
Routing Resoure Management forPost-route OptimizationPaul B. MortonWayne DaiUCSC-CRL-02-12February 19, 2002
Jak Baskin Shool of EngineeringUniversity of California, Santa CruzSanta Cruz, CA 95064 USA

abstratIn this paper we present a post-route routing resoure manager whih is basedon a routing resoure migration strategy. In the past, post-route routing resouremanagement has been handled using rip-up and reroute strategies, however, this ap-proah is not adequate to meet the needs of post-route optimization proesses suhas rosstalk noise management whih require ontinuity of net adjaeny informa-tion, and the ability to onentrate dispersed routing resoures. Our new approahmoves unommitted routing resoures through the routing so that they an be on-entrated around spei� routing elements while minimizing the disruption to therest of the routing.Keywords: routing, wire sizing, post-route optimization, routing resoure man-agement

1. Introdution 11 IntrodutionAs IC feature size derease, parasiti resistane, apaitane and indutane elements arehaving a signi�ant inuene on the performane and reliability of on-hip interonnetions.In partiular, the e�ets of parasiti oupling apaitane between adjaent nets are makingon-hip interonnetions suseptible to ross-talk noise problems. Sine the full extent ofparasiti oupling apaitane annot be aurately determine until after the ompletion ofdetailed routing, it is very diÆult to implement an e�etive ross-talk noise managementstrategy in the global and detailed routing phase of the design proess. Beause of this asigni�ant portion of the ross-talk nose management proess must be arried out after theompletion of detailed routing.In the past, post route optimization and repair strategies have been based on \rip-up andreroute" routing resoures managers. However, rip-up and reroute leads to unpreditablehanges in net adjaenies, and thus oupling apaitane. This makes it very diÆult fora rip-up and reroute based ross-talk noise management strategy to onverge to a solution.Additionally, while there may be adequate unommitted routing resoures available toresolve a ross-talk noise problem, those resoures tend to be dispersed, whih makes itdiÆult for a rip-up and reroute strategy to use them e�etively.In this paper we will develop a more sophistiated approah to post-route routing re-soure management. Our approah will be based on a routing resoure migration strategy.This approah allows us to move unommitted routing resoures through the routing andonentrate them around spei� routing elements while minimizing hanges in net adja-enies.

(b)(a)Figure 1: A topologial routing (a), and its geometri routing (b).Sine geometri routers are designed to maximize the performane of their geometripath generation abilities, their underlying data strutures have been spei�ally tuned tosupport this operation and thus are not very eÆient at performing the path deformationoperations needed for a resoure migration strategy. In a topologial routing system therouting is represented as the topologial abstration of the geometri routing, as illustratedin Fig. 1, whih an be easily transformed bak into a geometri routing [1℄. Sine thetopologial representation does not need to keep trak of all the details assoiated withan exat geometri representation of the routing, path deformation operations an be

2 2. Previous Workperformed very eÆiently. Beause of this we will base our routing resoure migrationstrategy on a topologial routing system.2 Previous WorkOne of the �rst uses of topologial routing for post route resoure management was inthe area of ompation (see for example [2℄ and [3℄). Compation is a global optimizationproess whih seeks to minimize the area of a design by migrating unommitted plaementand routing resoures to the edges of the design. Another use of topologial routing forpost route resoure management is the area of routing ongestion management [4℄. Inongestion management, unommitted routing resoures are migrated through the routingin a way that evens out the routing ongestion aross the entire design. While both of theseproesses use routing resoure migration to manage post-route routing resoures, they areglobal proess whih do not onentrate the routing resoures for use by spei� routingelements in the design.In [5℄, a post route rosstalk noise management strategy was presented whih ontaineda topologial post-route routing resoure manager. In partiular, it allowed for the identi�-ation of unommitted routing resoures available to spei� nets. After determining howbest to use these resoures, they were migrated to and onentrated around spei� routingelements for the net. The main draw bak with this routing resoure manager was that itould only identify and migrate \loal" routing resoures. That is, routing resoures thatould be migrated without moving any vias or Steiner points.3 Topologial RoutingA topologial router represents the routing on eah plane of a design using a set ofterminals whih are onneted by a set of branhes. Terminals represent vias, pins, andsteiner points. Branhes represent the wire onnetions between terminals and behave likeexible rubber bands. Our post-route routing resoure manager is primarily based on threebasi topologial routing operations: branh sizing, terminal move, and inremental designrule heking. The branh sizing operation is used to hange the width of a branh. Theterminal move operation moves a terminal along a straight line path while maintainingthe onnetivity of all branhes that surround and onnet to that terminal, as illustratedin Fig. 2. The inremental design rule heker (DRC) identi�es any design rule violations(DRVs) that are reated as a result of a hange to the topologial routing.In order to loate DRVs in a topologial routing, the DRC takes advantage of Maley'sroutability theorem [6℄. Maley's routability theorem states that a topologial routing isroutable if and only if all of its uts are safe. A ut is de�ned as the shortest straight linebetween two features that are visible to eah other, where a feature is any objet throughwhih a branh annot be routed (exluding other branhes). A safe ut is one whose owdoes not exeed its apaity. A ut's apaity, as illustrated in Fig. 3, is a measure of theamount of routing resoures available aross the ut, and a uts ow is a measure of therouting resoures needed to route all the branhes that need to ross the ut. Thus, in atopologial routing, a design rule violation ours when the ow of a ut exeeds its apaity.To implement our routing resoure manager using these basi operations our algorithmswill be based on feed bak driven probing methods. The basi idea behind these methods

4. Resoure Identi�ation and Migration 3

(a) (b)Figure 2: An illustration of the terminal move operation; (a) The original topo-logial routing and a move path (dotted line); (b) The topologial routing thatresults from the terminal being moved along the move path.
CUT

FLOW

CAPACITY

Figure 3: The ow and apaity of a ut between two terminals of a topologialrouting.is to perform a probing operation, suh as an inrease in branh width or a terminal move,followed by a more re�ned probing operation based on the feed bak gained from an analysisof the DRVs generated by the previous probe. This sequene of probes ontinues until theprobing operation is re�ned to the point where it does not generate any more DRVs. Inour implementation of these methods, eah suessive probing operation is less \intrusive"than the previous probing operation. Beause of this harateristi we will refer them as\probe-and-retreat" methods.4 Resoure Identi�ation and MigrationIn this paper we are interested in post-route routing resoure management for optimiza-tion proesses, like ross-talk noise management, whih work by inreasing the amount ofrouting resoures available to a well de�ned group of routing elements in order to a�eta behavior related to those routing elements. These optimization proesses an be brokendown into four main steps:� Identify a group of routing elements to be optimized.� Identify unommitted routing resoures available to those routing elements

4 4. Resoure Identi�ation and Migration� Perform an optimization, onstrained by the available routing resoures, to determinehow best to use the available routing resoures to solve the problem assoiated withthe group of routing elements.� Migrate the routing resoures, as determined by the optimization, and assign them tothe routing elements.Of these four steps, the resoure identi�ation step (step 2) and the resoure migration step(step 4) onstitute the post-route routing resoure management proess.The objetive of the identi�ation step is to quantify the \useful" unommitted routingresoures that are available to a given branh. In this paper, useful routing resoures arede�ned as those routing resoures that will allow an inrease in the width or spaing of anentire branh. Sine routing resoures that an be used to inrease branh width an alsobe used to inrease branh spaing, we will measure all useful routing resoures availableto a branh in terms of equivalent branh width.In most post-route optimization, additional routing resoures beyond some reasonableupper bound are of little or no value. Beause of this the resoure identi�ation proess anbe terminated when the amount of useful unommitted routing resoures has exeeded thisbound. Additionally, sine CPU time is also a valuable resoure, the proess of identifyingunommitted routing resoures annot be open ended. The identi�ation proess mustinorporate some mehanism to limit the amount of e�ort that is expended in �ndingunommitted routing resoures.The identi�ation proess an be deomposed into three steps. The �rst step is an \openended" migration proess, whih is a proess that ontinues to migrate unommitted routingresoures until no more resoures an be found. The seond step is an aounting proesswhih tabulates all of the useful routing resoures that have been aumulated by the �rststep. The third, and �nal step, is to perform a \reverse" migration proess, whih migratesthe resoures bak to their original loations. From this we an see that the identi�ationand migration proesses have a signi�ant dupliation of e�ort. To avoid this dupliationand inorporate the e�ort limits, and the upper bound limits on the amount of usefulunommitted routing resoures that need to be found, we repartition the identi�ation andmigration proesses into an adaptive plowing proess and a relaxation proess.The adaptive plowing proess simultaneously onentrates and quanti�es the usefulunommitted routing resoures around the set of branhes. One the optimization proessdetermines how muh of those resoures will be needed, the relaxation proess attempts tomove the unneeded routing resoures bak, as lose as possible, to their point of origin.A plowing proess is simply another way to look at the resoure migration proess. inpartiular, given a branh and a desired width inrease, a plowing proess \pushes" allthe routing adjaent to the branh far enough from the branh to aommodate the desiredinrease in branh width. Extending this idea, we de�ne an adaptive plowing proess as onewhih attempts to push all the adjaent routing far enough from the branh to aommodatethe desired inrease in branh width, but if, due to e�ort onstraints, or insuÆient routingresoures, it is unable to ahieve this goal, then it determines the inrease in branh widththat an atually be aommodated.4.1 Adaptive PlowingOur approah to adaptive plowing is to set the width of a branh to a reasonable upperbound, then determine if this width inrease reates any DRVs. If it does, then we attempt

4. Resoure Identi�ation and Migration 5PLOW BRANCHES(BranhSet;WidthBound)1. FOR EACH Branh 2 BranhSet2. SavedWidth GET WIDTH(Branh)3. DesiredWidth WidthBound4. REPEAT5. SET WIDTH(Branh;DesiredWidth)6. CHECK FOR DRVs7. IF DRVs FOUND8. GET Cut OF FIRST DRV9. SET WIDTH(Branh; SavedWidth)10. DesiredWidth EXPAND CUT (Cut;Branh;DesiredWidth)11. END IF12. UNTIL NO DRVs FOUND13. END FORFigure 4: Pseudo ode for plowing a set of branhes.to �x these DRVs. If there are DRVs that we annot �x, then we redue the width of thebranh until the DRVs are eliminated.Our approah to adaptive plowing is outlined in the pseudo ode in Fig. 4. The inputto this proedure is the set of branhes to be plowed, and the upper bound on the routingresoures to onentrate around eah branh. We plow the the set of branhes one branhat a time. To plow eah branh we �rst save its urrent width (line 2), then set the branhwidth to the width bound (line 5). We then hek for and attempt to �x the �rst of anyDRVs reated as a onsequene of inreasing the branh width (lines 6 to 11). To �x a DRVwe attempt to expand the apaity of the failing ut assoiated with the DRV (line 10). Ifwe are unable to expand the ut's apaity enough to aommodate the inreased branhwidth, we redue the width bound for the branh aordingly (line 10). In order to simplifythe ut expansion proess, we �rst reset the width of the branh bak to its original size(line 9). By resetting the branh width, the ut expansion proess does not have to ontendwith a set of preexisting DRVs. One the ut expansion has been ompleted, we repeat theproess of branh sizing (line 5), DRV heking (line 6) and ut expansion (lines 7 to 11)until no more DRVs are reated by the hange in branh width.Sine it may not be possible to �x the DRV within the spei�ed e�ort and unommittedrouting resoure onstraints, we expand the ut's apaity as muh as resoures allow andthen redue the branh's maximum width aordingly.4.2 Cut expansionTo expand the apaity of a ut we attempt to move the two terminals that de�ne theend points of the ut in opposite diretions. Our approah is outlined in the pseudo odein Fig. 5. The inputs to this funtion are the ut to be expanded, the branh ausing theexpansion, and the desired width of the branh. After expanding the ut, the funtionreturns the width of the branh that an be aommodated by the expanded ut.To expand the apaity of a ut we �rst need to identify the two terminals that de�nethe ends of the ut (line 1), then ompute the inrease in the size of the ut neessary toaommodate the desired width of the branh (line 2), and then determine what diretion

6 4. Resoure Identi�ation and MigrationEXPAND CUT (Cut;Branh;DesiredWidth)1. MoveDist COMP MOV E DIST (Cut;Branh;DsiredWidth)2. [Term1; T erm2℄ GET CUT TERMS(Cut)3. MoveDir COMP MOV E DIR(Term1; T erm2)4. DistMoved PLOW TERM(Term1;MoveDist;MoveDir)5. RemainingDist MoveDist�DistMoved6. IF RemainingDist > 07. DistMoved PLOW TERM(Term2; RemainingDist;�MoveDir)8. RemainingDist RemainingDist�DistMoved9. END IF10. NewWidth COMP NEW WIDTH(Cut;Branh;RemainingDist)11. RETURN NewWidthFigure 5: Pseudo ode for expanding a ut to aommodate the desired width ofa branh.to move eah of the terminals (line 3). Sine we are interested in retilinear routing,the minimum amount of terminal movement to ahieve the desired inrease in apaityis ahieved by either a horizontal or vertial movement. To see this, reall that the apaityof a ut for retilinear routing is measured as MAXf�x;�yg, where �x and �y arethe horizontal and vertial separations, respetively, between the two end points of theut. Beause of this we only onsider horizontal or vertial terminal movements. We thenattempt to move one of the terminals the entire distane neessary to aommodate theinrease in branh width (line 4). Note that this terminal move operation is a plowingoperation whih will move other terminals in order to avoid reating other DRVs. If,due to routing resoure or e�ort onstraints, it is not possible to move the terminal theentire distane, then we attempt to move the ut's other terminal the remaining distanein the opposite diretion (line 8). We then ompute the width of the branh that an beaommodated by the newly expanded ut (line 10).4.3 Terminal plowingWe implement terminal plowing using a reursive probe-and-retreat algorithm. We usea series of probe-and-retreat steps to move the terminal as lose as possible to the desireddestination. If we did not reah this destination, then we identify the terminal that isbloking further movement, and reursively attempt to plow this terminal out of the way.We then repeat the proess of probe-and-retreat followed by reursive plowing until we eitherreah the desired destination or we exhaust the available unommitted routing resoures, orwe reah the limit on the amount of e�ort we want to expend on plowing a single terminal.Our terminal plowing algorithm is outlined in the pseudo ode in Fig. 6. The inputs tothis funtion are the terminal to be plowed, the distane and diretion to plow it, and alimit, in the form of a reursion depth limit, on the amount of e�ort to expend plowing thisterminal. The funtion returns the atual distane that the terminal was moved. We �rstdetermine the move path for the terminal, as determined by the starting loation and desireddestination loation for the terminal (lines 1 and 2). We then move the terminal forwardalong this path until it reahes the desired destination, or its movement is bloked by anadjaent terminal. If its movement is bloked, we reursively attempt to plow the blokingterminal, parallel to the original move path, a distane that will allow for the ompletion

4. Resoure Identi�ation and Migration 7PLOW TERM(Term;Dist;Dir;Depth)1. CurrentLo StartLo LOCATION(Term)2. DestLo COMP DEST (StartLo;Dist;Dir)3. WHILE CurrentLo 6= DestLo AND Depth > 04. CurrentLo DestLo5. REPEAT6. MOV E TERM(Term;CurrentLo)7. CHECK FOR DRVs8. IF DRVs FOUND9. GET Cut OF FIRST DRV10. [CurrentLo;BlokingTerm℄ RETREAT (Term;Cut; StartLo)11. END IF12. UNTIL NO DRVs FOUND13. RemainingDist kDestLo� CurrentLok14. IF RemainingDist > 015. DistMoved PLOW TERM(BlokingTerm;RemainingDist;Dir;Depth � 1)16. DestLo NEW DEST (CurrentLo;DistMoved;Dir)17. END IF18. END WHILE19. DistMoved kCurrentLo� StartLok20. RETURN DistMovedFigure 6: Pseudo ode for plowing a terminal.of the plowing operation on the original terminal (lines 13 to 15). If the bloking terminalannot be moved far enough to allow the original terminal to reah the desired destination,then we determine a new destination for the original terminal based on the �nal loationof the bloking terminal (line 16). The plowing operation is terminated when the urrentloation of the original terminal and the destination loation of the move path onverge(line 3).The key to this algorithm is to be able to identify the bloking terminals in the properorder. In partiular, we are interested in �nding the bloking terminal that is losest tothe starting point on the move path, sine bloking terminals farther along the path maybe plowed out of the way by reursive plowing operations on bloking terminals loser tothe start of the path. To identify the losest bloking terminal we use a probe-and-retreatmethod. That is, we advane the original terminal to the desired destination loation (lines4 and 6), then we hek for DRVs (line 7). If there are any, we selet the �rst one anddetermine how far bak along the move path to retreat in order to avoid this DRV (lines 8to 11), then move the original terminal bak to this loation (line 6). We then repeat theDRC and retreat proess until no more DRVs are found. The ut assoiated with the lastDRV found, along with the starting loation of the move path, and the urrent loation ofthe original terminal are used to determine the losest bloking terminal (line 10).In order to limit the amount of omputing resoures onsumed by the plowing proess,we set a reursion depth limit. With out this depth limit the reursive plowing proesswould only terminate when it beomes hemmed in by a \fene" of immovable terminals,suh as those assoiated with pins or the edge of the design. One the reursion depth limithas been reahed, all terminals enountered at that level of reursion are onsidered to be

8 4. Resoure Identi�ation and MigrationPLOW RESTRICTED TERM(Term;Dist;Dir)1. StartLo LOCATION(Term)2. MoveDist Dist3. GET List OF TERMINALS RESTRICTING Term4. FOR EACH RestTerm 2 List5. DestLo COMP DEST (StartLo;MoveDist;Dir)6. DistRest DIST REST (Term;RestTerm)7. IF MIN DIST (RestTerm;PATH(StartLo;DestLo)) < DistRest8. Lo REST LOC(RestTerm;PATH(StartLo;DestLo);DistRest)9. RemainingDist MoveDist� kLo� StartLok10. DistMoved PLOW TERM(RestTerm;RemainingDist;Dir)11. MoveDist MoveDist� (RemainingDist�DistMoved)12. END IF13. END FOR14. RETURN MoveDistFigure 7: Pseudo ode for plowing restrited terminals.immovable, whih fores the plowing proess to terminate.4.4 Restrited terminal movementReall from setion 4.1 that we reset the branh width to its original size (line 9 inFig. 4) so that the ut expansion proess does not have to ontend with a set of preexistingDRVs. Beause of this, one a ut has been expanded, we need a mehanism to maintainthe extra apaity throughout the remainder of the plowing proess for the orrespondingbranh. The mehanism we use is to maintain a table of terminals whose movement wewant to restrit. That is, the terminals in the table must maintain a minimum distanebetween themselves and at least one other restrited terminal. Eah entry in this table anbe easily onstruted by EXPAND CUT .To maintain the required minimum distanes between restrited terminals, we need toadd a preproessing step to PLOW TERM . Our approah to this preproessing step isoutlined in the pseudo ode in Fig. 7. The inputs to this funtion are the terminal to beplowed, and the distane and diretion it should be plowed. The funtion returns the atualdistane that the terminal was moved. PLOW RESTRICTED TERM heks to see ifthe terminal we are about to plow has been restrited. If the terminal has been restrited,we attempt to move all terminals restriting its movement suh that the movement of therestrited terminal will not redue the distane, between its self and the restriting terminals,below the required minimum distanes. If a restriting terminal annot be moved far enoughto guarantee this minimum distane, then the move distane of the restrited term is reduedaordingly.We begin by determining the starting loation of the terminal's move path (line 1). Wethen get a list of terminals that are restriting the movement of the restrited terminal (line3). For eah of the restriting terminals we determine if the movement of the restrited ter-minal, along its move path, ould violate the minim distane requirement. If the minimumdistane requirement an be violated, then we attempt to move the restriting terminal outof the way, or if this is not possible, shorten the move path aordingly (lines 4 to 13). To

4. Resoure Identi�ation and Migration 9PLOW IN LINE TERM(Term;Dist;Dir)1. StartLo LOCATION(Term)2. DestLo COMP DEST (StartLo;Dist;Dir)3. WHILE TERMINALS BLOCKING PATH(StartLo;DestLo)4. InLineTerm NEAREST TERM(StartLo;DestLo)5. InLineLo LOCATION(InLineTerm)6. RemainingDist kDestLo� InLineLok+ Æ7. DistMoved PLOW TERM(InLineTerm;RemainingDist;Dir)8. DistMoved DistMoved� Æ9. DestLo COMP DEST (InLineLo;DistMoved;Dir)10. END WHILE11. NewMoveDist kDestLo� StartLok12. RETURN NewMoveDistFigure 8: Pseudo ode for plowing in-line terminals.determine if the distane between the restrited terminal and a restriting terminal ould beless than the minimum required distane, we �rst determine the destination of the urrentmove path (line 5), then we get the minimum required distane between the terminals (line6), then we hek to see if the minimum distane between the restriting terminal and anypoint on the move path is less than the minimum required distane between the restritedand restriting terminals (line 7). If there are any points on the move path that are toolose to the restriting terminal, we determine the loation on the move path that is losestto the starting point of the move path and whih still maintains the required minimumdistane from the restriting terminal (line 8). From this we determine how far to move therestriting terminal, on a path parallel to the move path, suh that the original terminalmove an be ompleted without ompromising the minimum required distane (line 9). Wethen attempt to move the restriting terminal (line 10), and if the terminal annot be movedfar enough, we adjust the move path aordingly (line 11).4.5 In line plowingSine terminals are not exible objets, one terminal annot be moved through another.Beause of this, line 6 of Fig. 6 annot be reliably exeuted until we are ertain that the movepath does not interset any bloking terminals. We will refer to any terminal intersetedby the move path as an \in-line terminal". If the move path ontains any in-line terminals,these terminals must �rst be plowed out of the way, or if they annot be plowed out of theway, the move path must be shortened. We aomplish this by adding another preproessingstep to the beginning of PLOW TERM .Our approah to in-line plowing is outlined in the pseudo ode in Fig. 8. The inputsto this funtion are the terminal to be plowed, and the distane and diretion it should beplowed. The funtion returns the atual distane that the terminal was moved. We �rstdetermine the move path of the original terminal plowing operation (lines 1 and 2). Wethen hek to see if there are any in-line terminals bloking the move path (line 3). If thereare, we selet the one losest to the start of the move path (line 4 and 5), determine howfar it needs to be moved to get it o� of the move path (line 6), then attempt to plow it thatdistane in the diretion of the move path (line 7). Note that in order to move the in-line

10 4. Resoure Identi�ation and MigrationRELAX TERMS(MoveStak)1. WHILE MoveStak NOT EMPTY2. Move POP (MoveStak)3. Term GET TERM(Move)4. DestLo GET ORIG LOC(Move)5. StartLo LOCATION(Term)6. IF TERMINAL BLOCKING PATH(StartLo;DestLo)7. InLineTerm NEAREST TERM(StartLo;DestLo)8. DestLo LOCATION(InLineTerm)9. DestLo DestLo� Æ DIRECTION(StartLo;DestLo)10. END IF11. REPEAT12. MOV E TERM(Term;DestLo)13. CHECK FOR DRVs14. IF DRVs FOUND15. GET Cut OF FIRST DRV16. DestLo RETREAT (Term;Cut; StartLo)17. END IF18. UNTIL NO DRVs FOUND19. END WHILEFigure 9: Pseudo ode for relaxing a sequene of terminal moves.terminal o� of the move path we need to inlude an inremental distane, Æ, in line 6, sinewithout it the in-line terminal would end up at the destination loation on the move path.If the plowing operation on the in-line terminal ould not move it far enough to get it o�of the move path, then we shorten the move path by moving its destination bak towardsits starting loation (lines 7 to 9).It should be noted that the loop in lines 3 to 10 an be repeated at most n times, wheren is the number of layers that the original terminal spans. This an be seen by the fatthat line 4 selets the in-line terminal that is losest to the start of the move path, and theplowing operation on line 7 will reursively plow any other in-line terminals farther downthe move path whih have a layer in ommon with this in-line terminal.4.6 RelaxationIn order to relax the terminal moves, we need to build a stak of terminal moves. Thisis easily aomplished by adding a PUSH operation to the end of PLOW TERM . Eahelement of this stak ontains the terminal that was moved, and its original loation. Therelaxation proess attempts to move eah terminal in the stak bak, as lose as possible, toits original loation. This is aomplished by de�ning a move path starting at the terminalsurrent loation and ending at the terminals original loation. We then move the terminalto a point on this move path whih is as lose as possible to its original loation and whihdoes not reate any DRVs.Our approah to relaxing the terminal moves is outlined in the pseudo ode in Fig. 9. Theinput to this proedure is the stak of terminal moves that was reated by PLOW TERM .We POP a move from the MoveStak from whih we identify the terminal and onstrut

5. Results 11a move path (lines 2 to 5). We then hek to see if there are any in-line terminals on themove path and adjust the destination of the move path aordingly (lines 6 to 10). We thenuse a probe-and-retreat strategy, similar to that used in PLOW TERM , to determine theloation on the move path that is losest to the destination and does not generate any DRVs(lines 11 to 17).5 ResultsTo demonstrate our new approah to post-route routing resoure management we haveimplemented it using the SURF topologial routing system [7℄. We then used this imple-mentation to signi�antly inrease the width of a branh in a routed three level metal hipdesign. Fig. 10 shows a portion of the geometri routing for layers two and three of thisdesign. In partiular, the highlighted metal three wire is a setion of the branh whosewidth we wish to inrease. Fig. 11 shows the topologial routing whih orresponds to thisgeometri routing. Note that Fig. 11 is an \expanded" topologial routing whih, unlikethe topologial routing in Fig. 1 and Fig. 2, takes into aount the width and spaing of therouting when determining the preise shape of a branh.

Figure 10: Original geometri routing.Fig. 12 shows the topologial routing that results from an adaptive plowing operationwhih seeks to aumulate enough routing resoures to inrease the width of the highlightedbranh by a fator of 10, with a reursion depth limit of 5 terminals. Beause of the reursiondepth limit, the plowing operation was only able to aumulate enough routing resouresto inrease the branh width by a fator of 5, as shown in Fig. 13.Comparing Fig. 11 to Fig. 12 we see that terminals 1, 2, 3 and 4 required a terminalplowing operation that needed 3 levels of reursion, that is, before terminal 1 an be moved,terminals 2, 3, and 4 must be moved. Terminals 5 and 6 required a plowing operation withonly one level of reursion. Note that while the movement of the terminals is primarily inthe vertial diretion, as we would expet given the horizontal orientation of the branh,there are some terminals, suh as terminal 7, whih have been moved horizontally. This isdue to the fat that the assoiated ut that was being expanded had a strong horizontalorientation and thus terminals 7 required a shorter horizontal move than a vertial move to

12 5. Results

Figure 11: Original topologial routing.ahieve the desired ut apaity. Finally, note that terminal 8 seems to have been movedunneessarily, and terminal 9 seems to have been moved farther than neessary. This is dueto the fat that the �rst terminal moves in the plowing proess are attempting to to movethe terminals so that the wire width an be inreased by a fator of 10, however, as theplowing proess proeeds, the reursion limit and limits on unommitted routing resouresredue the upper bound on the width inrease to a fator of 5. Sine the �nal width boundis half the original width bound, some of the �rst terminal moves appear to be unneessaryor unneessarily large.Fig. 14 shows the topologial routing that results when we triple the width of theoriginal branh routing and then relax the terminals that were moved by the plowingoperation. Comparing Fig. 12 and Fig. 14 we see that the unneessary move of terminal 8and the exaggerated move of terminal 9 have been eliminated while only half the movementof terminals 5 and 6 have been eliminated. Fig. 15 is the resulting geometri routing.

Figure 12: Topologial routing after adaptive plowing.

6. Conlusion 13

Figure 13: Geometri routing after adaptive plowing.Comparing Fig. 10 and Fig. 15 we see that we have been able to onentrate enough routingresoures around the branh to triple its width while minimizing the disruption to theadjaent routing.6 ConlusionIn this paper we have presented a post-route routing resoure manager whih is basedon a routing resoure migration strategy. Sine geometri routers are not well suited forperforming the path deformation operations needed for a resoure migration strategy wehave based our work on a topologial router. Our post-route routing resoure manager ispartitioned into two phases, an adaptive plowing phase, whih onentrates and quanti�esuseful unommitted routing resoures around a set of routing elements, and a relaxationphase, whih moves any routing resoures that are not needed by the routing elementsbak, as lose as possible, to their point of origin. Our plowing and relaxation proessesare based on three basi topologial routing operation: branh sizing, terminal move, andinremental design rule heking. The plowing and relaxation proesses are onstruted fromthese basi operations using probe-and-retreat algorithms. Our new approah to post-routerouting resoure management allows us moves unommitted routing resoures through therouting so that they an be onentrated around spei� routing elements while minimizingthe disruption to the rest of the routing.Referenes[1℄ D. J. Staepelaere, \Geometri transformation for a rubber-band sketh," Master's thesis,University of California Santa Cruz, Septemeber 1991.[2℄ N. Sherwani, Algorithms for VLSI Physial Design Automation. Boston, Mass: KluwerAademi Publishers, 1995.[3℄ J.Valainis, S.Kaptanoglu, E. Liu, andR. Suaya, \Two-Dimensional ICLayoutCompationBased on Topologial Design Rule Cheking," IEEE Trans. Computer-Aided Design,vol. 9, no. 3, pp. 260{275, 1990.

14 Referenes

Figure 14: Relaxed topologial routing.[4℄ J. Su and W. Dai, \Post-Route Optimization for Improved Yield Using a Rubber-BandWiring Model," in Pro. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 700{706,1997.[5℄ P. Morton andW. Dai, \ARoutingOptimizer for Cross-TalkNoise Avoidane inResistiveVLSI Interonnetions," Teh. Rep. UCSC-CRL-00-03, UCSC, 2000.[6℄ F. Maley, Single-Layer Wire Routing and Compation. Cambridge, Mass: The MITPress, 1989.[7℄ D. J. Staepelaere, J. Jue, T. Dayan, and W. W.-M. Dai, \Surf: a rubber-band routingsystem for multihip modules," in Pro. IEEE Design and Test of Computers, 1993.

Figure 15: Relaxed geometri routing.

