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Abstract

I/O traces are crucial for understanding the performancesof storage architectures. Unfortunately,
traces are extremely bursty and difficult to characterizeeyTare large, difficult to obtain, and unwieldy.
In this paper, we examine a method of trace synthesis basaiueter analysis of the time-varying
characteristics of the trace. Representative trace segraenselected, and a synthesized trace is recon-
structed from the segments. We show that we can achieve &&dé&Merit factor for 1/O response times
with a reduction of data volume of 75-90%.

1 Introduction

Storage architects rely upon representative I/O worklgadsiprove systems performance. Unfortunately,
actual I/O traces are extremely large, difficult to obtaid amrk with, and cannot be parameterized. Bench-
marks are more tractable, but are often less realistic tbirabworkloads. There is therefore strong moti-
vation to develop techniques to generate synthetic traces.

We have found that self-similarity at large time scales doassignificantly affect disk behavior with
respect to disk response times or queue lengths [10]. Wighirtmind, our approach to trace synthesis is to
create a database of representative trace segments, lsstgr @nalysis, from which synthetic workloads
may be created. We measure the similarity of the reconsttiuitace by observing that the distributions of
gueue lengths and response times resemble those createel tyginal workload.

The remainder of this paper is organized as follows. We desaelated work ing2. We show that
long-range dependence has little effect upon disk respmss in§3. In §4 we describe our approach to
synthetic trace sampling using cluster analysis. We etaloar method ir§5 and conclude with directions
for future work in§6.

2 Related Work

Ganger described the difficulty of generating synthetic Warkloads, showing that obvious simplifying
assumptions to reproduce spatial and temporal accessnzatiave large error margins [6]. Because of
these important correlations, we consider reduction aigtidata rather than complete synthesis.
Clustering techniques have been widely used in workloadacherization of batch and interactive sys-
tems, whose workload components are described by CPU tmeher of I/O accesses, amount of memory
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Figure 1: Shuffling traces removes long-range dependence.

used, and so on. Using these techniques, Agraeakl [1] constructed a workload model for a multi-
programmed computer system and Wight [21] modeled worlddemm interactive systems. Serazzi [17]
proposed a functional and resource-oriented procedureddtload modeling on a batch system.

Calzarossa and Serazzi [3] analyzed the fluctuations inrthelgpatterns of the workload components
using numerical fitting and clustering techniques and canttd a parametric model. Waet al [20] pro-
posed to use cluster analysis to separate the file accesa aracess into bursts of activity and characterize
it in terms of the time between bursts of activity on a file oagé, replicated file system. Cluster analysis
has been used to reduce the number of processor trace datmstf14]. This approach is similar to ours,
except that we are clustering offline and the goal is to iflenéipresentative time intervals instead of entire
streams.

Grossglauser [7] demonstrated that it was not useful to iodg-range dependence in network traffic
at timescales disproportionate to the performance matmncker observation. We have shown that we can
recreate disk response times and queuing behavior to raelaksoaccuracy by preserving long-range depen-
dence only up to short timescales (seconds) [9, 10]. Thidtrastivates clustering using time intervals.

3 Relevance of Long-Range Dependence in Disk Traffic

I/0 workloads have a structure that researchers have pedpuogyht help to model them callself-similarity.
Informally, in this context, to say a time series is selfiimimplies that it looks qualitatively the same
at different time scales. Self-similar traffic also has theperty oflong-range dependencehe data set
exhibits a slow decay in its autocorrelation function. Towsrelation structure is significant because self-
similar traffic may be more bursty than that generated byratbarces.

Our hypothesis is that previous events cannot affect diekvier beyond a certain threshold, determined
by system parameters, so modeling long range dependerageat timescales is unnecessary. To test this
hypothesis, we study how disk response time and queue Emfilinge as we gradually destroy long-
range dependence in the traces by shuffling increasinglYlemniraervals. This approach is identical to the
experimental approach taken by [7], and is illustrated iguFé 1. Figure la shows a trace that has been
divided into six intervals. These intervals are then ranlyamarranged to create a new trace, as shown in
Figure 1b. Within each interval, the temporal relationshape preserved, but the new trace has no long-range
dependence beyond the width of the interval.
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Figure 2: Effect of shuffling on (a) Hurst coefficient and (blative error.

We compare Hurst coefficients for traces shuffled at incngggismaller intervals. The Hurst coefficient
is a parameter used to describe the degree of self-simjil@jt A value of H between% and 1 indicates
the degree of self-similarity (higher is more self-simjlaiWe estimateH using the R/S statistic (rescaled
adjusted range) [18].

Our selected workloads, described in more detail in [15,the cello news disk traces (HP2204A) and
the shake usr2 disk traces (HP97560) gathered between/98/80d 06/06/92. The average 1/O loads on
the disks on these systems are small: approximately thopeesés for cello news disk and one request for
shake usr2 disk per second. However, the maximum queuéhiengh be very large: over 1000 requests on
cello news disk and over 60 requests on snake usr2 disk. krglesnake traces are more bursty than cello,
and the logical sequentiality (percentage of requestsaiteaait adjacent disk addresses or addresses spaced
by the file system interleave factor) of cello and snake is 2¢h20%, respectively.

We examine the numerical metric of disk performance used @) {o validate disk models: the root
mean squared (RMS) horizontal distance between the currildistribution functions (CDF) of 1/O re-
sponse times. We vary the shuffle interval length from 10sdsdo 0.1 seconds and use both the shuffled
and unshuffled traces to drive the Pantheon [22] disk sirulat

Figures 2a and 2b show the Hurst coefficient using the R/Sadetind the relative error for the shuffled
traces, respectively. The Hurst coefficient is a measurergj-range dependence; as intuition dictates, the
smaller the time interval, the fewer long-range correlaiare preserved and the lower the Hurst coefficient.
For one dayH = 0.79 for snake andd = 0.89 for cello.

Despite the lack of long-range dependence, particuladicated by the fluctuation of the Hurst coeffi-
cient at small intervals< 1 second), the relative error for the shuffled traces is ket small; at 1 second
it is approximately 5% for cello and 9% for snake. The disttibns of queue lengths of traces shuffled at
intervals> 1 second are similar to those of the real traces [9], and arpresented separately.

4 Cluster-Based I/O Trace Synthesis

From§3 we know that previous events cannot affect disk behavigoie a certain threshold; this allows us
to consider short trace intervals to be independent. We\xekhat an I/O trace from one time interval will

be similar to those from other time intervals, and that sustilar trace intervals form equivalence classes
(clusters). Storage system behavior should be statilstisahilar when servicing 1/0 request trace intervals
from the same equivalence class.
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Figure 3: Replacing trace intervals with the represergdtiterval in the same cluster to generate a synthetic
trace.

This leads us to a novel method of trace synthesis: aftertifgieng the equivalence classes among
original trace intervals, we replace the intervals in thenealass with the class representative to generate
synthetic traces. Figure 3 is an overview of this procesgufé 3a shows a trace with five intervals (1-
5). Intervals 1 and 4 form one cluster, with representativantl intervals 2, 3 and 5 form another cluster,
with representative 2 (Figure 3b). We generate a syntheteetby replacing interval 1 with interval 4 and
intervals 3 and 5 with interval 2, as shown in Figure 3c.

4.1 Cluster Analysis

Cluster analysis is a multivariate analysis techniquedssify a given set of objects (in our context an object
is a trace interval). Assume each object is represented leg@wof observationX' = (X, Xs,..., X,,)
onm variables andX; = (X;,, X,,,..., X;,,) is the measurements on tité object. The goal of cluster
analysis is to partition a given set of objects into clust&tss partition should have the following properties:
(1) homogeneity within the clusters (i.e., objects thaibhglto the same cluster should be as similar as
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Figure 4. A dendrogram illustrating the fusion made at edabesof the hierarchical clustering analysis on
the objects a, b, ¢, d and e. The height represents the distataveen two clusters. By cutting the hierarchy,
cluster (a, b, ¢) and cluster (d, e) are obtained.

possible) and (2) heterogeneity between clusters (i.gecththat belong to different cluster should be
as different as possible) [8]. The concept of “similaritydshto be specified according to the data, the
representation of the objects.

It is of central importance in cluster analysis to measueestnmilarity or distance between the re-
spective objects and clusters. We use the familiar Euatidiistance between two objects as the inter-object
distance metric and the group average distance betweenusters (the average distance between all pairs
of objects, one object from one cluster and one from the dtmethe inter-cluster distance metric.

A vast variety of clustering technigues have been develaped the last three decades [5]. There are
two popular kinds of clustering techniques: hierarchicadl gartitional. We focus on thagglomerative
hierarchical clustering techniqubecause it is one of the most widely-used clustering teclasicand can
provide a starting point for more complex clustering praged [5].

The agglomerative hierarchical clustering technique @eais in the following way: initially each object
is considered to be a cluster, then iteratively, two “clésekisters are chosen according to a specified
measurement of distance and fused into a new cluster. Thoeguoe repeats until all the objects belong
to a single cluster. A two-dimensionaike diagramknown as adendrogramillustrates the fusion made at
each iteration of the analysis. Figure 4 shows the proceolfuapplying such techniques to a set containing
five objects (a — e). In hierarchical clustering, smallestdus can be obtained by “cutting” a dendrogram.
Researchers must decide “where to cut the tree” to obtaid §timg number of clusters.

4.2 Choosing a Metric Set: Theoretical Approach

We reduce each trace interval to a set of metrics that deserioint in a multi-dimensional metric space.
The choice of metrics describing 1/O traces is critical to synthetic method. A badly chosen metric set
will misrepresent the importance of various trace charéttes, which can lead to large synthetic errors.

Burstiness in 1/O traces has huge impact on disk performadgeintuitive statistic, the aggregation
ratio a, can describe local burstiness in I/O trace intervals: ifdikede a trace interval into smaller time
windows that may or may not contain requests, the aggrega#itio « of the interval is the ratio of the
number of requests in the interval to the number of non-emphdows. The more bursty the trace, the
more requests arrive in a short time and the higher the rdtle ratio changes with the window length:
we choose a window length so that each non-empty window sjporals approximately to a single burst of
gueued requests.



We also use a more complicated statistic, hiaso describe the local burstiness. Waeigal [19]
proposed to use binomial multifractals to model bursty disiffic. Intuitively, we consider 1/O requests
along a timeline to be distributed according to the “80 — 28 uvhere 80% of the requests occur within
20% of the time. The biag determines the exact percentage, and can be estimatedHeotrates. Hong
and Madhyastha [10] showed that the hiasan model local temporal burstiness present in 1/O tracés qu
well.

Other potential metrics describing 1/O traces are the nurabeequests+), the volume of request®),
the number of read requests,.(,4) and the volume of read requests ). The number of write requests
and the volume of write requests are not considered exylibécause they can be calculated from other
metrics.

Spatial locality is also an important characteristic of tf@ces. For simplicity, we decided not to model
the spatial locality in real trace intervals for purposeschistering. Therefore, our initial metric set is
(p,a,m, v, nread, Vreaqd)- EACh trace interval can be represented by a vector of céseng on that set.

4.2.1 Rescaling Metrics

We rescale the original metrics before cluster analysisibse the metrics under study have different units
and scales, preventing direct comparison. Furthermoresttistical techniques used in our experiments
do not have the property of scale invariance. Rescaling giartets an influential effect on further data
analysis because it is equivalent to giving it greater adegmportance than other metrics when using these
on statistical analysis. A common approach is to give a métnportance inversely proportional to the
measure of variability in this metric [5], which implies thie importance of a metric decreases when its
variability increases. Milligan and Cooper concluded ttestcaling methods based on the sample range of
each metric are the most effective [13].

In our research, we presume that the metpiegda, which directly describe the local burstiness in I/O
traces, are more important than other metrics. Empiricatlychoose the following rescaling method:

!

X = X/Range(X)
= X/(Mazx(X) - Min(X)), 1)

where X is a metric andV/ az(X) and Min(X) is its sample maximum and minimum, respectively.

4.2.2 Metric Set Reduction

The correlations between the number of requastsd the volume of requestsand between the number
of read requests,..,4 and the volume of read requests, is very high ¢ 0.95), which means that there
is strong linear relationship betweerandv and betweem,..,q andv,..q. We apply principal components
analysis (PCA) techniques on the rescaled data to furtlerceethe metric set. The basic idea of PCA
techniques is to describe the variation of a set of multatardata in terms of a set of uncorrelated variables
called principal components, each of which is a linear coration of the original variables. The objective
of PCA is to reduce dimensionality to simplify later anatysi

A common and relativelyd hocprocedure to decide the number of components retained isfioev-
ing: retain just enough components to explain a large p#agen(e.g. 70-90%) of the total variation of
the original variables [4]. The method we use to select whitkhe original metrics to retain is the B2
method [11, 12]. Assum& original variables exist and we have decided to retain tls¢ficomponents.
Thusgq variables are to be retained apll — p) variables associated with the I¢$f — p) components are to
be rejected in the following way: thE components are considered in a reverse order, startingtéthast



CLUSTER-BASED-SYNTHETIC-TRACE-GENERATION

INPUT: fraction of representative trace intervdlsa real tracek.
OUTPUT: a synthetic trace.

ALGORITHM:

Step 1 : Collect metricgp, a, n, n,.qq), @s defined i§4.2, for each non-empty trace interval when scanning
the real traceR.

Step 2 : Partition the intervals into two groups. The intervals with= 0.5, fitting a uniform distribution,
form groupG,, and those witlp > 0.5, fitting binomial multifractals, form grougrs.

Step 3 : Rescale dat@, , 1, 1,eq4) 10 (p 7,1, ... ,) in G, andGy, using Equation 1.

Step 4 : Cluster rescaled data i, and G, into K;, and K, clusters, respectively, using the agglomera-
tive hierarchical clustering technique (Euclidean disgrgroup average distance). We can calculate
K, and K, from the input parametef and the number of I/O requests @y, andG,. One repre-
sentative interval is chosen from each cluster. The reptaiee of the cluster containing all empty
intervals is simply a empty trace interval. The number ofimls in each cluster is the weight of the
representative.

Step 5 : Create a database of representative trace intervals. AayntraceS is constructed by reassem-
bling the representative trace intervals, which are rardgquicked from the database according to
their weights. The timestamps of the requests in the reptatee interval are updated to make the
global time order correct without disturbing the local tewrgd relationships in the representative.

Figure 5: Cluster-based I/O synthetic trace generation.

component. A variabléis associated with the component under consideratibhak the largest coefficient
in the component and has not already been associated widviapsly considered component.

Our selected workloads are the cello news disk traces (HPRPQathered in 05/30/92 and 06/06/92
and the snake usr2 disk traces (HP97560) gathered in 02/308J04/92 and 06/06/92. We apply the
PCA technigue on these workloads and the results condistrggest to retain the first 2 — 4 components
because they can explain most variation90%) in the original metrics. We decide to retain the firstrfou
components and reject the two metrics associated with ghévi@ componentsi(or v andn,;.qqq Of Vyead)-
Considering the high correlation betweerandv and betweem,, .4 andv,...q4, We decide to reject and
vreaqd @nd select the following metrics to establish the charetiermetric space(p, a, 7, 1,eqq)-

4.3 Cluster-Based I/O Trace Synthesis Algorithm

We propose a new algorithm for generating synthetic trageedb on a real trace. Figure 5 shows the
cluster-based 1/O synthesis algorithm.

In Step 1, we choose the trace interval length to be 5.12 siscamd the window length to be 10 ms when
calculating the biap and the aggregation ratio because these values were found to limit trace synthesis
error in another synthesis method [10]. We calculate the bias follows: if the fraction of non-empty
windows is< 3%, we assume that the trace interval fits a uniform distribuaod sep = 0.5; otherwise,
we assume that the trace interval fits binomial multifractdd calculate from the trace [10].

In Step 2, we partition the non-empty trace intervals intougisG,, andGy. Intervals inG,, are those
with p = 0.5 that fit a uniform distribution and intervals ¥, are those withp > 0.5 that fit binomial



multifractals. We partition the intervals before clustealysis because bursty trace intervals (witly 0.5)

and uniform trace intervals (with = 0.5) have inherently different performance characteristied should

be in different clusters. Splitting them early in the clustg procedure saves computation time and memory
during the final analysis.

In Step 3 and 4, we choose Equation 1 as the rescaling methotid&an distance as the measure of
inter-object distance, and group average distance as theureeof inter-cluster distance when we apply the
agglomerative hierarchical clustering techniques on #tected workloads.

As discussed 4.1, smaller clusters can be obtained by “cutting” the sirfgerarchy constructed by
the hierarchical clustering. Choice of an appropriate nendf clusters is crucial to the success of the
method: if it is too large, too many representative tracerirdls are stored, reducing the trace compression.
If the number of clusters is too small, the error of synthétices is large. The number of clusters is the
same as the number of representative intervals, becauseleater has only one cluster representative. The
cluster representative is the trace interval whose metaes the minimum Euclidean distance to the cluster
centroid, which is the average of all data in the cluster.

For generality, we select a certain percentage of intervather than an absolute number, to be the
cluster representatives. Because we partition the trdeevals into groupss;, andG,,, we choose a number
of representative intervals from each group proportionaht number of requests in the group. We know
that the fraction of representative intervals in a groupggat to f times the ratio of the average number of
requests in a interval in the group to the average numbercpfasts in a interval in the whole trace. The
ratio for the bursty grouds, has a greater impact on the trace compression than the cattbd uniform
group G, because on average, bursty trace intervals have morestsgihan uniform trace intervals (for
this workload). The ratio fot7, is higher for bursty traces (i.e. the snake traces) thanefgs bursty traces
(i.e. the cello traces).

In Step 5, we create a database including the represergativeon-empty trace intervals and one empty
trace interval, which is the representative of empty traxtervals. We generate a synthetic trace by pick-
ing intervals randomly from the database according to thigghte of the representatives. We can do this
because the long-range dependence within the trace doémvmia significant impact on performance, as
discussed ir§3. In our experiments, we simply replace trace intervalsnftbie original trace with their
cluster representative to construct synthetic tracess Tétains more information than random selection,
however, the extra synthetic error will be small when usiagdom selection because of the irrelevance of
the long-range dependence on disk performance. We retisptitial locality within the representative and
update the timestamps of the requests in the representatar@al to make the global time order correct
without disturbing the local temporal relationships in tepresentative.

4.3.1 Trace Compression

One of the advantages of cluster-based synthesis is I/@ si@e compression. Rather than storing the
whole trace, we only store the requests in the represeattittice intervals. We measure data reduction by
the compression ratipor the percentage of storage we save.

Formally, we define the compression ratj@- in Equation 2:

# of requests in the trace # of requests in the representative intervals
# of requests in the trace

cpr =

K
Zi:l Uz

- 1- ,
N

(2)

whereN is the number of I/O requests in the traééjs the number of representative trace intervals, @and
is the number of I/O requests in thi representative interval.
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Figure 6: Compression ratio at different fractions of reygrtative trace intervals for cello and snake.

Figure 6 shows the empirical relationship between the cesgion ratia:pr and the fraction of repre-
sentative intervalg for different workloads. The compression ratior decreases almost linearly with
The more trace intervals we keep, the lower the compressitim However, the slopes of the curves:pf
and f are different for different workloads. The compressioriaaif snake is lower and decreases faster
than that of cello. In general, snake is more bursty tharocells discussed i§4.3, a higher fraction of
bursty intervals inG, are chosen to be representative intervals in snake thardlin Because on average, a
uniform trace interval has fewer requests than a burstyetnaterval, we achieve a higher compression ratio
with the same fraction of representative intervals for@#ian snake.

5 Simulation Results

In this section we evaluate our selection of metrics for fnster-based trace synthesis method and analyze
the accuracy of the method. We use the Pantheon [22] simutatmmpare the CDF of disk response times
for the original and synthetic traces. Our selected worddoare the cello news disk traces (HP2204A)
gathered in 05/30/92 and 06/06/92 and the snake usr2 disst{&lP97560) gathered in 05/30/92, 06/04/92
and 06/06/92. Hong and Madhyastha [10] used the same datacegit the snake 06/04/92 trace to generate
synthetic 1/0 workloads based on binomial multifractals.

5.1 Choosing a Metric Set: Empirical Approach

In §4.2 we discussed the problem of metric selection and idedtifie metric setp, a, n, nyeqq), Which is

a subset of the initial metric s€b, a, 1, v, Nyeqq, Vread)- We can verify this result empirically by comparing
the compression and synthesis capability of our methodgudifierent metric sets. Our metrics are the
compression ratio and the relative error of the CDF of didpomse times for the original and synthetic
traces. For simplicity, we refer the method using a givenrimsetV as thel’ method.

We found empirically that the abbreviated metric geta, n, n,..q) Works as well as the initial metric
set(p, a,n, v, nread, Vread) t0 COMpress the original traces and generate quality siiottiaces. Figures 7a
and 7b show that the compression ratios of theu, n, v, nread, Vread) @nd (p, a, n, nreaq) Methods are
similar at different fractions of representative intesvébr cello and snake traces. Figures 8a and 8b show
that the relative errors of the CDF of disk response timesgead by thep, a, n, v, nreqd, Vreaqd) @and
(p,a,m,n,eqq) Methods are quite close at different fractions of repregemt intervals for cello and snake
traces. Therefore, we need only consider the abbreviatedcnset for cluster synthesis, which reduces the
time necessary for cluster analysis.
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Figure 7: Compression ratio at different fractions of reyaratative trace intervals and metric sets for (a)
cello and (b) snake.
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Figure 8: Relative error at different fractions of represgine trace intervals and metric sets for (a) cello
and (b) snake.
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Figure 9: Relative error at different fractions of represgine trace intervals for (a) cello and (b) snake.
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5.2 Experimental Results

In this section, we evaluate the synthesis accuracy ofghe n, n,..q) method on cello traces (05/30/92
and 06/06/92) and snake traces (05/30/92, 06/04/92 an6/9&)0

Figures 9a and 9b show the relative error of the CDF of disganse times of thé, a, n, n,...q4) method
at different fractions of representative trace intervaler cello and snake, respectively. For the cello traces
from 05/30/92 and 06/06/92 and the snake traces from 05Z3@@ 06/04/92, the relative error tends to
decrease with the increase in the fraction of represemtatitervals, which means that as expected, with
more representatives, the method can synthesize moreadedraces. The relative error4s 5% for cello
and< 10% for snake withf > 0.05.

The error does not always decrease with the increase ofdlédn of representative trace intervdls
There is fluctuation of relative errors within both workloads. In particular, Figure 9b shows that thisre
a significant increase in the relative errorfat= 0.1 in the snake 06/06/92 trace; the error decreases with
the increase of whenf > 0.1 but is still higher than the error at most of the smaller valoéf. This is
because our method changes the spatial locality in thenszg by replacing real trace intervals with their
representatives.

Although the spatial locality within representative trantervals is retained, the replacement of repre-
sentative intervals can change spatial locality in readsain two ways. It can decrease spatial locality of
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a trace by replacing two consecutive trace intervals wititigp locality with two representatives without
spatial locality. It also can increase spatial locality dface by replacing two consecutive trace intervals
without spatial locality with two representatives with 8phlocality, in particular, when the representatives
are identical. Both effects interleave and affect the pernce.

These effects are related to the fraction of representdtaee intervalsf. When f is low and the
number of representative intervals is small, the chancevofdonsecutive real intervals sharing the same
representative is high, which can increase spatial lggdtibwever, fewer representatives retain less of the
original access pattern. Whefis high and the number of representative intervals is latggeless likely that
two intervals will share the same representative; howawere representatives retain more of the original
access pattern.

Spatial locality among consecutive uniform intervals, ethiit a uniform distribution and are non-bursty,
is more important than among bursty intervals, which fit b multifractals. This is because in uniform
intervals the response time is dominated by the mechanioaément of the disk and data transfer; queuing
has little impact on the performance in uniform intervals.

We revisit the high error of the snake 06/06/92 trace showkFignire 9b in light of our understanding of
spatial locality. The snake 06/06/92 trace has fewer retques%X) and more non-empty trace intervals (
1.5X) than the other snake traces. More than 50% of requesite isnake 06/06/92 trace are in the uniform
intervals; on the contrary, the number for the other snaieess is 12-17%. The fraction of the bursty
intervals in the snake 06/06/92 trace is very small (8%). r&lae many more uniform trace intervals, in
terms of fraction and number, in the snake 06/06/92 trace thahe other snake traces. Consequently,
spatial locality has greater impact on the performance etiake 06/06/92 trace than the other snake traces
and we observe significant performance degradation anddyigthetic errors in the snake 06/06/92 trace,
in particular, at the high values gt

Figures 10a and 10b show the relative error of the CDF of déslponse times of th@, a,n, n,eqq)
method at different compression ratigs- for cello and snake, respectively. For the valueg @fe consid-
ered, we can see from Figure 6 that the lowestis 76% for cello and 32% for snake. Thus, the data points
with low compression ratios<( 75% for cello and< 30% for snake) do not exist, as shown in Figures 10a
and 10b. For the cello traces from 05/30/92 and 06/06/92 lamdnake traces from 05/30/92 and 06/04/92,
the relative error tends to decrease with the compressiim fiéor cello, the relative error is 5% with a
compression ratic- 90%; for snake, it is< 10% with a compression ratio- 75%.

The method is more successful for compressing originakand generating synthetic traces for cello
than snake. The logical sequentiality of cello and snakéésahd 29%, respectively. Therefore, the re-
placement of representative trace intervals has less ingpethe spatial locality of cello traces than that of
snake traces. Cello news disk does not have cache so thegadffect introduced by our method is not as
significant as snake usr2 disk.

6 Conclusions and Future Work

We have demonstrated that we can create a synthetic traceefinaduces the response time distribution of
the original with a mean error of 5-10% and a compression &Htir5-90% by using clustering to identify
representative trace segments. The advantage of thisagipi® the obvious reduction in I/O trace size to
reproduce certain performance metrics with high accuribg disadvantage is that long-range performance
metrics, such as caching behavior, are distorted.

This approach works better for the traces containing fewdfiorm trace intervals (i.e. the cello traces)
because of the disturbance of spatial locality by replacemkrepresentative trace intervals. This could be
alleviated by using variable trace interval length. Whem#éanm arrival pattern is detected in real traces,
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a larger interval length would be considered based on thesacpattern. A variation of some disk cache
prefetching scheme would be helpful.

We do not employ the information of spatial locality in reéDItraces in our method. A statistic needs
exploiting to quantify spatial locality in the traces. Withore information on spatial locality, our method
could generate more accurate synthetic traces.

Our method assumes that some trace intervals have simitgrotel structures, which result in similar
performance characteristics. Such an assumption coulddoe suitable for the cello traces than the snake
traces because the Hurst coefficient, which describes tired®f self-similarity, is higher for cello than for
shake. The Hurst coefficient might be used to predict theiegdglity of our method.

Although the clustering methodology described is an offtirethod, it should be possible to investigate
the feasibility of online methods to dynamically collegbresentative trace data, reducing tracing overhead.
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