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Chapter 1

Introduction

With the advancements in processor technology in the laste2@s, CPU performance has
been doubling every 18 months in accordance with Moore's[B8). Disk speeds have not
kept pace with processor growth [51]. Another important patmg trend is the shift from
supercomputers to clusters. Clusters, built using offghelf components, are increasingly
used to provide large computational resources to solve opoblems. The setup of a
cluster is orders of magnitude lower than that of supercdaeipu The recent TOP500 list,
as of November 10, 2001, listed 8.6% of the fastest procgssiachines in the world to be
clusters [18]. An emerging technology with similar chaeaistics to clusters is the wide-area
distributed computing or grid technology.

Computational biology, or bioinformatics, is an extreméatyportant and growing
research area that can utilize clusters or grid technoldgye challenge faced by this field
is to understand the makeup of the human genome, revolzithgnour understanding of the

human developmental processes and our ability to treat mguose diseases.
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The typical input/output (I/O) access patterns of theseiegipbns are large dataset
reads, in the orders of MBs or GBs, and varying amounts ofesr{KBs to GBs). These
applications have different access patterns from othensific applications and require large
amounts of storage and processing power. As a specific eraogisider the Human Genome
project, the goal of which is to discover all the approxima®000 human genes (the human
genome) and sequence the 3 billion chemical base pairs makithe human genome [7]. The
input/output requirements of this project are staggenimigfy the genbank database doubling
every 14 months and is currently 67.6 GB (approximately) [9]

We examine the scalability of two embarrassingly paral@hputational biology
applications for sequence alignment, psLayout and WABAt thayed an important role in
the mapping of the human genome [25, 34]. These applicationsesponsible for over 50%
of the UCSC cluster use.

The characterization study of the two computational biglagplications on a low-
cost UCSC computational biology cluster shows that file tiocais a major factor affecting
performance of applications. To generalize such a corausiithout being specific to one
loosely coupled cluster architecture, we compared refoits a supercomputer and a different
cluster architecture. The three architectures providengeaf multiprocessor designs.

We present in this thesis the design of a library for locatimmsparent storage in a
tightly or loosely coupled clusters. This library is respilite for managing replicas to improve
performance. This library is flexible and can be extendecetaded in a grid architecture. As
a first pass, we implemented a user-level library for dynagsilection of the optimal file
location. Sometimes the best solution might be to replitaedataset onto the local disk and

2
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Figure 1.1: (a) Cost to store the growing genbank database (b) Cost lobger time.

use that copy.

1.1 Motivation

Intelligent replication seems reasonable given the tremtiscihnology and data vol-
ume. The cost of disk storage has been decreasing expdhiyemianarily by improvements
in areal density [11]. Figure 1.1a shows the growth of thebgak database [5] and the cost
to store it [6, 37] over the last 20 years. During this time, ize of the genbank database has
been approximately doubling every 14 months [9]. The cuh@ngng the cost to store the
database is jagged because the rate of growth of genbankamdté of decline of disk cost
are not proportional. There is a very significant differelméd¢he genbank size for the years
1982 and 2001, whereas there is relatively very small difiee between the cost to store gen-

bank in 1982 and 2001. The reason for marked lack of diffexdretween the costs to store



the database is the exponentially decreasing disk costsoasisn Figure 1.1b. The shape of
the curve depicting the cost to store the database is thergfiverned by the relative rates of
database growth and decreasing storage cost.

Current disk drive technology cannot continue this trenthaiit bound. As bits
become smaller, the probability that they will spontangotesverse polarity increases; this is
called the superparamagnetic effect. Although the pratgssity at which this effect will have
an impact is unknown, it is motivating a variety of researchatternative storage technolo-
gies. IBM predicts current growth will continue for the neguf years and then decline [27].
Nevertheless, the volume of bioinformatics data availéblesearchers has been growing ex-
ponentially. Scientists are using hundreds of data forrietsare rapidly changing with new
technology. In the next ten years, we will most likely see ttugagje cost of genomic data
increase, making data management and scalability a sguiobtem for this class of applica-
tions. A user level library to manage all the replicated espand to provide data reliability

with performance improvement addresses this problem.

1.2 Outline

The remainder of the thesis is organized as follows. In Ch@ptee describe related
work. We describe the applications characterized in Chicgtén Chapter 4 we describe the
different architectures and the experimental charaatdrm efforts that show performance
to be a factor of input file location. This motivates the dasignd implementation of an 1/O

library for automatic storage replication, Dynamic Star&eplicator and Selector (ASOARS),



described in Chapter 5. We evaluate the performance of dSAFChapter 6. Finally we

conclude with directions for future work in Chapter 7.



Chapter 2

Related Work

The 1/O bottleneck is not a new problem and many researchess ¢tzaracterized the 1/0
behavior of scientific applications. Because of decreadisk costs, replication can be used
effectively to improve performance. Much research has lwesre on distributed computing
architectures that use replication and adaptation teclesiq

The remainder of this chapter is described as follows§2drl we discuss several
I/O characterization efforts with an emphasis on I/O-intesggglications. 1r§2.2 we describe

different approaches to improve performance through captin and adaptation.

2.1 1/O Characterization

Many researchers have studied the 1/0 behavior of importahiperformance ap-
plications out of growing concern over the increasing gavben 1/0O and processor perfor-

mance. The CHARISMA project [41] has examined system-leyali/output accesses on the



iPSC/860 Concurrent File System (CFS) and the CM5 Scalalslke Brray to obtain some
generalizations of access patterns in production parafit/output workloads. They have
observed predominantly write accesses, small request, sind generally sequential requests.
The Pablo group did extensive performance characterizatigparallel and 1/O-intense appli-
cations. Some example application areas from these cbazatton efforts include modeling
of electron-molecule collisions, a 3-D numerical simwdatiof the Navier-Stokes equations,
an implementation of the Hartree-Fock self consistent fie&thod to calculate the electron
density around a molecule, and quantum chemical reactinardics [26, 48, 49]. Difficulties
obtaining high performance from general I/O applicatioriféce, led to the development of
MPI-10 [40].

These characterization efforts revealed 1/O to be a sigmificamponent of execu-
tion time, but they did not focus specifically on computagibbiology. A study of the NWS
gene sequencing algorithm [22] showed that I/O patternsddoeildescribed as a work queue,
where each process would compute on some portion of datiétier @ very short or extremely
long period of time, depending on the possibility of a mat¥hp et al [36] studied the effi-
ciency of parallel algorithms for homologous sequenceceiag and multiple sequence align-
ment, demonstrating the importance of load balancing. Bewapproach to solve a similar
gene sequencing problem, taken by Spetgl[50], is to use an Application Level Scheduler
(AppLeS). Load balancing is provided by static allocatiow alynamic reallocation of jobs
based on a benchmark and the CPU utilization. This gene seifugecharacterization work

focus on load balancing.



2.2 Replication and Adaptation

Many researchers have considered replication as a way tmimp/O performance
while providing reliability. River [31], a project from Bkeley, focuses on a data-flow pro-
gramming environment to provide maximum performance intafogeneous environment. A
simple RAID mirroring policy is adopted for fault tolerancgaanst disk failures. The River
project proposes a model which dynamically modifies the ahoif the mirror copy and the
percentage of information accessed from each copy. Thefldatamodel between produc-
ers and consumers also provides dynamic load balancingdwating the flow of records
(termed as messages) in the environment. For example, fisuower is getting 1/0 from two
producers and one is slower than the other, this model watlchgre out of the fast producer,
thereby not taxing the slower producer and at the same tiorease the number of records to
obtain from the fast producer.

ABACUS provides a programming model and a run-time systeipattition func-
tionality among producers and consumers for effectivazatilon of cluster resources [21].
When a client requests data, instead of going through a-atmiteforward node like a server,
it accesses a Network Attached Secure Disk (NASD) deviaeeasing the bandwidth of data
transfer. The programming model supports coding each ifumality as an object. Each ob-
ject is functionally independent, with its own checkpointlaestoration algorithm if failure
or migration occurs. The data-intensive applications aoggammed using the integration of
various objects. The run-time system monitors the resoutitigation and this information

is fed into a cost-benefit model that determines where fanatities should be placed. This



design corrects itself even when at first the functionabtylaced at the wrong place. Hence
functionality is moved back and forth to provide load balagdor effective cluster resource
utilization.

The need for a large pool of computational resources hasexptire interests in data
grid technology. The goal of The Globus project from Argomtegtional Laboratory (ANL)
is to facilitate access to mass storage and computatiosalirees like supercomputers, by
providing a base level of services [17]. Other areas dealiitigg petabyte-scale data resources
requiring data grids for potentially thousands of userdes ¢limate modeling problem. On
this large a scale, load balancing and performance becomgssigmificant issues. The Earth
System Grid prototype deals with this technology suppgttiigh-performance and data repli-
cation [20]. Services are very important in wide-area dsted systems and another research
project focusing on replication is the Distributed PalaB&rage System (DPSS) [38]. This
model provides higher data access throughput, using a ne&aveare DPSS master and repli-
cation of data. The client program requesting data comnaigécto the DPSS master, which
determines which replicated data copy is to be used, bas¢keocurrent network configu-
ration. In all the above projects, replication is done simitamirroring and no intelligent

heuristics are used.



Chapter 3

Applications

The computational biology department at UCSC is working @resl interesting and highly
innovative projects; however, the most visible is the magpf the human genome [25, 7].
The human genome mapping will help us to better understaachtiman body, biological
processes responsible for disease, and differences arpenigs.

Our characterization efforts focus on the application psiLe, a program that finds
alignments. This program represents the second and masictimsuming step of six [34] of
the human genome assembly process, and utilizes more tBarobthe CBSE cluster time.
This is an 1/O-intensive application. To get a broader partpe of the typical computational
biology applications at UCSC, we also choose a relativelyencompute-intensive alignment
application, WABA.

The rest of this chapter is organized as follows:§iB.1, we describe the alignment
process. We discuss the heuristics and the 1/0O access patfgosLayout irg3.2 and WABA
in §3.3.

10



TGCAACCAAGCAAAAT

CGACAAGCAAGCAGTT

Figure 3.1: Alignment process: the two horizontal boxes are the inpgusace and the vertical lines
show the alignment.

3.1 Alignment Overview

The basic carrier of genetic information is Deoxyriboniwlkecid (DNA), which can
be represented as a sequence of nucleotide bases: A-Adéniytocine, G-Guanine and T-
Thymine. Thus, a DNA molecule is stored as a string over ahaddpt of four characters
{A,T,G,C} (nucleotides). To form a draft of the human genome, indigldsequences gener-
ated from a variety of distributed sources need to be aligmétkeir positions on a chromosome
map and assembled.

Combinations of the four basic carriers and unknowns, smpred by blanks or
‘holes’, make up a genome sequence. The genome sequence egwed as a string of
characters and the alignment problem can be reduced tang stiatching problem as shown
in Figure 3.1.

This is not a trivial problem. Figure 3.2 illustrates somettod difficulties in this
process [33] using a nursery rhyme as an example. FiguresB@as an input, or sequence,
which contains repeating elements. Our goal is to alignitipsit with itself. Unfortunately,
this input comes in subsequence fragments, as shown ind=&yRb; many of these fragments
overlap and have repeated subsequences, complicatindighenant process, because the

11



(@ maryhadalittlelamblittlelamb

(b) mary
hadalittlelamb
littlelamblittlelamb
lelamb

(c) hadalittlelamb

littlelamblittlelamb
lelamb
lelamb
(d) mary

Figure 3.2 Alignment problems: (a) An input containing repeating eletsé¢o be aligned with itself
(b) Deconstructing the input (c) Assembling overlappingpigewith placement uncertainty (d) Piece
does not fit in the assembly.

matches could occur at several places (Figure 3.2c) or tpgesee fragment may not align
(Figure 3.2d). The complexity increases when there are ks in the sequences.

Though complex, alignments provide more information atsutisequences than
when they are studied separately. Alignments can also lbtasdentify characteristics of an
unknown sequence based on its match with a known sequencthelSe reasons, alignments
are a very interesting and important problem and we haveerhtis examine two alignment
applications, psLayout and WABA.

Genome sequences are to be processed based on inhererttarfsies of the
genome. This is implemented using application-level lipraad calls. We study these calls
for our characterization efforts. The significant diffecerbetween the two applications are the
application-level I/O-intensity of these applications dhe heuristics used for the alignment
process. The applications, based on their heuristics,dsgéferent amounts of time doing
library /O, chiefly reads, interleaved with the alignmenbgess. With psLayout this consti-
tuted nearly 99% of total execution time and for WABA, 5%-7%&pproximately), depending

on the number of processors. Thus, read time measured ghplieadion level includes some

12
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Sequence @
database

Lo
@ hTolcatlceal - Bac

70 2

Figure 3.3 PsLayout execution flow (a) The split of one of the inputs fobs (sequences) (b) Compute
nodes in the cluster aligning sequence to the sequenceagatattitching together local sequences using
dynamic programming (c) Output local sequences.

alignment.

3.2 PslLayout

PsLayout is a program that finds alignments. It representsebend and most time
consuming step of six [34] of the human genome assembly gsoétsLayout aligns sequence
data that may have “holes” in it with the sequence databa$e. hEuristics in pslayout are
used to align mMRNA with a genome, or to align genomes, thougtiy

PsLayout is an embarrassingly parallel application. Thedaquences are given in
two input files. The first input, theequence datas a collection of FASTA files [28] (ASCII
files that represent sequences and their descriptions testiengs) containing up to 5 million
bases. The second input, thequence databases a single FASTA file. This can be either
genomic data or mRNA with no restriction on the number of theds.

13



The input sequence can be split imiopieces and be aligned with the sequence
database. Thegeindividual alignments can be combined to produce the samdtras the
non-partitioned alignment. Figure 3.3a illustrates thipeximental setup. PsLayout runs in
parallel as separate applications on different nodes (EiguBb). For each run, the output is
written to a separate output file as shown in 3.3c.

The heuristics of this application are described below. ifipait sequence is split
into overlapping pieces that are stored in an index. Thexradgo stores where this piece
appears in the complete sequence. The sequence dataljageritosnon-overlapping pieces.
Each segment of the sequence database is looked up in thetaide, and if present in the
index it is considered a hit. There is an alignment if the inascabove a certain threshold
value. If it is not present in the index, it is a miss and is igbr

Once all the hits are obtained, they must be recombined, hwisiaone using a
dynamic program. The hits are projected on the target filenathey are 500 bases apart.
Thus, the final alignment in this application is obtained bynbining the smaller alignments
that have been written to individual output files.

The I/O access pattern of psLayout, is the input sequencs mstatleaved with the
making of the index table, followed by the reads of the seqgeatatabase (interleaved with

the alignment process) and the writing of the output file.

14
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L
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Figure 3.4 WABA execution flow (a) The split of the smaller genome seaegeton jobs (b) Compute
nodes in the cluster aligning genomel subsequence to gen@p®utput local sequences matches.

3.3 WABA

Wobble Aware Bulk Aligner (WABA) is a genome-to-genome aligent applica-
tion. The scoring method of psLayout when used to align gentorgenome is not efficient.
WABA is extremely efficient in handling genome alignmentsl @ considered more tolerant
than BLAST, another popular genome-to-genome aligningdiegton [35].

The two genomes to be aligned are given in two input files. Tisédienome, typ-
ically the largest of the two, is split into pieces, as shown in Figure 3.4a. Eamnomel
subsequence piece is now aligned with gfemomezequence in Figure 3.4b. The output is
then written to the individual output files in the global st@s shown in Figure 3.4c. Like
psLayout, WABA, runs in parallel as separate applicatiomslifferent nodes.

WABA has three major passes, as shown in Figure 3.5. The fist,ghe fastest,

identifies possible target positions of alignment. The fitst(genomel) is read at once into

15



Genomel
(e.g.,mouse)
Genome2 @
(e.g.,human

(a) First pass
i

(b) Second pass
i

(©) Third pass

Output
fle |

Figure 3.5 WABA application overview. (a) The initial possible positis are marked (b) HMM is
used to get the new score (c) Stitches smaller alignmerddarge alignments.

a buffer, which is in turn read one line at a time. The first inpaguence is broken into
overlapping 8-base pieces, popularly known as 8-mer, t filre index table. Prior to the
index table creation, to conserve memory space, the segugemeodified by packing the file
to store 8-bases in a 16-bit word. The second file (genome8adsin one pass, using one-line
reads and aligned with genomel. The tricky part here is tiaigenome alignment results
in a lot of hits, and hence the hit list grows very fast. So thdi$t needs to be consistently
monitored to check for a long homogeneous hit ranging thmaugide range of the sequence.
The alignment has a large error margin and the output isewritd a file.

The second pass, which is much slower, has more tolerancdstonatthes. The
output from the first pass is now the input. The input to secpask is read, one line at a

time, and using a seven-state Hidden Markov Model (HMM),feedint score for the entire
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alignment is generated and written to a file.

The first two passes are done using small input window se@sewith a scoring
value for each alignment. In the third pass, smaller aligrtsmare merged and the output is
written to the output file. The output files from the first and@ed passes are temporary files.
Thus, there are three sequential passes and each passistetiaed by reads interleaved with

alignment heuristics followed by writes.
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Chapter 4

Characterization of Applications

Computational biology is a growing research field with diffiet I/O access patterns from
other scientific applications. In this chapter, we charamtethe 1/0 performance of the two
applications, psLayout and WABA, described in Chapter 3.unaharacterization efforts, we
focus on the factors affecting the performance of the appiha when it is scaled on a number
of processors.

The remainder of this chapter is organized as follows.§4til, we describe the
architectures we use. I§%.2, we describe our approach to application instrumeoriagind
analysis. 1n§4.3 we explain the different experiments and their resutis§4.4, we discuss

how a user-level library can improve the performance oféhasplications.
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4.1 Architectures

We characterized the applications on a range of architesturhe first characteriza-
tion study was done on the Center for Biomolecular ScienckeEamgineering (CBSE) cluster
at Santa Cruz. The next two architectures were at Lawrencziiore National Labs (LLNL)

and they include the supercomputer ASCI Blue-Pacific anéd\dluster.

4.1.1 CBSE Cluster

The computational biology group at UCSC uses a cluster vdthiQux nodes. Each
node of the 93-node cluster has an 850 MHz Pentium 11l procegsof256 MB RAM and a 20
GB IDE drive. The nodes are internetworked with 100 Base-Bftét in two subclusters. The
topology of this cluster is illustrated in Figure 4.1. Clgatin all the nodes are synchronized

using NTP.

4.1.1.1 File System

There is no parallel file system, and files are shared on twiedlstore NFS servers.
The computational biology group is currently replicatingtlhe genome data onto each local
disk. The central database from which the data is replictteke nodes is in the NFS server.
Their central database is updated from the genbank website every 2-3 months. They
perform these updates manually, which is an extremely tiovesuming task (typically 8-12

hours).
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Figure 4.1 93-node CBSE cluster topology.
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4.1.1.2 Scheduler

The computational biology group at UCSC uses Condor [3] ébr $cheduling in
the 93-node cluster. Condor checks for nodes with idle CPtlesyand assigns jobs from a
central pool to those nodes. Condor is designed for compuising collections of distributed
resources, as opposed to parallel computing on a homogerataster; however, many of
the computational biology applications lend themselvel twea work-queue programming
model. Because the computational biology applications@B0 have no inter-process com-
munication, Condor provides a fast and effective mechari@nspawning jobs to various

nodes in the cluster.

4.1.1.3 Cluster Usage

More than half of the cluster time is used to run embarra$gipgrallel alignment
applications. A typical application on the cluster is toltlibraries of Hidden Markov Model
(HMM) and support vector machines classification of G-grotupled receptor superfam-
ily [13]. Protein secondary structure predication using MMis another important application
run on the cluster. Some of the other specific applicationsoruthe cluster include serving
web queries for database search and sequence alignmeirigfsttbrt DNA sequences cor-
responding to sequence-tagged sites (STS) on the draftrgeassembly, and aligning STS

primers to the entire genome.
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4.1.2 ASCI Blue-Pacific

ASCI Blue-Pacific (Blue), manufactured by IBM, is a supercatep at LLNL with
336 nodes, each with four 332 MHz PowerPC604e processortheAtme of our usage, the
CPU resource pool consisted of 280 nodes. Each node has mummnof two SCSI disks
(each 4.5 GB) and 1.5 GB RAM. The server consists of 6 nodels with four 332 MHz
PowerPC604e processors, internally connected by the TBi&ter. The server has a disk
capacity of 19 TB, of which 3 TB is local disk space and the i®te GPFS file system. The
nodes are interconnected by a SP2 switch [2]. ASCI Bluefiedbieoretical peak performance
is 3868 GFlops and the maximum attained performance is 2I44@S. Blue ranks fifth in

the TOP500 listing of 2001 [18].

4.1.2.1 File System

The file system is General Parallel File System (GPFS) witbhtal ttapacity of
16 TB. GPFS is the product version of the Tiger Shark file spsté IBM. The global store
GPFS provides high performance to run parallel applicatioy striping files across multiple
disks achieving an aggregate bandwidth of 2.5 GB/s [4, 1BF& has all data including the
metadata on each node, preventing a metadata bottleneckndreasing throughput of the
actual data access, GPFS uses Virtual Storage Disk (VSixgrsahat do not physically hold
the data, allowing an application to still be able to use #eaver as if it physically had the
data. Hence data can be physically shared or can be virtstadiszed through the software sim-
ulations of the storage area network. By having more than\® server, data is virtually

replicated, providing robustness to the file system in spfiteode failure of the VSD servers.
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Parallel System Support Program (PSSP) for AlX is used toigeoa fault tolerance
mechanism [16]. PSSP is a collection of software tools, ierlBM SP cluster that provide
good scalability and performance efficiency. Also it presdsystem recovery and problem
management, making GPFS automatically recover in the @fenhode failure.

GPFS is made highly scalable mainly due to the distributettihy feature [47].
Distributed locking provides cache consistency betweeateao Read throughput scales pro-
portionally with the scaling of the nodes. The write thropghalso scales well due to the
token server mechanism. The token server issues tokensdegsors that request them. The
typical reason for a processor to request for a token is taigpd resource, typically a shared
file, and the update is possible only after it receives thenolkSince there is only one token,
updates are synchronized and consistency is maintaineédg bsuristics the communication
between the process and the token server is minimized. Inviat ef failure of the token
server, another node becomes the token server and by issuiegages to every node, it is
able to obtain the information about which processor culydmlds the token and can begin
servicing from that point on. Through the token server madm, the throughput for 1/0 is
high irrespective of whether many processors are accessamy files simultaneously or many

processors are accessing one file at the same time.

4.1.2.2 Scheduler

Thepsub command of the Distributed Production Control System (DpPi€8sed
to submit a DPCS job script. The parameters required by DB@$8ita batch job are provided

through the script. Typical parameters include the exdietdahe number of nodes, number
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of tasks per node, Estimated Time of Completion (ETC) forjthe standard error and output
files. When the requested resources are available, the DRICSags the queued job to the
Load Leveler queue [1]. Load Leveler is a distributed nekmeide job management facility to
dynamically schedule and manage jobs for IBM SPs [14]. Thedwder is meant for all kinds
of workloads, parallel or serial, and to efficiently use ak tresources available, irrespective
of the workload distribution and arrival rate. The schedslgects the processor(s) from the
available pool according to the requirements of the cliearisl submits and starts the execution

of the job on the chosen processor(s).

4.1.2.3 Supercomputer Usage

ASCI Blue is used to solve a variety of scientific calculasidny using parallel appli-
cations. Some of these applications are sPPM to solve casiple turbulence problems [19],
MPQC to search the existence of polymeric forms of nitrogket},[JEEP [30], IMPACT, a cou-
pled atmospheric modeling simulation [46] and Ardra to dateithe flux of fusion neutrons
that comes out of the Nova laser target chamber [23]. Allaragsplications are characterized

as writes mostly, with an ability to restart from datasetintérmediate calculations.

4.1.3 Vivid Cluster

Vivid cluster is a 16-node Linux cluster each with two 800 MPigntium IIl proces-
sors. Each node has a local SCSI disk with a capacity of 18 @Badh5 GB RAM memory.
The connection between nodes is through a Gigabit Etheftns. cluster is part of the visu-

alization group at LLNL. The server is a 400 MHz Alpha that@oected to all the nodes by
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Myrinet [8].

4.1.3.1 File System

There are two global file systems: a Network Appliance (NgARFS server and
a Parallel Virtual File System (PVFS). NetApp NFS server hdfler for performance im-
provements. NetApp filer storage appliances are the byjlthlocks for scalable network
storage [15]. NetApp filers are robust while providing hightalaccess throughput and easy
scalability. The Vivid cluster uses the F740 filer for the Nf#& server, which can scale up to
1 TB. High throughput, availability, and reliability arequided by the built-in RAID system.
A battery-backed NVRAM provides additional data proteati® he server is scalable in terms
of the number of users as well as the storage capacity of thedilver.

The PVFS project [45] started as the popularity and usageCatlB®sters increased.
The goal of the project was to create a parallel file systentlasters. PVFS offers a global
name space, striping data across multiple 1/0 nodes. Dataysigally striped across disks,
thereby decreasing the bottleneck of accessing from okeidireasing data access through-
put. By striping files over the local disks of the cluster redene can obtain better perfor-

mance than an NFS server [39, 24].

4.1.3.2 Scheduler

There is no explicit job scheduler in vivid cluster. Parbjibs are implemented

using MPI [10] on selected nodes. Users negotiate for nogesriailing each other.
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4.2 Application Instrumentation

The goal of our instrumentation was to study the I/O behavidhe two applica-
tions, similar to the characterization work done by Smahal [49]. The access pattern of
the applications consists of small bytes of reads, inteddavith computation, followed by
writes. Application reads are implemented using spediappse library. The application-
level read calls incorporate some of the alignment progassare not strictly I/O. The writes
were implemented as standard system calls with no spelsiahji

The performance and access pattern of these applicationbecatudied using the
Pablo [43] I/O instrumentation library, that supports daaptare and analysis. The goal of
the Pablo project was the development of a portable perfocmaata analysis environment
to be used by many massively parallel systems. The Pabluinsnhtation library is a set of
wrappers around standard I/O calls to collect trace dataalsrthe chosen applications had
a very large number of small (each typically a few bytes) éngfl I/0O operations, the trace
perturbation was very large. Hence we decided to trace thei@purpose library operations,
instead of tracing the individual character buffered I/A<al

PsLayout and WABA are run in parallel as separate applioatan different nodes,
creating several individual trace files, one for each parté the job. Tracing overhead was
negligible. Self-Defining Data Format (SDDF) tools of Palittwary can be used to combine

these files to achieve a global temporal ordering.
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Figure 4.4: The spectrum map of the architecture¥(n terms of file systenf) performance and
interconnect speed). Note that the terms loosely and tightly coupled indicatesgarallel processing
support of the architecture.

4.3 Experimental Setup

We characterized psLayout and WABA to understand theirgpernce of different
file systems. The goal of this experiment is to charactetisgr thehavior when scaled with
different file systems and input file locations. We examinedgrmance on three different
architectures and four different file systems for psLayowut ane architecture and file system
for WABA. The first architecture is a low-cost cluster (CBS#)h a reliable server (NFS) and
a slow interconnect (100 Base-T Ethernet). The secondtaothre, ASCI Blue-Pacific, is at
the opposite extreme to the first. This architecture haskhigalable file system (GPFS) and
a very fast interconnect (SP-2 switch). The third architestVivid, falls somewhere between
the two extreme cases, with two file systems and a fast imieaxt (Myrinet). The first file

system is robust (NetApp NFS), and the second has suppqafafiel applications (PVFS).
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The three architectures provide a range of multiprocesssigds. Imagine these
architectures (represented #y to be in a spectrum, as shown in Figure 4.4. Moving from left
to right, the performance of the file system for parallel &gilons (indicated b¥), increases.
The interconnect speed (labeledHyincreases as well.

The two experiments with psLayout on the three architestdiffer in the input file
sizes and the number of processors. In the smaller data setimemt, the sequence file is
a 4 MB chromosome sequence and the 411 MB sequence datalBs€ Ends (also called
bac ends) taken from Bacterial Artificial Chromosome (BABJth are read-only files. This
experiment was scaled to 10 processors. The large datageriraent uses a 26 MB sequence
file consisting of sequenced BAC data and the same 411 MB Begu@atabase file. This
data set was scaled to 50 processors. The WABA experimeneingmts a human to mouse
genome alignment. The read-only input file sizes are 48MB22IB. They represent a ship-
pet of human and mouse genome respectively. This experimaniscaled to 10 processors
on the CBSE cluster.

The pre-computation process for both applications inihe splitting of the input
sequence file or genomel (4 MB, 26 MB, 48 MB) to the right nuntdfgrortions correspond-
ing to the scaling of the number of processors. This is showrigure 3.3a or Figure 3.4a. For
aone-processor run, there is no pre-computation step.xaonge for the psLayout alignment
of a 4 MB file with the 411 MB file on four processors, the pre-ganation stage would in-
volve the split of the 4 MB file to four equal portions of appimately 1 MB each. Then each
1 MB file, or sequence, is aligned with the sequence databEse size of the split files are
approximate because the file format used in the human genmjeeipto represent the genes
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(FASTA) can only be split in certain safe places called “neask [28]. For a one-processor
run for the same data set, the sequence is not split or sgibime part.

We consider the performance impact of different file locagias we scale the appli-
cation to more processors. The read-only input files may tetéal at the global store, or one
on the global store and the other at local disk, or both onl ldis&, creating four combinations:

global/global, local/global, global/local and local/édc

4.3.1 PsLayout with Small Data Set

We implemented the alignment between chromosome sequémdB) and the bac
ends taken from Bacterial Artificial Chromosome (BAC), whis 411 MB using psLayout.
We characterized this alignment on all the three architestwith different input file locations
and scaled to 10 processors.

For each architecture, the storage resources include timlgstore and the local
disk. For the input file to be at the local disk, it must be cdpigere. Hence the tradeoff for
replication to local disk is the fast access time verses amsy. The output is written to the
global store.

PsLayout is embarrassingly parallel, with no communicabetween nodes except
through 1/0, and should ideally scale very well. However, lagwn by Figure 4.5a, it does
not. Figure 4.5a shows speedup of psLayout on the CBSE clusiteg the small input data
sets, both located on the global store. With 10 processwesspeedup is approximately 1.65.
This run took about 50 minutes to complete on a single CBSEgssDr.

In Figure 4.5b, we examine the breakdown of the execution timpsLayout. Here
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Figure 4.5 PsLayout run on CBSE cluster with 4 MB and 411 MB input files on NEB/ers (a)
Speedup (b) Aggregate time breakdown.

we compare the aggregate of individual execution times pars¢e nodes as we scale the
number of processors. The difference between aggregatrutixe and sequence database
(bac ends) read time is negligible, indicating that moshefalignment computation is inter-
leaved with the character by character read of the sequextabake. The write time represents
a very small fraction of the total execution time (less thaib@o).

As shown in Figure 4.6, some large application reads occuhénbeginning of
execution, followed by many small writes. This confirms oasckiption of I/O activity given
in §3.2. Some of the reads are exceptionally long; this varigmcaused by the lengths of the

sequences and the difficulty of alignment.

32



1le+08 ‘ 10000

wle+07 b Library reads "o © ] 2 1000 | Library reads oo ]
S1e+06 F 3 2 100L b
200000 ¢ 3 c 10t ]
210000 £ 1 s
8 1000t 1 2 o1l 3
E 100F E = B o000 00000 000 E
2 0 o ; 8 0.01}. 0 goooj;oo $ 000 o ]
[ haariatusstnstisitaited ‘ s ‘ ‘ 0.001 ‘ s ‘ . ‘ . ‘ ‘
0 05 1 15 2 25 3 35 4 45 ’ 0 05 1 15 2 25 3 35 4 45

1000 T 0.1 — T
0 writes '+ " writes © +
=3 $ 001} . 3
o 2 + Lt + o+ pa
5 + £ 0.001 F++ + e, ]
C 100 L o 3 c " o ;
2 L 20.0001 F et T L g
£ g
S 5 le-05 E
z a

10 I I I I I L le_06 I I I I I I
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Timestamp in secs Timestamp in secs
(a) (b)

Figure 4.6: Timeline of psLayout on CBSE cluster for 4 MB and 411 MB NFS filputs (a) Number
of bytes accessed through library reads and writes (b) Danrati these library reads and writes. Note
that the vertical axes are in logarithmic scale and the s-fodiall the figures is in seconds. There is a
library read operation at the top right corner of the grapipart from the legend.

4.3.1.1 Input File Location

The major suspect in the poor scalability of the CBSE clusiemvn in Figure 4.5a
is file location. Files are shared on the CBSE cluster using N#ut we know this per-
forms poorly under concurrent requests, evident from Fgur.6a and 4.6b. For convenience,
databases are kept at the global store; however, for pesfocenreasons, we could consider
replicating either one or both of the inputs at the local ndid&s. Now we have the choice of
using any one of the replicated copies.

We implement PsLayout using the same input files but consii@ezffect of replicat-
ing them from global to local store, to understand the impddile location on performance.

For any architecture, the combination of input files are glfobal, local/global, global/local
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Figure 4.7: Comparison of read times with increased levels of parahebf psLayout on CBSE cluster
for 4 MB and 411 MB file inputs and different file locations (ajckuding copy time overhead (b)
including copy time overhead.

and local/local. For the last three combinations, we incaopy time overhead for copying
one or more input file(s) to the local store. For the CBSE eludtles must be copied to all
nodes in the cluster because we do not know initially, to wivate Condor is going to assign
the job. We use an optimized binary tree copy program thaérstands the cluster topology.
The copy time is significant for the CBSE cluster because tag fire copied to all the nodes
in the cluster through a slow interconnect. For Blue and d/ivie need copy only to those
processors doing the alignment. In these cases, the copystinggnificant primarily because
of their faster interconnects and also because files areeddpionly the specific processors
doing the alignment process. For example, for the 411 MBdiy time to the 93 nodes on
the CBSE cluster is 6093 secs, in contrast to 62 secs on Mu#ter to copy it to one node,

and 82 seconds to copy it to 30 nodes, a difference of two safemagnitude.
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Figure 4.7a and 4.7b show aggregate application read timgstoayout excluding
and including copy overhead, respectively, for differefe focations on the CBSE cluster
when scaled to different numbers of processors. Dependintye precise parallelism of the
input file, there are actually slight variances in the totaktto perform the alignment; this is
why local/local and NFS/local for four processors takegtgly less time than for two proces-
sors and slightly more for ten. The library read calls thatudes reading and the alignment
process, account for more than 99% of the total executioe.tilecause we compute the
aggregate execution times, ideally the curves in Figura 4ril 4.7b should be close to hori-
zontal. Instead we see in Figure 4.7a that the local/NFS (4UBMB) and NFS/NFS curves
begin to increase significantly even at four processors. KEServer performs poorly on
concurrent operations. In this application, reads to the KleSrom all the nodes are con-
current. Hence NFS is as predicted a bottleneck. For a sreghee of scaling, the cost of
copying files can erode the performance improvement, butestmber of nodes increases,
NFS becomes a very significant bottleneck, and the benef@plitation becomes clear.

Vivid represents a compromise between the CBSE cluster dne; B has a fast
network and fast NFS server. Figures 4.8a and 4.8b show gafgrexecution and copy time
from Vivid.! The possible input file locations are PVFS, NetApp NFS andlldisk. For the
local disk copy, the file is copied from the NetApp NFS senregethte local disk. With a very
small copy overhead and efficient file server performanceamtarrent access, results from
Vivid show good scalability. The NFS/local and PVFS/PVF&bmations perform best when

scaled to ten processors. The PVFS/PVFS input file combmagrforms slightly better than

'Data from the local/local four processor run is unavailable
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Figure 4.8 Comparison of execution times with increased levels of lfdism of psLayout on Vivid
cluster for 4 MB and 411 MB file inputs and different file loaats using (a) NFS server and Local disk
(b) PVFS and Local disk.

the NFS/local one for 10 processors.

ASCI Blue provides a robust architecture with fast netwarfkéstructure and a file
system highly tuned for parallelism. Figure 4.9 shows ther foput file combinations for
ASCI Blue, with GPFS and local disk as possible file locatioAdl the four combinations
perform similarly, and are comparable to the CBSE clustéevit considering copy overhead.
For the local copy, the file is copied from the NetApp NFS seteeonly those processors

implementing the alignment.

4.3.1.2 Load Balancing

Even when all I/O is local, psLayout does not scale very wele &&n see from
Figure 4.10 that this is because of problems with load batgnd here is one node among the

10 processors whose alignment takes at least more thanedtingbhverage time. The input to
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Architecture Optimal input file combination

CBSE cluster NFS / local

ASCI Blue-Pacific GPFS/GPFS
Vivid cluster local / NetApp NFS
Vivid cluster PVFS /PVFS

Table 4.1 Summary of optimal file location for psLayout run with a sntslta set.

this node has a lot of repeats in its sequence, causing detag ialignment, because several
sequences match for each alignment. In practice, sciemtidtkCSC manually balance the

cluster load by timing the submission of their jobs.

4.3.1.3 Summary

PsLayout, a typical computational biology applications kharacteristics very dif-
ferent from many scientific applications. It is embarraskimgarallel, with all communica-
tion through the shared global store. We instrumented tipdication-level 1/0O calls using
the Pablo performance environment, which supports usel-fgerformance data capture and
analysis. PsLayout is structured so that the alignment cdatipn is inextricably interleaved
with the I/O. Most of the application time (approximately 98%) is spent in user-level I/O
libraries doing buffered reads, memory allocation, anshgtcomparisons. The write time is
insignificant by comparison.

We characterized a small data set experimental run of psltayw three architec-
tures. Because each node running the program needs to dloedss input files, a scalable

shared store (either a parallel file system or network filéesy} is necessary. Scalability of
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this global store is crucial to performance. Even with aalola file system, due to the nature
of the algorithm, load balancing is a problem and ideal sppési not attained.

Another factor affecting performance and scalability aéthpplication is the input
file location. We calculate the optimal file location comhioa as the combination that takes
the minimum aggregate execution time. Table 4.1 shows ttimalfile location combination

for psLayout when scaled to 10 processors.

4.3.2 WABA

WABA was implemented to find the alignment between the hurmehthe mouse
genome. By knowing similarity between the two genes, we léllable to predict what a
particular sequence in the human genome might correspodsed on the known sequences
of the mouse genome. WABA was characterized on the CBSEeclSince it is a production
system and also because WABA is a compute-intensive aigoritve used a small problem
set. The input size used was 48 MB and 22 KB, representingppeatndf the human and mouse
genome, respectively. The four possible input file comliimatare global/global, local/global,
global/local and local/local. The output was written to NiES server. The same experiment
was not tested on the other two architectures because it igOwintensive.

WABA, like psLayout has no inter-process communicationegahrough the 1/0.
The experiment when both the files are at NFS server does pet isleal scaling as seen in
Figure 4.11a. The execution speedup obtained is approaiynats on scaling to 10 proces-
sors.

The breakdown of the aggregate execution times is showngar&i4.11b. The
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Figure 4.11 WABA with 48 MB and 22 K at NFS server (a) Execution and I/O spgeadhere 1/0
speedup is the upper bound, assuming perfect parallelisigdregate times breakdown

library reads is the application-level reads that are letated with the alignment process. The
library read time for one processor run are insignificanpragimately 5%. But the library
read times are significant when more processors are used, 1594 of execution time for ten
processors. Each pass computes and writes standard qutmsisective of the input size. The
way the passes reads the date is dependent on the heurfstiespass. With ten processors,
second and third pass read overhead increases by more timmaafactor. Hence the reason
for the increasing read percentage as we scale is becauseadditional overheads of second
and third pass reads in the algorithm.

The increase in write time represents a much smaller pexgenby comparison.
The write overhead increases for the same reason, but eeaiies represent a very small
portion of the execution time, the increase is not significan

The timeline graphs of WABA when both the files are at the NF8e3eon one pro-
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Figure 4.12 Timeline of WABA for 48 MB and 22 KB NFS file inputs at NFS serveir) Bytes
accessed (b) Operation durations.

cessor are shown in Figure 4.12. We can see the initial |/Catiperare reads, corresponding
to the reads in the first pass. Then the high-error margimadignts are written to a temporary
file. This is followed by reads, corresponding to the secoasispreads, and the third pass
writes. This confirms our description of I/O activity §8.3. The number of bytes written is

higher initially due to the high error margin of the first paSaibsequently by the use of more
stringent heuristics in the second pass, a lower error masgobserved and only the most

accurate data is written, decreasing the bytes written.

4.3.2.1 Input File Location

As in the previous experiment, the input file copies can bathkxat at either the NFS
server or the local disk. Local disk copies must be made @3atiodes. We saw from the small
data set experiment with psLayout (99% 1/O-intense) thafitbdocation affects scalability

(84.3.1). The goal of this experiment is to test if that conidngs true of a relatively less
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Figure 4.13 Comparison of execution times with increased levels of lfism of WABA on CBSE
cluster for 48 MB and 22 KB file inputs and different input fitechtions.

I/O-intense (4% - 75%) application.

Figure 4.13 shows the different execution times includimg¢opy time for the four
input file combinations. The NFS server provides good perforce when scaled to a small
number of processors. For Local/NFS and Local/Local comtimns, the copy time incurred
exceeds the execution time of one processor run. As the nuofilpeocessors increases, the

NFS access time increases and the best combination for tégmors is local/local.

4.3.2.2 Load Balancing

The load balancing graph in Figure 4.14, clearly shows theegtdion at the NFS
server and why local disk access is preferred. Figure 4.hdavs the execution times when
both the files are at NFS server. We see that there is one javéoy run that takes a long time
to complete. This is due to input having a lot of repeats arglalgorithm takes more time on

handling more repeats. Figure 4.14b shows the executiagstimhen the larger file is at local
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Figure 4.14 Workload distribution of WABA for 48 MB and 22 KB file inputs drfile locations at (a)
both NFS server (b) Local disk and NFS server respectively.

Aggregate execution time (secs)
Aggregate execution time (secs)

Number of processors scaled Optimal input file combination

1 NFS/NFS

2 NFS/Local
4 NFS/NFS
10 Local/Local

Table 4.2 Summary of optimal file location of WABA for different numtseof processors

disk and the smaller file is at NFS server. There is the samanode that takes a lot longer
than other nodes in each run, causing load imbalance. Thaute time is less when the
local disk copy is accessed (Figure 4.14b) on comparisorR8 access (Figure 4.14a). This
justifies the local disk copy to be accessed for the 48 MB filee $peedup is not significant

because of the lone job that takes up a long time.

4.3.2.3 Summary

WABA, a genome alignment application, uses complex hdasigb align genome
sequences. This application is compute-intense and tlreqmege of execution spent on I/O

increases when scaled to large numbers of processors. Wactdrived the performance of
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WABA on the CBSE cluster with varying input file location andmber of processors. The
performance of WABA when run with a small problem size vadesmatically depending on
the file location and the number of processors scaled. As ampbe, Table 4.2 shows the
optimal input file combination, assuming the same definitistefore for optimal.

From the two characterization efforts on psLayout and WABA, see that irre-
spective of the I/O intensity of the application, the perfarmoe of the computational biology
applications run on the CBSE cluster depends on the fileitwtand the number of processors

scaled.

4.3.3 PsLayout with Large Data Set

PsLayout was implemented to align the sequenced BAC file (3§ &hd the bac
ends taken from Bacterial Artificial Chromosome (BAC), whis 411 MB. This run was
relatively large. For larger experiments with larger numsbef processors, NFS global storage
is a bottleneck and it is obvious that there is a crossovemtpghere the additional copy
overhead is insignificant compared to the overhead causadebMFS bottleneck. Because
the CBSE cluster is a production cluster, we could not cradtettleneck at the NFS server
with 50 processors reading the 411 MB file. Hence we ran theraxent with the 411 MB
file at the local disk and 26 MB file at the NFS server. The fileat@mn selection imitates
how the experiments are run in the cluster. When there areréad-only input files, the
smaller one is accessed through the NFS server and the fegéom the local disk. The
Vivid cluster has 33 nodes, hence this run was scaled up ta@®@gsors on Vivid. The same

input file combination as CBSE is run on Vivid to make a comgaari All the four input file
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Figure 4.15 Aggregate execution time of psLayout using 26 MB and 411 M#aits (a) NFS and local
file input on CBSE and Vivid clusters (b) Comparison of exemutimes for different file locations on
ASCI Blue-Pacific.

combinations were run on ASCI Blue-Pacific.

Figure 4.15a shows the scalability of the 26 MB and the 411 M&i file run. For
this larger run, we examined only the NFS/local combinationthe CBSE cluster and the
NFS/local and NFS/NFS combinations on the Vivid clustethwine 26 MB file at the NFS
server and the 411 MB file at the local disk. The aggregatewiactime is relatively constant
as the number of processors increases, indicating gooasitgl The NFS/NFS combination
on Vivid is slower than the NFS/local, although not signifitg. The CBSE cluster has better
performance than Vivid because of the faster processorke@BSE cluster.

We examine the scalability of this application on Blue indiy4.15b for different
combinations of local and global store. All combinationslsowell for 50 processors. For

different numbers of processors, different combinatiores slightly better or worse. Hence
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this supports our claim that file location and number of pssces for a given architecture and

file system are important factors affecting performancehisf application.

4.4 User-Level Library

From the characterization efforts of psLayout and WABA, we that performance
of computational biology applications is dependent on nfantors and one of them is file lo-
cation. This conclusions is relevant to most of the otherpatational biology applications at
UCSC, which have similar characteristics to either psLayoWABA. Currently, the optimal
file location choice is made manually by the scientists at OG3ur characterizations showed

the choice of optimal file location to be important and naatist
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Chapter 5

Design and Implementation of

dSOARS

From Chapter 4 we see that I/O scalability problems are etvidéth even a small degree of
parallelism. Programmers at UCSC alleviate bottlenecksagually replicating databases to
improve locality, and this approach works. Given the lomtadstorage, replicating databases
is a reasonable solution for improving performance, butagang these replicas is difficult and
time consuming. As explained in Chapter 1, storage costisramd genomic data trends are
such that indiscriminate replicas are not a cost-effectdation.
To address this problem, we are developing a user-level b¥@rly for a new model

of location-transparent storage. This library maintaged-only replicas of records and infor-
mation about access times. Therefore, a read access tord reag be redirected to the most

appropriate location. Unlike a traditional cache, wherer¢his a strict hierarchy of access
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f(location, # of processors, filesize)

Location Path Cost
X
NFS Infs/fafiles/ $3
Local cc01:/usr/tmp/ $ .
Web ftp:/ftp.ncbi.nim.nih.gov/genbank $$$$
Web ftp://bio-mirror.net/biomirror/genbank | $$$

Figure 5.2 Example cache table entry.
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times (that usually differ by an order of magnitude or more)hown in Figure 5.1, access
times to local disk or network storage change based on loddhetwork conditions and may
not retain a strict ordering.

Figure 5.2 shows an example cache table entry for a genonécfitla Here, the
cost for accessing data at each location is calculated asm@esfunction of the number of
processors, the file location and the file size. Althoughdhmrameters are fixed at the start
of application execution, the cost function may be basedavameters that vary continuously.
For example, as network links break or bandwidth is limitédyill be more expensive to
access a file on the Web, and this can be reflected with this Imbidigmately, we envision
linking replication with a dynamic run-time performance debthat can provide performance
data of the execution environment on-the-fly to calculatess costs.

The remainder of this chapter is organized as follows3ri we give the overview
of the design issues and we discuss the different compooénts design irg5.2. In§5.3 we
discuss the library component interactions with the cligioigram. In§5.4 we describe how
the cost function is computed. We describe our implemeniadecisions irg5.5. Finally we

give an example to illustrate library operation$ip.6.

5.1 dSOARS Design

In distributed computing environments, data placement aweéss are two of the
major factors affecting performance. Replication candaifely provide access time improve-

ments. Dynamic Storage Replicator and Selector (ASOARS)iges a layer of abstraction
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to the file locations accessed by the client user, along wittachic performance calculations,

while managing the replicas. Only the file opens of read-ditdg are considered, because in
the computational biology application area, read-onlyirfiles are often used [42]. More-

over for files that are opened for writing, consistency beesran issue that we have not yet
considered.

The first design consideration is to consider granularitaofess at the file level.
The other possible choice is record-level access. We didnmolement record-level access
because of the overhead of intercepting each record cath W& exponential increase of data
for computational biology applications (Figure 1.1a), thamber of intercepting calls would
grow exponentially.

The next important design issue is the choice of where ther lafyabstraction that
determines the optimal file location should be placed. Thécels are to intercept all the file
open calls, to modify the kernel, or to require the applmatio make an explicit library call.
In typical computational biology applications, small, tesrgry files are opened and used, as
we saw in the case of WABA i§3.3. Optimizing location for files with very small lifetimes
may not be beneficial. Moreover we are only focusing on reag-files. Hence optimizing
all file opens may not be the ideal design choice. To use ariciXdbrary call, we need to
include the library header file in the client program. We ¢hé optimization function as a
dSOARS wrapper call and this design seems to fit our requinesneThis particular design
was chosen to provide flexibility, where some files can be egeamith optimization and some

are opened without.
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Figure 5.3 dSOARS components.

5.2 User-Level Library Overview

The library determines the file location that provides bestfgymance, making
replicated copies as necessary. To design such a librarynake a few assumptions. The
assumption previously discussedsi 1 is that we consider only read-only files. We consider
all the input files to be at a default global location. Thedifyr determines if the global file
access gives good performance; if not, it creates a locéiteeprhis decision is done using a
cost function, which is computed from a benchmark resultpa of future work, we want to
track replicated copies and feed this information to thegobheduler. When the file needs to
be accessed in another task, the job can be assigned to teavitbdhe replicated local disk
copy.

Our first pass design has five main components, as illustiatéigure 5.3. We

discuss the design choices of each component in detalil isetttions$5.2.1 t0§5.2.5.
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5.2.1 Initialization

The major task that the user library should provide is to cledabie optimal location.
First, the cache table, which holds the cost function patamelues associated with each
file, is loaded in memory. The design decisions were to eittet the cache table during the
initialization phase or with every dSOARS file optimizatioall. For the former choice, the
advantage is we only need to load and deallocate the cacleediate. The downside of this
choice is that if any changes made to the cache table durieguérn are not used. Moreover
if concurrently running application creates replicas dddijlthe additional replica information
is not reflected during the current program execution. Thtiedahoice incurs a lot of over-
head that is associated with loading and deallocating thbectable from memory for each
dSOARS file optimization. In this design, since we do not aderisdynamic network parame-
ters, the changes to the cache table are infrequent. We elboagmore the current replication
information and each program execution will work with théadfrom the previous program
execution. Hence we choose to load the cache table in memwiygdthe initialization as

shown in Figure 5.3a.

5.2.2 Cache Table

The cache table is the data structure that manages thea®paliong with the cost
for accessing them. Hence the cache table should contafilehmame, the location, and the
cost to access it. The elements representing a unique kahaifde name, the cache level
(location), the file path and the operation (e.g. read). Teration element is included for

easy extensibility of this library to other operations. Egample, we have not considered write
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operation and the consistency issues, and in this desigoaweasily modify to incorporate
writes.

The value elements associated with the key are the file stztharcost value for dif-
ferent number of processors for the particular operatitmtaioed from the benchmark result.
The reason for having file size is because file size is one qidhemeters of the cost function.
The other option would have been to make a ‘stat’ system gakbdich file optimization. The
file permissions are governed by the underlying file system.

The cache table data structure gets loaded into memory imitneization phase,
and when the cost function value of a file is needed, a seantiidn is implemented as shown

in Figure 5.3b. This function returns the cost function edlar that instance.

5.2.3 Cost Function

The cost function is the factor that determines the seleafdhe file location. The
cost function is a quantitative value, which is computeddach cache level of the file as
shown in Figure 5.2. The cost is computed as a function of lasiie, number of processors,
and the file location (Figure 5.3c). We assume the cache &sgciated with the minimum
cost value corresponds to the optimal location. The costtion is not a simple equation and
the parameters we consider are for our first-pass implertientand as future work, we want

to add more dynamic parameters to the cost function.
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5.2.4 dSOARS

The dSOARS class provides location-transparency to tieatgirogram. dSOARS
provides a wrapper calf,i ndOpt i mal , that takes the base name of a file as input to deter-
mine the optimal location. For optimized file opens, befdre file opens calls are made in
the client program, the optimal file location should be foulte right location is determined
by the cache table component, based on the cost componestlogétion is returned to the

client program as shown in Figure 5.3d.

5.2.5 Cleaning

When the application has completed its task, before it cetapl execution, the

cache table object in memory should be deallocated (Figae) 5

5.3 Interaction with the Client Program

The interaction between the client program and the usel liswary components is
illustrated in Figure 5.4. The interactions are describethio phases: initialization and the
dSOARS file location optimization. Part | in Figure 5.4 shdbws initialization phase. When
the client program initializes dSOARS, the cache table agléal in memory. Initialization is
done once at the start of the application, before any libfilgyoptimization calls. Part Il in
Figure 5.4 shows the optimization phase. For optimized filens, the client program calls
thefi ndOpt i mal method of the dSOARS object with the base name of the file totfiad

right location. This invokes th&i ndOpt i mal method of CacheTable. The algorithm that
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Figure 5.4 dSOARS component interaction to the client program.
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Figure 5.5 Mapping of the files from the benchmark results.

the user-level library uses to identify the optimal locatie as follows:

¢ Find all entries in the cache table that match the specified bame (Figure 5.4 Partlib).

¢ If no matching entry is found from the cache table, find a matoimfthe benchmark
result (Figure 5.4 Partlld). This decision procedure is shawhRigure 5.5 and is the
fi ndFronBenchmar kResul t method. We assume that all the files we are referring
to are at a global location. The size of the base name file isdasing a ‘stat’ system
call. This file size is matched to the nearest file size frombtiechmark result. When
the difference falls within a threshold of 10KB, the accesst@orresponding to the

benchmark match is mapped to the base name.

e The access cost for the specified base name for differentidosaare obtained. The
comput eCost method computes the access cost value corresponding tathieen

of processors of that instance as the cost value for eachidacaThis is shown in
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Figure 5.4 Partlla.

e Return location with minimum cost to the dSOARS file optintiza call. Thef i nd-

Opt i mal method of dSOARS returns the optimal file location to thentligrogram.

5.4 Computing the Access Cost Function

The user level library determines the best location to redittabased on a cost
function. To calculate this cost function, we used a micrabenark. The goal of this bench-
mark is to provide a cost value associated with a read operath a given architecture with
respect to different parameter considerations. In our fissspwe choose the most important
static parameters for the benchmark from our charactésizaesults discussed §4.3. The
inputs to the microbenchmark are the cache level (locatifile) size, number of processors
and the type of architecture. The microbenchmark works asri®d in Figure 5.6 and the

algorithm used is as follows:

o First a file of the specified file size is created on the defatiBNbcation (Figure 5.6a).
Creation of the file at NFS, mimics the behavior of how the CB®IEks currently, when

they replicate the dataset from genbank to NFS.

e If the cache level is NFS, the file is present at the right lacatind if the cache level is

Local, then it has to be first copied to the local disk.

e Every processor reads 8K blocks from the file at NFS or localdyistem, until the EOF

is reached.
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Figure 5.7: Benchmark time to read on CBSE cluster from NFS.

e The benchmark time is calculated by aggregating the reagstamhall the processors. If
cache level is local, the benchmark time can be the aggreggdietime of all processors,

including or excluding copy overhead time.

The result of this benchmark on the CBSE cluster for diffeféa sizes and number
of processors for the cache level NFS is shown in Figure 5.If filds are at NFS with no
replication. This graph shows an increase in read time withibcrease of the number of
processors and the file size. The Local cache level benchrasuks, excluding and including
copy times are shown in Figures 5.8 and 5.9 respectively. graghs shows increase in read
time with the increasing file size and number of processorg céh also see a significant
difference in the execution time between Figures 5.8 and\W!8en copy time is included, the
aggregate execution time (Figure 5.9), varies in propontmthe read time increase as well as
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Figure 5.10 Benchmark time to read on the CBSE cluster from differenttiocs for 400 MB file
size.

the copy time increase.

To give a better perspective of the benchmark, we comparénttes for a particular
file size for different cache levels. Figures 5.10 show thechenark times for a 400 MB file
on different locations as we scale the number of processdfs.see that local copy is not
always optimal. For example, for one processor, NFS acsesl®se to local disk access. If
there is no local existing copy, NFS is best until 4 procesgbigures 5.10), after which it
is more efficient to copy. Thus, the benchmark results ard tsestimate read times based
on file size, number of processors and file location. We anenaisg) the network bandwidth
and latency remain constant. This is often not the case afdue work, we want to study

dynamic network behavior.
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5.5 dSOARS Implementation

dSOARS is implemented as a user-level library that the caatjmmal biology ap-
plications can link their applications with. dSOARS is implented mainly using C++, with
some parts likd i ndFr onBenchmar kResul t using Perl. This software environment is
available on a large platform of workstations and clust&re main components of the library
are C++ objects.

The client program needs to instantiate a dSOARS object eryerocess and the
findOpti mal wrapper call of dASOARS must be called for every optimized dijen. In
this implementation we need to explicitly specify the numb&processors and give it as
an argument to the dSOARS object. Explicit passing is ned#eduse we cannot always
get information about the number of processors from the ghteduler. If we had used MPI
to spawn jobs, we can get the number of processor informatimimg run-time. MPI library
provides ease of use for message passing among applicafiedid not use MPI because this
class of applications has no inter-process communicatidrdaing so would have required an
overhead of linking the application with MPI libraries.

The user-level library design incorporates location-$garency and dynamic selec-
tion of the optimal file location. We discuss the componemiglémentation choices in detail

in the five sections frorn§5.5.1 t0§5.5.5.
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Field Name Data Type Examples

baseName  string “bacEnds.fa”, “mougenome”,“humarmgenome”
cachelLevel enum NFS, cc01, ccl12, Local+Copy

filePath string “Infsserver/file/path/”, “/varitmp/”

oper enum read, write, seek

Table 5.1 Cache Table Key elements and their data types with examples.

Field Name Datatype Examples

fileSize int 411751352
costFunctionValue cost[] {10,20,30,40,5p

Table 5.2 Cache Table Value elements and their data types with example
5.5.1 |Initialization

The cache table content is loaded into memory from a pre-gktfiite. This file is at
NFS server, a central location, accessible by all the nauései cluster. The cache table data

structure is discussed in the next subseciorb.2.

5.5.2 Cache Table

The Cache Table is implemented using the Standard Tempibatar}. (STL) data
structure, map. Map is an associated array represented kgyadlue) pair. Each key is a
unigue entity and can be mapped to one value.

The elements representing a unique key are the file nameatife devel, the file
path and the operation. The data types of these elementsxangpkes are shown in the

Table 5.1. The value elements associated with the key arfddhsze and the access cost for
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different number of processors. The value elements and rigpective types with examples
are shown in Table 5.2. In this implementation the cost dgia iy an integer.

The operations performed on this data structure are loadhglthe initialization
phase and search, to find the entries corresponding to teebase during optimization phase.
Given n entries in the table anth optimized file open calls, insert i®(n) and search is
O(mn). In this implementation, we insert into the cache table omigeoduring initialization
of dSOARS and we search for each optimization call. HencecBea the operation with
the highest frequency of occurrence. We chose the map daiztse because retrieve is
O(log(mn)).

The cache table object has thendOpt i mal member function that uses the re-
trieve or search function of map to identify the optimal fibedtion. This function needs the

cost function component to provide the cost value as disclgg5.5.3.

5.5.3 Cost Function

The cost function is not a simple equation and it can have rdgngmic parameters
associated with it. In this implementation, the cost functiomapped from the benchmark re-
sult. This mapping, implemented using Perl, is written idarptext file in a central location,
accessible from all the nodes in the cluster. To make tharlbextensible, we implemented
the cost as a base virtual class with derived classes implémgetheconput eCost virtual
method that over-rides the base class virtual functionuféut¢ost functions can incorporate

other parameters.
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5,54 dSOARS

The client program interacts with the user-level librarypi@vide location trans-
parency. dSOARS class provides the interaction functiynarhe f i ndOpt i mal method
of the dSOARS class determines the optimized file locationdigg the cache table and cost
function classes. Before this method execution, the ceaalble has to be loaded in memory,
which by default happens when initializing the dSOARS claggect.

The client program creates the dSOARS class object andthalfs ndOpt i nmal
method to find the optimal location before any optimized fipeio calls in the client program.
The library computes the best location and returns that &ing ®bject to the client program.
The client program can easily convert the string to a chajedband use it in the standard

UNIX file open system call.

5.5.5 Cleaning

Since allocated objects are automatically deleted at theothe execution, clean-

ing operation is implemented implicitly.

5.6 Implementation Example

The implementation is done such a way that the inclusion eflittrary into the
client program can be done with minimum changes to the sotmde. The changes made
are shown in Figure 5.11. First the client program needs ¢ateran object of dSOARS,

specifying the number of processors. The declaration o B®@ARS object initializes and
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Client Application
User Level Library

Load cache table
= contents
string baseName, fileName;
string optimalLocation;
FILE *fp; () 7

dSOARS *ds = new dSOARS(numproc);

#include "dSOARS.h"

#define numproc 10
main()

\@

{

Find optimal file
location for this
instance

\

/

optimalLocation = ds->findOptimal(baseName);
fileName = optimalLocation + baseName;
fp= fopen( ( fileName.c_str() ) ,"r");

Figure 5.11 dSOARS usage example (a) dSOARS object initialization (b)ffigdiptimized file loca-
tion using dSOARS library calls.

loads the cache table into memory (Figure 5.11a). Beforaiogea file, the application calls
findOpti mal as shown in Figure 5.11b. This function returns the optiroahktion as a
string. By concatenating this with the base name we get thepfith, which can now be

opened using the standard UNIX system call.
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Chapter 6

Performance Evaluation of dASOARS

DSOARS can improve the 1/0O performance of applications byadyically selecting the best
location for data, replicating files as necessary. We et@ld8OARS using three applications
on the CBSE cluster.

The first application is a parallel implementation of grepefsis a UNIX command
to search for a pattern in the specified file(s). A list of fiegiven as input and is searched for
amatch of the given pattern. The list of files can be split t&enzarallel implementation of the
sequential search program. This application is simpleg datallel, and easily load-balanced.
The second and third applications are psLayout and WABA.

The rest of this chapter is organized as follows. We desthib@xperimental design
in §6.1. Grep results are discussedth?2. In§6.3, we describe the psLayout experimental
results. WABA results are described§f.4. We summarize the performance of the user-level

library in §6.5.
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6.1 Experimental Design

We evaluated the performance of dSOARS in the CBSE clusitece$ is a produc-
tion system, no nodes and server load assumptions are méte.tihe number of processors
scaled are up to 20, because we had low priority on the clasigwe could only get a small
portion of the cluster. We are comparing the behavior of fiygieation when the client makes
the choice of the file location and when dSOARS determinespkienal location for the client
dynamically. The possible file locations are NFS and locadS®ARS implementation, the
client program specifies the base name and the library detesnthe optimal file location for
that instance. The overhead on including the user-levedtjhis negligible.

All the experiments were run with only one existing copy d fite, at NFS. All the
replicated copies at the local disks were removed befora tt. Hence the test indicates the

upper-bound behavior of the library, assuming uniform reekabehavior in the cluster.

6.2 Grep

The first application we examined is the parallel implemgoaof grep, a search
utility. We choose this particular program to test becausp gs a simple program whose
execution time is a factor of the I/O to be done. Evaluatingpdormance of this program
shows the performance gain of making the right 1/O calls,ufjfothe dSOARS library.

Grep, the UNIX command does pattern matching of expressitims.inputs for this
command are the file(s) to be searched and the expressionoutipet for this command is

the list of the lines from the specified file(s), with theirdinumbers, that match the specified
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Figure 6.1 Performance of dSOARS implementation on a parallel impleat&m of grep.

expression. In our implementation, the input to the programntlae file that contains the list
of files to search for the expression and the search expres¥ie split the list of files and
giving a portion of the work to different processors. Thetsphs random with no uniformity
and so each processor may do more or less work depending awhiger of files and their
respective sizes. In this experiment, we are not trying téoper load balancing, instead, we
want to study the behavior of ASOARS implementation. Thexeld input files with a random
mix in file sizes totaling 75 MB. The smallest and the largdstdize are 1 MB and 20 MB,
respectively. This experiment is parallelized to 20 preces.
We ran the same grep program with all the input files to be bedrfrom NFS or all

from local disk. For all the files to be at the local disk, theywé to be copied there first. Since

we do not know what node would be assigned by Condor to do Hrelseve need to copy the
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Figure 6.2 Performance of dSOARS implementation in (a) psLayout (b) WABA.

input files to all the nodes. The result of this experimenhisen in Figure 6.1. As we can see
from the graph, NFS and Local locations provide good schitialailthough NFS access took
500 to 750 seconds longer. If files are replicated on all thalldisks to increase performance,
the search time is less (Local), but when the copy overheadrisidered (Local+Copy), the
execution time increases. In dSOARS, the right location Hierftles is determined and they
are replicated, if the cost function favors an additiongbycoFor example, for the one and
twenty processor runs, the number of files copied to loc& diseach processor were 4 and 8
respectively. dSOARS implementation shows good perfonaaciose to the local disk access

performance, but without a huge copy overhead.
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6.3 PsLayout

PsLayout, described #8.2, takes two read-only files as input. The data set consists
of 4 MB and 411 MB input files and is scaled to 10 processors.4TW8 dataset is a collection
of 52 FASTA files, each typically in the order of several KB €llibrary searches for each of
the FASTA files to find the right location. The 411 MB is one kifge and it involves one
library file search. The performance of the dSOARS implembmm is tested by comparing
the results of dynamic replication with all the files accesbé NFS or Local (including and
excluding copy overhead). We did not test the larger run bhgsut scaled to 50 processors,
as we had limited access to the resources.

The results are shown in Figure 6.2a. With small number ot@ssors (one and
two), the dSOARS implementation performs equivalently 83\and Local access, without
the copy overhead. With the increase in processors, the (RS Aplementation performs
close to the local disk access with a small copy overhead.dB@ARS library replicates the
input files to the local disk, if the cost function favoredttdacision. The number of replica-
tions of this run is dependent on the number of files replitated the number of processors.
For instance, no file is replicated for the one-processoranohthe 411 MB file is replicated
on both the processors for the two-processor run. For theitecessor run the 411 MB and

one other file is replicated on all ten nodes.
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6.4 WABA

WABA, described in§3.3, takes two input files of sizes 22 KB and 48 MB. Both
the files are one large FASTA file. The 22 KB file is split acrosfes'marker” positions to
parallelize the application. Results using dSOARS are shiavrigure 6.2b.

Local disk access shows good scalability. When the filesaressed from the NFS
server location, the execution time increases with thesimee in the number of processors. In
the dSOARS implementation, the number of replicated filesHe first input is dependent on
the file size and the number of processors. The number otedfulns is zero for one-processor
run and one for each processor in the ten-processor run.ré-iy@b shows reasonable per-
formance of dASOARS when scaled. Local disk access is onlgidered with the added copy
cost, if the cost function favors replication. Sometimes d5OARS implementation shows
worse performance, than all NFS reads (4 processor) becdubke reads to temporary files

created in the first and second passes, which are not optimsiag dSOARS.

6.5 Summary

We have tested the dSOARS performance in CBSE cluster usjrayalel grep
implementation and a small experimental data set for psiliaymd WABA. The possible lo-
cation choices were NFS and local disk. All the local copiesendeleted before each run,
hence the results are an upper bound and considerable parfoe gain is clearly seen as the
number of processors increases. dSOARS is able to providerpence improvements by

smart replication of data, providing good trade-off betwaserver bottleneck and copy over-
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head. The number of replicated copies depend on the numipeocéssors and the file size.
dSOARS shows good scalability across different file systév#sS and Local) and processor

configurations.
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Chapter 7

Conclusions

We present in this thesis the design of a user-level librd§OARS, providing location-
transparent storage. dSOARS dynamically determines ttimalfile location, making repli-
cas if necessary. The library determines the optimal localtiased on a cost-function. The
cost-function is complex, and as a first pass we have comsidbree parameters, file size,
number of processors and file location, which we thought weost important. The access
cost for each location is based on the results from a bend¢hmEne location that has the
minimum access cost for that instance determines the opliwation. This implementation
can be linked easily with program and we tested it on thrediagimns. Our test results show
that our first pass implementation show reasonable perfocmaand achieves a good trade-off

between the server bottleneck and the replicated copy eadth
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7.1 Discussion

We characterized the performance of psLayout, a compugtlmiology application
that performs genomic alignment, on three architecturebe drchitectures varied in their
interconnect speed and the file system. We also charaatettie performance of WABA,
a genome versus genome alignment application on CBSE clusteontrast to psLayout,
WABA is compute-intensive. There are three passes in thidiggtion, and each pass reads
the temporary output file written from the previous pass. Buthese temporary reads and
writes, I/O intensity increases with the scaling of the nunddgrocessors.

We determined that although it is embarrassingly pargielayout has poor scala-
bility due to I/O contention and poor load balancing. We assgscalability on a range of file
systems and architectures ranging from the low-end CBS&earitio ASCI-Blue. For psLay-
out, the best-performing combination of input databased@grocessors with input file sizes
4 MB and 411 MB is different for each architecture: NFS/Loftal CBSE, NFS/Local and
PVFS/PVES for Vivid and GPFS/GPFS for ASCI-Blue. Input filedtion is a major factor
affecting the aggregate execution time of this applicativve validated this conclusion by
running a larger problem size with input file sizes 26 MB and #B and scaling up to 50
processors. The data locality also affect performance oBWAan the CBSE cluster.

Computational biology is an important application areahwdifferent I/0O needs
than other scientific applications. The performance of éhaggplications running on such
large-scale environments depend on not only the procegswgr, but also data locality. The

wrong data placement might incur large remote I/O overhdaatsuitimately degrade the per-
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formance, which would defeat the purpose of using a digeithsystem. Hence data locality
and access is a crucial issue for distributed systems. Adth@ fast network and parallel file
system or a scalable NFS server can service the cluster®ads, lwe believe that replication
of data will play an increasing role in scalability of thisask of applications.

dSOARS is a library that implements smart replication basee cost function to
provide performance improvements. The design of this tibcansists of five major compo-
nents: initialization, cache table, cost function, dSOA®RE cleaning. The cache table maps
the file locations with their access costs. When the base mapessed to the optimization
function, the location with the minimum access cost is abergd best. Sometimes, this re-
sults in an additional replicated copy. The client program link the user level library and use
this functionality by making a few modifications to the samode. When the dSOARS class
object is initialized in the client program, the cache tabliwaded. Before each optimization
file open call in the client program, the dSOARS wrapper calstrbe called with the base
name to determine the optimal location.

We tested the library by running the applications, parattgdlementation of grep, a
pattern matching program, psLayout and WABA in the CBSEtelyubut instead of manually
providing the file location, we only specified the base nammektiae library chose the optimal
location. We compared dSOARS performance with the perfamaabtained when the client
selects the file location. Our first pass implementation stgwod performance and scalability,

with a good tradeoff between the NFS bottleneck and the copyhead.
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7.2 Future Work

To the current framework, we want to first add more dynami@pueater considera-
tions. In addition to the benchmark result, by having a cumetwork monitoring system, we
may be able to predict behavior much more accurately.

As an alternative to the current implementation, the Iipfanction can be incorpo-
rated into the kernel level. There are several ways in whimh gan approach this problem.
The best choice would be in the middle layer of the kernel@awtiode, this implementation is
more often used currently and seems to have good trade-iebea the performance gained
and the semantic modifications needed for file system had&®ly Another alternative is
to incorporate the library in a job scheduler. Typically & gcheduler matches hardware re-
sources from the clients request to the available resourok WWe believe that data locality
becomes a serious issue and it should be part of the matchiragidn that determines the
right processor to assign the job. Our ultimate goal is tagitea system that provides data

availability with improved performance through smart regtion.
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