
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DSOARS: A USER-LEVEL LIBRARY FOR DYNAMIC REPLICATED
STORAGE

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Preethy Vaidyanathan

March 2002

The thesis of Preethy Vaidyanathan
is approved:

Professor Tara Madhyastha, Chair

Professor James Whitehead

John May, Ph.D.

Terry Jones, M.S.

Frank Talamantes
Vice Provost and Dean of Graduate Studies

Copyright c
�

by

Preethy Vaidyanathan

2002

Contents

List of Figures . v

List of Tables . vii

Acknowledgements .viii

1 Introduction . 1
1.1 Motivation . 3
1.2 Outline . 4

2 Related Work . 6
2.1 I/O Characterization .. 6
2.2 Replication and Adaptation 8

3 Applications . 10
3.1 Alignment Overview . 11
3.2 PsLayout . 13
3.3 WABA . 15

4 Characterization of Applications 18
4.1 Architectures . 19

4.1.1 CBSE Cluster . 19
4.1.2 ASCI Blue-Pacific . 23
4.1.3 Vivid Cluster . 25

4.2 Application Instrumentation 28
4.3 Experimental Setup .29

4.3.1 PsLayout with Small Data Set . 31
4.3.2 WABA . 39
4.3.3 PsLayout with Large Data Set . 44

4.4 User-Level Library .46

iii

5 Design and Implementation of dSOARS 47
5.1 dSOARS Design . 49
5.2 User-Level Library Overview 51

5.2.1 Initialization . 52
5.2.2 Cache Table . 52
5.2.3 Cost Function . 53
5.2.4 dSOARS . 54
5.2.5 Cleaning . 54

5.3 Interaction with the Client Program 54
5.4 Computing the Access Cost Function 57
5.5 dSOARS Implementation . 62

5.5.1 Initialization . 63
5.5.2 Cache Table . 63
5.5.3 Cost Function . 64
5.5.4 dSOARS . 65
5.5.5 Cleaning . 65

5.6 Implementation Example .65

6 Performance Evaluation of dSOARS .. . 68
6.1 Experimental Design .69
6.2 Grep . 69
6.3 PsLayout . 72
6.4 WABA . 73
6.5 Summary . 73

7 Conclusions . 75
7.1 Discussion . 76
7.2 Future Work . 78

Bibliography . 79

iv

List of Figures

1.1 (a) Cost to store the growing genbank database (b) Cost ofdisk over time. . . 3

3.1 Alignment process: the two horizontal boxes are the input sequence and the
vertical lines show the alignment. 11

3.2 Alignment problems: (a) An input containing repeating elements to be aligned
with itself (b) Deconstructing the input (c) Assembling overlapping pieces
with placement uncertainty (d) Piece does not fit in the assembly. 12

3.3 PsLayout execution flow (a) The split of one of the inputs to n jobs (sequences)
(b) Compute nodes in the cluster aligning sequence to the sequence database,
stitching together local sequences using dynamic programming (c) Output lo-
cal sequences. 13

3.4 WABA execution flow (a) The split of the smaller genome sequence ton jobs
(b) Compute nodes in the cluster aligning genome1 subsequence to genome2
(c) Output local sequences matches. .. . 15

3.5 WABA application overview. (a) The initial possible positions are marked (b)
HMM is used to get the new score (c) Stitches smaller alignments into large
alignments. 16

4.1 93-node CBSE cluster topology. 20
4.2 ASCI Blue-Pacific topology. .. . 22
4.3 Vivid cluster topology. .. . 26
4.4 The spectrum map of the architectures(�) in terms of file system(�) perfor-

mance and interconnect speed(�). Note that the terms loosely and tightly cou-
pled indicates the parallel processing support of the architecture. 29

4.5 PsLayout run on CBSE cluster with 4 MB and 411 MB input fileson NFS
servers (a) Speedup (b) Aggregate time breakdown. 32

4.6 Timeline of psLayout on CBSE cluster for 4 MB and 411 MB NFSfile inputs
(a) Number of bytes accessed through library reads and writes (b) Duration of
these library reads and writes. Note that the vertical axes are in logarithmic
scale and the x-axis for all the figures is in seconds. There isa library read
operation at the top right corner of the graphs, apart from the legend. 33

v

4.7 Comparison of read times with increased levels of parallelism of psLayout on
CBSE cluster for 4 MB and 411 MB file inputs and different file locations (a)
excluding copy time overhead (b) including copy time overhead. 34

4.8 Comparison of execution times with increased levels of parallelism of psLay-
out on Vivid cluster for 4 MB and 411 MB file inputs and different file loca-
tions using (a) NFS server and Local disk (b) PVFS and Local disk. 36

4.9 Comparison of execution times with increased levels of parallelism of psLay-
out on ASCI Blue-Pacific for 4 MB and 411 MB file inputs and different file
locations. 37

4.10 PsLayout workload distribution for 4 MB and 411 MB localfile inputs on the
CBSE cluster. 37

4.11 WABA with 48 MB and 22 K at NFS server (a) Execution and I/O speedup,where
I/O speedup is the upper bound, assuming perfect parallelism(b) Aggregate
times breakdown . 40

4.12 Timeline of WABA for 48 MB and 22 KB NFS file inputs at NFS server. (a)
Bytes accessed (b) Operation durations. 41

4.13 Comparison of execution times with increased levels ofparallelism of WABA
on CBSE cluster for 48 MB and 22 KB file inputs and different input file
locations. 42

4.14 Workload distribution of WABA for 48 MB and 22 KB file inputs and file
locations at (a) both NFS server (b) Local disk and NFS serverrespectively. . 43

4.15 Aggregate execution time of psLayout using 26 MB and 411MB inputs (a)
NFS and local file input on CBSE and Vivid clusters (b) Comparison of exe-
cution times for different file locations on ASCI Blue-Pacific. 45

5.1 Memory Hierarchy. 48
5.2 Example cache table entry. .. . 48
5.3 dSOARS components. 51
5.4 dSOARS component interaction to the client program. 55
5.5 Mapping of the files from the benchmark results. 56
5.6 Calculation of benchmark results. 58
5.7 Benchmark time to read on CBSE cluster from NFS. 59
5.8 Benchmark time to read on CBSE cluster from Local disks, excluding copy

overhead. 60
5.9 Benchmark time to read on CBSE cluster from Local disks, including copy

overhead. 60
5.10 Benchmark time to read on the CBSE cluster from different locations for 400

MB file size. 61
5.11 dSOARS usage example (a) dSOARS object initialization(b) finding opti-

mized file location using dSOARS library calls. 66

6.1 Performance of dSOARS implementation on a parallel implementation of grep. 70
6.2 Performance of dSOARS implementation in (a) psLayout (b) WABA. 71

vi

List of Tables

4.1 Summary of optimal file location for psLayout run with a small data set. . . . 38
4.2 Summary of optimal file location of WABA for different numbers of processors 43

5.1 Cache Table Key elements and their data types with examples. 63
5.2 Cache Table Value elements and their data types with examples. 63

vii

Acknowledgments

I wish to thank my advisor, Tara Madhyastha for all her guidance and unwavering support in

my research goals. I am also extremely grateful to Terry Jones for his insights and suggestions

to my ideas and for being a wonderful host for me last summer. Iam also thankful to all my

committee readers for agreeing to evaluate my thesis and their valuable feedbacks.

I would like to thank Jim Kent for providing me with the sourceof his genome

alignment codes and also his constant and I should add patient feedbacks to all my queries.

Special thanks to Patrick Gavin and Jorge Garcia, the CBSE cluster tech support staff at UCSC.

I would also like to thank all the scientists at Lawrence Livermore National Laboratory we had

interactions with for their valuable feedbacks.

Thanks to all the members of the STAR group, past and present for their assistance

and friendship. Many thanks in particular to Ivan Dramaliev,Miriam Sivan-Zimet and Hong

Bo for their infinite patience and support. Special thanks toLeslie Anne Clark, Jessica Masters

and Vidhya Jayakrishnan for proof-reading my thesis.

And finally, I thank my family in particular my aunt, uncle andWalter for their

generosity and my parents and my sister for believing in me unconditionally.

viii

This research was partially funded by NSF Grant No. CCR-0093051 and Lawrence

Livermore National Labs.

ix

Chapter 1

Introduction

With the advancements in processor technology in the last 20years, CPU performance has

been doubling every 18 months in accordance with Moore’s law[29]. Disk speeds have not

kept pace with processor growth [51]. Another important computing trend is the shift from

supercomputers to clusters. Clusters, built using off-the-shelf components, are increasingly

used to provide large computational resources to solve complex problems. The setup of a

cluster is orders of magnitude lower than that of supercomputers. The recent TOP500 list,

as of November 10, 2001, listed 8.6% of the fastest processing machines in the world to be

clusters [18]. An emerging technology with similar characteristics to clusters is the wide-area

distributed computing or grid technology.

Computational biology, or bioinformatics, is an extremelyimportant and growing

research area that can utilize clusters or grid technology.One challenge faced by this field

is to understand the makeup of the human genome, revolutionizing our understanding of the

human developmental processes and our ability to treat and diagnose diseases.

1

The typical input/output (I/O) access patterns of these applications are large dataset

reads, in the orders of MBs or GBs, and varying amounts of writes (KBs to GBs). These

applications have different access patterns from other scientific applications and require large

amounts of storage and processing power. As a specific example, consider the Human Genome

project, the goal of which is to discover all the approximate30,000 human genes (the human

genome) and sequence the 3 billion chemical base pairs making up the human genome [7]. The

input/output requirements of this project are staggering,with the genbank database doubling

every 14 months and is currently 67.6 GB (approximately) [9].

We examine the scalability of two embarrassingly parallel computational biology

applications for sequence alignment, psLayout and WABA, that played an important role in

the mapping of the human genome [25, 34]. These applicationsare responsible for over 50%

of the UCSC cluster use.

The characterization study of the two computational biology applications on a low-

cost UCSC computational biology cluster shows that file location is a major factor affecting

performance of applications. To generalize such a conclusion without being specific to one

loosely coupled cluster architecture, we compared resultsfrom a supercomputer and a different

cluster architecture. The three architectures provide a range of multiprocessor designs.

We present in this thesis the design of a library for location-transparent storage in a

tightly or loosely coupled clusters. This library is responsible for managing replicas to improve

performance. This library is flexible and can be extended to be used in a grid architecture. As

a first pass, we implemented a user-level library for dynamicselection of the optimal file

location. Sometimes the best solution might be to replicatethe dataset onto the local disk and

2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

19821984198619881990199219941996199820002002
0

200

400

600

800

1000

1200

B
as

e
pa

irs
(b

yt
es

)
in

m
ill

io
ns

C
os

tt
o

st
or

e
da

ta
ba

se
in

do
lla

rs

Year

Database growth
Cost to store database

0

50

100

150

200

250

300

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

$
/ M

B

Year

$ / MB

(a) (b)

Figure 1.1: (a) Cost to store the growing genbank database (b) Cost of disk over time.

use that copy.

1.1 Motivation

Intelligent replication seems reasonable given the trends in technology and data vol-

ume. The cost of disk storage has been decreasing exponentially, primarily by improvements

in areal density [11]. Figure 1.1a shows the growth of the genbank database [5] and the cost

to store it [6, 37] over the last 20 years. During this time, the size of the genbank database has

been approximately doubling every 14 months [9]. The curve showing the cost to store the

database is jagged because the rate of growth of genbank and the rate of decline of disk cost

are not proportional. There is a very significant differenceof the genbank size for the years

1982 and 2001, whereas there is relatively very small difference between the cost to store gen-

bank in 1982 and 2001. The reason for marked lack of difference between the costs to store

3

the database is the exponentially decreasing disk costs as shown in Figure 1.1b. The shape of

the curve depicting the cost to store the database is therefore governed by the relative rates of

database growth and decreasing storage cost.

Current disk drive technology cannot continue this trend without bound. As bits

become smaller, the probability that they will spontaneously reverse polarity increases; this is

called the superparamagnetic effect. Although the precisedensity at which this effect will have

an impact is unknown, it is motivating a variety of research on alternative storage technolo-

gies. IBM predicts current growth will continue for the next four years and then decline [27].

Nevertheless, the volume of bioinformatics data availableto researchers has been growing ex-

ponentially. Scientists are using hundreds of data formatsthat are rapidly changing with new

technology. In the next ten years, we will most likely see the storage cost of genomic data

increase, making data management and scalability a seriousproblem for this class of applica-

tions. A user level library to manage all the replicated copies and to provide data reliability

with performance improvement addresses this problem.

1.2 Outline

The remainder of the thesis is organized as follows. In Chapter 2, we describe related

work. We describe the applications characterized in Chapter 3. In Chapter 4 we describe the

different architectures and the experimental characterization efforts that show performance

to be a factor of input file location. This motivates the design and implementation of an I/O

library for automatic storage replication, Dynamic Storage Replicator and Selector (dSOARS),

4

described in Chapter 5. We evaluate the performance of dSOARS in Chapter 6. Finally we

conclude with directions for future work in Chapter 7.

5

Chapter 2

Related Work

The I/O bottleneck is not a new problem and many researchers have characterized the I/O

behavior of scientific applications. Because of decreasingdisk costs, replication can be used

effectively to improve performance. Much research has beendone on distributed computing

architectures that use replication and adaptation techniques.

The remainder of this chapter is described as follows: in� 2.1 we discuss several

I/O characterization efforts with an emphasis on I/O-intenseapplications. In� 2.2 we describe

different approaches to improve performance through replication and adaptation.

2.1 I/O Characterization

Many researchers have studied the I/O behavior of important high-performance ap-

plications out of growing concern over the increasing gap between I/O and processor perfor-

mance. The CHARISMA project [41] has examined system-level input/output accesses on the

6

iPSC/860 Concurrent File System (CFS) and the CM5 Scalable Disk Array to obtain some

generalizations of access patterns in production parallelinput/output workloads. They have

observed predominantly write accesses, small request sizes, and generally sequential requests.

The Pablo group did extensive performance characterization of parallel and I/O-intense appli-

cations. Some example application areas from these characterization efforts include modeling

of electron-molecule collisions, a 3-D numerical simulation of the Navier-Stokes equations,

an implementation of the Hartree-Fock self consistent fieldmethod to calculate the electron

density around a molecule, and quantum chemical reaction dynamics [26, 48, 49]. Difficulties

obtaining high performance from general I/O application interface, led to the development of

MPI-IO [40].

These characterization efforts revealed I/O to be a significant component of execu-

tion time, but they did not focus specifically on computational biology. A study of the NWS

gene sequencing algorithm [22] showed that I/O patterns could be described as a work queue,

where each process would compute on some portion of data for either a very short or extremely

long period of time, depending on the possibility of a match.Yap et al [36] studied the effi-

ciency of parallel algorithms for homologous sequence searching and multiple sequence align-

ment, demonstrating the importance of load balancing. Another approach to solve a similar

gene sequencing problem, taken by Springet al [50], is to use an Application Level Scheduler

(AppLeS). Load balancing is provided by static allocation and dynamic reallocation of jobs

based on a benchmark and the CPU utilization. This gene sequencing characterization work

focus on load balancing.

7

2.2 Replication and Adaptation

Many researchers have considered replication as a way to improve I/O performance

while providing reliability. River [31], a project from Berkeley, focuses on a data-flow pro-

gramming environment to provide maximum performance in a heterogeneous environment. A

simple RAID mirroring policy is adopted for fault tolerance against disk failures. The River

project proposes a model which dynamically modifies the choice of the mirror copy and the

percentage of information accessed from each copy. The data-flow model between produc-

ers and consumers also provides dynamic load balancing by regulating the flow of records

(termed as messages) in the environment. For example, if a consumer is getting I/O from two

producers and one is slower than the other, this model would get more out of the fast producer,

thereby not taxing the slower producer and at the same time increase the number of records to

obtain from the fast producer.

ABACUS provides a programming model and a run-time system topartition func-

tionality among producers and consumers for effective utilization of cluster resources [21].

When a client requests data, instead of going through a store-and-forward node like a server,

it accesses a Network Attached Secure Disk (NASD) device, increasing the bandwidth of data

transfer. The programming model supports coding each functionality as an object. Each ob-

ject is functionally independent, with its own checkpoint and restoration algorithm if failure

or migration occurs. The data-intensive applications are programmed using the integration of

various objects. The run-time system monitors the resourceutilization and this information

is fed into a cost-benefit model that determines where functionalities should be placed. This

8

design corrects itself even when at first the functionality is placed at the wrong place. Hence

functionality is moved back and forth to provide load balancing for effective cluster resource

utilization.

The need for a large pool of computational resources has spurred the interests in data

grid technology. The goal of The Globus project from ArgonneNational Laboratory (ANL)

is to facilitate access to mass storage and computational resources like supercomputers, by

providing a base level of services [17]. Other areas dealingwith petabyte-scale data resources

requiring data grids for potentially thousands of users is the climate modeling problem. On

this large a scale, load balancing and performance become very significant issues. The Earth

System Grid prototype deals with this technology supporting high-performance and data repli-

cation [20]. Services are very important in wide-area distributed systems and another research

project focusing on replication is the Distributed Parallel Storage System (DPSS) [38]. This

model provides higher data access throughput, using a network-aware DPSS master and repli-

cation of data. The client program requesting data communicates to the DPSS master, which

determines which replicated data copy is to be used, based onthe current network configu-

ration. In all the above projects, replication is done similar to mirroring and no intelligent

heuristics are used.

9

Chapter 3

Applications

The computational biology department at UCSC is working on several interesting and highly

innovative projects; however, the most visible is the mapping of the human genome [25, 7].

The human genome mapping will help us to better understand the human body, biological

processes responsible for disease, and differences among species.

Our characterization efforts focus on the application psLayout, a program that finds

alignments. This program represents the second and most time-consuming step of six [34] of

the human genome assembly process, and utilizes more than 50% of the CBSE cluster time.

This is an I/O-intensive application. To get a broader perspective of the typical computational

biology applications at UCSC, we also choose a relatively more compute-intensive alignment

application, WABA.

The rest of this chapter is organized as follows: in� 3.1, we describe the alignment

process. We discuss the heuristics and the I/O access patterns of psLayout in� 3.2 and WABA

in � 3.3.

10

C G A C A A G C A A G C A G T T

 T G C A A C C A A G C A A A A T

Figure 3.1: Alignment process: the two horizontal boxes are the input sequence and the vertical lines
show the alignment.

3.1 Alignment Overview

The basic carrier of genetic information is Deoxyribonucleic acid (DNA), which can

be represented as a sequence of nucleotide bases: A-Adenine, C-Cytocine, G-Guanine and T-

Thymine. Thus, a DNA molecule is stored as a string over an alphabet of four characters

�
A,T,G,C� (nucleotides). To form a draft of the human genome, individual sequences gener-

ated from a variety of distributed sources need to be alignedin their positions on a chromosome

map and assembled.

Combinations of the four basic carriers and unknowns, represented by blanks or

‘holes’, make up a genome sequence. The genome sequence can be viewed as a string of

characters and the alignment problem can be reduced to a string matching problem as shown

in Figure 3.1.

This is not a trivial problem. Figure 3.2 illustrates some ofthe difficulties in this

process [33] using a nursery rhyme as an example. Figure 3.2ashows an input, or sequence,

which contains repeating elements. Our goal is to align thisinput with itself. Unfortunately,

this input comes in subsequence fragments, as shown in Figure 3.2b; many of these fragments

overlap and have repeated subsequences, complicating the alignment process, because the

11

maryhadalittlelamblittlelamb(a)

(b) mary
hadalittlelamb
littlelamblittlelamb
lelamb

(c) hadalittlelamb
littlelamblittlelamb

lelamb
lelamb

mary(d)

Figure 3.2: Alignment problems: (a) An input containing repeating elements to be aligned with itself
(b) Deconstructing the input (c) Assembling overlapping pieces with placement uncertainty (d) Piece
does not fit in the assembly.

matches could occur at several places (Figure 3.2c) or the sequence fragment may not align

(Figure 3.2d). The complexity increases when there are unknowns in the sequences.

Though complex, alignments provide more information aboutsubsequences than

when they are studied separately. Alignments can also be used to identify characteristics of an

unknown sequence based on its match with a known sequence. For these reasons, alignments

are a very interesting and important problem and we have chosen to examine two alignment

applications, psLayout and WABA.

Genome sequences are to be processed based on inherent characteristics of the

genome. This is implemented using application-level library read calls. We study these calls

for our characterization efforts. The significant difference between the two applications are the

application-level I/O-intensity of these applications andthe heuristics used for the alignment

process. The applications, based on their heuristics, spend different amounts of time doing

library I/O, chiefly reads, interleaved with the alignment process. With psLayout this consti-

tuted nearly 99% of total execution time and for WABA, 5%-75%(approximately), depending

on the number of processors. Thus, read time measured at the application level includes some

12

. . . .

(c)

(b)

(a)

. . . .

. . . .

G A CA T G C A T C G A

A T G C A T C G A G A CSequence

Sequence
database

Figure 3.3: PsLayout execution flow (a) The split of one of the inputs ton jobs (sequences) (b) Compute
nodes in the cluster aligning sequence to the sequence database, stitching together local sequences using
dynamic programming (c) Output local sequences.

alignment.

3.2 PsLayout

PsLayout is a program that finds alignments. It represents thesecond and most time

consuming step of six [34] of the human genome assembly process. PsLayout aligns sequence

data that may have “holes” in it with the sequence database. The heuristics in pslayout are

used to align mRNA with a genome, or to align genomes, though poorly.

PsLayout is an embarrassingly parallel application. The two sequences are given in

two input files. The first input, thesequence data, is a collection of FASTA files [28] (ASCII

files that represent sequences and their descriptions as text strings) containing up to 5 million

bases. The second input, thesequence database, is a single FASTA file. This can be either

genomic data or mRNA with no restriction on the number of the bases.

13

The input sequence can be split inton pieces and be aligned with the sequence

database. Thesen individual alignments can be combined to produce the same result as the

non-partitioned alignment. Figure 3.3a illustrates this experimental setup. PsLayout runs in

parallel as separate applications on different nodes (Figure 3.3b). For each run, the output is

written to a separate output file as shown in 3.3c.

The heuristics of this application are described below. Theinput sequence is split

into overlapping pieces that are stored in an index. The index also stores where this piece

appears in the complete sequence. The sequence database is split into non-overlapping pieces.

Each segment of the sequence database is looked up in the index table, and if present in the

index it is considered a hit. There is an alignment if the match is above a certain threshold

value. If it is not present in the index, it is a miss and is ignored.

Once all the hits are obtained, they must be recombined, which is done using a

dynamic program. The hits are projected on the target file when they are 500 bases apart.

Thus, the final alignment in this application is obtained by combining the smaller alignments

that have been written to individual output files.

The I/O access pattern of psLayout, is the input sequence reads interleaved with the

making of the index table, followed by the reads of the sequence database (interleaved with

the alignment process) and the writing of the output file.

14

. . . .

(c)

(b)

(a)

. . . .

. . . .

G A CA T G C A T C G A

A T G C A T C G A G A CGenome1

Genome2

Figure 3.4: WABA execution flow (a) The split of the smaller genome sequence ton jobs (b) Compute
nodes in the cluster aligning genome1 subsequence to genome2 (c) Output local sequences matches.

3.3 WABA

Wobble Aware Bulk Aligner (WABA) is a genome-to-genome alignment applica-

tion. The scoring method of psLayout when used to align genome-to-genome is not efficient.

WABA is extremely efficient in handling genome alignments and is considered more tolerant

than BLAST, another popular genome-to-genome aligning application [35].

The two genomes to be aligned are given in two input files. The first genome, typ-

ically the largest of the two, is split inton pieces, as shown in Figure 3.4a. Eachgenome1

subsequence piece is now aligned with thegenome2sequence in Figure 3.4b. The output is

then written to the individual output files in the global store as shown in Figure 3.4c. Like

psLayout, WABA, runs in parallel as separate applications on different nodes.

WABA has three major passes, as shown in Figure 3.5. The first pass, the fastest,

identifies possible target positions of alignment. The firstfile (genome1) is read at once into

15

 (a)

(b)

(c)

Output
file

Third pass

Second pass

First pass

(e.g.,human)

Genome1
(e.g.,mouse)

Genome2

Figure 3.5: WABA application overview. (a) The initial possible positions are marked (b) HMM is
used to get the new score (c) Stitches smaller alignments into large alignments.

a buffer, which is in turn read one line at a time. The first input sequence is broken into

overlapping 8-base pieces, popularly known as 8-mer, to form the index table. Prior to the

index table creation, to conserve memory space, the sequence is modified by packing the file

to store 8-bases in a 16-bit word. The second file (genome2) isread in one pass, using one-line

reads and aligned with genome1. The tricky part here is that the genome alignment results

in a lot of hits, and hence the hit list grows very fast. So the hit list needs to be consistently

monitored to check for a long homogeneous hit ranging through a wide range of the sequence.

The alignment has a large error margin and the output is written to a file.

The second pass, which is much slower, has more tolerance to mismatches. The

output from the first pass is now the input. The input to secondpass is read, one line at a

time, and using a seven-state Hidden Markov Model (HMM), a different score for the entire

16

alignment is generated and written to a file.

The first two passes are done using small input window sequences with a scoring

value for each alignment. In the third pass, smaller alignments are merged and the output is

written to the output file. The output files from the first and second passes are temporary files.

Thus, there are three sequential passes and each pass is characterized by reads interleaved with

alignment heuristics followed by writes.

17

Chapter 4

Characterization of Applications

Computational biology is a growing research field with different I/O access patterns from

other scientific applications. In this chapter, we characterize the I/O performance of the two

applications, psLayout and WABA, described in Chapter 3. In our characterization efforts, we

focus on the factors affecting the performance of the application when it is scaled on a number

of processors.

The remainder of this chapter is organized as follows. In� 4.1, we describe the

architectures we use. In� 4.2, we describe our approach to application instrumentation and

analysis. In� 4.3 we explain the different experiments and their results.In � 4.4, we discuss

how a user-level library can improve the performance of these applications.

18

4.1 Architectures

We characterized the applications on a range of architectures. The first characteriza-

tion study was done on the Center for Biomolecular Science and Engineering (CBSE) cluster

at Santa Cruz. The next two architectures were at Lawrence Livermore National Labs (LLNL)

and they include the supercomputer ASCI Blue-Pacific and Vivid cluster.

4.1.1 CBSE Cluster

The computational biology group at UCSC uses a cluster with 93 Linux nodes. Each

node of the 93-node cluster has an 850 MHz Pentium III processorwith 256 MB RAM and a 20

GB IDE drive. The nodes are internetworked with 100 Base-T Ethernet in two subclusters. The

topology of this cluster is illustrated in Figure 4.1. Clocks on all the nodes are synchronized

using NTP.

4.1.1.1 File System

There is no parallel file system, and files are shared on two global store NFS servers.

The computational biology group is currently replicating all the genome data onto each local

disk. The central database from which the data is replicatedto the nodes is in the NFS server.

Their central database is updated from the genbank website once every 2-3 months. They

perform these updates manually, which is an extremely time-consuming task (typically 8-12

hours).

19

switch
Ethernet

CAT 5550

CLIENTS
59 Compute nodes

Each having 850 MHz Pentium III

256 MB RAM

20 GB IDE drive
HP 9000 -10
Ethernet

switch

Ethernet
switch

SERVERS

CLIENTS
30 Compute nodes

Each having 850 MHz Pentium III

256 MB RAM

20 GB IDE drive

CC KKS
850 MHz
Pentium III

512 MB RAM
216 GB RAID 5

1 GB RAM
144 GB RAID 5

Pentium III Xeon
700 MHz

HP 9000 -9

Figure 4.1: 93-node CBSE cluster topology.

20

4.1.1.2 Scheduler

The computational biology group at UCSC uses Condor [3] for job scheduling in

the 93-node cluster. Condor checks for nodes with idle CPU cycles and assigns jobs from a

central pool to those nodes. Condor is designed for computing using collections of distributed

resources, as opposed to parallel computing on a homogeneous cluster; however, many of

the computational biology applications lend themselves well to a work-queue programming

model. Because the computational biology applications at UCSC have no inter-process com-

munication, Condor provides a fast and effective mechanismfor spawning jobs to various

nodes in the cluster.

4.1.1.3 Cluster Usage

More than half of the cluster time is used to run embarrassingly parallel alignment

applications. A typical application on the cluster is to build libraries of Hidden Markov Model

(HMM) and support vector machines classification of G-protein coupled receptor superfam-

ily [13]. Protein secondary structure predication using HMMs is another important application

run on the cluster. Some of the other specific applications run on the cluster include serving

web queries for database search and sequence alignment, finding short DNA sequences cor-

responding to sequence-tagged sites (STS) on the draft genome assembly, and aligning STS

primers to the entire genome.

21

CLIENTS
280 ASCI Blue-Pacific

Compute Nodes
>= 2 SCSI 4.5GB disk

1 SP2 Switch
TBMX Adapter

332 MHz PPC 604e

332 MHz PPC 604e

332 MHz PPC 604e

332 MHz PPC 604e

TBMX Adapter

332 MHz PPC 604e

332 MHz PPC 604e

332 MHz PPC 604e

332 MHz PPC 604e

SERVERS
Nodes 6

19 TB disk
RAID level 5

280 nodes, each
with 4 processors
make 1120
processors
available at the
time of our use

Figure 4.2: ASCI Blue-Pacific topology.

22

4.1.2 ASCI Blue-Pacific

ASCI Blue-Pacific (Blue), manufactured by IBM, is a supercomputer at LLNL with

336 nodes, each with four 332 MHz PowerPC604e processors. Atthe time of our usage, the

CPU resource pool consisted of 280 nodes. Each node has a minimum of two SCSI disks

(each 4.5 GB) and 1.5 GB RAM. The server consists of 6 nodes each with four 332 MHz

PowerPC604e processors, internally connected by the TBMX adapter. The server has a disk

capacity of 19 TB, of which 3 TB is local disk space and the restis the GPFS file system. The

nodes are interconnected by a SP2 switch [2]. ASCI Blue-Pacific theoretical peak performance

is 3868 GFlops and the maximum attained performance is 2144 GFlops. Blue ranks fifth in

the TOP500 listing of 2001 [18].

4.1.2.1 File System

The file system is General Parallel File System (GPFS) with a total capacity of

16 TB. GPFS is the product version of the Tiger Shark file system of IBM. The global store

GPFS provides high performance to run parallel applications by striping files across multiple

disks achieving an aggregate bandwidth of 2.5 GB/s [4, 12]. GPFS has all data including the

metadata on each node, preventing a metadata bottleneck. For increasing throughput of the

actual data access, GPFS uses Virtual Storage Disk (VSD) servers that do not physically hold

the data, allowing an application to still be able to use thatserver as if it physically had the

data. Hence data can be physically shared or can be virtuallyshared through the software sim-

ulations of the storage area network. By having more than oneVSD server, data is virtually

replicated, providing robustness to the file system in spiteof node failure of the VSD servers.

23

Parallel System Support Program (PSSP) for AIX is used to provide a fault tolerance

mechanism [16]. PSSP is a collection of software tools, for the IBM SP cluster that provide

good scalability and performance efficiency. Also it provides system recovery and problem

management, making GPFS automatically recover in the eventof a node failure.

GPFS is made highly scalable mainly due to the distributed locking feature [47].

Distributed locking provides cache consistency between nodes. Read throughput scales pro-

portionally with the scaling of the nodes. The write throughput also scales well due to the

token server mechanism. The token server issues tokens to processors that request them. The

typical reason for a processor to request for a token is to update a resource, typically a shared

file, and the update is possible only after it receives the token. Since there is only one token,

updates are synchronized and consistency is maintained. Using heuristics the communication

between the process and the token server is minimized. In the event of failure of the token

server, another node becomes the token server and by issuingmessages to every node, it is

able to obtain the information about which processor currently holds the token and can begin

servicing from that point on. Through the token server mechanism, the throughput for I/O is

high irrespective of whether many processors are accessingmany files simultaneously or many

processors are accessing one file at the same time.

4.1.2.2 Scheduler

Thepsub command of the Distributed Production Control System (DPCS) is used

to submit a DPCS job script. The parameters required by DPCS to run a batch job are provided

through the script. Typical parameters include the executable, the number of nodes, number

24

of tasks per node, Estimated Time of Completion (ETC) for thejob, standard error and output

files. When the requested resources are available, the DPCS will pass the queued job to the

Load Leveler queue [1]. Load Leveler is a distributed network-wide job management facility to

dynamically schedule and manage jobs for IBM SPs [14]. The scheduler is meant for all kinds

of workloads, parallel or serial, and to efficiently use all the resources available, irrespective

of the workload distribution and arrival rate. The scheduler selects the processor(s) from the

available pool according to the requirements of the clients, and submits and starts the execution

of the job on the chosen processor(s).

4.1.2.3 Supercomputer Usage

ASCI Blue is used to solve a variety of scientific calculations by using parallel appli-

cations. Some of these applications are sPPM to solve compressible turbulence problems [19],

MPQC to search the existence of polymeric forms of nitrogen [44], JEEP [30], IMPACT, a cou-

pled atmospheric modeling simulation [46] and Ardra to simulate the flux of fusion neutrons

that comes out of the Nova laser target chamber [23]. All these applications are characterized

as writes mostly, with an ability to restart from datasets ofintermediate calculations.

4.1.3 Vivid Cluster

Vivid cluster is a 16-node Linux cluster each with two 800 MHzPentium III proces-

sors. Each node has a local SCSI disk with a capacity of 18 GB and a 0.5 GB RAM memory.

The connection between nodes is through a Gigabit Ethernet.This cluster is part of the visu-

alization group at LLNL. The server is a 400 MHz Alpha that is connected to all the nodes by

25

CLIENTS
16 Compute Nodes

18 GB Local SCSI disk
0.5 GB RAM

Myrinet

switch
Gigabit

Ethernet switch

800 MHz
Pentium III

800 MHz
Pentium III

SERVER
400 MHz Alpha

GB Local disk
1 GB RAM

16 nodes,
each with
dual-
processors
make 32
processors

374.3

Figure 4.3: Vivid cluster topology.

26

Myrinet [8].

4.1.3.1 File System

There are two global file systems: a Network Appliance (NetApp) NFS server and

a Parallel Virtual File System (PVFS). NetApp NFS server hasa filer for performance im-

provements. NetApp filer storage appliances are the building blocks for scalable network

storage [15]. NetApp filers are robust while providing high data access throughput and easy

scalability. The Vivid cluster uses the F740 filer for the NFSfile server, which can scale up to

1 TB. High throughput, availability, and reliability are provided by the built-in RAID system.

A battery-backed NVRAM provides additional data protection. The server is scalable in terms

of the number of users as well as the storage capacity of the file server.

The PVFS project [45] started as the popularity and usage of PC clusters increased.

The goal of the project was to create a parallel file system forclusters. PVFS offers a global

name space, striping data across multiple I/O nodes. Data is physically striped across disks,

thereby decreasing the bottleneck of accessing from one disk, increasing data access through-

put. By striping files over the local disks of the cluster nodes, one can obtain better perfor-

mance than an NFS server [39, 24].

4.1.3.2 Scheduler

There is no explicit job scheduler in vivid cluster. Parallel jobs are implemented

using MPI [10] on selected nodes. Users negotiate for nodes by emailing each other.

27

4.2 Application Instrumentation

The goal of our instrumentation was to study the I/O behavior of the two applica-

tions, similar to the characterization work done by Smirniet al [49]. The access pattern of

the applications consists of small bytes of reads, interleaved with computation, followed by

writes. Application reads are implemented using special-purpose library. The application-

level read calls incorporate some of the alignment process,and are not strictly I/O. The writes

were implemented as standard system calls with no special library.

The performance and access pattern of these applications can be studied using the

Pablo [43] I/O instrumentation library, that supports data capture and analysis. The goal of

the Pablo project was the development of a portable performance data analysis environment

to be used by many massively parallel systems. The Pablo instrumentation library is a set of

wrappers around standard I/O calls to collect trace data. Because the chosen applications had

a very large number of small (each typically a few bytes) buffered I/O operations, the trace

perturbation was very large. Hence we decided to trace the special purpose library operations,

instead of tracing the individual character buffered I/O calls.

PsLayout and WABA are run in parallel as separate applications on different nodes,

creating several individual trace files, one for each portion of the job. Tracing overhead was

negligible. Self-Defining Data Format (SDDF) tools of Pablolibrary can be used to combine

these files to achieve a global temporal ordering.

28

± Vivid cluster

* Myrinet

¶ NFS server
± CBSE cluster ± ASCI Blue-Pacific

¶ GPFS
* 100 Base-T Ethernet * SP-2 switch

± Vivid cluster
¶ NetApp NFS server ¶ PVFS
* Myrinet

Loosely
coupled

Tightly
coupled

Figure 4.4: The spectrum map of the architectures(�) in terms of file system(�) performance and
interconnect speed(�). Note that the terms loosely and tightly coupled indicates the parallel processing
support of the architecture.

4.3 Experimental Setup

We characterized psLayout and WABA to understand their performance of different

file systems. The goal of this experiment is to characterize their behavior when scaled with

different file systems and input file locations. We examined performance on three different

architectures and four different file systems for psLayout and one architecture and file system

for WABA. The first architecture is a low-cost cluster (CBSE)with a reliable server (NFS) and

a slow interconnect (100 Base-T Ethernet). The second architecture, ASCI Blue-Pacific, is at

the opposite extreme to the first. This architecture has a highly scalable file system (GPFS) and

a very fast interconnect (SP-2 switch). The third architecture, Vivid, falls somewhere between

the two extreme cases, with two file systems and a fast interconnect (Myrinet). The first file

system is robust (NetApp NFS), and the second has support forparallel applications (PVFS).

29

The three architectures provide a range of multiprocessor designs. Imagine these

architectures (represented by�) to be in a spectrum, as shown in Figure 4.4. Moving from left

to right, the performance of the file system for parallel applications (indicated by�), increases.

The interconnect speed (labeled by�), increases as well.

The two experiments with psLayout on the three architectures differ in the input file

sizes and the number of processors. In the smaller data set experiment, the sequence file is

a 4 MB chromosome sequence and the 411 MB sequence database isBAC Ends (also called

bac ends) taken from Bacterial Artificial Chromosome (BAC).Both are read-only files. This

experiment was scaled to 10 processors. The large data set experiment uses a 26 MB sequence

file consisting of sequenced BAC data and the same 411 MB sequence database file. This

data set was scaled to 50 processors. The WABA experiment implements a human to mouse

genome alignment. The read-only input file sizes are 48MB and22 KB. They represent a snip-

pet of human and mouse genome respectively. This experimentwas scaled to 10 processors

on the CBSE cluster.

The pre-computation process for both applications involves the splitting of the input

sequence file or genome1 (4 MB, 26 MB, 48 MB) to the right numberof portions correspond-

ing to the scaling of the number of processors. This is shown in Figure 3.3a or Figure 3.4a. For

a one-processor run, there is no pre-computation step. For example for the psLayout alignment

of a 4 MB file with the 411 MB file on four processors, the pre-computation stage would in-

volve the split of the 4 MB file to four equal portions of approximately 1 MB each. Then each

1 MB file, or sequence, is aligned with the sequence database.The size of the split files are

approximate because the file format used in the human genome project to represent the genes

30

(FASTA) can only be split in certain safe places called “markers” [28]. For a one-processor

run for the same data set, the sequence is not split or split into one part.

We consider the performance impact of different file locations as we scale the appli-

cation to more processors. The read-only input files may be located at the global store, or one

on the global store and the other at local disk, or both on local disk, creating four combinations:

global/global, local/global, global/local and local/local.

4.3.1 PsLayout with Small Data Set

We implemented the alignment between chromosome sequence (4 MB) and the bac

ends taken from Bacterial Artificial Chromosome (BAC), which is 411 MB using psLayout.

We characterized this alignment on all the three architectures with different input file locations

and scaled to 10 processors.

For each architecture, the storage resources include the global store and the local

disk. For the input file to be at the local disk, it must be copied there. Hence the tradeoff for

replication to local disk is the fast access time verses copycost. The output is written to the

global store.

PsLayout is embarrassingly parallel, with no communication between nodes except

through I/O, and should ideally scale very well. However, as shown by Figure 4.5a, it does

not. Figure 4.5a shows speedup of psLayout on the CBSE cluster using the small input data

sets, both located on the global store. With 10 processors, the speedup is approximately 1.65.

This run took about 50 minutes to complete on a single CBSE processor.

In Figure 4.5b, we examine the breakdown of the execution timefor psLayout. Here

31

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

NFS/NFS

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 ti

m
e

(lo
g

sc
al

e)
 in

 s
ec

s

Number of processors

Execution time
Chromosome seq read time

bac ends read time
Library write time

(a) (b)

Figure 4.5: PsLayout run on CBSE cluster with 4 MB and 411 MB input files on NFSservers (a)
Speedup (b) Aggregate time breakdown.

we compare the aggregate of individual execution times on separate nodes as we scale the

number of processors. The difference between aggregate execution and sequence database

(bac ends) read time is negligible, indicating that most of the alignment computation is inter-

leaved with the character by character read of the sequence database. The write time represents

a very small fraction of the total execution time (less than 0.05%).

As shown in Figure 4.6, some large application reads occur inthe beginning of

execution, followed by many small writes. This confirms our description of I/O activity given

in � 3.2. Some of the reads are exceptionally long; this varianceis caused by the lengths of the

sequences and the difficulty of alignment.

32

1
10

100
1000

10000
100000
1e+06
1e+07
1e+08

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
um

be
r

of
 b

yt
es

Library reads

0.001
0.01

0.1
1

10
100

1000
10000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
ur

at
io

n
in

 s
ec

s Library reads

10

100

1000

0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 b

yt
es

Timestamp in secs

writes

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 500 1000 1500 2000 2500 3000 3500

D
ur

at
io

n
in

 s
ec

s

Timestamp in secs

writes

(a) (b)

Figure 4.6: Timeline of psLayout on CBSE cluster for 4 MB and 411 MB NFS file inputs (a) Number
of bytes accessed through library reads and writes (b) Duration of these library reads and writes. Note
that the vertical axes are in logarithmic scale and the x-axis for all the figures is in seconds. There is a
library read operation at the top right corner of the graphs,apart from the legend.

4.3.1.1 Input File Location

The major suspect in the poor scalability of the CBSE clustershown in Figure 4.5a

is file location. Files are shared on the CBSE cluster using NFS, but we know this per-

forms poorly under concurrent requests, evident from Figures 4.6a and 4.6b. For convenience,

databases are kept at the global store; however, for performance reasons, we could consider

replicating either one or both of the inputs at the local nodedisks. Now we have the choice of

using any one of the replicated copies.

We implement PsLayout using the same input files but considerthe effect of replicat-

ing them from global to local store, to understand the impactof file location on performance.

For any architecture, the combination of input files are global/global, local/global, global/local

33

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 r

ea
d

tim
e

in
 s

ec
s

Number of processors

NFS/NFS
Local/NFS
NFS/Local

Local/Local

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 r

ea
d+

co
py

 ti
m

e
in

 s
ec

s

Number of processors

NFS/NFS
Local/NFS
NFS/Local

Local/Local

(a) (b)

Figure 4.7: Comparison of read times with increased levels of parallelism of psLayout on CBSE cluster
for 4 MB and 411 MB file inputs and different file locations (a) excluding copy time overhead (b)
including copy time overhead.

and local/local. For the last three combinations, we incur acopy time overhead for copying

one or more input file(s) to the local store. For the CBSE cluster, files must be copied to all

nodes in the cluster because we do not know initially, to whatnode Condor is going to assign

the job. We use an optimized binary tree copy program that understands the cluster topology.

The copy time is significant for the CBSE cluster because the files are copied to all the nodes

in the cluster through a slow interconnect. For Blue and Vivid, we need copy only to those

processors doing the alignment. In these cases, the copy timeis insignificant primarily because

of their faster interconnects and also because files are copied to only the specific processors

doing the alignment process. For example, for the 411 MB file,copy time to the 93 nodes on

the CBSE cluster is 6093 secs, in contrast to 62 secs on Vivid cluster to copy it to one node,

and 82 seconds to copy it to 30 nodes, a difference of two orders of magnitude.

34

Figure 4.7a and 4.7b show aggregate application read time for psLayout excluding

and including copy overhead, respectively, for different file locations on the CBSE cluster

when scaled to different numbers of processors. Depending on the precise parallelism of the

input file, there are actually slight variances in the total time to perform the alignment; this is

why local/local and NFS/local for four processors takes slightly less time than for two proces-

sors and slightly more for ten. The library read calls that includes reading and the alignment

process, account for more than 99% of the total execution time. Because we compute the

aggregate execution times, ideally the curves in Figure 4.7a and 4.7b should be close to hori-

zontal. Instead we see in Figure 4.7a that the local/NFS (4 MB/411 MB) and NFS/NFS curves

begin to increase significantly even at four processors. NFSfile server performs poorly on

concurrent operations. In this application, reads to the NFSfile from all the nodes are con-

current. Hence NFS is as predicted a bottleneck. For a small degree of scaling, the cost of

copying files can erode the performance improvement, but as the number of nodes increases,

NFS becomes a very significant bottleneck, and the benefit of replication becomes clear.

Vivid represents a compromise between the CBSE cluster and Blue; it has a fast

network and fast NFS server. Figures 4.8a and 4.8b show aggregate execution and copy time

from Vivid.1 The possible input file locations are PVFS, NetApp NFS and local disk. For the

local disk copy, the file is copied from the NetApp NFS server to the local disk. With a very

small copy overhead and efficient file server performance on concurrent access, results from

Vivid show good scalability. The NFS/local and PVFS/PVFS combinations perform best when

scaled to ten processors. The PVFS/PVFS input file combination performs slightly better than
�

Data from the local/local four processor run is unavailable.

35

3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
ex

ec
ut

io
n+

co
py

tim
e

in
se

cs

Number of processors

NFS/NFS
Local/NFS
NFS/Local

Local/Local

3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
ex

ec
ut

io
n+

co
py

tim
e

in
se

cs

Number of processors

PVFS/PVFS
Local/PVFS
PVFS/Local
Local/Local

(a) (b)

Figure 4.8: Comparison of execution times with increased levels of parallelism of psLayout on Vivid
cluster for 4 MB and 411 MB file inputs and different file locations using (a) NFS server and Local disk
(b) PVFS and Local disk.

the NFS/local one for 10 processors.

ASCI Blue provides a robust architecture with fast network infrastructure and a file

system highly tuned for parallelism. Figure 4.9 shows the four input file combinations for

ASCI Blue, with GPFS and local disk as possible file locations. All the four combinations

perform similarly, and are comparable to the CBSE cluster without considering copy overhead.

For the local copy, the file is copied from the NetApp NFS server to only those processors

implementing the alignment.

4.3.1.2 Load Balancing

Even when all I/O is local, psLayout does not scale very well. We can see from

Figure 4.10 that this is because of problems with load balancing. There is one node among the

10 processors whose alignment takes at least more than double the average time. The input to

36

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 e

xe
cu

tio
n+

co
py

 ti
m

e
in

 s
ec

s

Number of processors

GPFS/GPFS
Local/GPFS
GPFS/Local
Local/Local

Figure 4.9: Comparison of execution times with increased levels of parallelism of psLayout on ASCI
Blue-Pacific for 4 MB and 411 MB file inputs and different file locations.

�
� ���
�������
� � ���
�������
� � ���
�������

� � � ���
	

��

�� �
��� �
�� �
���
�

������������ "!$#�� �%&��'('(�� '

� � �"�

Figure 4.10: PsLayout workload distribution for 4 MB and 411 MB local fileinputs on the CBSE
cluster.

37

Architecture Optimal input file combination

CBSE cluster NFS / local
ASCI Blue-Pacific GPFS / GPFS
Vivid cluster local / NetApp NFS
Vivid cluster PVFS / PVFS

Table 4.1: Summary of optimal file location for psLayout run with a smalldata set.

this node has a lot of repeats in its sequence, causing delay in the alignment, because several

sequences match for each alignment. In practice, scientistsat UCSC manually balance the

cluster load by timing the submission of their jobs.

4.3.1.3 Summary

PsLayout, a typical computational biology application, has characteristics very dif-

ferent from many scientific applications. It is embarrassingly parallel, with all communica-

tion through the shared global store. We instrumented the application-level I/O calls using

the Pablo performance environment, which supports user-level performance data capture and

analysis. PsLayout is structured so that the alignment computation is inextricably interleaved

with the I/O. Most of the application time (approximately 98-99%) is spent in user-level I/O

libraries doing buffered reads, memory allocation, and string comparisons. The write time is

insignificant by comparison.

We characterized a small data set experimental run of psLayout on three architec-

tures. Because each node running the program needs to accessthe two input files, a scalable

shared store (either a parallel file system or network file system) is necessary. Scalability of

38

this global store is crucial to performance. Even with a scalable file system, due to the nature

of the algorithm, load balancing is a problem and ideal speedup is not attained.

Another factor affecting performance and scalability of this application is the input

file location. We calculate the optimal file location combination as the combination that takes

the minimum aggregate execution time. Table 4.1 shows the optimal file location combination

for psLayout when scaled to 10 processors.

4.3.2 WABA

WABA was implemented to find the alignment between the human and the mouse

genome. By knowing similarity between the two genes, we willbe able to predict what a

particular sequence in the human genome might correspond to, based on the known sequences

of the mouse genome. WABA was characterized on the CBSE cluster. Since it is a production

system and also because WABA is a compute-intensive algorithm, we used a small problem

set. The input size used was 48 MB and 22 KB, representing a snippet of the human and mouse

genome, respectively. The four possible input file combinations are global/global, local/global,

global/local and local/local. The output was written to theNFS server. The same experiment

was not tested on the other two architectures because it is not I/O-intensive.

WABA, like psLayout has no inter-process communication except through the I/O.

The experiment when both the files are at NFS server does not show ideal scaling as seen in

Figure 4.11a. The execution speedup obtained is approximately 1.5 on scaling to 10 proces-

sors.

The breakdown of the aggregate execution times is shown in Figure 4.11b. The

39

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

NFS/NFS

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 ti

m
e

(lo
g

sc
al

e)
 in

 s
ec

s

Number of processors

Execution time
Library read time
Library write time

(a) (b)

Figure 4.11: WABA with 48 MB and 22 K at NFS server (a) Execution and I/O speedup,where I/O
speedup is the upper bound, assuming perfect parallelism (b) Aggregate times breakdown

library reads is the application-level reads that are interleaved with the alignment process. The

library read time for one processor run are insignificant, approximately 5%. But the library

read times are significant when more processors are used, up to 75% of execution time for ten

processors. Each pass computes and writes standard outputs, irrespective of the input size. The

way the passes reads the date is dependent on the heuristics of the pass. With ten processors,

second and third pass read overhead increases by more than a linear factor. Hence the reason

for the increasing read percentage as we scale is because of the additional overheads of second

and third pass reads in the algorithm.

The increase in write time represents a much smaller percentage by comparison.

The write overhead increases for the same reason, but because writes represent a very small

portion of the execution time, the increase is not significant.

The timeline graphs of WABA when both the files are at the NFS server on one pro-

40

1

10

100

1000

10000

100000

0 50 100 150 200 250

N
um

be
r

of
 b

yt
es

(lo
g

sc
al

e)

Timestamp in secs

Library reads
Library writes

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250

D
ur

at
io

n
(lo

g
sc

al
e)

 in
 s

ec
s

Timestamp in secs

Library reads
Library writes

(a) (b)

Figure 4.12: Timeline of WABA for 48 MB and 22 KB NFS file inputs at NFS server. (a) Bytes
accessed (b) Operation durations.

cessor are shown in Figure 4.12. We can see the initial I/O operation are reads, corresponding

to the reads in the first pass. Then the high-error margin alignments are written to a temporary

file. This is followed by reads, corresponding to the second pass reads, and the third pass

writes. This confirms our description of I/O activity in� 3.3. The number of bytes written is

higher initially due to the high error margin of the first pass. Subsequently by the use of more

stringent heuristics in the second pass, a lower error margin is observed and only the most

accurate data is written, decreasing the bytes written.

4.3.2.1 Input File Location

As in the previous experiment, the input file copies can be located at either the NFS

server or the local disk. Local disk copies must be made to all93 nodes. We saw from the small

data set experiment with psLayout (99% I/O-intense) that thefile location affects scalability

(� 4.3.1). The goal of this experiment is to test if that conclusion is true of a relatively less

41

200

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 e

xe
cu

tio
n+

co
py

 ti
m

e
in

 s
ec

s

Number of processors

NFS/NFS
NFS/Local
Local/NFS

Local/Local

Figure 4.13: Comparison of execution times with increased levels of parallelism of WABA on CBSE
cluster for 48 MB and 22 KB file inputs and different input file locations.

I/O-intense (4% - 75%) application.

Figure 4.13 shows the different execution times including the copy time for the four

input file combinations. The NFS server provides good performance when scaled to a small

number of processors. For Local/NFS and Local/Local combinations, the copy time incurred

exceeds the execution time of one processor run. As the number of processors increases, the

NFS access time increases and the best combination for 10 processors is local/local.

4.3.2.2 Load Balancing

The load balancing graph in Figure 4.14, clearly shows the contention at the NFS

server and why local disk access is preferred. Figure 4.14a shows the execution times when

both the files are at NFS server. We see that there is one job forevery run that takes a long time

to complete. This is due to input having a lot of repeats and this algorithm takes more time on

handling more repeats. Figure 4.14b shows the execution times when the larger file is at local

42

0

50

100

150

200

250

1 2 4 10

� �
�
���
�� e

 e
��
� u

ti
o

n
 t

im
e

 (
se

c
s)

Number of p � 	�

� ssors

0

50

100

150

200

250

1 2 4 10

 Number of processors

A
g

g
re

g
a

te
 e

x
e

cu
ti

o
n

 t
im

e
 (

se
cs

)

(a) (b)

Figure 4.14: Workload distribution of WABA for 48 MB and 22 KB file inputs and file locations at (a)
both NFS server (b) Local disk and NFS server respectively.

Number of processors scaled Optimal input file combination

1 NFS/NFS
2 NFS/Local
4 NFS/NFS
10 Local/Local

Table 4.2: Summary of optimal file location of WABA for different numbers of processors

disk and the smaller file is at NFS server. There is the same onenode that takes a lot longer

than other nodes in each run, causing load imbalance. The execution time is less when the

local disk copy is accessed (Figure 4.14b) on comparison to NFS access (Figure 4.14a). This

justifies the local disk copy to be accessed for the 48 MB file. The speedup is not significant

because of the lone job that takes up a long time.

4.3.2.3 Summary

WABA, a genome alignment application, uses complex heuristics to align genome

sequences. This application is compute-intense and the percentage of execution spent on I/O

increases when scaled to large numbers of processors. We characterized the performance of

43

WABA on the CBSE cluster with varying input file location and number of processors. The

performance of WABA when run with a small problem size variesdramatically depending on

the file location and the number of processors scaled. As an example, Table 4.2 shows the

optimal input file combination, assuming the same definitionas before for optimal.

From the two characterization efforts on psLayout and WABA,we see that irre-

spective of the I/O intensity of the application, the performance of the computational biology

applications run on the CBSE cluster depends on the file location and the number of processors

scaled.

4.3.3 PsLayout with Large Data Set

PsLayout was implemented to align the sequenced BAC file (26 MB) and the bac

ends taken from Bacterial Artificial Chromosome (BAC), which is 411 MB. This run was

relatively large. For larger experiments with larger numbers of processors, NFS global storage

is a bottleneck and it is obvious that there is a crossover point where the additional copy

overhead is insignificant compared to the overhead caused bythe NFS bottleneck. Because

the CBSE cluster is a production cluster, we could not createa bottleneck at the NFS server

with 50 processors reading the 411 MB file. Hence we ran the experiment with the 411 MB

file at the local disk and 26 MB file at the NFS server. The file location selection imitates

how the experiments are run in the cluster. When there are tworead-only input files, the

smaller one is accessed through the NFS server and the largerfile from the local disk. The

Vivid cluster has 33 nodes, hence this run was scaled up to 30 processors on Vivid. The same

input file combination as CBSE is run on Vivid to make a comparison. All the four input file

44

26000

28000

30000

32000

34000

36000

38000

40000

42000

44000

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 e

xe
cu

tio
n+

co
py

 ti
m

e
in

 s
ec

s

Number of processors

CBSE-NFS/Local
Vivid-NFS/Local
Vivid-NFS/NFS

26000

28000

30000

32000

34000

36000

38000

40000

42000

10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 e

xe
cu

tio
n+

co
py

 ti
m

e
in

 s
ec

s

Number of processors

GPFS/GPFS
Local/GPFS
GPFS/Local
Local/Local

(a) (b)

Figure 4.15: Aggregate execution time of psLayout using 26 MB and 411 MB inputs (a) NFS and local
file input on CBSE and Vivid clusters (b) Comparison of execution times for different file locations on
ASCI Blue-Pacific.

combinations were run on ASCI Blue-Pacific.

Figure 4.15a shows the scalability of the 26 MB and the 411 MB input file run. For

this larger run, we examined only the NFS/local combinationon the CBSE cluster and the

NFS/local and NFS/NFS combinations on the Vivid cluster, with the 26 MB file at the NFS

server and the 411 MB file at the local disk. The aggregate execution time is relatively constant

as the number of processors increases, indicating good scalability. The NFS/NFS combination

on Vivid is slower than the NFS/local, although not significantly. The CBSE cluster has better

performance than Vivid because of the faster processors on the CBSE cluster.

We examine the scalability of this application on Blue in Figure 4.15b for different

combinations of local and global store. All combinations scale well for 50 processors. For

different numbers of processors, different combinations are slightly better or worse. Hence

45

this supports our claim that file location and number of processors for a given architecture and

file system are important factors affecting performance of this application.

4.4 User-Level Library

From the characterization efforts of psLayout and WABA, we see that performance

of computational biology applications is dependent on manyfactors and one of them is file lo-

cation. This conclusions is relevant to most of the other computational biology applications at

UCSC, which have similar characteristics to either psLayout or WABA. Currently, the optimal

file location choice is made manually by the scientists at UCSC. Our characterizations showed

the choice of optimal file location to be important and non-static.

46

Chapter 5

Design and Implementation of

dSOARS

From Chapter 4 we see that I/O scalability problems are evident with even a small degree of

parallelism. Programmers at UCSC alleviate bottlenecks bymanually replicating databases to

improve locality, and this approach works. Given the low cost of storage, replicating databases

is a reasonable solution for improving performance, but managing these replicas is difficult and

time consuming. As explained in Chapter 1, storage cost trends and genomic data trends are

such that indiscriminate replicas are not a cost-effectivesolution.

To address this problem, we are developing a user-level I/O library for a new model

of location-transparent storage. This library maintains read-only replicas of records and infor-

mation about access times. Therefore, a read access to a record may be redirected to the most

appropriate location. Unlike a traditional cache, where there is a strict hierarchy of access

47

Registers

L1 Cache

L2 Cache

DRAM

Magneto-Optical

Tapes,
Disks,

Optical,

Figure 5.1: Memory Hierarchy.

���������
	��
� �������

�����������������! #"$�%�
&'&'(�)�* ��+,��-.��/�021��

34���
5

687:9
;,< & ��
= ":>

�?/�1 * �?���./�1�@A� & >B�C@C�$ D0E@A����F:@!G <�H �IGB"��$>�����J

= ":> �?/�1 * �?��>�� <$K 0L�!-M- < -N@A�O"�/.��>�� < 02�!-�- < -.�IGB"��$>,�P��J

Q�Q
Q
Q�Q$Q�Q
Q�Q$Q

R
SUT �������
	��V�XWBYZ� R\[�] ����^_�����] �`W R 	 T ^`�a	cbd^fe

Figure 5.2: Example cache table entry.

48

times (that usually differ by an order of magnitude or more) as shown in Figure 5.1, access

times to local disk or network storage change based on load and network conditions and may

not retain a strict ordering.

Figure 5.2 shows an example cache table entry for a genomic data file. Here, the

cost for accessing data at each location is calculated as a simple function of the number of

processors, the file location and the file size. Although these parameters are fixed at the start

of application execution, the cost function may be based on parameters that vary continuously.

For example, as network links break or bandwidth is limited,it will be more expensive to

access a file on the Web, and this can be reflected with this model. Ultimately, we envision

linking replication with a dynamic run-time performance model that can provide performance

data of the execution environment on-the-fly to calculate access costs.

The remainder of this chapter is organized as follows. In� 5.1 we give the overview

of the design issues and we discuss the different componentsof our design in� 5.2. In � 5.3 we

discuss the library component interactions with the clientprogram. In � 5.4 we describe how

the cost function is computed. We describe our implementation decisions in� 5.5. Finally we

give an example to illustrate library operation in� 5.6.

5.1 dSOARS Design

In distributed computing environments, data placement and access are two of the

major factors affecting performance. Replication can effectively provide access time improve-

ments. Dynamic Storage Replicator and Selector (dSOARS) provides a layer of abstraction

49

to the file locations accessed by the client user, along with dynamic performance calculations,

while managing the replicas. Only the file opens of read-onlyfiles are considered, because in

the computational biology application area, read-only input files are often used [42]. More-

over for files that are opened for writing, consistency becomes an issue that we have not yet

considered.

The first design consideration is to consider granularity ofaccess at the file level.

The other possible choice is record-level access. We did notimplement record-level access

because of the overhead of intercepting each record call. With the exponential increase of data

for computational biology applications (Figure 1.1a), thenumber of intercepting calls would

grow exponentially.

The next important design issue is the choice of where the layer of abstraction that

determines the optimal file location should be placed. The choices are to intercept all the file

open calls, to modify the kernel, or to require the application to make an explicit library call.

In typical computational biology applications, small, temporary files are opened and used, as

we saw in the case of WABA in� 3.3. Optimizing location for files with very small lifetimes

may not be beneficial. Moreover we are only focusing on read-only files. Hence optimizing

all file opens may not be the ideal design choice. To use an explicit library call, we need to

include the library header file in the client program. We callthe optimization function as a

dSOARS wrapper call and this design seems to fit our requirements. This particular design

was chosen to provide flexibility, where some files can be opened with optimization and some

are opened without.

50

(b)
(d)

(c)

(a)

(e)

Wrapper calls to find

deallocate

findOptimal

load

dSOARS

the optimal location
information to find optiminal

for easy retrieval ofcache table
Data structure that stores

file

CacheTable
computeCost

file size, # procs and
each location based on

Provides cost values for

Loads cache table
Initialization

table from memory
Deleting the cache

Cleaning

into memory

file location

BaseCostFunction

Figure 5.3: dSOARS components.

5.2 User-Level Library Overview

The library determines the file location that provides best performance, making

replicated copies as necessary. To design such a library, wemake a few assumptions. The

assumption previously discussed in� 5.1 is that we consider only read-only files. We consider

all the input files to be at a default global location. The library determines if the global file

access gives good performance; if not, it creates a local replica. This decision is done using a

cost function, which is computed from a benchmark result. Aspart of future work, we want to

track replicated copies and feed this information to the jobscheduler. When the file needs to

be accessed in another task, the job can be assigned to the node with the replicated local disk

copy.

Our first pass design has five main components, as illustratedin Figure 5.3. We

discuss the design choices of each component in detail in thesections� 5.2.1 to � 5.2.5.

51

5.2.1 Initialization

The major task that the user library should provide is to choose the optimal location.

First, the cache table, which holds the cost function parameter values associated with each

file, is loaded in memory. The design decisions were to eitherload the cache table during the

initialization phase or with every dSOARS file optimizationcall. For the former choice, the

advantage is we only need to load and deallocate the cache table once. The downside of this

choice is that if any changes made to the cache table during execution are not used. Moreover

if concurrently running application creates replicas of files, the additional replica information

is not reflected during the current program execution. The latter choice incurs a lot of over-

head that is associated with loading and deallocating the cache table from memory for each

dSOARS file optimization. In this design, since we do not consider dynamic network parame-

ters, the changes to the cache table are infrequent. We choose to ignore the current replication

information and each program execution will work with the data from the previous program

execution. Hence we choose to load the cache table in memory during the initialization as

shown in Figure 5.3a.

5.2.2 Cache Table

The cache table is the data structure that manages the replicas along with the cost

for accessing them. Hence the cache table should contain thefile name, the location, and the

cost to access it. The elements representing a unique key arethe file name, the cache level

(location), the file path and the operation (e.g. read). The operation element is included for

easy extensibility of this library to other operations. Forexample, we have not considered write

52

operation and the consistency issues, and in this design, wecan easily modify to incorporate

writes.

The value elements associated with the key are the file size and the cost value for dif-

ferent number of processors for the particular operation, obtained from the benchmark result.

The reason for having file size is because file size is one of theparameters of the cost function.

The other option would have been to make a ‘stat’ system call for each file optimization. The

file permissions are governed by the underlying file system.

The cache table data structure gets loaded into memory in theinitialization phase,

and when the cost function value of a file is needed, a search function is implemented as shown

in Figure 5.3b. This function returns the cost function value for that instance.

5.2.3 Cost Function

The cost function is the factor that determines the selection of the file location. The

cost function is a quantitative value, which is computed foreach cache level of the file as

shown in Figure 5.2. The cost is computed as a function of the file size, number of processors,

and the file location (Figure 5.3c). We assume the cache levelassociated with the minimum

cost value corresponds to the optimal location. The cost function is not a simple equation and

the parameters we consider are for our first-pass implementation and as future work, we want

to add more dynamic parameters to the cost function.

53

5.2.4 dSOARS

The dSOARS class provides location-transparency to the client program. dSOARS

provides a wrapper call,findOptimal, that takes the base name of a file as input to deter-

mine the optimal location. For optimized file opens, before the file opens calls are made in

the client program, the optimal file location should be found. The right location is determined

by the cache table component, based on the cost component. This location is returned to the

client program as shown in Figure 5.3d.

5.2.5 Cleaning

When the application has completed its task, before it completes execution, the

cache table object in memory should be deallocated (Figure 5.3e).

5.3 Interaction with the Client Program

The interaction between the client program and the user level library components is

illustrated in Figure 5.4. The interactions are described in two phases: initialization and the

dSOARS file location optimization. Part I in Figure 5.4 showsthe initialization phase. When

the client program initializes dSOARS, the cache table is loaded in memory. Initialization is

done once at the start of the application, before any libraryfile optimization calls. Part II in

Figure 5.4 shows the optimization phase. For optimized file opens, the client program calls

thefindOptimal method of the dSOARS object with the base name of the file to findthe

right location. This invokes thefindOptimal method of CacheTable. The algorithm that

54

Client program

User-level library

of dSOARS

first time invocation

Loads cache table
contents (from a file)

onto memory

dSOARS constructor
checks if this is the

minimum cost
corresponding to

Compute cost for each
instance of the match

Part I Part II

"find from benchmark"
resuled in no match,
If previous find

Find cache table
entries that

match the given file

Optimized file calls
of dSOARS

Find location

(d)

Initialization

(b)

(c)

(b)

initialize

(a)

CacheTable::find

BaseCostFunction::computeCost

if so

CacheTable::findFromBenchmarkResult

(a)

CacheTable::findOptimal

Figure 5.4: dSOARS component interaction to the client program.

55

Base Name find closest
file size match from
benchmark results

to that file size is
mapped to the base

if difference in file
size < threshold

The entries correspond

name

Yes

Figure 5.5: Mapping of the files from the benchmark results.

the user-level library uses to identify the optimal location is as follows:

� Find all entries in the cache table that match the specified base name (Figure 5.4 PartIIb).

� If no matching entry is found from the cache table, find a match from the benchmark

result (Figure 5.4 PartIId). This decision procedure is shownin Figure 5.5 and is the

findFromBenchmarkResultmethod. We assume that all the files we are referring

to are at a global location. The size of the base name file is found using a ‘stat’ system

call. This file size is matched to the nearest file size from thebenchmark result. When

the difference falls within a threshold of 10KB, the access cost corresponding to the

benchmark match is mapped to the base name.

� The access cost for the specified base name for different locations are obtained. The

computeCost method computes the access cost value corresponding to the number

of processors of that instance as the cost value for each location. This is shown in

56

Figure 5.4 PartIIa.

� Return location with minimum cost to the dSOARS file optimization call. Thefind-

Optimal method of dSOARS returns the optimal file location to the client program.

5.4 Computing the Access Cost Function

The user level library determines the best location to read afile, based on a cost

function. To calculate this cost function, we used a microbenchmark. The goal of this bench-

mark is to provide a cost value associated with a read operation on a given architecture with

respect to different parameter considerations. In our first pass, we choose the most important

static parameters for the benchmark from our characterization results discussed in� 4.3. The

inputs to the microbenchmark are the cache level (location), file size, number of processors

and the type of architecture. The microbenchmark works as described in Figure 5.6 and the

algorithm used is as follows:

� First a file of the specified file size is created on the default NFS location (Figure 5.6a).

Creation of the file at NFS, mimics the behavior of how the CBSEworks currently, when

they replicate the dataset from genbank to NFS.

� If the cache level is NFS, the file is present at the right location and if the cache level is

Local, then it has to be first copied to the local disk.

� Every processor reads 8K blocks from the file at NFS or local file system, until the EOF

is reached.

57

on default NFS

if
Location is

NFS ?

executable =
nfs_tester

if
copy mode

 is ‘y’?

local_copy_tester
executable =

Yes

No

Yes

No

Location (l)

File size (f)

Copy mode (c)

Create file of size ‘f’

spawn executable
to ‘n’ processors

No

result =

execution time

Stop

aggrgegate

Yes

all ‘n’ jobs
completed?

local_tester
executable =

Start

(a)

(b)

(c)

(d)

(e)

Number of processors (n)

Figure 5.6: Calculation of benchmark results.

58

0
10

20
30

40
50

0

1

2

3

4

5

x 10
8

0

2

4

6

8

10

12

x 10
4

Number of processorsFile size in bytes

A
gg

re
ga

te
 e

xe
cu

tio
n

tim
e

in
 s

ec
s

Figure 5.7: Benchmark time to read on CBSE cluster from NFS.

� The benchmark time is calculated by aggregating the read times at all the processors. If

cache level is local, the benchmark time can be the aggregateread time of all processors,

including or excluding copy overhead time.

The result of this benchmark on the CBSE cluster for different file sizes and number

of processors for the cache level NFS is shown in Figure 5.7. All files are at NFS with no

replication. This graph shows an increase in read time with the increase of the number of

processors and the file size. The Local cache level benchmarkresults, excluding and including

copy times are shown in Figures 5.8 and 5.9 respectively. Thegraphs shows increase in read

time with the increasing file size and number of processors. We can also see a significant

difference in the execution time between Figures 5.8 and 5.9. When copy time is included, the

aggregate execution time (Figure 5.9), varies in proportion to the read time increase as well as

59

0
10

20
30

40
50

0

1

2

3

4

5

x 10
8

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of processorsFile size in bytes

A
gg

re
ga

te
 e

xe
cu

tio
n

tim
e

in
 s

ec
s

Figure 5.8: Benchmark time to read on CBSE cluster from Local disks, excluding copy overhead.

0
10

20
30

40
50

0

1

2

3

4

5

x 10
8

0

2

4

6

8

10

x 10
4

Number of processorsFile size in bytes

A
gg

re
ga

te
 e

xe
cu

tio
n

tim
e

in
 s

ec
s

Figure 5.9: Benchmark time to read on CBSE cluster from Local disks, including copy overhead.

60

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 e

xe
cu

tio
n

tim
e

(lo
g

sc
al

e)
 in

 s
ec

s

Number of processors

NFS
Local

Local+copy

Figure 5.10: Benchmark time to read on the CBSE cluster from different locations for 400 MB file
size.

the copy time increase.

To give a better perspective of the benchmark, we compare thetimes for a particular

file size for different cache levels. Figures 5.10 show the benchmark times for a 400 MB file

on different locations as we scale the number of processors.We see that local copy is not

always optimal. For example, for one processor, NFS access is close to local disk access. If

there is no local existing copy, NFS is best until 4 processors (Figures 5.10), after which it

is more efficient to copy. Thus, the benchmark results are used to estimate read times based

on file size, number of processors and file location. We are assuming the network bandwidth

and latency remain constant. This is often not the case and asfuture work, we want to study

dynamic network behavior.

61

5.5 dSOARS Implementation

dSOARS is implemented as a user-level library that the computational biology ap-

plications can link their applications with. dSOARS is implemented mainly using C++, with

some parts likefindFromBenchmarkResult using Perl. This software environment is

available on a large platform of workstations and clusters.The main components of the library

are C++ objects.

The client program needs to instantiate a dSOARS object on every process and the

findOptimal wrapper call of dSOARS must be called for every optimized fileopen. In

this implementation we need to explicitly specify the number of processors and give it as

an argument to the dSOARS object. Explicit passing is neededbecause we cannot always

get information about the number of processors from the job scheduler. If we had used MPI

to spawn jobs, we can get the number of processor informationduring run-time. MPI library

provides ease of use for message passing among applications. We did not use MPI because this

class of applications has no inter-process communication and doing so would have required an

overhead of linking the application with MPI libraries.

The user-level library design incorporates location-transparency and dynamic selec-

tion of the optimal file location. We discuss the components implementation choices in detail

in the five sections from� 5.5.1 to � 5.5.5.

62

Field Name Data Type Examples

baseName string “bacEnds.fa”, “mousegenome”,“humangenome”
cacheLevel enum NFS, cc01, cc12, Local+Copy
filePath string “/nfsserver/file/path/”, “/var/tmp/”
oper enum read, write, seek

Table 5.1: Cache Table Key elements and their data types with examples.

Field Name Data type Examples

fileSize int 411751352
costFunctionValue cost[]

�
10,20,30,40,50�

Table 5.2: Cache Table Value elements and their data types with examples.

5.5.1 Initialization

The cache table content is loaded into memory from a pre-defined file. This file is at

NFS server, a central location, accessible by all the nodes in the cluster. The cache table data

structure is discussed in the next subsection� 5.5.2.

5.5.2 Cache Table

The Cache Table is implemented using the Standard Template Library (STL) data

structure, map. Map is an associated array represented by a (key,value) pair. Each key is a

unique entity and can be mapped to one value.

The elements representing a unique key are the file name, the cache level, the file

path and the operation. The data types of these elements and examples are shown in the

Table 5.1. The value elements associated with the key are thefile size and the access cost for

63

different number of processors. The value elements and their respective types with examples

are shown in Table 5.2. In this implementation the cost data type is an integer.

The operations performed on this data structure are load, during the initialization

phase and search, to find the entries corresponding to the base name during optimization phase.

Given n entries in the table andm optimized file open calls, insert is
�������

and search is

�����	���
. In this implementation, we insert into the cache table only once during initialization

of dSOARS and we search for each optimization call. Hence search is the operation with

the highest frequency of occurrence. We chose the map data structure because retrieve is

����
���
����	�����
.

The cache table object has thefindOptimal member function that uses the re-

trieve or search function of map to identify the optimal file location. This function needs the

cost function component to provide the cost value as discussed in � 5.5.3.

5.5.3 Cost Function

The cost function is not a simple equation and it can have manydynamic parameters

associated with it. In this implementation, the cost function is mapped from the benchmark re-

sult. This mapping, implemented using Perl, is written in a plain-text file in a central location,

accessible from all the nodes in the cluster. To make the library extensible, we implemented

the cost as a base virtual class with derived classes implementing thecomputeCost virtual

method that over-rides the base class virtual function. Future cost functions can incorporate

other parameters.

64

5.5.4 dSOARS

The client program interacts with the user-level library toprovide location trans-

parency. dSOARS class provides the interaction functionality. ThefindOptimal method

of the dSOARS class determines the optimized file location byusing the cache table and cost

function classes. Before this method execution, the cache table has to be loaded in memory,

which by default happens when initializing the dSOARS classobject.

The client program creates the dSOARS class object and callsthefindOptimal

method to find the optimal location before any optimized file open calls in the client program.

The library computes the best location and returns that as a string object to the client program.

The client program can easily convert the string to a char* object and use it in the standard

UNIX file open system call.

5.5.5 Cleaning

Since allocated objects are automatically deleted at the end of the execution, clean-

ing operation is implemented implicitly.

5.6 Implementation Example

The implementation is done such a way that the inclusion of the library into the

client program can be done with minimum changes to the sourcecode. The changes made

are shown in Figure 5.11. First the client program needs to create an object of dSOARS,

specifying the number of processors. The declaration of thedSOARS object initializes and

65

Client Application

 ...
#include "dSOARS.h"

#define numproc 10
main()

{
string baseName, fileName;
string optimalLocation;

FILE *fp;

 ...
optimalLocation = ds->findOptimal(baseName);

fileName = optimalLocation + baseName;

 fp= fopen((fileName.c_str()) ,"r");
 ...

}

 dSOARS *ds = new dSOARS(numproc);

User Level Library

Find optimal file
location for this

instance
(b)

contents
Load cache table

(a)

Figure 5.11: dSOARS usage example (a) dSOARS object initialization (b) finding optimized file loca-
tion using dSOARS library calls.

loads the cache table into memory (Figure 5.11a). Before opening a file, the application calls

findOptimal as shown in Figure 5.11b. This function returns the optimal location as a

string. By concatenating this with the base name we get the file path, which can now be

opened using the standard UNIX system call.

66

Chapter 6

Performance Evaluation of dSOARS

DSOARS can improve the I/O performance of applications by dynamically selecting the best

location for data, replicating files as necessary. We evaluate dSOARS using three applications

on the CBSE cluster.

The first application is a parallel implementation of grep. Grep is a UNIX command

to search for a pattern in the specified file(s). A list of files is given as input and is searched for

a match of the given pattern. The list of files can be split to make parallel implementation of the

sequential search program. This application is simple, data parallel, and easily load-balanced.

The second and third applications are psLayout and WABA.

The rest of this chapter is organized as follows. We describethe experimental design

in � 6.1. Grep results are discussed in� 6.2. In � 6.3, we describe the psLayout experimental

results. WABA results are described in� 6.4. We summarize the performance of the user-level

library in � 6.5.

67

6.1 Experimental Design

We evaluated the performance of dSOARS in the CBSE cluster. Since it is a produc-

tion system, no nodes and server load assumptions are made. Also, the number of processors

scaled are up to 20, because we had low priority on the clusterand we could only get a small

portion of the cluster. We are comparing the behavior of the application when the client makes

the choice of the file location and when dSOARS determines theoptimal location for the client

dynamically. The possible file locations are NFS and local. IndSOARS implementation, the

client program specifies the base name and the library determines the optimal file location for

that instance. The overhead on including the user-level library is negligible.

All the experiments were run with only one existing copy of the file, at NFS. All the

replicated copies at the local disks were removed before each test. Hence the test indicates the

upper-bound behavior of the library, assuming uniform network behavior in the cluster.

6.2 Grep

The first application we examined is the parallel implementation of grep, a search

utility. We choose this particular program to test because grep is a simple program whose

execution time is a factor of the I/O to be done. Evaluating theperformance of this program

shows the performance gain of making the right I/O calls, through the dSOARS library.

Grep, the UNIX command does pattern matching of expressions.The inputs for this

command are the file(s) to be searched and the expression. Theoutput for this command is

the list of the lines from the specified file(s), with their line numbers, that match the specified

68

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20

A
gg

re
ga

te
 ti

m
e

in
 s

ec
s

Number of processors

NFS
Local

Local+Copy
dSOARS

Figure 6.1: Performance of dSOARS implementation on a parallel implementation of grep.

expression. In our implementation, the input to the program are the file that contains the list

of files to search for the expression and the search expression. We split the list of files and

giving a portion of the work to different processors. The split was random with no uniformity

and so each processor may do more or less work depending on thenumber of files and their

respective sizes. In this experiment, we are not trying to perform load balancing, instead, we

want to study the behavior of dSOARS implementation. There are 11 input files with a random

mix in file sizes totaling 75 MB. The smallest and the largest file size are 1 MB and 20 MB,

respectively. This experiment is parallelized to 20 processors.

We ran the same grep program with all the input files to be searched from NFS or all

from local disk. For all the files to be at the local disk, they have to be copied there first. Since

we do not know what node would be assigned by Condor to do the search, we need to copy the

69

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 ti

m
e

in
 s

ec
s

Number of processors

NFS
Local

Local+Copy
dSOARS

200

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 ti

m
e

in
 s

ec
s

Number of processors

NFS
Local

Local+Copy
dSOARS

(a) (b)

Figure 6.2: Performance of dSOARS implementation in (a) psLayout (b) WABA.

input files to all the nodes. The result of this experiment is shown in Figure 6.1. As we can see

from the graph, NFS and Local locations provide good scalability although NFS access took

500 to 750 seconds longer. If files are replicated on all the local disks to increase performance,

the search time is less (Local), but when the copy overhead isconsidered (Local+Copy), the

execution time increases. In dSOARS, the right location for the files is determined and they

are replicated, if the cost function favors an additional copy. For example, for the one and

twenty processor runs, the number of files copied to local disk on each processor were 4 and 8

respectively. dSOARS implementation shows good performance, close to the local disk access

performance, but without a huge copy overhead.

70

6.3 PsLayout

PsLayout, described in� 3.2, takes two read-only files as input. The data set consists

of 4 MB and 411 MB input files and is scaled to 10 processors. The4 MB dataset is a collection

of 52 FASTA files, each typically in the order of several KB. The library searches for each of

the FASTA files to find the right location. The 411 MB is one large file and it involves one

library file search. The performance of the dSOARS implementation is tested by comparing

the results of dynamic replication with all the files access to be NFS or Local (including and

excluding copy overhead). We did not test the larger run of psLayout scaled to 50 processors,

as we had limited access to the resources.

The results are shown in Figure 6.2a. With small number of processors (one and

two), the dSOARS implementation performs equivalently to NFS and Local access, without

the copy overhead. With the increase in processors, the dSOARS implementation performs

close to the local disk access with a small copy overhead. ThedSOARS library replicates the

input files to the local disk, if the cost function favored that decision. The number of replica-

tions of this run is dependent on the number of files replicated and the number of processors.

For instance, no file is replicated for the one-processor runand the 411 MB file is replicated

on both the processors for the two-processor run. For the ten-processor run the 411 MB and

one other file is replicated on all ten nodes.

71

6.4 WABA

WABA, described in� 3.3, takes two input files of sizes 22 KB and 48 MB. Both

the files are one large FASTA file. The 22 KB file is split across safe “marker” positions to

parallelize the application. Results using dSOARS are shown in Figure 6.2b.

Local disk access shows good scalability. When the files are accessed from the NFS

server location, the execution time increases with the increase in the number of processors. In

the dSOARS implementation, the number of replicated files for the first input is dependent on

the file size and the number of processors. The number of replications is zero for one-processor

run and one for each processor in the ten-processor run. Figure 6.2b shows reasonable per-

formance of dSOARS when scaled. Local disk access is only considered with the added copy

cost, if the cost function favors replication. Sometimes the dSOARS implementation shows

worse performance, than all NFS reads (4 processor) becauseof the reads to temporary files

created in the first and second passes, which are not optimized using dSOARS.

6.5 Summary

We have tested the dSOARS performance in CBSE cluster using aparallel grep

implementation and a small experimental data set for psLayout, and WABA. The possible lo-

cation choices were NFS and local disk. All the local copies were deleted before each run,

hence the results are an upper bound and considerable performance gain is clearly seen as the

number of processors increases. dSOARS is able to provide performance improvements by

smart replication of data, providing good trade-off between server bottleneck and copy over-

72

head. The number of replicated copies depend on the number ofprocessors and the file size.

dSOARS shows good scalability across different file systems(NFS and Local) and processor

configurations.

73

Chapter 7

Conclusions

We present in this thesis the design of a user-level library,dSOARS, providing location-

transparent storage. dSOARS dynamically determines the optimal file location, making repli-

cas if necessary. The library determines the optimal location based on a cost-function. The

cost-function is complex, and as a first pass we have considered three parameters, file size,

number of processors and file location, which we thought weremost important. The access

cost for each location is based on the results from a benchmark. The location that has the

minimum access cost for that instance determines the optimal location. This implementation

can be linked easily with program and we tested it on three applications. Our test results show

that our first pass implementation show reasonable performance, and achieves a good trade-off

between the server bottleneck and the replicated copy overhead.

74

7.1 Discussion

We characterized the performance of psLayout, a computational biology application

that performs genomic alignment, on three architectures. The architectures varied in their

interconnect speed and the file system. We also characterized the performance of WABA,

a genome versus genome alignment application on CBSE cluster. In contrast to psLayout,

WABA is compute-intensive. There are three passes in this application, and each pass reads

the temporary output file written from the previous pass. Dueto these temporary reads and

writes, I/O intensity increases with the scaling of the number of processors.

We determined that although it is embarrassingly parallel,psLayout has poor scala-

bility due to I/O contention and poor load balancing. We assessed scalability on a range of file

systems and architectures ranging from the low-end CBSE cluster to ASCI-Blue. For psLay-

out, the best-performing combination of input databases for 10 processors with input file sizes

4 MB and 411 MB is different for each architecture: NFS/Localfor CBSE, NFS/Local and

PVFS/PVFS for Vivid and GPFS/GPFS for ASCI-Blue. Input file location is a major factor

affecting the aggregate execution time of this application. We validated this conclusion by

running a larger problem size with input file sizes 26 MB and 411 MB and scaling up to 50

processors. The data locality also affect performance of WABA on the CBSE cluster.

Computational biology is an important application area with different I/O needs

than other scientific applications. The performance of these applications running on such

large-scale environments depend on not only the processingpower, but also data locality. The

wrong data placement might incur large remote I/O overheads that ultimately degrade the per-

75

formance, which would defeat the purpose of using a distributed system. Hence data locality

and access is a crucial issue for distributed systems. Although a fast network and parallel file

system or a scalable NFS server can service the clusters and loads, we believe that replication

of data will play an increasing role in scalability of this class of applications.

dSOARS is a library that implements smart replication basedon a cost function to

provide performance improvements. The design of this library consists of five major compo-

nents: initialization, cache table, cost function, dSOARSand cleaning. The cache table maps

the file locations with their access costs. When the base nameis passed to the optimization

function, the location with the minimum access cost is considered best. Sometimes, this re-

sults in an additional replicated copy. The client program can link the user level library and use

this functionality by making a few modifications to the source code. When the dSOARS class

object is initialized in the client program, the cache tableis loaded. Before each optimization

file open call in the client program, the dSOARS wrapper call must be called with the base

name to determine the optimal location.

We tested the library by running the applications, parallelimplementation of grep, a

pattern matching program, psLayout and WABA in the CBSE cluster, but instead of manually

providing the file location, we only specified the base names and the library chose the optimal

location. We compared dSOARS performance with the performance obtained when the client

selects the file location. Our first pass implementation shows good performance and scalability,

with a good tradeoff between the NFS bottleneck and the copy overhead.

76

7.2 Future Work

To the current framework, we want to first add more dynamic parameter considera-

tions. In addition to the benchmark result, by having a current network monitoring system, we

may be able to predict behavior much more accurately.

As an alternative to the current implementation, the library function can be incorpo-

rated into the kernel level. There are several ways in which you can approach this problem.

The best choice would be in the middle layer of the kernel at the vnode, this implementation is

more often used currently and seems to have good trade-off between the performance gained

and the semantic modifications needed for file system hacking[32]. Another alternative is

to incorporate the library in a job scheduler. Typically a job scheduler matches hardware re-

sources from the clients request to the available resource pool. We believe that data locality

becomes a serious issue and it should be part of the matching function that determines the

right processor to assign the job. Our ultimate goal is to design a system that provides data

availability with improved performance through smart replication.

77

Bibliography

[1] ASCI Blue-Pacific.
http://www.llnl.gov/asci/sc99fliers/bluepacific pg1.html, 9th July 2001.

[2] ASCI Blue-Pacific Bonus Links.
http://www.llnl.gov/asci/platforms/bluepac/bonuslinks.html, 14th Sept 2001.

[3] Condor High Throughput computing. http://www.cs.wisc.edu/condor/, 29th Mar 2001.

[4] General Parallel File System for AIX. http://www-
1.ibm.com/servers/eserver/pseries/software/sp/gpfs.html, 16th Sept 2001.

[5] Growth of Genbank. http://www.ncbi.nlm.nih.gov/Genbank/genbankstats- .html, 20th
July 2001.

[6] Historic notes about the cost of hard drive storage space.�
http://www.alts.net/ns1625/winchest.html, 20th July 2001.

[7] Human Genome Project Information. http://www.ornl.gov/hgmis/, 9th Apr 2001.

[8] Myrinet Overview. http://www.myri.com/myrinet/overview/, 14th Sept 2001.

[9] NCBI Databases. http://www.ncbi.nlm.nih.gov:80/Database/index.html, February 2001.

[10] Parallel Code Support-ASCI Blue-Pacific.
http://www.llnl.gov/asci/platforms/bluepac/parallel.html#MPI, 14th Sept 2001.

[11] Areal density increases data rates. http://www.storage.ibm.com/hdd/library/de-
nsity.htm, 21st Feb 2002.

[12] GPFS Parallel File System. http://www.almaden.ibm.com/cs/gpfs.html, 20th Jan 2002.

[13] Human Genome Project Information. http://www.cse.ucsc.edu/ rachelk, 2nd Jan 2002.

78

[14] LoadLeveler. http://www-1.ibm.com/servers/eserver/pseries/software/sp/load- lev-
eler.html, 3rd Jan 2002.

[15] NetApp Filers. http://www.netapp.com/products/filer/, 31st Jan 2002.

[16] Parallel System Support Programs for AIX. http://www-
1.ibm.com/server/eserver/pseries/software/sp/pssp.html, 6th Feb 2002.

[17] The Globus Project. http://www.globus.org, 3rd Jan 2002.

[18] TOP500 List for November 2001. http://www.top500.org/lists/2001/11, 9th Jan 2002.

[19] A.A.Mirin, R.H.Cohen, B.C.Curtis, W.P.Dannevik, A.M.Dimits, M.A.Duchaineau,
D.E.Eliason, D.R.Schikore, S.E.Anderson, D.H.Porter, P.R.Woodward, L.J.Shieh, and
S.W.White. Very High Resolution Simulation of Compressible Turbulence. InSuper-
computing 99 conference, number UCRL-JC-134237, 1999.

[20] Bill Allcock, Ian Foster, Veronika Nefedova, Ann Chervenak, Ewa Deelman, Carl
Kesselman, Jason Lee, Alex Sim, Arie Shoshani, Bob Drach, and Dean Williams. High-
Performance Remote Access to Climate Simulation Data: A Challenge Problem for Data
Grid Technologies. InSC2001, 2001.

[21] Khalil Amiri, David Petrou, Gregory Ganger, and Garth Gibson. Dynamic Function
Placement in Active Storage Clusters. Technical Report CMU-CS-99-140, CMU Parallel
Data Laboratory, 1999.

[22] James W. Arendt. Parallel genome sequence comparison using a concurrent file system.
Technical Report UIUCDCS-R-91-1674, University of Illinoisat Urbana-Champaign,
1991.

[23] Brown, Peter, Britton Chang, Keith Grant, Ulf R. hanebutte, Carol S.Woodward, and
Thomas A.Brunner. ARDRA:Scalable Parallel Code System to Perform Neutron and
Radiation Transport Calculations. InSC99, 1999.

[24] Philip H. Carns, Walter B.Ligon III, Robert B.Ross, and Ra-
jeev Thakur. PVFS:A Parallel File System for Linux Clusters.
http://parlweb.parl.clemson.edu/pvfs/el2000/extreme2000.html#simitci:frame- work,
14th Sept 2001. Parallel Architecture Research Laboratory.

[25] International Human Genome Sequencing Consortium. Initial sequencing and analysis
of the human genome.Nature, pages 860–921, February 2001.

[26] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed. Characteriza-
tion of a Suite of Input/Output Intensive Applications. InProceedings of Supercomputing
’95, December 1995.

79

[27] D.A.Thompson and J.S.Best. The future of magnetic datastorage technology.
http://www.research.ibm.com/journal/rd/443/thompson.html, 2000. Volume 44,Number
3.

[28] Dr.M.Hill. The Human Genome- About FASTA files.
http://anatomy.med.unsw.edu.au/cbl/GENOME/about/aboutfasta.htm, 29th Mar 2001.

[29] Gordon E.Moore. Progress in digital integrated electronics . InIEEE Digital Integrated
Electronic Device Meeting, 1975.

[30] Fattebert, Jean Luc, and Francois Gygi. A continuum solvation model for ab initio molec-
ular dynamics. InAmerican physical society, 2001.

[31] Remzi H.Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E.Culler, Joseph
M.Hellerstein, David Patterson, and Kathy Yelick. ClusterI/O with River:Making the
Fast Case Common. InInput/Output for Parallel and Distributed Systems, 1999.

[32] Dave Hitz, James Lau, and Micheal Malcolm. File system design for an NFS File Server
Appliance. Technical Report TR3002, Network Appliance Inc.

[33] William Kent. The Human Genome Project and UCSC. Web Page –
http://www.soe.ucsc.edu/ kent/presentations/ScholarsDay2001/, 28th Sept 2001.

[34] W.James Kent. Gigassembler: An algorithm for the initial assembly of the human
genome working draft, http://genome.ucsc.edu/goldenPath/algo.html. Technical report,
School of Engineering,University of California,Santa Cruz, 2000.

[35] W.James Kent and Alan M.Zahler. Conservation,regulation,synteny, and introns in a
large-scale c.briggsae-c.elegans genomic alignment. InGenome Research, August 2000.

[36] Tieng K.Yap, Ophir Frieder, and Robert L.Martino. Parallel computation in biological
sequence analysis.IEEE Transactions on Parallel and Distributed Systems, 9(3):283–
294, March 1998.

[37] John L.Hennessy and David A.Patterson.Compter Architecture a quantitative approach.
Morgan Kaufmann Publishers, Inc., 1996.

[38] Brian L.Tierney, Jason Lee, Brian Crowley, Mason Holding, Jeremy Hylton, and
Jr Fred L.Drake. A Network-Aware Distributed Storage Cachefor Data Intensive En-
vironments. Technical Report LBLN-42896, Lawrence Berkeley National Laboratory.

[39] Marshall Kirk McKusick, Keith Bostic, Michael J.Karels, and John S.Quarterman.he
Design and Implementation of the 4.4 BSD Operating System. Addison-Wesley , 1996.

[40] MPI-IO: a parallel file I/O interface for MPI. The MPI-IO Committee, April 1996. Ver-
sion 0.5.

80

[41] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and Michael
Best. File-access characteristics of parallel scientific workloads. IEEE Transactions on
Parallel and Distributed Systems, 7(10):1075–1089, October 1996.

[42] Personal communication. Thomas R. Slezak, Lawrence Livermore National Labs,
September 2001.

[43] Daniel A. Reed, Ruth. A. Aydt, Roger J. Noe, Philip C. Roth, Keith A. Shields, Bradley
Schwartz, and Luis F. Tavera. Scalable performance analysis: The pablo performance
analysis environment. InProceedings of the Scalable Parallel Libraries Conference,
pages 104–113. IEEE Computer, October 1993.

[44] R.Manaa. Towards a new energy-rich molecular systems:from N10 to N60. InChemistry
Physics letters, 2000.

[45] Rob Ross. The Parallel Virtual File System.
http://parlweb.parl.clemson.edu/pvfs/, 14th Sept 2001.

[46] Rotman, C.Atherton, D.Bergmann, P.Cameron-Smith, C.Chuang, P.Connell, J.Dignon,
A.Franz, K.Grant, A.Mirin, C.Molenkamp, and J.Tannahill.IMPACT, A coupled tro-
pospheric/stratospheric chemistry model:Analysis and comparison of results to observa-
tions. InAmerican Geophysical Union Annual Fall meeting, 2000.

[47] Frank Schmuck and Roger Haskin. GPFS-A Shared Disk FileSystem for Large Com-
puting Clusters. InFile And Storage Technologies, 2002.

[48] Evgenia Smirni, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed. I/O Requirements
of Scientific Applications: An Evolutionary View. InFifth International Symposium on
High Performance Distributed Computing, pages 49–59, 1996.

[49] Evgenia Smirni and Daniel. A. Reed. Workload characterization of input/output intensive
parallel applications. InModelling Techniques and Tools for Computer Performance
Evaluation, June 1997.

[50] Neil Spring and Rich Wolski. Application Level Scheduling of Gene Sequence Compar-
ison on Metacomputers. InACM International Conference on Supercomputing, 1998.

[51] Jon William Toigo. Avoiding A Data Crunch.Scientific American, 282:58–74, May
2000.

81

