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Abstract

Accurate disk workloads are crucial for storage systemggde$ut 1/O traces are difficult to ob-
tain, unwieldy to work with, and unparameterizable. Unfoitely, 1/O traces are extremely bursty and
difficult to characterize. Although good models of I/0O warlils would be extremely useful, traces
cannot accurately be modeled using exponential or Poisswalgdimes. Much experimental evidence
shows that I/O traces are self-similar, which researchave thoped might help to model bursty traces.
In this paper, we show that self-similarity at large timelssaloes not significantly affect disk behavior
with respect to response times. This allows us to generataiic arrival patterns at relatively small
time scales, improving the accuracy of trace generatiore rEfative error of our method, with input
parameters suitable for the workload, ranges from apprateéig 8% to 12%.

1 Introduction

Performance analysis and architecture of storage systepends heavily upon traces and simulation. Un-
fortunately, 1/0 traces are difficult to obtain, extremedyde and unwieldy, and cannot be parameterized.
Benchmarks and models are simpler and more workable aftegsao traces, but are less realistic than the
actual workloads.

Ideally, one would like to monitor any disk workload and mbideaccurately (with respect to some
important performance metrics) with some small number ohpeeters. This vision is far from reality;
however, this paper identifies parameters that can captareest interarrival burstiness.

We consider an 1I/O trace that consists of a set of timestamp&ges each containing a disk offset,
a read/write flag, and a length. This low-level descripti@eanmodates a primitive application-level or
SCSI I/O interface. We wish to model these streams accyratebugh so that accesses synthesized from
the model cause a storage hierarchy to behave “similarlyh¢oreal trace. For a single disk drive, similar
behavior is measured by checking that the distributionsueug lengths and response times resemble those
created by the original workload.

We show that self-similarity at large time scales does rgificantly affect disk behavior. This allows
us to generate synthetic interarrival patterns at relbtiseall time scales, improving the accuracy of trace
generation.

The paper is organized as follows. We describe related wof2i We introduce self-similarity as a
way to approximate long-range dependence and show thatréorge dependence has little effect upon disk



response times if3. Binomial multifractals can generate bursty traffid; describes this model. b we
describe a novel I/O request synthesis technique usingfraatal models. We evaluate our methodsi®
and conclude with directions for future work §7.

2 Related Work

Generating realistic disk traces is a difficult and unsolgeablem [5]. 1/O traces are extremely bursty and
difficult to characterize. They cannot accurately be matlelsing exponential or Poisson arrival times, but
there is strong evidence that the distribution of disk I/, fnetwork, and Web traffic is self-similar [10, 4,
7, 6].

Several researchers have used self-similarity to modeaityptiraces, particularly network traces. Chen
et al[2] examined ATM variable bit rate traffic and found that thgher the Hurst coefficient, a measure of
self-similarity, the burstier the traffic. However, muttittal models, or generalizations of self-similar traffic
models, have been shown to model some kinds of traffic moeetfely than self-similar models [3]. Self-
similarity alone does not necessarily capture burstingbgh has a significant effect on disk performance.
To address this problem, Wargg al [17] proposed to use binomial multifractals to model thesbudisk
traffic. The model is parsimonious, depending only on a sipglrameter, the bigs which can be estimated
from the traces.

Grossglauser and Bolot [8] demonstrated that it was notulisefmodel long-range dependence in
network traffic at timescales disproportionate to the penftnce metrics under observation. Neidhardt and
Wang [11] showed that queuing behavior depends not only erHilrst coefficient, but a combination of
system parameters. Our approach is to investigate whdilgeisttrue for I/O traffic, and whether this fact
is useful for improving multifractal synthesis techniques

3 Relevance of Long-Range Dependence in Disk Traffic

I/0 workloads have a structure that researchers have pedpogyht help to model them callself-similarity.
Informally, in this context, to say a time series is selfiimimplies that it looks qualitatively the same
at different time scales. Self-similar traffic also has theperty oflong-range dependencehe data set
exhibits a slow decay in its autocorrelation function. Tesrelation structure is significant because self-
similar traffic may be more bursty than that generated byratbarces. However, we show here that long-
range dependence, as measured by the Hurst coefficientttleasffect upon disk response times.

3.1 Self-Similarity

A more rigorous definition of self-similarity from [1] is a®fows: LetY; be a stochastic process with
continuous time parameter Y; is called self-similar with self-similarity parameteét, if for any positive
stretching factor, the rescaled process with time scatec MYy, is equal in distribution to the original
processy;.

The parameteH is also known as the Hurst coefficient, and a valueldfetween; and 1 indicates the
degree of self-similarity. There are several exploratamglgtic tools that are used to estimate H; two such
methods are applied to a small UNIX workstation disk trac8 j& Figures 1a and 1b.

The first method, shown in Figure 1a, is a variance plot. We tble logarithm of the variance of an
aggregated (averaged) series against the logarithm ofjiregation level. The slope of this plot should be
equal toH — 1. The second method, shown in Figure 1b, is the R/S plot. Mkihod plots (in logscale) the
R/S statistic, or theescaled adjusted rangagainst the logn. The rescaled adjusted range is the data range



o

log(RIS) <
slope = approx .58 —~"]

log(R/S)
N w N
o ow s,

N
T

Log Var (k)
-0.2 00 02 04 06 08 10

N 15 L L L L L L L L L
0 i 2 3 2 25 3 35 4 45 5 55 6 65 7
Log k log(n)

(@) (b)

Figure 1: Estimating the Hurst parameter.
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Figure 2: Shuffling traces removes long-range dependence.

normalized by the standard deviation. For the precise digimof how to calculate this statistic, see [1, 16].
If there is long-range dependence in the process, the sliofe @urve generated by this plot provides an
estimate oH; if not, log R/Sshould be randomly scattered around a straight line withes@5 [1].

3.2 Long-Range Dependence in Disk Traffic

Our hypothesis is that previous events cannot affect dislalier beyond a certain threshold, determined
by system parameters, so modeling long range dependenaryet timescales is unnecessary. To test this
hypothesis, we study how these metrics change as we gnadiesiiroy long-range dependence in the traces
by shuffling increasingly smaller intervals. This approaeldentical to the experimental approach taken
by [8], and is illustrated in Figure 2. Figure 2a shows a trdoat has been divided into six intervals. These
intervals are then randomly rearranged to create a new (Fagare 2b). Within each interval, the temporal
relationships are preserved, but the new trace has no lEbmgerdependence beyond the width of the interval.
Our selected workloads, described in more detail in [134,tae cello news disk trace (HP2204A) and
the snake usr2 disk trace (HP97560) gathered between 02/304 06/06/92. The average I/O loads on the
disks on these systems are small: approximately three sexjtar cello news disk and one request for snake
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Figure 3: Response times for traces shuffled using smalvaefor (a) cello and (b) snake.
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Figure 4: In the limit, all temporal locality is lost when wiidfle snake traces.

usr2 disk per second. However, the maximum queue lengthbeaery large: over 1000 requests on the
cello news disk and over 60 requests on the snake usr2 digierleral snake traces are more bursty than
cello, and the logical sequentiality (percentage of retyutksat are at adjacent disk addresses or addresses
spaced by the file system interleave factor) of cello andesimaR% and 29%, respectively.

We examine the numerical metric of disk performance used4j {o validate disk models: the root
mean squared (RMS) horizontal distance between the cuneildistribution functions (CDF) of I/O re-
sponse times. The distributions of queue lengths of trabeffled at intervals> 1 second are similar to
those of the real traces [9], and are not presented separatel

We vary the shuffle interval length from 10 seconds to 0.1ses@nd use both the shuffled and unshuf-
fled traces to drive the Pantheon [18] disk simulator.

Figure 3 shows the CDF of response time for small interval®e dAh see that shuffling traces using
intervals smaller than 0.5 seconds results in extremelwsHelistributions of response time. In the limit,
we destroy all temporal locality by randomizing all everdsd obtain a curve as shown in Figure 4. In
contrast, although at an interval size of 1 second thererigally no self-similarity left in the trace, the
relative error is very small, as shown in Figure 5.

Figures 6a and 6b show the Hurst coefficient, estimated ukm&/S method, and the relative error for
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Figure 5: Response times for traces shuffled using inteofdiBsngth 1 second and above for (a) cello and
(b) snake.
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Figure 6: Effect of shuffling on (a) Hurst coefficient and (blative error.

the shuffled traces. The Hurst coefficient is a measure oftange dependence; as intuition dictates, the
smaller the time interval, the fewer long-range correlaiare preserved and the lower the Hurst coefficient.
For one dayH = .79 for snake andéi = .89 for cello.

Despite the lack of long-range dependence, particuladicated by the fluctuation of the Hurst coeffi-
cient at small intervals< 1 second), the relative error for the shuffled traces isikalgt small; at 1 second
it is approximately 5% for cello and 9% for snake.

3.3 Choosing an Interval

We see from Figure 6 that the relative error for the two treategarious interval lengths is different, and is
larger for snake than for cello. To better understand howetect an appropriate interval length to bound
the error for each trace, we studied the relative error asetion of burstiness. To artificially increase the
“burstiness” of the trace, creating more disk request qugguive scale down the interarrival time by a factor
of 2 or 4.

Figures 7a—7b show the the effect of scaling on relativerefiop cello and snake, respectively. In
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Figure 7: Effect of shuffling on relative error for scaleddea of (a) cello and (b) snake.

general, as the shuffling interval length increases, thaivel error decreases. However, we see that the
interval length necessary to maintain the same relativer @oes not automatically increase as we scale
down the interarrival time, and that the curves are quitkedsht for the two machines.

Cello has fewer long “gaps” between activity than snake &gere 10), so shuffling has less effect
on this distribution. Cello requests are less sequentat 8nake, so shuffling does not perturb the spatial
locality for cello as much as for snake. Thus, the error causeshuffling the original trace is lower for
cello than for snake.

When the interarrival times are shortened, queue lengthiease. For cello, this improves average
seek time because the scheduler can optimize requestdli@hahanges this queuing behavior and causes
higher errors than in the original trace. For snake, thisuquggeffect is not as important because snake has
a disk cache and more sequentiality than cello. Thus, efooithe shuffled scaled traces are actually lower
than that of the shuffled original trace at small intervaig] ancrease with larger shuffling intervals.

3.4 Modern Traces

The traces described here are from 1992. A re-configured eals re-traced in 1999, but we have not
yet been able to repeat our experiments on those traces. Jggwe generalize our results on long-range
dependence to modern traces, we studied the characteridtitie new cello news disk traces (obtained
from a Seagate ST19171W disk) for one week (09/09/1999 t©509999). The I/O load has increased to
about 16 requests per second but the maximum queue lengihtie isame range as cello in 1992, from
700 to 1300. The logical sequentiality of cello (1999) islésan 1%. The Hurst coefficient is .89, similar
to the 1992 cello traces. Experiments on 1992 cello tracetopress the interarrival times (Figure 7)
approximate the modern traces with respect to Hurst coefficgind mean interarrival times. We believe that
the shuffling interval required to minimize error for moddraces may be slightly longer, but otherwise the
behavior is the same.

3.5 Summary

We can conclude from our experiments that self-similaritiaege time scales does not significantly affect

disk behavior with respect to response times. For purpdgasrformance evaluation, we need only consider
I/O activity at timescales related to the system we are evimg. For measuring disk response time and
queuing behavior, an appropriate interval length was edgchempirically to be between 3 and 10 seconds
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for both the HP97560 and HP2204A disks under two differentdoads.

4 Binomial Multifractals

Self-similarity is a measure of fractal-like scaling beiwavover multiple time scales, characterized by the
single Hurst parameter. In contrast, multifractals are megalization of monofractal self-similar processes
that allow for time-dependent scaling laws, and are basedutiplicative schemes. They have a bursty ap-
pearance similar to that of real 1/O traffic. We introducedsimial multifractals, for the purpose of modeling
I/O traffic, below. A rigorous introduction to binomial meass and multifractals can be found in [12].

4.1 Property of Self-Similarity

We can define a binomial measure on the unit interval in a sagaiconstruction. Figure 8 shows the first
two stages of the construction, which starts with the unif@robability measurgg on the unit interval =
[0, 1] with mass 1 (Figure 8a). At the first stage (Figure 8k, split into two equal-length subintervals
=[0, 1/2] andl; = [1/2, 1] and the massesy = p (p > 1/2) andm; = 1—my = 1— p are spread uniformly
between them. The density dnandl; is 2p and 21— p), respectively. At the second stage (Figure 8c),
lp is split into two equal-length subintervalgy = [0, 1/4] andlg; = [1/4, 1/2] and the massesy = p°
andmpy; = p(1 - p) are spread uniformly between thems;is split into two equal-length subintervalg
= [1/2, 3/4] andly; = [3/4, 1] and the massas;p = p(1— p) andmy; = (1— p)? are spread uniformly
between them; The density oy, loz, 110 andly1 is 4p?, 4p(1— p), 4p(1— p) and (1 p)?, respectively.
This construction continues recursively. Formally, agsta, n € N, each intervalg,.., , in stagen—1
is split into two equal-length subintervalse,.., ,¢, With massmg,mg,---mg, ;me,, & = 0,1. Therefore,
M(lgsey-g,) = Mg, M, - -Mg,. This defines a sequences of measykesn the unit interval, which converge
weakly towards a probability measyuethe binomial measure. From the procedure of constructi@gan
see thaflis strictly self-similar, as shown in Figure 9.

We can extend this construction to randomize the allocatioime mass in the recursive subdivisions.
In this case, we may randomly choose the left multipliemg®r my (each with probability= 0.5), instead
of always choosingrny.



4.2 Property of Burstiness

Self-similar processes do not always generate bursty teneences. Roughly speaking, the Hurst coeffi-
cientH describes global burstiness. However, local burstinegtisik I/O is more interesting in practice.
Multifractals can represent local burstiness, as desgtilyehe local Holder exponent and multifractal spec-
trum of binomial measures.

For anyxe[0,1), there is a unique subintervile,..., containing it in stage n. Let us denote it as
W (x). For convenience, we laty > my. For somex, the density onl (™ (x), u(1™(x))/[1M(x)| =
M, Mg, - Mg, /27", tends to infinity whem — o, as shown by the points in the leftmost subinterval in
Figure 8 and Figure 9, wheng(1(" (x)) is the mass on(™(x) and|I("(x)| is the length ofl("(x). The
coarse graining in this interval has the property of buestih We can use a singularity exponent, the Holder
exponentg(x) as defined in the following equation to describe how fast tlaezapproaches infinity:

aix) = lima™(x)

n—oo
log, (1™ ()
n=e - Jog, [1M(X)]
— lim IOgZ rnslrnsz o rnsn
n—oo0 |0922*n
n
= —lim M‘ 1)
n—oo n

The multifractal spectrunt(a) describes the global distribution of Holder exponerik), which is
defined in the following equation:

f(a) lim £V (a)

Nn—oo

n)
— lim 7'092'\'” () @)

n—oo

with N(" (o) denoting the number of subinterval§ with Holder exponent value af.
At stage n,ﬁ(: N (a)) subintervals have the same mass§f'm}. Therefore,

a” = —(logymg'm)/n

—(i/n)log,my — (1 —i/n)log, mo (3)
= (i/n)0max+ (1 —i/n)Qmin, (4)
with omin = —log, My = —log, p andamax= —log, M = —log,(1 — p). According to Stirling’s formula,

n!
it(n—i)!

Combining above equations, we can find

fa) = - Omax— O log,( Omax— O ) a — Umin log,(

O max— Omin Omax— Omin Omax— Omin Omax— Omin

~ (27™ 7B/ whereE(i/n) = —(i/n)log,(i/n) — (1—i/n)log,(1—i/n). (5)

A — Omin

) Omin < O < Omax. (6)

This function has the same form as the entropy function, wpiovides us a way to estimat®) (biasp).

5 Multifractal I/O Request Synthesis

Multifractals represent locally bursty I/O behavior morecarately than other means of generating self-
similar traffic. Here we introduce a method to use multifed&tto model 1/O request interarrival times at
small timescales.



5.1 Estimation of Bias

The parameter biap in binomial multifractals (ommg in binomial measures) describes the local burstiness
behavior, which can be estimated from the real traces. Tdrerseveral ways to estimate the bpaand we
only introduce the two we used in our experiments.

The first way to estimate is from the multifractal spectrunfi(a) of binomial multifractals. We know
that f (o) has the same shape as an entropy function. Thepietermines the location of the curve and
how it is stretched. We can find the best fitting bias by visugitlging how well the practical curve fits the
theoretical ones.

The second way to estimateis from the entropy value. Wangt al [17] proposed to use the entropy
value of real traces to estimate the bias because of itbildlyaand efficiency.

Assume thaSis an information source that emits independent symbols fiphabet{ sy, 1, -+, -1}
with probabilities{ po, p1,---, px-1}, respectively ¥ pi = 1). The average amount of information we obtain
by observing the output @is calledentropy[15] and is defined as

k-1
E(po, -, Pk-1) = — ZD pilog, pi. (7)
i=

The disk traces can be viewed as a discrete time sequgnatose length can be normalized to be 1.
For the purpose of model fitting, we can aggregate it at level n

- (kt1)2 "
YWk = / Yidt, wherek = 0,1, -+, 2" 1. ©)

n

At level n, the sequenc‘q(”) can be considered as a distribution of an information sowitie alphabet
{%0,81,---,Sn_1}, whose entropy is given by

RS A IR A
Ep' = - 1 log, 57— 9
S0 Jovdt T [pYdt

If we plot the vaIueEf)”) againstn, as proved in [17], the points should form a line with slcﬁ:ié) for a

self-similar process like binomial multifractals. Thusgwan estimatEél) from these points and the bias

using Equation 10:
ESY = —plog, p—(1- p)log,(1- p). (10)

5.2 \Verification of Estimation of Bias p

Not every I/O trace can be fit to a multifractal distributioive empirically qualify the necessary character-
istics of an I/O trace to accurately estimate bjas

We estimate biap by dividing the each interval inta bins, aggregating the requests within each bin,
and using the entropy value and Equation 10. Choice of aroggpte bin size is crucial to the success of
the method; if it is too large, bursty requests are aggregatestroying the burstiness. If the bin size is too
small, the fraction of empty bins is too large and there ateemough samples to estimgbe In intervals
with little 1/O activity, it may simply not be possible to @siate p.

We know fromg3 that to keep the error under 5%, we should choose an inteetaleen 3—-10 seconds.
We also need to choose a bin size that yields a reasonablenpgge of non-empty bins without overag-
gregating. Figure 10 shows a typical cumulative distrimutfunctions of interarrival times from cello and
snake. We see that the percentage of requests with an mtaréime of < 10 ms is 15% for cello and 20%

9
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interarrival times. and spectrum method.

for snake; these percentages are relatively small. Basedi®observation, we select a bin size of 10 ms
to avoid overaggregating requests. We choose an intermldafi5.12 seconds so that the number of bins
within an interval is a power of 2.

To determine what fraction of non-empty bins is necessanptain a good estimate @, we calculate
p using both the entropy method and the spectrum method fecteel data sets with certain percentages
of non-empty bins, as shown in Figure 11. We could not exlalgttest all the data, because estima-
tion of p using the multifractal spectrum is a visual test. Therefave selected a subset of datasets as
follows. Because data sets with the same percentage of mptyebins might have different aggregation
ratios (number of requests in the interval / number of nomp#grbins), we used the histogram of aggregation
ratios to further round out our sample data sets. For exanifik®% of the intervals for a trace with 4%
non-empty bins have an aggregation ratio of 1.1 (roundintpéonearest tenth), 20% of our samples have
those characteristics.

We require that the fraction of non-empty bins be at least 884pfto be meaningful. If the fraction of
non-empty bins is smaller than 3% we can use any distribufmmexample, a uniform distribution, to fit
the data.

In summary, to accurately estimate bigswe use a bin size of 10 ms, an interval size of 5.12 seconds,
and considep to be meaningful only when at least 3% of the bins are non-gmpt

5.3 Multifractal Interarrival Synthesis Algorithm

We propose a new algorithm for synthesizing interarrivatgras based on a real trace. The approach is to
fit intervals of a trace to a multifractal distribution, calating p using Equation 10, as shown in Figure 12.
The key idea of synthesis is to use the request volume (mass)the original trace and redistribute
the mass in time according to the calculated bias. Figurehb®s our algorithm for multifractal trace
generation, based on [17]. This algorithm is improved ds¥es. Note that the original algorithm distributes
mass at units as small as 1KB and creates many small requééth, can induce a synthetic error as high as
800%. To avoid this, we use the knowledge that the size of G%-8f disk requests in the cello and snake
traces, generated under HP-UX, are 8KB [13] and define theremmrequest size (r = 8KB) as an input
to the algorithm.
Figure 14 shows how to usemPROVED-BINOMIAL -MULTIFRACTAL -GENERATION to synthesize a
trace. This algorithm takes as input a selected intervgjtlemand a bin sizd selected as described§b.2,
the common request sizeas described above, and the original trace (from which weutate p).

10



CALCULATE-P

INPUT: lengthl, trace intervalwv
OUTPUT: biasp
ALGORITHM:

for eachi from 1 tologyl
calculate the entropy valug!) of w using Equation 9
array[i] «+ E(
end for
estimate biap from entropy values imrray using linear regression
return p

Figure 12: Biag estimation algorithm.

IMPROVED-BINOMIAL -MULTIFRACTAL -GENERATION

INPUT: biasp, lengthl, initial masssumm), common request size
OUTPUT: a binomial multifractal((t;,m), (t2, mp), ..., (th, My)).
ALGORITHM:

1. Initialize the stack and push pdlrm) onto the stack.
2. If the stack is empty, return. Otherwise, go on to Step 3.

3. Pop a pair(l;,my) from the stack. Ifij = 1, distribute the massy in requests of size and then go
back to Step 2; if Bxr < m; < 1.5xr, try to combine the the top item in the stack to generate dutpu
and then go back to Step 2.

4. Flip a coin. If head, push pait§ /2, m;« p) and(l;/2,m; « (1 — p)) into the stack; if tail, push them in
reverse order. Go back to Step 2.

Figure 13: Binomial multifractal I/O request generation.

SYNTHETIC-TRACE-GENERATION

INPUT: interval lengths, bin sizeb, original trace filef, common request size
OUTPUT: synthetic trace file

ALGORITHM:

for each non-empty interval in f
if fraction of non-empty binsc 3%, p= 0.5
elsep = CALCULATE-P(s/b, w)
resolution =1 ms
length =g/resolution
mass = volume of requests in interval
IMPROVED-BINOMIAL -MULTIFRACTAL -GENERATION (p,length massr)
map local timestamps to real timestamps
end for

Figure 14: Synthetic I/O trace generation algorithm.
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Figure 15: Relative error of interarrival and request sigetlsesis methods. Note that EXP generates syn-
thetic interarrivals only.

6 Simulation Results

In this section, we analyze the accuracy of our proposed Hd@etgeneration method. Our approach is
to use the algorithm proposed in Figure 14 to generate a siattrace. Because we do not attempt to
synthesize sector numbers or read/write operations, vadnrétie same sector identifiers and operations
from the original trace. Therefore, our baseline for congar is the original trace. We use Pantheon as
in §3 to compare the CDF of disk response times for the origindlsamthetic traces.

To measure the improvement obtained by using syntheses lbastne-grained trace parameters, we
compare our method, MF-PWB, to a simple exponential intermodel, EXP, and a variant of the method
proposed by Wangt al[17], MF-P. In MF-P,p is calculated over the entire trac@ £1 day), but we use the
algorithm of Figure 13, adjusting the trace for the most camnnmequest size. The key difference between
MF-P and MF-PWB is that MF-PWB uses more parameters and doiesedel long-range dependence at
timescales greater tham Because we do not synthesize sector numbers or read/petations, we retain
the same sector identifiers and operations from the origiaaks. This preserves the spatial locality.

Figure 15a—15d show the relative error of the response tistglalition for two different days (05/30/92
and 06/06/92) for EXP, MF-P and MF-PWB with different pardens. We selected these specific days
because they have the maximum and minimum mean responséotirtie snake traces, which in general
are more bursty, and harder to model, than cello. We can s¢dhé relative error for MF-PWB method
ranges from 7.7% to 44.6%, depending on the trace itself begarameterss andb, the error for MF-P
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Figure 16: Relative error of interarrival synthesis for kadraces in (a) 05/30/92 and (b) 06/06/92.

ranges from 13.5% to 121.6%, and the error for EXP ranges &617i% to 91.6%, which is at least twice
the error for MF-PWB.

In general, MF-PWB reproduces interarrival patterns mogzigately than MF-P; computingat smaller
time intervals generally translates into more accuratdh®gis. For snake traces, the improvement is sig-
nificant. For cello traces, we can lose this effect by selggtioor values ob; however, the results are still
comparable.

To better illustrate the quality of synthetic arrival timasd request sizes, we isolate the effects of each.
Figures 16a and 16b show the relative error of the respongedistribution for snake traces (05/30/92 and
06/06/92) for EXP, MF-P and MF-PWB. Only the arrival times aynthetic; we obtain all other parameters
from the original trace. The errors are almost the same astfrom traces with synthetic arrival times and
request sizes, as shown in Figures 15c and 15d.

Figures 17a and 17b show the relative error of the responsedistribution for snake traces (05/30/92
and 06/06/92) for MF-P and MF-PWB. Here, only the requestssare synthetic, and all other parameters
are taken from the original traces. We do not compare EXP thighothers because it does not generate
synthetic request sizes. Request size synthesis accaurts$ than 10% of the synthesis error, and MF-P
is the most successful method for that component of syrghesi

Results for cello are similar [9]. The majority of syntheiror from MF-P and MF-PWB comes from

synthetic arrival times.

7 Conclusions and Future Work

For purposes of performance evaluation, we need only censi® activity at timescales related to the
system we are evaluating. For measuring disk response tah@eeuing behavior, we determined that a
interval length of 5 seconds bounded the error to less tharos%oth the HP97560 and HP2204A disks
under two different workloads.

However, accurately capturing burstiness is extremelyoitgmt. We demonstrated a method of syn-
thesizing interarrival times using binomial multifractahat exploits the fact that long-range dependence is
unnecessary beyond certain timescales. Using this meti®dynthesized traces with a relative error that
ranged from approximately 8% to 12% on random and sequemtigtloads.

We are currently working on methods to automatically deteenthe appropriate interval length, and on
combining this model for temporal locality with a similarefor spatial locality.
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Figure 17: Relative error of request size synthesis for eriedces in (a) 05/30/92 and (b) 06/06/92.
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