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Abstract

Accurate disk workloads are crucial for storage systems design, but I/O traces are difficult to ob-
tain, unwieldy to work with, and unparameterizable. Unfortunately, I/O traces are extremely bursty and
difficult to characterize. Although good models of I/O workloads would be extremely useful, traces
cannot accurately be modeled using exponential or Poisson arrival times. Much experimental evidence
shows that I/O traces are self-similar, which researchers have hoped might help to model bursty traces.
In this paper, we show that self-similarity at large time scales does not significantly affect disk behavior
with respect to response times. This allows us to generate synthetic arrival patterns at relatively small
time scales, improving the accuracy of trace generation. The relative error of our method, with input
parameters suitable for the workload, ranges from approximately 8% to 12%.

1 Introduction

Performance analysis and architecture of storage systems depends heavily upon traces and simulation. Un-
fortunately, I/O traces are difficult to obtain, extremely large and unwieldy, and cannot be parameterized.
Benchmarks and models are simpler and more workable alternatives to traces, but are less realistic than the
actual workloads.

Ideally, one would like to monitor any disk workload and model it accurately (with respect to some
important performance metrics) with some small number of parameters. This vision is far from reality;
however, this paper identifies parameters that can capture request interarrival burstiness.

We consider an I/O trace that consists of a set of timestampedvalues each containing a disk offset,
a read/write flag, and a length. This low-level description accommodates a primitive application-level or
SCSI I/O interface. We wish to model these streams accurately enough so that accesses synthesized from
the model cause a storage hierarchy to behave “similarly” tothe real trace. For a single disk drive, similar
behavior is measured by checking that the distributions of queue lengths and response times resemble those
created by the original workload.

We show that self-similarity at large time scales does not significantly affect disk behavior. This allows
us to generate synthetic interarrival patterns at relatively small time scales, improving the accuracy of trace
generation.

The paper is organized as follows. We describe related work in x2. We introduce self-similarity as a
way to approximate long-range dependence and show that long-range dependence has little effect upon disk
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response times inx3. Binomial multifractals can generate bursty traffic;x4 describes this model. Inx5 we
describe a novel I/O request synthesis technique using multifractal models. We evaluate our method inx6
and conclude with directions for future work inx7.

2 Related Work

Generating realistic disk traces is a difficult and unsolvedproblem [5]. I/O traces are extremely bursty and
difficult to characterize. They cannot accurately be modeled using exponential or Poisson arrival times, but
there is strong evidence that the distribution of disk I/O, file, network, and Web traffic is self-similar [10, 4,
7, 6].

Several researchers have used self-similarity to model bursty traces, particularly network traces. Chen
et al [2] examined ATM variable bit rate traffic and found that the higher the Hurst coefficient, a measure of
self-similarity, the burstier the traffic. However, multifractal models, or generalizations of self-similar traffic
models, have been shown to model some kinds of traffic more effectively than self-similar models [3]. Self-
similarity alone does not necessarily capture burstiness,which has a significant effect on disk performance.
To address this problem, Wanget al [17] proposed to use binomial multifractals to model the bursty disk
traffic. The model is parsimonious, depending only on a single parameter, the biasp, which can be estimated
from the traces.

Grossglauser and Bolot [8] demonstrated that it was not useful to model long-range dependence in
network traffic at timescales disproportionate to the performance metrics under observation. Neidhardt and
Wang [11] showed that queuing behavior depends not only on the Hurst coefficient, but a combination of
system parameters. Our approach is to investigate whether this is true for I/O traffic, and whether this fact
is useful for improving multifractal synthesis techniques.

3 Relevance of Long-Range Dependence in Disk Traffic

I/O workloads have a structure that researchers have proposed might help to model them calledself-similarity.
Informally, in this context, to say a time series is self-similar implies that it looks qualitatively the same
at different time scales. Self-similar traffic also has the property of long-range dependence: the data set
exhibits a slow decay in its autocorrelation function. Thiscorrelation structure is significant because self-
similar traffic may be more bursty than that generated by other sources. However, we show here that long-
range dependence, as measured by the Hurst coefficient, has little effect upon disk response times.

3.1 Self-Similarity

A more rigorous definition of self-similarity from [1] is as follows: Let Yt be a stochastic process with
continuous time parametert. Yt is called self-similar with self-similarity parameterH, if for any positive
stretching factorc, the rescaled process with time scalect, c�HYct, is equal in distribution to the original
processYt .

The parameterH is also known as the Hurst coefficient, and a value ofH between1
2 and 1 indicates the

degree of self-similarity. There are several exploratory analytic tools that are used to estimate H; two such
methods are applied to a small UNIX workstation disk trace [13] in Figures 1a and 1b.

The first method, shown in Figure 1a, is a variance plot. We plot the logarithm of the variance of an
aggregated (averaged) series against the logarithm of the aggregation level. The slope of this plot should be
equal toH�1. The second method, shown in Figure 1b, is the R/S plot. Thismethod plots (in logscale) the
R/S statistic, or therescaled adjusted rangeagainst the logn. The rescaled adjusted range is the data range
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Figure 1: Estimating the Hurst parameter.
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Figure 2: Shuffling traces removes long-range dependence.

normalized by the standard deviation. For the precise definition of how to calculate this statistic, see [1, 16].
If there is long-range dependence in the process, the slope of the curve generated by this plot provides an
estimate ofH; if not, log R=Sshould be randomly scattered around a straight line with slope 0.5 [1].

3.2 Long-Range Dependence in Disk Traffic

Our hypothesis is that previous events cannot affect disk behavior beyond a certain threshold, determined
by system parameters, so modeling long range dependence at larger timescales is unnecessary. To test this
hypothesis, we study how these metrics change as we gradually destroy long-range dependence in the traces
by shuffling increasingly smaller intervals. This approachis identical to the experimental approach taken
by [8], and is illustrated in Figure 2. Figure 2a shows a tracethat has been divided into six intervals. These
intervals are then randomly rearranged to create a new trace(Figure 2b). Within each interval, the temporal
relationships are preserved, but the new trace has no long-range dependence beyond the width of the interval.

Our selected workloads, described in more detail in [13], are the cello news disk trace (HP2204A) and
the snake usr2 disk trace (HP97560) gathered between 05/30/92 and 06/06/92. The average I/O loads on the
disks on these systems are small: approximately three requests for cello news disk and one request for snake

3



20 40 60

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n 

of
 R

eq
ue

st
s

Unshuffled
Shuffled (0.1s)
Shuffled (0.3s)
Shuffled (0.5s)

20 40 60 80

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 R
eq

ue
st

s

Unshuffled
Shuffled (0.1s)
Shuffled (0.3s)
Shuffled (0.5s)

(a) (b)

Figure 3: Response times for traces shuffled using small intervals for (a) cello and (b) snake.
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Figure 4: In the limit, all temporal locality is lost when we shuffle snake traces.

usr2 disk per second. However, the maximum queue lengths canbe very large: over 1000 requests on the
cello news disk and over 60 requests on the snake usr2 disk. Ingeneral snake traces are more bursty than
cello, and the logical sequentiality (percentage of requests that are at adjacent disk addresses or addresses
spaced by the file system interleave factor) of cello and snake is 2% and 29%, respectively.

We examine the numerical metric of disk performance used in [14] to validate disk models: the root
mean squared (RMS) horizontal distance between the cumulative distribution functions (CDF) of I/O re-
sponse times. The distributions of queue lengths of traces shuffled at intervals> 1 second are similar to
those of the real traces [9], and are not presented separately.

We vary the shuffle interval length from 10 seconds to 0.1 seconds and use both the shuffled and unshuf-
fled traces to drive the Pantheon [18] disk simulator.

Figure 3 shows the CDF of response time for small intervals. We can see that shuffling traces using
intervals smaller than 0.5 seconds results in extremely skewed distributions of response time. In the limit,
we destroy all temporal locality by randomizing all events,and obtain a curve as shown in Figure 4. In
contrast, although at an interval size of 1 second there is virtually no self-similarity left in the trace, the
relative error is very small, as shown in Figure 5.

Figures 6a and 6b show the Hurst coefficient, estimated usingthe R/S method, and the relative error for
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Figure 5: Response times for traces shuffled using intervalsof length 1 second and above for (a) cello and
(b) snake.
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Figure 6: Effect of shuffling on (a) Hurst coefficient and (b) relative error.

the shuffled traces. The Hurst coefficient is a measure of long-range dependence; as intuition dictates, the
smaller the time interval, the fewer long-range correlations are preserved and the lower the Hurst coefficient.
For one day,H = :79 for snake andH = :89 for cello.

Despite the lack of long-range dependence, particularly indicated by the fluctuation of the Hurst coeffi-
cient at small intervals (< 1 second), the relative error for the shuffled traces is relatively small; at 1 second
it is approximately 5% for cello and 9% for snake.

3.3 Choosing an Interval

We see from Figure 6 that the relative error for the two tracesat various interval lengths is different, and is
larger for snake than for cello. To better understand how to select an appropriate interval length to bound
the error for each trace, we studied the relative error as a function of burstiness. To artificially increase the
“burstiness” of the trace, creating more disk request queuing, we scale down the interarrival time by a factor
of 2 or 4.

Figures 7a–7b show the the effect of scaling on relative error for cello and snake, respectively. In
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Figure 7: Effect of shuffling on relative error for scaled traces of (a) cello and (b) snake.

general, as the shuffling interval length increases, the relative error decreases. However, we see that the
interval length necessary to maintain the same relative error does not automatically increase as we scale
down the interarrival time, and that the curves are quite different for the two machines.

Cello has fewer long “gaps” between activity than snake (seeFigure 10), so shuffling has less effect
on this distribution. Cello requests are less sequential than snake, so shuffling does not perturb the spatial
locality for cello as much as for snake. Thus, the error caused by shuffling the original trace is lower for
cello than for snake.

When the interarrival times are shortened, queue lengths increase. For cello, this improves average
seek time because the scheduler can optimize requests. Shuffling changes this queuing behavior and causes
higher errors than in the original trace. For snake, this queuing effect is not as important because snake has
a disk cache and more sequentiality than cello. Thus, errorsfor the shuffled scaled traces are actually lower
than that of the shuffled original trace at small intervals, and increase with larger shuffling intervals.

3.4 Modern Traces

The traces described here are from 1992. A re-configured cello was re-traced in 1999, but we have not
yet been able to repeat our experiments on those traces. However, to generalize our results on long-range
dependence to modern traces, we studied the characteristics of the new cello news disk traces (obtained
from a Seagate ST19171W disk) for one week (09/09/1999 to 09/15/1999). The I/O load has increased to
about 16 requests per second but the maximum queue length is in the same range as cello in 1992, from
700 to 1300. The logical sequentiality of cello (1999) is less than 1%. The Hurst coefficient is .89, similar
to the 1992 cello traces. Experiments on 1992 cello traces tocompress the interarrival times (Figure 7)
approximate the modern traces with respect to Hurst coefficient and mean interarrival times. We believe that
the shuffling interval required to minimize error for moderntraces may be slightly longer, but otherwise the
behavior is the same.

3.5 Summary

We can conclude from our experiments that self-similarity at large time scales does not significantly affect
disk behavior with respect to response times. For purposes of performance evaluation, we need only consider
I/O activity at timescales related to the system we are evaluating. For measuring disk response time and
queuing behavior, an appropriate interval length was estimated empirically to be between 3 and 10 seconds
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for both the HP97560 and HP2204A disks under two different workloads.

4 Binomial Multifractals

Self-similarity is a measure of fractal-like scaling behavior over multiple time scales, characterized by the
single Hurst parameter. In contrast, multifractals are a generalization of monofractal self-similar processes
that allow for time-dependent scaling laws, and are based onmultiplicative schemes. They have a bursty ap-
pearance similar to that of real I/O traffic. We introduce binomial multifractals, for the purpose of modeling
I/O traffic, below. A rigorous introduction to binomial measures and multifractals can be found in [12].

4.1 Property of Self-Similarity

We can define a binomial measure on the unit interval in a recursive construction. Figure 8 shows the first
two stages of the construction, which starts with the uniform probability measureµ0 on the unit intervalI =
[0, 1] with mass 1 (Figure 8a). At the first stage (Figure 8b),I is split into two equal-length subintervalsI0
= [0, 1/2] andI1 = [1/2, 1] and the massesm0 = p (p> 1=2) andm1 = 1�m0 = 1� p are spread uniformly
between them. The density onI0 andI1 is 2p and 2(1� p), respectively. At the second stage (Figure 8c),
I0 is split into two equal-length subintervalsI00 = [0, 1/4] andI01 = [1/4, 1/2] and the massesm00 = p2

andm01 = p(1� p) are spread uniformly between them;I1 is split into two equal-length subintervalsI10

= [1/2, 3/4] andI11 = [3/4, 1] and the massesm10 = p(1� p) andm11 = (1� p)2 are spread uniformly
between them; The density onI00, I01, I10 and I11 is 4p2, 4p(1� p), 4p(1� p) and(1� p)2, respectively.
This construction continues recursively. Formally, at stage n, n2 N, each intervalIε1ε2���εn�1 in stagen�1
is split into two equal-length subintervalsIε1ε2���εn�1εn with massmε1mε2 � � �mεn�1mεn, εi = 0;1. Therefore,
µ(Iε1ε2���εn) = mε1mε2 � � �mεn. This defines a sequences of measuresµn on the unit intervalI , which converge
weakly towards a probability measureµ, the binomial measure. From the procedure of construction,we can
see thatµ is strictly self-similar, as shown in Figure 9.

We can extend this construction to randomize the allocationof the mass in the recursive subdivisions.
In this case, we may randomly choose the left multiplier asm0 or m1 (each with probability= 0:5), instead
of always choosingm0.
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4.2 Property of Burstiness

Self-similar processes do not always generate bursty time sequences. Roughly speaking, the Hurst coeffi-
cient H describes global burstiness. However, local burstiness indisk I/O is more interesting in practice.
Multifractals can represent local burstiness, as described by the local Hölder exponent and multifractal spec-
trum of binomial measures.

For anyx2[0,1), there is a unique subintervalIε1ε2���εn containing it in stage n. Let us denote it as
I (n)(x). For convenience, we letm0 > m1. For somex, the density onI (n)(x), µ(I (n)(x))=jI (n)(x)j =
mε1mε2 � � �mεn=2�n , tends to infinity whenn! ∞, as shown by the points in the leftmost subinterval in
Figure 8 and Figure 9, whereµ(I (n)(x)) is the mass onI (n)(x) and jI (n)(x)j is the length ofI (n)(x). The
coarse graining in this interval has the property of burstiness. We can use a singularity exponent, the Hölder
exponent,α(x) as defined in the following equation to describe how fast the value approaches infinity:

α(x) = lim
n!∞

α(n)(x)= lim
n!∞

log2µ(I (n)(x))
log2 jI (n)(x)j= lim

n!∞

log2mε1mε2 � � �mεn

log2 2�n= � lim
n!∞

log2 ∏n
i=1mεi

n
: (1)

The multifractal spectrumf (α) describes the global distribution of Hölder exponentα(x), which is
defined in the following equation:

f (α) = lim
n!∞

f (n)(α)= lim
n!∞

log2 N(n)(α)
n

; (2)

with N(n)(α) denoting the number of subintervalsI (n) with Hölder exponent value ofα.
At stage n, n!

i!(n�i)! (= N(n)(α)) subintervals have the same mass ofmn�i
0 mi

1. Therefore,

α(n) = �(log2 mn�i
0 mi

1)=n= �(i=n) log2m1� (1� i=n) log2 m0 (3)= (i=n)αmax+(1� i=n)αmin; (4)

with αmin =� log2 m0 =� log2 p andαmax=� log2m1 =� log2(1� p). According to Stirling’s formula,

n!
i!(n� i)! � (2�n)�E(i=n); whereE(i=n) =�(i=n) log2(i=n)� (1� i=n) log2(1� i=n): (5)

Combining above equations, we can find

f (α) = � αmax�α
αmax�αmin

log2( αmax�α
αmax�αmin

)� α�αmin

αmax�αmin
log2( α�αmin

αmax�αmin
);αmin� α� αmax: (6)

This function has the same form as the entropy function, which provides us a way to estimatem0 (biasp).

5 Multifractal I/O Request Synthesis

Multifractals represent locally bursty I/O behavior more accurately than other means of generating self-
similar traffic. Here we introduce a method to use multifractals to model I/O request interarrival times at
small timescales.
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5.1 Estimation of Bias

The parameter biasp in binomial multifractals (orm0 in binomial measures) describes the local burstiness
behavior, which can be estimated from the real traces. Thereare several ways to estimate the biasp and we
only introduce the two we used in our experiments.

The first way to estimatep is from the multifractal spectrumf (α) of binomial multifractals. We know
that f (α) has the same shape as an entropy function. The biasp determines the location of the curve and
how it is stretched. We can find the best fitting bias by visually judging how well the practical curve fits the
theoretical ones.

The second way to estimatep is from the entropy value. Wanget al [17] proposed to use the entropy
value of real traces to estimate the bias because of its reliability and efficiency.

Assume thatS is an information source that emits independent symbols from alphabetfs0;s1; � � � ;sk�1g
with probabilitiesfp0; p1; � � � ; pk�1g, respectively (∑ pi = 1). The average amount of information we obtain
by observing the output ofS is calledentropy[15] and is defined as

E(p0; � � � ; pk�1) = � k�1

∑
i=0

pi log2 pi : (7)

The disk traces can be viewed as a discrete time sequenceYt , whose length can be normalized to be 1.
For the purpose of model fitting, we can aggregate it at level n:

Y(n)
t (k) = Z (k+1)2�n

k2�n
Ytdt; wherek= 0;1; � � � ;2n�1: (8)

At level n, the sequenceY(n)
t can be considered as a distribution of an information sourcewith alphabetfs0;s1; � � � ;s2n�1g, whose entropy is given by

E(n)
p = �2n�1

∑
k=0

Y(n)
t (k)R 1
0 Ytdt

log2
Y(n)

t (k)R 1
0 Ytdt

: (9)

If we plot the valueE(n)
p againstn, as proved in [17], the points should form a line with slopeE(1)

p for a

self-similar process like binomial multifractals. Thus, we can estimateE(1)
p from these points and the biasp

using Equation 10:

E(1)
p = �plog2 p� (1� p) log2(1� p): (10)

5.2 Verification of Estimation of Bias p

Not every I/O trace can be fit to a multifractal distribution.We empirically qualify the necessary character-
istics of an I/O trace to accurately estimate biasp.

We estimate biasp by dividing the each interval intox bins, aggregating the requests within each bin,
and using the entropy value and Equation 10. Choice of an appropriate bin size is crucial to the success of
the method; if it is too large, bursty requests are aggregated, destroying the burstiness. If the bin size is too
small, the fraction of empty bins is too large and there are not enough samples to estimatep. In intervals
with little I/O activity, it may simply not be possible to estimatep.

We know fromx3 that to keep the error under 5%, we should choose an intervalbetween 3–10 seconds.
We also need to choose a bin size that yields a reasonable percentage of non-empty bins without overag-
gregating. Figure 10 shows a typical cumulative distribution functions of interarrival times from cello and
snake. We see that the percentage of requests with an interarrival time of< 10 ms is 15% for cello and 20%
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for snake; these percentages are relatively small. Based onthis observation, we select a bin size of 10 ms
to avoid overaggregating requests. We choose an interval size of 5.12 seconds so that the number of bins
within an interval is a power of 2.

To determine what fraction of non-empty bins is necessary toobtain a good estimate ofp, we calculate
p using both the entropy method and the spectrum method for selected data sets with certain percentages
of non-empty bins, as shown in Figure 11. We could not exhaustively test all the data, because estima-
tion of p using the multifractal spectrum is a visual test. Therefore, we selected a subset of datasets as
follows. Because data sets with the same percentage of non-empty bins might have different aggregation
ratios (number of requests in the interval / number of non-empty bins), we used the histogram of aggregation
ratios to further round out our sample data sets. For example, if 20% of the intervals for a trace with 4%
non-empty bins have an aggregation ratio of 1.1 (rounding tothe nearest tenth), 20% of our samples have
those characteristics.

We require that the fraction of non-empty bins be at least 3% for p to be meaningful. If the fraction of
non-empty bins is smaller than 3% we can use any distribution, for example, a uniform distribution, to fit
the data.

In summary, to accurately estimate biasp, we use a bin size of 10 ms, an interval size of 5.12 seconds,
and considerp to be meaningful only when at least 3% of the bins are non-empty.

5.3 Multifractal Interarrival Synthesis Algorithm

We propose a new algorithm for synthesizing interarrival patterns based on a real trace. The approach is to
fit intervals of a trace to a multifractal distribution, calculating p using Equation 10, as shown in Figure 12.

The key idea of synthesis is to use the request volume (mass) from the original trace and redistribute
the mass in time according to the calculated bias. Figure 13 shows our algorithm for multifractal trace
generation, based on [17]. This algorithm is improved as follows. Note that the original algorithm distributes
mass at units as small as 1KB and creates many small requests,which can induce a synthetic error as high as
800%. To avoid this, we use the knowledge that the size of 70–80% of disk requests in the cello and snake
traces, generated under HP-UX, are 8KB [13] and define the common request sizer (r = 8KB) as an input
to the algorithm.

Figure 14 shows how to use IMPROVED-BINOMIAL -MULTIFRACTAL -GENERATION to synthesize a
trace. This algorithm takes as input a selected interval length sand a bin sizeb selected as described inx5.2,
the common request sizer as described above, and the original trace (from which we calculatep).
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CALCULATE -P

INPUT: lengthl , trace intervalw
OUTPUT: biasp
ALGORITHM:

for eachi from 1 to log2l
calculate the entropy valueE(i) of w using Equation 9
array[i℄ E(i)

end for
estimate biasp from entropy values inarray using linear regression
return p

Figure 12: Biasp estimation algorithm.

IMPROVED-BINOMIAL -MULTIFRACTAL -GENERATION

INPUT: biasp, lengthl , initial masssum(m), common request sizer
OUTPUT: a binomial multifractal((t1;m1);(t2;m2); : : : ;(tn;mn)).
ALGORITHM:

1. Initialize the stack and push pair(l ;m) onto the stack.

2. If the stack is empty, return. Otherwise, go on to Step 3.

3. Pop a pair(l i ;mi) from the stack. Ifl i = 1, distribute the massmi in requests of sizer and then go
back to Step 2; if 0:5� r < mi < 1:5� r, try to combine the the top item in the stack to generate output
and then go back to Step 2.

4. Flip a coin. If head, push pairs(l i=2;mi � p) and(l i=2;mi � (1� p)) into the stack; if tail, push them in
reverse order. Go back to Step 2.

Figure 13: Binomial multifractal I/O request generation.

SYNTHETIC-TRACE-GENERATION

INPUT: interval lengths, bin sizeb, original trace filef , common request sizer
OUTPUT: synthetic trace file
ALGORITHM:

for each non-empty intervalw in f
if fraction of non-empty bins< 3%, p= 0:5
elsep = CALCULATE -P(s=b, w)
resolution = 1 ms
length =s/resolution
mass = volume of requests in interval
IMPROVED-BINOMIAL -MULTIFRACTAL -GENERATION (p; length;mass; r)
map local timestamps to real timestamps

end for

Figure 14: Synthetic I/O trace generation algorithm.
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Figure 15: Relative error of interarrival and request size synthesis methods. Note that EXP generates syn-
thetic interarrivals only.

6 Simulation Results

In this section, we analyze the accuracy of our proposed I/O trace generation method. Our approach is
to use the algorithm proposed in Figure 14 to generate a synthetic trace. Because we do not attempt to
synthesize sector numbers or read/write operations, we retain the same sector identifiers and operations
from the original trace. Therefore, our baseline for comparison is the original trace. We use Pantheon as
in x3 to compare the CDF of disk response times for the original and synthetic traces.

To measure the improvement obtained by using syntheses based on fine-grained trace parameters, we
compare our method, MF-PWB, to a simple exponential interarrival model, EXP, and a variant of the method
proposed by Wanget al [17], MF-P. In MF-P,p is calculated over the entire trace (w=1 day), but we use the
algorithm of Figure 13, adjusting the trace for the most common request size. The key difference between
MF-P and MF-PWB is that MF-PWB uses more parameters and does not model long-range dependence at
timescales greater thanw. Because we do not synthesize sector numbers or read/write operations, we retain
the same sector identifiers and operations from the originaltraces. This preserves the spatial locality.

Figure 15a–15d show the relative error of the response time distribution for two different days (05/30/92
and 06/06/92) for EXP, MF-P and MF-PWB with different parameters. We selected these specific days
because they have the maximum and minimum mean response timefor the snake traces, which in general
are more bursty, and harder to model, than cello. We can see that the relative error for MF-PWB method
ranges from 7.7% to 44.6%, depending on the trace itself and the parametersw andb, the error for MF-P
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Figure 16: Relative error of interarrival synthesis for snake traces in (a) 05/30/92 and (b) 06/06/92.

ranges from 13.5% to 121.6%, and the error for EXP ranges from16.7% to 91.6%, which is at least twice
the error for MF-PWB.

In general, MF-PWB reproduces interarrival patterns more accurately than MF-P; computingpat smaller
time intervals generally translates into more accurate synthesis. For snake traces, the improvement is sig-
nificant. For cello traces, we can lose this effect by selecting poor values ofb; however, the results are still
comparable.

To better illustrate the quality of synthetic arrival timesand request sizes, we isolate the effects of each.
Figures 16a and 16b show the relative error of the response time distribution for snake traces (05/30/92 and
06/06/92) for EXP, MF-P and MF-PWB. Only the arrival times are synthetic; we obtain all other parameters
from the original trace. The errors are almost the same as those from traces with synthetic arrival times and
request sizes, as shown in Figures 15c and 15d.

Figures 17a and 17b show the relative error of the response time distribution for snake traces (05/30/92
and 06/06/92) for MF-P and MF-PWB. Here, only the request sizes are synthetic, and all other parameters
are taken from the original traces. We do not compare EXP withthe others because it does not generate
synthetic request sizes. Request size synthesis accounts for less than 10% of the synthesis error, and MF-P
is the most successful method for that component of synthesis.

Results for cello are similar [9]. The majority of syntheticerror from MF-P and MF-PWB comes from
synthetic arrival times.

7 Conclusions and Future Work

For purposes of performance evaluation, we need only consider I/O activity at timescales related to the
system we are evaluating. For measuring disk response time and queuing behavior, we determined that a
interval length of 5 seconds bounded the error to less than 5%for both the HP97560 and HP2204A disks
under two different workloads.

However, accurately capturing burstiness is extremely important. We demonstrated a method of syn-
thesizing interarrival times using binomial multifractals that exploits the fact that long-range dependence is
unnecessary beyond certain timescales. Using this method,we synthesized traces with a relative error that
ranged from approximately 8% to 12% on random and sequentialworkloads.

We are currently working on methods to automatically determine the appropriate interval length, and on
combining this model for temporal locality with a similar one for spatial locality.
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