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Abstract

I/O traces are crucial for understanding the performance ofnew storage architectures. Unfortunately,
traces are extremely bursty and difficult to characterize. They are large, difficult to obtain, and unwieldy.
In this paper, we examine a method of trace synthesis based oncluster analysis of the time-varying
characteristics of the trace. Representative trace segments are selected, and a synthesized trace is recon-
structed from the segments. We show that we can achieve a 5–10% demerit factor for I/O response times
with a reduction of data volume of 75–90%.

1 Introduction

Storage architects rely upon representative I/O workloadsto improve systems performance. Unfortunately,
actual I/O traces are extremely large, difficult to obtain and work with, and cannot be parameterized. Bench-
marks are more tractable, but are often less realistic than actual workloads. There is therefore strong moti-
vation to develop techniques to generate synthetic traces.

We have found that self-similarity at large time scales doesnot significantly affect disk behavior with
respect to disk response times or queue lengths [10]. With this in mind, our approach to trace synthesis is to
create a database of representative trace segments, using cluster analysis, from which synthetic workloads
may be created. We measure the similarity of the reconstructed trace by observing that the distributions of
queue lengths and response times resemble those created by the original workload.

The remainder of this paper is organized as follows. We describe related work inx2. We show that
long-range dependence has little effect upon disk responsetimes inx3. In x4 we describe our approach to
synthetic trace sampling using cluster analysis. We evaluate our method inx5 and conclude with directions
for future work inx6.

2 Related Work

Ganger described the difficulty of generating synthetic I/Oworkloads, showing that obvious simplifying
assumptions to reproduce spatial and temporal access patterns have large error margins [6]. Because of
these important correlations, we consider reduction of trace data rather than complete synthesis.

Clustering techniques have been widely used in workload characterization of batch and interactive sys-
tems, whose workload components are described by CPU time, number of I/O accesses, amount of memory
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Figure 1: Shuffling traces removes long-range dependence.

used, and so on. Using these techniques, Agrawalaet al [1] constructed a workload model for a multi-
programmed computer system and Wight [21] modeled workloads from interactive systems. Serazzi [17]
proposed a functional and resource-oriented procedure forworkload modeling on a batch system.

Calzarossa and Serazzi [3] analyzed the fluctuations in the arrival patterns of the workload components
using numerical fitting and clustering techniques and constructed a parametric model. Wareet al [20] pro-
posed to use cluster analysis to separate the file access arrival process into bursts of activity and characterize
it in terms of the time between bursts of activity on a file on a large, replicated file system. Cluster analysis
has been used to reduce the number of processor trace data streams [14]. This approach is similar to ours,
except that we are clustering offline and the goal is to identify representative time intervals instead of entire
streams.

Grossglauser [7] demonstrated that it was not useful to model long-range dependence in network traffic
at timescales disproportionate to the performance metricsunder observation. We have shown that we can
recreate disk response times and queuing behavior to reasonable accuracy by preserving long-range depen-
dence only up to short timescales (seconds) [9, 10]. This result motivates clustering using time intervals.

3 Relevance of Long-Range Dependence in Disk Traffic

I/O workloads have a structure that researchers have proposed might help to model them calledself-similarity.
Informally, in this context, to say a time series is self-similar implies that it looks qualitatively the same
at different time scales. Self-similar traffic also has the property of long-range dependence: the data set
exhibits a slow decay in its autocorrelation function. Thiscorrelation structure is significant because self-
similar traffic may be more bursty than that generated by other sources.

Our hypothesis is that previous events cannot affect disk behavior beyond a certain threshold, determined
by system parameters, so modeling long range dependence at larger timescales is unnecessary. To test this
hypothesis, we study how disk response time and queue lengths change as we gradually destroy long-
range dependence in the traces by shuffling increasingly smaller intervals. This approach is identical to the
experimental approach taken by [7], and is illustrated in Figure 1. Figure 1a shows a trace that has been
divided into six intervals. These intervals are then randomly rearranged to create a new trace, as shown in
Figure 1b. Within each interval, the temporal relationships are preserved, but the new trace has no long-range
dependence beyond the width of the interval.
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Figure 2: Effect of shuffling on (a) Hurst coefficient and (b) relative error.

We compare Hurst coefficients for traces shuffled at increasingly smaller intervals. The Hurst coefficient
is a parameter used to describe the degree of self-similarity [2]. A value ofH between12 and 1 indicates
the degree of self-similarity (higher is more self-similar). We estimateH using the R/S statistic (rescaled
adjusted range) [18].

Our selected workloads, described in more detail in [15], are the cello news disk traces (HP2204A) and
the snake usr2 disk traces (HP97560) gathered between 05/30/92 and 06/06/92. The average I/O loads on
the disks on these systems are small: approximately three requests for cello news disk and one request for
snake usr2 disk per second. However, the maximum queue lengths can be very large: over 1000 requests on
cello news disk and over 60 requests on snake usr2 disk. In general snake traces are more bursty than cello,
and the logical sequentiality (percentage of requests thatare at adjacent disk addresses or addresses spaced
by the file system interleave factor) of cello and snake is 2% and 29%, respectively.

We examine the numerical metric of disk performance used in [16] to validate disk models: the root
mean squared (RMS) horizontal distance between the cumulative distribution functions (CDF) of I/O re-
sponse times. We vary the shuffle interval length from 10 seconds to 0.1 seconds and use both the shuffled
and unshuffled traces to drive the Pantheon [22] disk simulator.

Figures 2a and 2b show the Hurst coefficient using the R/S method, and the relative error for the shuffled
traces, respectively. The Hurst coefficient is a measure of long-range dependence; as intuition dictates, the
smaller the time interval, the fewer long-range correlations are preserved and the lower the Hurst coefficient.
For one day,H = 0:79 for snake andH = 0:89 for cello.

Despite the lack of long-range dependence, particularly indicated by the fluctuation of the Hurst coeffi-
cient at small intervals (< 1 second), the relative error for the shuffled traces is relatively small; at 1 second
it is approximately 5% for cello and 9% for snake. The distributions of queue lengths of traces shuffled at
intervals> 1 second are similar to those of the real traces [9], and are not presented separately.

4 Cluster-Based I/O Trace Synthesis

Fromx3 we know that previous events cannot affect disk behavior beyond a certain threshold; this allows us
to consider short trace intervals to be independent. We believe that an I/O trace from one time interval will
be similar to those from other time intervals, and that such similar trace intervals form equivalence classes
(clusters). Storage system behavior should be statistically similar when servicing I/O request trace intervals
from the same equivalence class.
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interval 1              interval 2              interval 3              interval 4              interval 5          (a) The real trace contains five
              intervals.

(b) Interval 1 and 4 form a cluster 
     and interval 4 is the representative; 
     interval 2, 3 and 5 form another
     cluster and interval 2 is the 
     representative.

(c) A synthetic trace is constructed by
     replacing interval 1 with interval 4
     and replacing interval 3 and 5 with
     interval 2.

Figure 3: Replacing trace intervals with the representative interval in the same cluster to generate a synthetic
trace.

This leads us to a novel method of trace synthesis: after identifying the equivalence classes among
original trace intervals, we replace the intervals in the same class with the class representative to generate
synthetic traces. Figure 3 is an overview of this process. Figure 3a shows a trace with five intervals (1-
5). Intervals 1 and 4 form one cluster, with representative 4, and intervals 2, 3 and 5 form another cluster,
with representative 2 (Figure 3b). We generate a synthetic trace by replacing interval 1 with interval 4 and
intervals 3 and 5 with interval 2, as shown in Figure 3c.

4.1 Cluster Analysis

Cluster analysis is a multivariate analysis technique to classify a given set of objects (in our context an object
is a trace interval). Assume each object is represented by a vector of observationsX0 = (X1;X2; : : : ;Xm)
onm variables andX0i = (Xi1 ;Xi2 ; : : : ;Xim) is the measurements on theith object. The goal of cluster
analysis is to partition a given set of objects into clusters. This partition should have the following properties:
(1) homogeneity within the clusters (i.e., objects that belong to the same cluster should be as similar as
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Figure 4: A dendrogram illustrating the fusion made at each stage of the hierarchical clustering analysis on
the objects a, b, c, d and e. The height represents the distance between two clusters. By cutting the hierarchy,
cluster (a, b, c) and cluster (d, e) are obtained.

possible) and (2) heterogeneity between clusters (i.e., objects that belong to different cluster should be
as different as possible) [8]. The concept of “similarity” has to be specified according to the data, the
representation of the objects.

It is of central importance in cluster analysis to measure the similarity or distane between the re-
spective objects and clusters. We use the familiar Euclidean distance between two objects as the inter-object
distance metric and the group average distance between two clusters (the average distance between all pairs
of objects, one object from one cluster and one from the other) as the inter-cluster distance metric.

A vast variety of clustering techniques have been developedover the last three decades [5]. There are
two popular kinds of clustering techniques: hierarchical and partitional. We focus on theagglomerative
hierarchical clustering techniquebecause it is one of the most widely-used clustering techniques and can
provide a starting point for more complex clustering procedures [5].

The agglomerative hierarchical clustering technique proceeds in the following way: initially each object
is considered to be a cluster, then iteratively, two “closest” clusters are chosen according to a specified
measurement of distance and fused into a new cluster. The procedure repeats until all the objects belong
to a single cluster. A two-dimensionaltree diagramknown as adendrogramillustrates the fusion made at
each iteration of the analysis. Figure 4 shows the procedureof applying such techniques to a set containing
five objects (a – e). In hierarchical clustering, smaller clusters can be obtained by “cutting” a dendrogram.
Researchers must decide “where to cut the tree” to obtain good fitting number of clusters.

4.2 Choosing a Metric Set: Theoretical Approach

We reduce each trace interval to a set of metrics that describe a point in a multi-dimensional metric space.
The choice of metrics describing I/O traces is critical to our synthetic method. A badly chosen metric set
will misrepresent the importance of various trace characteristics, which can lead to large synthetic errors.

Burstiness in I/O traces has huge impact on disk performance. An intuitive statistic, the aggregation
ratio a, can describe local burstiness in I/O trace intervals: if wedivide a trace interval into smaller time
windows that may or may not contain requests, the aggregation ratio a of the interval is the ratio of the
number of requests in the interval to the number of non-emptywindows. The more bursty the trace, the
more requests arrive in a short time and the higher the ratio.The ratio changes with the window length:
we choose a window length so that each non-empty window corresponds approximately to a single burst of
queued requests.
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We also use a more complicated statistic, biasp, to describe the local burstiness. Wanget al [19]
proposed to use binomial multifractals to model bursty disktraffic. Intuitively, we consider I/O requests
along a timeline to be distributed according to the “80 – 20 rule”, where 80% of the requests occur within
20% of the time. The biasp determines the exact percentage, and can be estimated from the traces. Hong
and Madhyastha [10] showed that the biasp can model local temporal burstiness present in I/O traces quite
well.

Other potential metrics describing I/O traces are the number of requests (n), the volume of requests (v),
the number of read requests (nread) and the volume of read requests (vread). The number of write requests
and the volume of write requests are not considered explicitly because they can be calculated from other
metrics.

Spatial locality is also an important characteristic of I/Otraces. For simplicity, we decided not to model
the spatial locality in real trace intervals for purposes ofclustering. Therefore, our initial metric set is(p; a; n; v; nread; vread). Each trace interval can be represented by a vector of observations on that set.

4.2.1 Rescaling Metrics

We rescale the original metrics before cluster analysis because the metrics under study have different units
and scales, preventing direct comparison. Furthermore, the statistical techniques used in our experiments
do not have the property of scale invariance. Rescaling a metric has an influential effect on further data
analysis because it is equivalent to giving it greater or lesser importance than other metrics when using these
on statistical analysis. A common approach is to give a metric importance inversely proportional to the
measure of variability in this metric [5], which implies that the importance of a metric decreases when its
variability increases. Milligan and Cooper concluded thatrescaling methods based on the sample range of
each metric are the most effective [13].

In our research, we presume that the metricsp anda, which directly describe the local burstiness in I/O
traces, are more important than other metrics. Empirically, we choose the following rescaling method:X 0 = X=Range(X)= X=(Max(X) �Min(X)); (1)

whereX is a metric andMax(X) andMin(X) is its sample maximum and minimum, respectively.

4.2.2 Metric Set Reduction

The correlations between the number of requestsn and the volume of requestsv and between the number
of read requestsnread and the volume of read requestsvread is very high (> 0:95), which means that there
is strong linear relationship betweenn andv and betweennread andvread. We apply principal components
analysis (PCA) techniques on the rescaled data to further reduce the metric set. The basic idea of PCA
techniques is to describe the variation of a set of multivariate data in terms of a set of uncorrelated variables
called principal components, each of which is a linear combination of the original variables. The objective
of PCA is to reduce dimensionality to simplify later analysis.

A common and relativelyad hocprocedure to decide the number of components retained is thefollow-
ing: retain just enough components to explain a large percentage (e.g. 70–90%) of the total variation of
the original variables [4]. The method we use to select whichof the original metrics to retain is the B2
method [11, 12]. AssumeK original variables exist and we have decided to retain the first q components.
Thusq variables are to be retained and(K�p) variables associated with the last(K�p) components are to
be rejected in the following way: theK components are considered in a reverse order, starting withthe last
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CLUSTER-BASED-SYNTHETIC-TRACE-GENERATION

INPUT: fraction of representative trace intervalsf , a real traceR.
OUTPUT: a synthetic traceS.
ALGORITHM:

Step 1 : Collect metrics(p; a; n; nread), as defined inx4.2, for each non-empty trace interval when scanning
the real traceR.

Step 2 : Partition the intervals into two groups. The intervals withp = 0:5, fitting a uniform distribution,
form groupGu and those withp > 0:5, fitting binomial multifractals, form groupGb.

Step 3 : Rescale data(p; r; n; nread) to (p0 ; r0 ; n0 ; n0read) in Gu andGb, using Equation 1.

Step 4 : Cluster rescaled data inGb andGu into Kb andKu clusters, respectively, using the agglomera-
tive hierarchical clustering technique (Euclidean distance, group average distance). We can calculateKb andKu from the input parameterf and the number of I/O requests inGb andGu. One repre-
sentative interval is chosen from each cluster. The representative of the cluster containing all empty
intervals is simply a empty trace interval. The number of intervals in each cluster is the weight of the
representative.

Step 5 : Create a database of representative trace intervals. A synthetic traceS is constructed by reassem-
bling the representative trace intervals, which are randomly picked from the database according to
their weights. The timestamps of the requests in the representative interval are updated to make the
global time order correct without disturbing the local temporal relationships in the representative.

Figure 5: Cluster-based I/O synthetic trace generation.

component. A variablel is associated with the component under consideration ifl has the largest coefficient
in the component and has not already been associated with a previously considered component.

Our selected workloads are the cello news disk traces (HP2204A) gathered in 05/30/92 and 06/06/92
and the snake usr2 disk traces (HP97560) gathered in 05/30/92, 06/04/92 and 06/06/92. We apply the
PCA technique on these workloads and the results consistently suggest to retain the first 2 – 4 components
because they can explain most variation (> 90%) in the original metrics. We decide to retain the first four
components and reject the two metrics associated with the last two components (n or v andnread or vread).
Considering the high correlation betweenn andv and betweennread andvread, we decide to rejectv andvread and select the following metrics to establish the characteristic metric space:(p; a; n; nread).
4.3 Cluster-Based I/O Trace Synthesis Algorithm

We propose a new algorithm for generating synthetic traces based on a real trace. Figure 5 shows the
cluster-based I/O synthesis algorithm.

In Step 1, we choose the trace interval length to be 5.12 seconds and the window length to be 10 ms when
calculating the biasp and the aggregation ratioa because these values were found to limit trace synthesis
error in another synthesis method [10]. We calculate the bias p as follows: if the fraction of non-empty
windows is< 3%, we assume that the trace interval fits a uniform distribution and setp = 0:5; otherwise,
we assume that the trace interval fits binomial multifractals and calculatep from the trace [10].

In Step 2, we partition the non-empty trace intervals into groupsGu andGb. Intervals inGu are those
with p = 0:5 that fit a uniform distribution and intervals inGb are those withp > 0:5 that fit binomial
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multifractals. We partition the intervals before cluster analysis because bursty trace intervals (withp > 0:5)
and uniform trace intervals (withp = 0:5) have inherently different performance characteristics and should
be in different clusters. Splitting them early in the clustering procedure saves computation time and memory
during the final analysis.

In Step 3 and 4, we choose Equation 1 as the rescaling method, Euclidean distance as the measure of
inter-object distance, and group average distance as the measure of inter-cluster distance when we apply the
agglomerative hierarchical clustering techniques on the selected workloads.

As discussed inx4.1, smaller clusters can be obtained by “cutting” the single hierarchy constructed by
the hierarchical clustering. Choice of an appropriate number of clusters is crucial to the success of the
method: if it is too large, too many representative trace intervals are stored, reducing the trace compression.
If the number of clusters is too small, the error of synthetictraces is large. The number of clusters is the
same as the number of representative intervals, because each cluster has only one cluster representative. The
cluster representative is the trace interval whose metricshave the minimum Euclidean distance to the cluster
centroid, which is the average of all data in the cluster.

For generality, we select a certain percentage of intervals, rather than an absolute number, to be the
cluster representatives. Because we partition the trace intervals into groupsGb andGu, we choose a number
of representative intervals from each group proportional to the number of requests in the group. We know
that the fraction of representative intervals in a group is equal tof times the ratio of the average number of
requests in a interval in the group to the average number of requests in a interval in the whole trace. The
ratio for the bursty groupGb has a greater impact on the trace compression than the ratio for the uniform
groupGu, because on average, bursty trace intervals have more requests than uniform trace intervals (for
this workload). The ratio forGb is higher for bursty traces (i.e. the snake traces) than for less bursty traces
(i.e. the cello traces).

In Step 5, we create a database including the representatives of non-empty trace intervals and one empty
trace interval, which is the representative of empty trace intervals. We generate a synthetic trace by pick-
ing intervals randomly from the database according to the weights of the representatives. We can do this
because the long-range dependence within the trace does nothave a significant impact on performance, as
discussed inx3. In our experiments, we simply replace trace intervals from the original trace with their
cluster representative to construct synthetic traces. This retains more information than random selection,
however, the extra synthetic error will be small when using random selection because of the irrelevance of
the long-range dependence on disk performance. We retain the spatial locality within the representative and
update the timestamps of the requests in the representativeinterval to make the global time order correct
without disturbing the local temporal relationships in therepresentative.

4.3.1 Trace Compression

One of the advantages of cluster-based synthesis is I/O trace size compression. Rather than storing the
whole trace, we only store the requests in the representative trace intervals. We measure data reduction by
thecompression ratio, or the percentage of storage we save.

Formally, we define the compression ratiopr in Equation 2:pr = # of requests in the trace� # of requests in the representative intervals
# of requests in the trace= 1� PKi=1 niN ; (2)

whereN is the number of I/O requests in the trace,K is the number of representative trace intervals, andni
is the number of I/O requests in theith representative interval.
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Figure 6: Compression ratio at different fractions of representative trace intervals for cello and snake.

Figure 6 shows the empirical relationship between the compression ratiopr and the fraction of repre-
sentative intervalsf for different workloads. The compression ratiopr decreases almost linearly withf .
The more trace intervals we keep, the lower the compression ratio. However, the slopes of the curves ofpr
andf are different for different workloads. The compression ratio of snake is lower and decreases faster
than that of cello. In general, snake is more bursty than cello. As discussed inx4.3, a higher fraction of
bursty intervals inGb are chosen to be representative intervals in snake than in cello. Because on average, a
uniform trace interval has fewer requests than a bursty trace interval, we achieve a higher compression ratio
with the same fraction of representative intervals for cello than snake.

5 Simulation Results

In this section we evaluate our selection of metrics for the cluster-based trace synthesis method and analyze
the accuracy of the method. We use the Pantheon [22] simulator to compare the CDF of disk response times
for the original and synthetic traces. Our selected workloads are the cello news disk traces (HP2204A)
gathered in 05/30/92 and 06/06/92 and the snake usr2 disk traces (HP97560) gathered in 05/30/92, 06/04/92
and 06/06/92. Hong and Madhyastha [10] used the same data setexcept the snake 06/04/92 trace to generate
synthetic I/O workloads based on binomial multifractals.

5.1 Choosing a Metric Set: Empirical Approach

In x4.2 we discussed the problem of metric selection and identified the metric set(p; a; n; nread), which is
a subset of the initial metric set(p; a; n; v; nread; vread). We can verify this result empirically by comparing
the compression and synthesis capability of our method using different metric sets. Our metrics are the
compression ratio and the relative error of the CDF of disk response times for the original and synthetic
traces. For simplicity, we refer the method using a given metric setV as theV method.

We found empirically that the abbreviated metric set(p; a; n; nread) works as well as the initial metric
set(p; a; n; v; nread; vread) to compress the original traces and generate quality synthetic traces. Figures 7a
and 7b show that the compression ratios of the(p; a; n; v; nread; vread) and (p; a; n; nread) methods are
similar at different fractions of representative intervals for cello and snake traces. Figures 8a and 8b show
that the relative errors of the CDF of disk response times generated by the(p; a; n; v; nread; vread) and(p; a; n; nread) methods are quite close at different fractions of representative intervals for cello and snake
traces. Therefore, we need only consider the abbreviated metric set for cluster synthesis, which reduces the
time necessary for cluster analysis.
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Figure 7: Compression ratio at different fractions of representative trace intervals and metric sets for (a)
cello and (b) snake.
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Figure 8: Relative error at different fractions of representative trace intervals and metric sets for (a) cello
and (b) snake.
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Figure 9: Relative error at different fractions of representative trace intervals for (a) cello and (b) snake.
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Figure 10: Relative error at different compression ratios for (a) cello and (b) snake.

5.2 Experimental Results

In this section, we evaluate the synthesis accuracy of the(p; a; n; nread) method on cello traces (05/30/92
and 06/06/92) and snake traces (05/30/92, 06/04/92 and 06/06/92).

Figures 9a and 9b show the relative error of the CDF of disk response times of the(p; a; n; nread)method
at different fractions of representative trace intervalsf for cello and snake, respectively. For the cello traces
from 05/30/92 and 06/06/92 and the snake traces from 05/30/92 and 06/04/92, the relative error tends to
decrease with the increase in the fraction of representative intervals, which means that as expected, with
more representatives, the method can synthesize more accurate traces. The relative error is< 5% for cello
and< 10% for snake withf � 0:05.

The error does not always decrease with the increase of the fraction of representative trace intervalsf .
There is fluctuation of relative errors withf in both workloads. In particular, Figure 9b shows that thereis
a significant increase in the relative error atf = 0:1 in the snake 06/06/92 trace; the error decreases with
the increase off whenf > 0:1 but is still higher than the error at most of the smaller values of f . This is
because our method changes the spatial locality in the real trace by replacing real trace intervals with their
representatives.

Although the spatial locality within representative traceintervals is retained, the replacement of repre-
sentative intervals can change spatial locality in real traces in two ways. It can decrease spatial locality of
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a trace by replacing two consecutive trace intervals with spatial locality with two representatives without
spatial locality. It also can increase spatial locality of atrace by replacing two consecutive trace intervals
without spatial locality with two representatives with spatial locality, in particular, when the representatives
are identical. Both effects interleave and affect the performance.

These effects are related to the fraction of representativetrace intervalsf . Whenf is low and the
number of representative intervals is small, the chance of two consecutive real intervals sharing the same
representative is high, which can increase spatial locality; however, fewer representatives retain less of the
original access pattern. Whenf is high and the number of representative intervals is large,it is less likely that
two intervals will share the same representative; however,more representatives retain more of the original
access pattern.

Spatial locality among consecutive uniform intervals, which fit a uniform distribution and are non-bursty,
is more important than among bursty intervals, which fit binomial multifractals. This is because in uniform
intervals the response time is dominated by the mechanical movement of the disk and data transfer; queuing
has little impact on the performance in uniform intervals.

We revisit the high error of the snake 06/06/92 trace shown inFigure 9b in light of our understanding of
spatial locality. The snake 06/06/92 trace has fewer requests (< 13X) and more non-empty trace intervals (>
1.5X) than the other snake traces. More than 50% of requests in the snake 06/06/92 trace are in the uniform
intervals; on the contrary, the number for the other snake traces is 12–17%. The fraction of the bursty
intervals in the snake 06/06/92 trace is very small (8%). There are many more uniform trace intervals, in
terms of fraction and number, in the snake 06/06/92 trace than in the other snake traces. Consequently,
spatial locality has greater impact on the performance of the snake 06/06/92 trace than the other snake traces
and we observe significant performance degradation and highsynthetic errors in the snake 06/06/92 trace,
in particular, at the high values off .

Figures 10a and 10b show the relative error of the CDF of disk response times of the(p; a; n; nread)
method at different compression ratiospr for cello and snake, respectively. For the values off we consid-
ered, we can see from Figure 6 that the lowestpr is 76% for cello and 32% for snake. Thus, the data points
with low compression ratios (< 75% for cello and< 30% for snake) do not exist, as shown in Figures 10a
and 10b. For the cello traces from 05/30/92 and 06/06/92 and the snake traces from 05/30/92 and 06/04/92,
the relative error tends to decrease with the compression ratio. For cello, the relative error is< 5% with a
compression ratio> 90%; for snake, it is< 10% with a compression ratio> 75%.

The method is more successful for compressing original traces and generating synthetic traces for cello
than snake. The logical sequentiality of cello and snake is 2% and 29%, respectively. Therefore, the re-
placement of representative trace intervals has less impact on the spatial locality of cello traces than that of
snake traces. Cello news disk does not have cache so the caching effect introduced by our method is not as
significant as snake usr2 disk.

6 Conclusions and Future Work

We have demonstrated that we can create a synthetic trace that reproduces the response time distribution of
the original with a mean error of 5–10% and a compression ratio of 75–90% by using clustering to identify
representative trace segments. The advantage of this approach is the obvious reduction in I/O trace size to
reproduce certain performance metrics with high accuracy.The disadvantage is that long-range performance
metrics, such as caching behavior, are distorted.

This approach works better for the traces containing fewer uniform trace intervals (i.e. the cello traces)
because of the disturbance of spatial locality by replacement of representative trace intervals. This could be
alleviated by using variable trace interval length. When a uniform arrival pattern is detected in real traces,
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a larger interval length would be considered based on the access pattern. A variation of some disk cache
prefetching scheme would be helpful.

We do not employ the information of spatial locality in real I/O traces in our method. A statistic needs
exploiting to quantify spatial locality in the traces. Withmore information on spatial locality, our method
could generate more accurate synthetic traces.

Our method assumes that some trace intervals have similar temporal structures, which result in similar
performance characteristics. Such an assumption could be more suitable for the cello traces than the snake
traces because the Hurst coefficient, which describes the degree of self-similarity, is higher for cello than for
snake. The Hurst coefficient might be used to predict the applicability of our method.

Although the clustering methodology described is an offlinemethod, it should be possible to investigate
the feasibility of online methods to dynamically collect representative trace data, reducing tracing overhead.
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