identifiers to indicate the location of different stripes of an object, we can also
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use our algorithm to place stripes for Reed Solomon coding or other similar striping and data protection
schemes. Nonetheless, there are a few improvements we are currently investigating.

We are studying a more efficient parameterizable random number generation or hashing function, which
will make the worst case performance of the algorithm O(n). In addition, we are studying a modification to
the algorithm which will allow for cluster removal. In exchange for this capability, the algorithm will need
to look up all R replicas at once. This should not significantly effect performance if locations are cached
after they are calculated.

We are also considering the exact protocols for the distribution of new cluster configuration information.
These protocols will not require any global locks on clients, and in some cases where optimistic locking
semantics are acceptable, will not require any locks at all.

We are considering different read/write semantics for different types of storage systems, and are inte-
grating this algorithm into a massively scalable cluster file system.

Finally, we are considering a fast-recovery technique which automatically creates an extra replica of an
objects effected by a failure in order to significantly increase the mean time to failure for a given degree of
replication.
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