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31. IntrodutionConstant advanes in semiondutor tehnology have allowed omputer arhitets toslightly inrease the omplexity of urrent miroproessor's implementations. Indeed, up-oming advanes will allow even more omplexity to be added sine a larger number oftransistor is still possible. Aording with [NAT97℄ it is expeted to have 1.4 billion tran-sistor available running at 10 GHz by 2012.Even tough semiondutor tehnology still promises signi�ant integration, its advanetowards the limits imposed by physis has beame more important. An important issue iswhat to do with suh a large amount of transistors and how to do it eÆiently.ILP Instrution Level Parallelism is nowadays employed in all miroproessors undersort of di�erent tehniques. Reent arhitetures are extrating and exploiting the ILPfrom single and multiple threads of ontrol.Better performane has been suessfully obtained from advanes in the implementa-tion tehniques whih allows iruits to exeute tasks faster and from advanes in thearhitetures and algorithms whih has been allowing more parallelism, i.e., more tasks tobe exeuted at the same time.The ombination of these two key things result in more tasks being exeuted simultane-ously within smaller frations of time (faster). Although we have seen remarkable improve-ments in the IC design proess, we an not foresee exatly what kind of arhitetures willbe implemented over those transistors in the next few years.So many ideas have been proposed reently from exeuting multiple paths of onditionalbranhes to exeuting multiple threads and proesses in a single one-hip proessor. All ofthem rely on fething more instrutions to feed starving funtional units.Fething more instrutions is ompliated beause orret instrution addresses areompletely unknown during feth after a onditional branh. Branh predition is appliedto predit those addresses thus avoiding to stall the feth unit on the presene of onditionalbranhes.Two-level branh predition [YEH91℄ an predit orretly about 97% of time for ertainbenhmarks. Other shemes suggest that ombining di�erent branh preditors an help inthe ase of a hard-to-predit branh is fethed. Hybrid shemes perform well than singleshemes but imply also higher osts.Branh predition is urrently playing an important role in the feth proess. Withoutbranh predition would be impossible to feth instrutions in the demand required byurrent miroproessors. Despite the orretness of branh preditors, the remaining smallmispredition rates degrade onsiderably the performane.Another limit is also imposed by alignment problems beause branh targets are rarelypositioned at the beginning of a ahe line. After rediret the feth to the target of abranh, in ase the branh is taken (or predited as taken), bandwidth is often wastedbeause instrutions that are physially in the line but before the target are disarded.In the ase the branh is not-taken, the same line is sometimes read twie from theinstrution ahe to feth the instrutions along the not-taken path whih are sequential tothe branh itself. In both ases, bandwidth is wasted either by disarding the instrutionsthat ome within the ahe line but before the target or by fething twie the same aheline.



4 1. IntrodutionSeveral problems a�et the performane of the feth engine whih reets negativelyinto the �nal overall performane. This work is onentrated on the study of the problemslimiting the feth of wide deep supersalar pipelines.Some onlusions are highlighted and a proposal alled DCE whih stands for DynamiConditional Exeution is presented. A matter of fat is that even using high performanebranh preditors, the small frations of mispreditions harm the overall performane sig-ni�antly.DCE is proposed as an alternative to redue the ourrene of mispreditions and thepenalties assoiated with the reovery and squash of instrutions after onditional branhes.DCE targets short branhes where most of mispreditions are onentrated.DCE exeutes eagerly (i.e. both paths) those branhes in order to eliminate mispredi-tions in these situations. Less branhes are predited at the feth time but more instrutionsare issued for exeution. Thus the feth engine tends to be slightly simple than onventionalmahines but more pressure is moved into the exeution ore.Conventional mahines ommit less instrutions than they are able to. This happensbeause some instrutions are exeuted and threw away ompletely after a mispredition.DCE employs an hybrid model involving multipath, ontrol independene and seletivesquash on ertain ases. The present work is organized as follows:Chapter 2 introdues the base mahine and the benhmarks harateristis used in theexperiments. Chapter 3 presents an initial study and evaluation of the negative e�et ofmispreditions and the role of branhes in wide deep supersalar pipelines.Chapter 4, summarizes the e�ets of mispreditions and disusses some of the issues onthe treatment of them and solutions proposed previously based on multipath shemes. Thehapter is entered on the disussion of Pros and Cons of multipath.Chapter 5 introdues DCE as a proposal for reduing mispreditions in short branhes.DCE is disussed briey by presenting the basi onepts and the motivations for theproposal. The onepts are presented and some expeted results are delineated. Chapter6, Revisiting Branhes, presents a new insight into branh analysis addressing mainly theloality of ertain branhes, where mispreditions are onentrated, whih is the base forthis proposal.Finally, Chapter 7 introdues a more detailed onept about DCE and disusses the mi-roarhiteture involved in its implementation. Eah aspet of the arhiteture is disussedand the future steps are suggested.



52. The Arhiteture and Benhmarks2.1 BenhmarksFor the experiments presented in this hapter we simulated all benhmarks of theSPEC95 suite. Both integer and oat point benhmarks were simulated up to 200 millioninstrutions but only the latest 100 million instrutions were ounted on the performanegraphs. The �rst 100 million instrutions were skipped.The table 2.1 shows eah benhmark and the perentual of eah type of instrutionexeuted. Notie that we divided the range of instrutions in 4 types: branhes, loads, storesand other instrutions. Branhes represents both onditional and unonditional branheshereby alled jumps.The frequeny of ourrene of eah type of instrution was gathered from the exeutionstage of the pipeline beause we intended to apture the atual number of instrutions thatwere in-ight. The numbers presented in the table show the perentage of instrutionsof eah type that were exeuted but not neessarily ommitted. Beause the arhitetureused a onventional branh preditor (i.e. not perfet), instrutions from the wrong-pathof mispredited branhes also onsumed resoures.
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Figure 2.1: Classes of InstrutionsWe highlighted the �ve highest indexes among all the benhmarks for branhes, loadsand stores. For branhes, we observed frequenies of 28.15, 22.80, 22.10, 21.81 and 20.55perent of all exeuted instrutions for the benhmarksM88ksim, Li, Compress, Su2or andTomatv, respetively.For loads, the �ve highest frequenies were 36.80, 34.94, 28.63, 28.46 and 25.87 perentof all instrutions exeuted in the benhmarks Hydro2d, Fpppp, Vortex, Perl and Li, respe-tively. As for stores, 24.63, 17.59, 15.82, 14.07 and 13.09 perent of all instrutions for thebenhmarks Vortex, Perl, Li, G and Fpppp, also respetively.



6 2. The Arhiteture and BenhmarksTable 2.1: Benhmarks used in the SimulationsBenhmark Input DynamiBranhes (%) Loads (%) Stores (%) Other Insn (%)Compress bigtest.in 22.10 7.83 0.70 69.37G -O p-del.i -o p-del.s 19.22 25.05 13.09 42.63Go 50 21 9stone21.in 14.95 22.53 6.80 55.71Ijpeg vigo.ppm 10.80 17.53 7.87 63.80Li *.lsp 22.80 25.87 15.82 35.52M88ksim tl.raw 28.15 24.75 4.89 42.20Perl primes.pl < primes.in 19.38 28.46 17.59 34.58Vortex vortex.raw 15.96 28.63 24.63 30.78Applu applu.in 2.53 22.67 5.42 69.38Apsi 3.88 22.55 8.11 65.46Fpppp natoms.in 1.72 36.80 14.07 47.41Hydro2d hydro2d.in 19.43 18.29 10.23 52.06Mgrid mgrid.in 1.32 34.94 1.45 62.29Su2or su2or.in 21.81 20.28 9.55 48.36Swim swim2.in 17.34 15.15 7.45 60.06Tomatv tomatv.in 20.55 18.41 10.44 50.59Turb3d turb3d.in 6.65 13.64 8.04 71.66Wave5 wave5.in 15.53 15.12 7.29 62.06Averageint 19.17 22.58 11.42 46.82fp 11.07 21.78 8.20 58.93int & fp 14.66 22.13 9.63 53.55Figure 2.1 shows the instrutions types for eah benhmark as a set of four di�erenttypes: branhes, loads, stores and other types. We hoose arbitrarily to highlight the �vehighest indexes, however there is no speial reason to hoose this number but help to simplifythe analysis.2.2 Referene ArhitetureThe arhiteture simulated is a 12 stage pipeline with feth, virtual1, virtual2, de-ode/dispath, issue/exeute, virtual3, virtual4, virtual5, virtual6, virtual7, write-bak andommit stages.Virtual stages were inluded in the pipeline to emulate a deeper pipeline (�gure 2.2).Basially the pipeline has only 5 funtions whih are feth, deode/dispath, issue/exeute,write-bak and ommit. We added these extra stages to emulate urrent designs, whereusual pipeline depth ranges from 10 to 15 stages or more.Below we detailed eah aspet of the on�guration used in the experiments.� L1 I-ahe: 1 yle hit; 64Kb (256 sets; 4 lines; 64 bytes line); LRU replaementpoliy;� L1 D-ahe: 1 yle hit; 64Kb (256 sets; 4 lines; 64 bytes line); LRU replaementpoliy;� L2 Uni�ed ahe: 6 yles hit; 512Kb (1024 sets; 4 lines; 128 bytes line); LRUreplaement poliy;



2.2. Referene Arhiteture 7� Main Memory: 18 yles �rst hunk; 1 yle intermediate hunks; 128 bytes aessbus;� Feth: 256 entries feth queue; 16 instrutions feth bandwidth;� Deode: 16 instrutions deode bandwidth;� Issue: 16 instrutions issue bandwidth;� Commit: 16 instrutions ommit bandwidth;� Instrution window size: 256 instrutions� Branh predition: Hybrid; 2048 entries meta-table; two-level gshare xor; 12 bitshistory;� Branh Target Bu�er: 512 sets; 4-way;� Return Address Stak: 32 entries;� Funtional Units:{ Integer ALU's (ialu): 16 FUs;{ Integer multiplier/divider (imult): 16 FUs;{ Float Point ALU's (fpalu): 16 FUs;{ Float Point multiplier/divider (fpmult): 16 FUs;� Memory ports: 4 ports;
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8 2. The Arhiteture and BenhmarksAs we didn't introdue any modi�ation in the simulator besides the virtual stages thefollowing desription is similar as presented in [BUR96℄.2.2.1 FethThe feth takes the PC address and probes the i-ahe to aess the respetive line. Thei-ahe has only one port and is bloked until the data is brought from the higher memorylevels, in the ourrene of a miss.Taken branhes interrupt the feth o�ering a major onstraint for the performane. Evenif 16 instrutions hit in the ahe a taken branh will break the sequene of instrutionstransferred to the dispath queue.The preditor is also probed in order to inform the address to aess in the next yle.If the address is unknown the feth ontinue fething through the next sequential address,onsidering the last instrution transferred to the dispath queue.The feth an be interrupted by the exeution unit when a mispredition is deteted. Inthis ase, one yle stall is introdued to reovery the feth and start to feth the orretaddress sent from the exeution units. All instrutions fethed after the mispredited branhare squashed before the feth reovery.2.2.2 Deode/dispathIn this stage the instrutions fethed are deoded, the register renaming is performedand RUU (Register Update Units) units are alloated to hold eah instrution. The dispathplaes as many instrutions up to the dispath width in the sheduler queue.2.2.3 Issue/exeuteThis stage traks memory and register dependenies issuing instrutions to the exeutionunits when operands are ready and dependenies are satis�ed.Instrutions ready are plaed in the sheduler queue. Exeution units take instrutionsfrom the sheduler queue in order to exeute them. An instrution retains the funtionalunit for as many yles as neessary to exeute the instrution aording with its lateny.2.2.4 Write-bakIn this stage, results produed are propagated to waiting instrutions in order to allowthem to be issued. Instrutions that are waiting for those results are marked as ready tobe issued.Also mispreditions are deteted in this stage. In this event, a signal is sent to the fethindiating a mispredition and the new address to feth. The pipeline is ushed and a newfeth is started down the orret address.2.2.5 CommitThis stage does in-order ommit, handling instrutions that are ready to ommit fromthe write-bak stage and updating the d-ahe with store values.The ommit keeps retiring instrutions until a not ready instrution is at the head of theRUU. When an instrution is ommitted, its result is plaed into the arhitetural register�le and the RUU resoures alloated for that instrution are relaimed.



2.3. Quantifying Mispredition and Misfeth Penalties 92.3 Quantifying Mispredition and Misfeth PenaltiesA penalty is inurred eah time a misfeth or a mispredition our. In this setionwe explain how both misfeth and mispredition penalties are harged in our referenearhiteture and throughout the simulations presented in this work.A misfeth ours when a branh is predited as taken but the target address is not foundon the BTB (i.e. BTB miss). That means that the diretion of the branh is predited butthe address is unknown. In this ase, the feth an only proeed through the sequentialaddress. This would result in bene�t only if the diretion was inorretly predited, thatis the branh is in fat not taken but predited as taken and the address not found in theBTB.
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Figure 2.3: Misfeth PenaltyThere is also another situation where a misfeth an take plae. Sometimes, dependingon the sheme used to manage the predition tables, two or more branhes may be mappedto the same entries on the tables. These branhes are alled oniting branhes beausethey all aess the same entries on the tables. Hene, a branh may use an entry previouslyaessed by another branh (oniting) therefore using a wrong address or diretion. Inour arhiteture this does not our. Only BTB misses an generate misfethes.Moreover, misfethes an only be deteted for those branhes whih arry the targetaddress into the instrutions itself, i.e. Diret relative branhes. Misfethes resulting fromindiret branhes or indiret jumps annot be deteted sine the target address is usuallyavailable only at the exeution time.Figure 2.3 shows a misfeth ourrene. Suppose that on the �rst yle, the proessorstarted to feth from a given address and a branh was found. The preditor was probedand the branh was predited taken but an address ould not be retrieved from the BTB,i.e. BTB miss.Three yles later, the branh reahes the dispath stage and at this time the branh isalready deoded. As a BTB miss ourred, the feth used the sequential address to feth thenext instrution following the branh. The dispath detets that the branh was preditedas taken but the address used does not math with the target address deoded. At thistime the misfeth is deteted.To reover from the misfeth, the proessor stalls the feth at yle 5 and ushes allinstrutions that follow the branh inside the pipeline. As all operations are taken in-orderuntil the dispath, then the branh and all preedent instrutions are dispathed and the



10 2. The Arhiteture and Benhmarksrest is disarded. The stages between the dispath and the feth are ushed and the fethis informed of the orret address.At yle 6, the feth starts to feth again from the orret address. Notie that thisassumption is based on the diretion predited. At this time, the branh is not yet resolvedand the branh outome is still unresolved. That means that the diretion may be inorretand perhaps a mispredition an be deteted later.
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Figure 2.4: Mispredition PenaltyFigure 2.4 shows a mispredition ourrene. Suppose that the proessor started to fethfrom a given address and found a branh. The branh was predited taken and an addresswas retrieved from the BTB. The address passed through the dispath stage meaning thatthe orret address was retrieved from the BTB, i.e. there was no misfeth.However, at yle 11, the branh is resolved and a mispredition is deteted. Thereovery proedure is similar to the misfeth reovery but more omplex. Beause thereferene arhiteture an issue and exeute instrutions out-of-order, it is possible thatsome instrutions fethed after the mispredited branh have been already exeuted.Therefore, the ush on this ase must be seletive, i.e. instrutions that are logiallybefore the branh annot be ushed as they may still be waiting for operands and havenot yet been exeuted. In fat, the dispath queue is ushed so instrutions not alreadydispathed are squashed and those instrutions already dispathed are kept into the pipeline.The dispath queue and the feth bu�er are ushed and the branh is marked asmispredited. The feth is then informed of the orret address and a new feth is startedfrom that address, at yle 13.The instrutions that ome after the branh are invalidated and their results are notommitted to the arhitetural register �le.Figures 2.3 and 2.4 showed the penalties assoiated with misfethes and mispreditionsas de�ned in the referene arhiteture used hereafter.



113. The Role of Branhes and Branh PreditionWe ondued some experiments to show how branhes harm the performane of asupersalar arhiteture. In the experiments reported here we used the Simplesalar Tool Set3.0 [BUR96℄ to simulate a onventional supersalar arhiteture, desribed on setion 2.2.Some of the resoures were dimensioned to not limit the performane. The arhiteturesimulated is a 16 way supersalar with a 256 entries instrution window, 16 funtional unitsof eah type (ialu, imult, fpalu, fpmult) and 4 memory ports.The reason to perform these simulations was stritly to understand the behaviour ofa wide arhiteture. We did not propose any modi�ation exept to inrease some of theresoures in order to avoid or, at least, to redue resoure onits.3.1 IPC - Instrutions per CyleThe IPC is the ratio between the number of ommitted instrutions and the yles spentto exeute 100 million instrutions:IPC = number of instrutions ommittedyles to exeute 100M instrutions (3.1)The number of instrutions ommitted depends on how good were the preditions madethroughout the simulation. If a perfet preditor is applied than the number of ommittedinstrutions must be the same as the exeuted instrutions. If the preditor fails to preditany branh, then the number of exeuted instrutions will be greater than the number ofommitted instrutions beause instrutions belonging to the wrong path are exeuted, butnot ommitted.
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Figure 3.1: IPC of SPEC95The graph on Figure 3.1 prove that there is a large gap between the performane deliv-ered and the potential performane aording to the amount of resoures. The arhiteture



12 3. The Role of Branhes and Branh Preditionsimulated should be able to exeute about 16 instrutions per yle. However, the highestIPC was 7.51 instrutions per yle for benhmark Mgrid followed by 6.37 instrutions peryle for Applu. The highest IPC among the integer benhmarks was 4.16 instrutions peryle for Ijpeg.Thus, we see less than 50% of total expeted apaity being used in the best ase. Theaverage IPC is only 3.61 instrutions per yle. This means just 22.56% of the potentialIPC of 16 instrutions based on the arhiteture width.3.2 Feth Limitations and Mispredition Side E�etsThe level of parallelism obtained in the exeution of a program relies on the eÆieny ofthe feth. The exeution is feed by the sheduler whih aptures independent instrutionsand send them to the FUs (Funtional Units). The sheduler searhes for independentinstrutions in the instrution window, thus the larger the instrution window the higherthe hane to �nd independent instrutions.When an instrution �nishes its exeution, the result produed is propagated and thedata dependeny hain is updated. New instrutions beome ready to be issued and thesheduler performs again a searh for independent instrutions. As more funtional unitsbeome available, it is neessary to inrease the size of the instrution window to allowthe sheduler to have more options when looking for independent instrutions. An eÆientinstrution window provides useful instrutions to be sheduled. However, the feth mustbe able to �ll the instrution window independent of its size. Obviously, the larger theinstrution window the most stressed is the feth.Two kind of events an a�et the e�etiveness of the feth. Some events stall the fethby preventing it to perform the aesses to the instrution ahe. A miss on the instrutionahe, for example, bloks the feth until the data is brought from the upper levels of thememory system. Of ourse, a non-bloking ahe may allow the feth to ontinue in theourrene of a miss, however the feth may proeed through an alternative address.A full feth bu�er also auses the feth unit to stall. The feth annot operate untilthere is spae available to put the instrutions brought from the i-ahe. We onsider ahemisses and feth bu�er full as events whih prevent the feth to perform ausing stalls.Other kind of events generate side e�ets beside the stalls. Mispreditions and misfethauses the feth to proeed through wrong addresses generating pollution into the pipeline.After a branh, the feth proeed speulatively through a predited address, beause theoutome of suh branh instrution is not known until the ondition is exeuted. After topredit the target of a branh, the ativity performed by the feth is onditional. It dependson the outome of that branh. If the outome is equal to the predition made, then theinstrution fethed after the branh are useful. If the outome di�ers from the preditionthen, the instrutions fethed after the branh are useless and the eventual results alreadyprodued must be thrown away.In suh ase, other stages of the pipeline are a�eted as well beause inorret informa-tion is dispersed all over. This is a side e�et beause not only the time spent to exeuteuseless instrutions is lost, but also the work performed is inorret, whih implies a moreomplex routine to reover to a onsistent (i.e. orret) state.Events suh as mispredition and misfeth ause the feth to stall in order to updateto the orret address but also require some sort of reovery to avoid results produed byuseless instrutions to a�et the exeution of orret instrutions.



3.3. Feth Performane 133.3 Feth Performane3.3.1 Feth StallsI-ahe misses and feth bu�er full prevent the feth to work. Mispreditions andmisfethes stall the feth and invalidate the work already performed a�eting other stagesof the pipeline as well.I-ahe misses stall the feth for as many yles as neessary to bring the data from thehigher levels of the memory system. The lateny of a miss depends on the loation of thedata.A feth bu�er full prevents the feth to transfer the data from the instrution ahe intothe pipeline. In this ase, the lateny will depend on the subsequent stages of the pipelinebeause they need to onsume the instrutions that are obstruting the feth.
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Figure 3.2: Feth StallsMispreditions and misfeth also ause the feth to stall. A one yle stall is introduedto reovery the feth to the orret address when the mispredition or misfeth is deteted.However, mispreditions and misfethes also ause a side e�et whih imply a major loss.Not only the time needed to reovery the feth is lost but also the yles where the fethbrought instrutions from the mispredited addresses.The penalty aused by mispreditions and misfethes resides essentially on the worksquashed. Figure 3.2 shows the number of yles whih the feth unit was stalled. Theblak bar shows the total number of yles spent to exeute eah benhmark. The gray barshows the number of yles where the feth was stalled.We see on Fpppp that on 73.56% of total time the feth unit is stalled. On benhmarksApsi, Mgrid, Vortex and Applu we see 38.62%, 28.39%, 26.78% and 21.79% of yles spentwith the feth unit stalled, respetively.Figure 3.3 shows how the stall yles were spent. For eah benhmark we show theperentage of yles spent with eah of the four stall auses. The blak bar represents



14 3. The Role of Branhes and Branh Preditionmispreditions, whereas the dark gray represents misfethes. The light gray representsi-ahe misses and the hathing bar represents the feth bu�er full.
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Figure 3.3: Causes of StallsFor the benhmarks Fpppp and Vortex the stalls were mainly aused by i-ahe missesas for G and Go. For benhmarks Compress, Li, M88ksim, Su2or and Swim the mainause of stall was the ourrene of mispreditions. For these benhmarks the total numberof stalls did not go over 8.3% of total exeution yles.For all other benhmarks simulated the feth stalled mainly due to the feth bu�er full.That happened for 7 of 10 oat point benhmarks (Applu, Apsi, Mgrid, Tomatv, Turb3dand Wave5). The feth bu�er aused most of the stalls for only one integer benhmark,Ijpeg. In the ase of Perl benhmark we saw also almost 50% of stalls aused by misfethes.3.3.2 E�etive LossIn the previous graphs we showed that stalls an limit the performane of the feth bypreventing it to work. The reasons for the feth to stall were presented and disussed. Inthis setion we show that even few mispreditions an harm the performane of the fethby ausing work performed to be squashed.In the previous �gures we showed the yles were the feth was inative. In Figure 3.4we are showing all yles lost due to the same four events: i-ahe misses, feth bu�er full,mispreditions and misfethes.The blak bar presents the total number of exeution yles. On the gray bar we havethe feth yles lost. A yle lost is either a yle where the unit was inative (stalled) orperformed an ativity whih was nulli�ed afterwards.Any yle invalidated or inative is ounted as a loss for the feth unit. We observedthat a large portion of the total exeution time is spent with the feth unit either stalledor fething instrutions from the wrong path of mispredited branhes. For the Swimbenhmark we observed the lowest loss ahieving for 24.40% of total exeution yles. For
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Figure 3.4: Cyles LostGo benhmark we observed the worst ase where 83.72% of the total yles were spent withthe feth unit fething useless instrutions or staying simple bloked. For all benhmarks,exept Swim, the feth loss represented more than 40% of total exeution yles.Table 3.1 summarizes the predition auray and mispredition rate for eah benh-mark.Here again we highlighted the �ve highest indexes for auray and for mispredition.We have then benhmarks Swim, Hydro2d, Tomatv, Perl and Su2or presenting the bestpreditor's performane among all benhmarks. Respetively we have 99.36%, 99.14%,99.07%, 98.93% and 98.80% as the best indexes reahed in this set of experiments. Notiethat only Perl is an integer benhmark.On the other hand, we have Go, Applu, Compress, Ijpeg and G as the benhmarkswhih presented the highest mispredition rates with indexes of 15.89%, 15.27%, 15.06%,10.03% and 7.94%, respetively.The �gures on this setion show that the performane is really harmed by the ineÆienyof the feth in most of the ases. Aording to the Table 3.1 we an see that preditionauray varies from 84.11% through 99.36% whih is in average a good auray for thepredition.Figure 3.5 shows the fators whih aused the loss. Eah one of the four auses are pre-sented for eah benhmark in the proportion in whih eah ourred during the simulation.The blak bar represents mispreditions while the dark gray represents misfethes. Thelight gray represents i-ahe misses and the hathing bar represents the feth bu�er full.For 66% of all benhmarks mispreditions really dominate and represent the main auseof loss to the feth. For other benhmarks suh as Fpppp and Vortex the main ause of lossis the stall reated by series of misses in the instrution ahe. And, for Applu, Apsi, Mgridand Turb3d benhmarks we still see that the feth is mainly limited by the bu�er whih isfrequently full preventing the feth to work.



16 3. The Role of Branhes and Branh PreditionTable 3.1: Predition Auray RateBenhmark Dynami Auray MispreditionBranhes Rate(%) (%) (%)Compress 22.10 84.94 15.06G 19.22 92.06 7.94Go 14.95 84.11 15.89Ijpeg 10.80 89.97 10.03Li 22.80 94.87 5.13M88ksim 28.15 97.06 2.94Perl 19.38 98.93 1.07Vortex 15.96 97.58 2.42Applu 2.53 84.73 15.27Apsi 3.88 98.73 1.27Fpppp 1.72 93.48 6.52Hydro2d 19.43 99.14 0.86Mgrid 1.32 97.79 2.21Su2or 21.81 98.80 1.20Swim 17.34 99.36 0.64Tomatv 20.55 99.07 0.93Turb3d 6.65 94.17 5.83Wave5 15.53 98.72 1.28Averageint 19.17 92.44 7.56fp 11.07 96.40 3.60int & fp 14.66 94.64 5.36The ourrene of feth bu�er full an be aused by high lateny funtional units, forexample. Also misses on the data ahe an delay the exeution of loads and stores whihonsequently delay the exeution of other instrutions in the dependeny hain.Many auses may inrease the oupany of the feth bu�er. We did not performsimulations to verify what are the auses that a�et the feth bu�er. However, for the asesstudied we an say that the feth is not a bottlenek when the stall is due to a feth bu�erfull.A very small feth bu�er may ause diretly the feth to stall but in the ases studiedwe used a 256 entries feth bu�er whih is onsidered wide enough to handle many out-standing instrutions. In the ases studied we observed bu�er full, basially, in oat pointbenhmarks. This ours beause oat point instrutions take more time to exeute. Thatis, they have higher latenies the integer instrutions.3.3.3 E�etive FethSubtrating the lost yles from the total exeution yles we have the total number ofyles where at least one useful instrution was fethed. Figure 3.6 shows the perentage oftotal yles where there was an e�etive feth.In this ase we are not measuring bandwidth utilization. This means that if at leastone useful instrution is brought from the ahe then this is onsidered an e�etive feth.If there is a stall or instrutions from the wrong path are brought from the ahe then it isonsidered a useless feth yle.
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Figure 3.5: Causes of Loss
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Figure 3.6: E�etive FethAmong the total time of exeution we an see that the feth unit is in average beinge�etively utilized by 41.74% of total time. In the worst ase, i.e. Go benhmark, the fethis e�etively used in only 17.22% of the total time. For the best ase, i.e. Swim benhmark,the feth e�etively brought instrutions into the pipeline in 75.6% of total yles.The graph on Figure 3.6 justi�es the role of the feth unit on the performane of suhan advaned supersalar mahine. Even with a relatively aurate branh preditor theperformane of the feth unit is heavily limited by mispreditions espeially in integerbenhmarks.



18 3. The Role of Branhes and Branh Predition3.4 Impat on EÆienyWe gave two di�erent insights into the feth performane in the last two setions. Firstly,we measured and analyzed the stalls aused in the feth unit by several fators. Seondly,we looked at the loss aused indiretly by the ourrene of mispreditions and misfethassoiated with the stalls aused by other fators. At the end, we showed the impat ausedbe these fators on the feth e�etiveness.In this setion, we are looking into the impat aused by mispreditions on the eÆienyof the mahine. Considering the same simulations, we ompared the number of ommittedinstrutions against the number of exeuted instrutions. Due to mispredited branhes,the number of instrutions exeuted is greater than the number of instrutions ommitted.When a branh is mispredited the proessor exeutes instrutions down the wrong path.That an inur several fators whih undoubtedly harm the performane. Instrutions exe-uted and later disarded onsume power as well as resoures. When a resoure is alloatedfor an invalid instrution the resoure operates normally. Therefore, other instrutions anbe delayed in the exeution pipeline beause an invalid instrution is taking the plae of avalid one.For example, instrutions from the wrong path an aess the memory generating misses,whih implies in a high number of yles waiting for useless data. As an instrution issuedfrom the wrong path an only be invalidated after the branh is resolved many outstandingmisses may interfere the exeution of other valid instrutions whereas valid and invalidinstrutions are ompeting for the same set of resoures. Hene, there are two negativepoints in exeuting instrutions from the wrong path. First, it takes power and resoures.Seond, these instrutions may interfere in the exeution of valid instrutions imposingextra delays.In our referene arhiteture a mispredition auses a minimum of 11 yles of penalty, ifthe branh takes only one yle at eah stage and the mispredition is deteted as soon as theondition is evaluated. Sometimes a branh may take more time in one stage of the pipelinebeause of a true data dependeny or other resoure onstraints. In these situations thepenalty is even greater beause the ondition will take more time to be evaluated, allowingthe pipeline to proess even more instrutions from the wrong path.The problem is similar when misfethes our. The di�erene resides in the fat thata misfeth an be deteted earlier than a mispredition. As soon as the branh is deodedand the target address is known the proessor an identify an on going misfeth and sothe penalty is smaller. In the referene arhiteture used here there is a 4 yles minimumpenalty to reovery from a misfeth.The predition of a branh is a ompound of two things. First, it is neessary to preditthe diretion of the branh and seond, it is neessary to obtain the target address. If thebranh is predited not taken, then the target address is the sequential. If the branh ispredited taken, the proedure is di�erent. If the branh hits on the BTB, the addressfound is used to feth the next instrution. Until the branh is deoded, that address isassumed to be orret. However, another problem may happen in this stage. Conitingbranhes an store their target addresses at the same loation, and so, it is possible thateven with a hit in the BTB the address stored in the loation aessed pertains to anotherbranh.Notie that if a misfeth is deteted and reovered there is still the hane that thediretion has been mispredited and thus mispredition penalty will be harged as well.



3.4. Impat on EÆieny 193.4.1 Overall StatistisTables 3.2 and 3.3 summarizes some of the results presented in this hapter. They arepresenting information regarding the performane of the feth and some other resoures inthe arhiteture simulated.The benhmarks are in the �rst olumn. Data ahe miss and Instrution ahe missrates are on the seond and third olumns respetively. In the fourth olumn there isthe perentage of ommitted branhes and on the �fth olumn the mispredition rate forthe respetive benhmark. In the sixth olumn we present the perentage of mispreditedbranhes among the total number of instrutions ommitted. In olumns 7th, 8th and 9thwe present respetively mispredition penalty, stalls and total loss. Total loss so alled fethloss inludes mispredition penalties and stalls. In the tenth olumn we present the ratiobetween the number of ommitted instrutions and the number of exeuted instrutions.On the last olumn we show the IPC.We sorted the benhmarks in a manner to expose the e�et of mispreditions on theperformane. The benhmarks are disposed in the table through an asendant order ofmispredition penalties, i.e. the �rst benhmark has the lowest mispredition penalty whilethe last benhmark has the highest mispredition penalty.Table 3.2: Integer Overall StatistisBenhmark Dmiss Imiss Comm Br Mispred Insn Mispred Stall Feth Loss Commited/Exeuted IPCMispred penalty% % % % % % %Vortex 0.0082 0.0103 15.88 2.42 0.38 24.62 26.78 54.12 88.79 3.87Ijpeg 0.0019 0.0000 7.99 10.03 0.80 54.09 8.80 59.26 74.59 4.16Perl 0.0000 0.0000 19.04 1.07 0.20 63.63 5.81 74.47 59.83 2.85G 0.0066 0.0038 19.93 7.94 1.58 65.09 13.33 76.96 50.52 2.02Li 0.0073 0.0000 22.82 5.13 1.17 65.35 4.60 65.41 59.83 2.48M88ksim 0.0060 0.0000 22.96 2.94 0.68 68.79 4.05 68.79 55.77 2.01Go 0.0041 0.0015 14.86 15.89 2.36 78.02 8.88 83.72 35.98 1.72Compress 0.0060 0.0000 19.63 15.06 2.96 82.89 4.01 82.89 29.82 1.29Average 0.0050 0.0020 17.89 7.56 1.27 62.81 9.53 70.7 56.89 2.55Table 3.2 presents statistis extrated from the simulation of the SPEC95int benhmarks.It is very lear the impat of mispreditions on performane of integer benhmarks. Inaverage 17.89% of ommitted instrutions are branhes and 7.56% of those branhes aremispredited. This leads to an average of 1.27% of total instrutions ausing mispreditionpenalties.In spite of only 1.27% of total instrutions ause mispreditions, the penalties orrespondto an average of 62.81% of total exeution yles. Although the average performane of thebranh preditor for these benhmarks is around 93% of auray a severe penalty is stillinurred.We also observe that as the mispredition penalties inrease (top to bottom) the ratio ofommitted instrutions derease as well as the IPC. As expeted, there is an inverse relationbetween the mispredition penalty and the performane. The more mispredition penaltiespaid the less the performane.An interesting situation ourred for M88ksim benhmark. The benhmark presentedone of the lowest ourrene of mispreditions, 0.68% of total instrutions. Li benhmarkhas almost twie more mispreditions where 1.17% of total instrutions were mispreditedbranhes. However, the mispredition penalty paid by M88ksim benhmark is higher thanfor Li benhmark. This is the situation we mentioned previously. Even with lower numberof mispreditions the M88ksim benhmark su�er higher penalties. This may be due to data



20 3. The Role of Branhes and Branh Preditiondependenies that delays the exeution of the onditions, delaying the branh resolutionand the mispredition detetion.Despite be the third highest mispredition rate, Ijpeg benhmark has the highest IPC.We an see that this is due to the low frequeny of branhes ommitted, less than 50% of theaverage frequeny of branhes for the integer benhmarks. Furthermore, it presents a betterperformane than Vortex benhmark even presenting a higher mispredition rate and mis-predition penalty. In this ase, Vortex benhmark presented the highest instrution ahemiss rate aounting for the highest feth stall perentage among all integer benhmarks.Notie that in average only 56.89% of exeuted instrutions are really ommitted or, inother words, are useful. This is beause the feth is ineÆient even presenting an averageof only 7.56% mispredition rate and 0.2% Iahe miss rate.Table 3.3: Float Point Overall StatistisBenhmark Dmiss Imiss Comm Br Mispred Insn Mispred Stall Feth Loss Commited/Exeuted IPCMispred penalty% % % % % % %Fpppp 0.0002 0.0574 1.44 6.52 0.09 5.28 73.56 78.66 93.36 1.98Mgrid 0.0172 0.0000 1.29 2.21 0.03 7.33 28.39 35.52 99.09 7.51Apsi 0.0390 0.0000 3.86 1.27 0.05 15.85 38.62 54.22 97.92 4.88Swim 0.0008 0.0000 17.96 0.64 0.11 24.08 1.48 24.40 86.76 4.38Applu 0.0193 0.0000 2.19 15.27 0.33 29.36 21.79 49.04 89.55 6.38Turb3d 0.0100 0.0000 5.3 5.83 0.31 34.73 18.15 51.28 87.01 4.51Tomatv 0.0001 0.0000 21.33 0.93 0.20 35.08 11.77 45.78 82.42 3.89Hydro2d 0.0002 0.0000 21.71 0.86 0.19 40.56 8.49 47.38 70.91 3.89Wave5 0.0042 0.0000 16.12 1.28 0.21 41.98 7.09 47.60 87.71 3.53Su2or 0.0002 0.0000 23.83 1.20 0.29 49.11 2.55 49.25 65.61 3.75Average 0.0091 0.0057 11.5 3.6 0.18 28.34 21.19 48.31 86.03 4.47Table 3.3 presents statistis extrated from the simulation of the SPEC95fp benhmarks.In average, 11.5% of ommitted instrutions are branhes and 3.6% of those branhes aremispredited. This leads to an average of 0.18% of total instrutions ausing mispreditionpenalties.Notie that on average, oat point benhmarks have a higher IPC than integer benh-marks. In the experiments performed, oat point benhmarks ahieved an average IPC of4.47 instrutions per yle where integer benhmarks ahieved only 2.55.Another interesting point is that for integer benhmarks the performane of the branhpreditor was worst when the number of ommitted branhes inreased. The oppositesituation was true for oat point benhmarks and the performane of the preditor wasbetter for those benhmarks with lowest frequeny of branhes.Despite this interesting ontroversial analysis the performane of the oat point benh-marks is limited by mispreditions and Iahe misses too. We sorted the benhmarks a-ordingly with the mispredition penalty, Table 3.3. The lowest mispredition penalty wasreported for Fpppp benhmark, with only 5.28% of yles being wasted due to mispredi-tions. However, this benhmark presented a very high Iahe miss rate, almost 6%, leadingto a very high ourrene of feth stalls. By the way this benhmark reported the highestfeth stall rate among all benhmarks. The rest of the oat point benhmarks did notpresented signi�ant Iahe miss rates.Figure 3.7 presents instrutions ommitted versus instrutions exeuted. The goal isto show the pollution introdued by mispreditions. The ineÆieny of the feth unit onbringing instrutions from the wrong path of mispredited branhes auses an immensepollution.In extreme bad ases suh as Compress benhmark only 29.82% of instrutions exeutedare �nally ommitted. This represents a major penalty not only by squashing useless
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Figure 3.7: Mahine EÆienyinstrutions, but by using resoures to exeute them as well. In the best ase, on the otherhand, we see 99.09% of instrutions exeuted beoming ommitted. This is the ase ofbenhmark Mgrid whih presented the highest IPC.In average, only 56.89% of exeuted instrutions are ommitted, when exeuting integerbenhmarks. In this ase, the mahine is being underutilized and its eÆieny is around50% only. A di�erent behavior is shown by oat point benhmarks. In average, 86.03% ofinstrutions are ommitted whih shows the reason to have an average IPC as twie highas presented by integer benhmarks.3.5 Perfet Branh Predition and its Impat on PerformaneFigure 3.8 ompares the IPC ahieved using a perfet branh preditor (so alled idealperformane) and using a onventional branh preditor. The dark gray bar shows theperformane when applying the perfet preditor while the light gray bar shows the perfor-mane with the onventional preditor.For all integer benhmarks the impat on performane is onsiderable. In all asesexept Vortex the performane of the onventional mahine did not ahieve 50% of theideal performane ahieved by the mahine with perfet preditor.Vortex presented the lowest mispredition penalty aounting for only 24.62% of totalyles. Even though Vortex presented the highest Iahe miss rate among the integerbenhmarks, its performane was really lose to the performane obtained by the idealarhiteture whih means that limitations where not imposed by the ourrene of branhesbut for other fators.In the oat point senario, the limitation is mainly imposed by data dependenies andresoure onits. In this set of experiments we did not modify any feature from onearhiteture to another but the preditor. Both arhitetures have the same limitations andall mehanisms applied are exatly the same exept the preditor.
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Figure 3.8: Mahine Perfomanes with Perfet Predition and Conventional Pre-ditionBenhmarks Applu, Hydro2d, Su2or and Turb3d presented relative worst performanethan the ideal mahine. Although the worst ase represented by Su2or ahieved more than50% of the ideal performane.We remark though that the performane of oat point benhmarks is mainly a�etedby other fators suh as data dependenies and resoure onits. On the other hand, forinteger benhmarks, mispredition redution is ruial to obtain good performane.3.6 Branh Predition and Feth BandwidthDelivering more instrutions to the exeution engine is ertainly ritial. Conven-tional feth shemes based on instrution ahe and branh preditor are onstrained bybranhes [LEE84, YEH91, LAM92, WAL93℄ and an only delivery up to one basi blok ofuseful instrutions to the exeution engine, if the predition is orret.Feth bandwidth relies on ahe hit rate, auray of branh preditor, taken branhes,ahe alignment and frequeny of branhes or average size of basi blok.However, the frequeny in whih branhes are found, in integer ode speially, imposesextra limits. Even if the preditor suessfully predits the branh, a taken branh disruptsthe natural ow of instrutions, as shown in Figure 3.9. Either reduing/eliminating takenbranhes or prediting multiples branhes per yle is ruial to inrease feth bandwidth.Several shemes have been proposed to redue the negative e�et of taken branhes [UHT97℄.An e�etive tehnique to inrease feth bandwidth must: (i) predit branhes suessfullyand (ii) feth multiple basi bloks per yle.3.6.1 Branh Predition TehniquesBranhes introdue extra time in the exeution if their outome is not known. Sinebranh predition is available, while a branh is being resolved, instrutions from the
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Effective bandwidth = used / availabe = 0.8125Figure 3.9: Instrution Flow Disruptionpredited path an be exeuted speulatively.There are basially two forms of branh predition: stati and dynami. Stati branhpredition determines the predited outome of a branh prior to run-time and the outomeremains unhanged throughout the program's exeution. On the other hand, dynamibranh predition shemes gather information about the outome of past branhes and usethat information to predit the behaviour of next branhes.Currently, dynami shemes are widely used at the expense of a more omplex andostly hardware. However, dynami branh predition shemes are better able to adapt tohanges in behaviour than stati shemes [TAL95℄.If the predition sueeds, whether the preditor is stati or not, the branh's resolutiontime has been suessfully hidden with useful omputation. If the predition fails, thespeulative instrutions must be squashed, but otherwise no harm has been done. Withpredition, branhes only introdue stall time on a mispredition [SKA99℄.Dynami shemes base the predition on the history of past branhes. In the literatureit is possible to �nd three di�erent basi types of preditors. Aordingly with [SKA99℄they are: bimodal, two-level and hybrid.Bimodal preditors apture the outome of branhes and store them in a multiple entrytable, one per branh. Eah entry of the table stores a binary value whih indiates whetherthe branh will be taken or not in the next time it exeutes. A more sophistiated bimodalpreditor was proposed by Smith [SMI81℄ where a two-bit saturating ounter was usedinstead of a simple binary value.



24 3. The Role of Branhes and Branh PreditionThe two-bit saturating ounter allows to redue the mispreditions when a branh hangeits diretion from taken to not-taken and vie-versa. The oneptual advantage is basedon the sense that the predition only hanges if the branh hanged its diretion twieonseutively. Mispreditions are redued by using the two-bit ounter and average aurayrate of 76%-92% was reported by Smith in his studies.Yeh and Patt [YEH91℄ proposed the two-level adaptive branh preditor. The key fatorwas to keep trak of branh history patterns. Instead of predit the outome of a branhbased only on the previous outomes of the same branh, the two-level adaptive preditorpredits the outome of a branh based on the outome history of preeding branhes.The two-level adaptive branh preditor shows a very low mispredition rate of 3.7%for a 128K-bit table, aording with reports. The ounters are used to trak the historypattern of branhes, and not the overall behaviour of individual branhes.The history an be loal or global. While loal history allows to keep trak of similarpattern branhes, the global history allows branhes to easily see the behaviour of otherreent branhes. This is providential for prediting sequenes of orrelated branhes [PAN92,YEH92, YEH93a℄.If the branh predition table is not suÆiently large, two branhes may share the sameentry. This may also happen if the two branhes share the same history. Even though theamount of interferene is low, it results in an average inrease in the number of mispreditedonditional branhes of 41% as showed by Talott et al. [TAL95℄.The aliasing problem an be alleviated by ombining the history bits with some bitsfrom the branh's address. MFarling [MCF93℄ proposed to XOR the two patterns togetherin a way that branhes that share the same history an be distinguished by their addresses.As explained previously, loal and global history are used to predit di�erent types ofbehaviours, i.e. branhes. As within programs some branhes are best predited by usinga loal history preditor, while others are best predited by using global history branhpreditors, the idea of hybrid shemes is to ombine both types of preditors with a seletorwhih determines whih predition is better for a given branh [MCF93, CHA95, EVE96℄.An example was desribed by Kessler [KES99℄. He desribed the preditor used inthe Alpha 21264 [GWE96℄. The proessor employs a hybrid sheme whih selets a pre-dition from a loal and global preditors ahieving from 90% to 100% auray in someappliations. Sezne also proposed a "De-aliased" global preditor whih ahieves the samepredition auray level of gshare or gselet [YEH93a℄ using less than half of the transistorbudget [SEZ99℄.3.6.2 Inreasing the Feth BandwidthIn general, by multiporting the instrution ahe and the BTB generating multiple fethaddresses and branh preditions per yle, feth shemes are able to overome the singlefeth blok bottlenek [YEH93b℄.Conte et al. [CON95℄ proposed a sheme alled Collapsing Bu�er. The idea is to removeuseless instrutions between an intrablok branh and its target. That merging tehniqueallows the target instrution to follow the branh in the deoder, (Figure 3.10). The shemewas also extended to allow interblok branhes to be followed by their targets. Thatextension suggests an interleaved instrution ahe, an interleaved branh target bu�er,a multiple branh preditor, and an interhange and alignment network.
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1 2 5 8Figure 3.10: Collapsing Bu�er ShemeYeh et al. [YEH93b℄ presented the Branh Address Cahe (BAC) sheme. That shemeis similar to the ollapsing bu�er in the sense that there is also an interleaved instrutionahe, a multiple branh preditor, an interleaved interhange and alignment network and abranh address ahe. The later ontains up to 14 basi bloks addresses when up to threebranhes an be predited at a yle. From these, three basi blok addresses orrespondingto the predited path are seleted.Essentially, these two shemes [CON95, YEH93b℄ allow to predit multiple branhesand feth non-ontiguous basi bloks from a multiple port instrution ahe. Nevertheless,beause instrutions are plaed in the instrution ahe in their original (stati) order, feththrough branhes is not trivial, sine ode is not requested aordingly in the stati orderbut in the dynami order.Rotenberg et al. [ROT96℄ presented a sheme to store dynami sequenes of instrutionsin the form of dynami traes. The Trae Cahe (TC) is able to apture these dynamisequenes aording with the preditions or the outome of reently exeuted branhes andstore them into the trae ahe. The traes are then aessed from the trae ahe inreasingthe bandwidth utilization beause in fat the "taken branh disrupt e�et" is redued bystoring instrutions ontinuously in the dynami order.
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Figure 3.11: Dynami Trae and Trae CaheFigure 3.11 shows three basi bloks (A, B, C) in the instrution ahe. Bloks are notsequentially nor ontiguously stored in the i-ahe. The trae ahe �ll unit detets thisdynami behavior and stores, sequentially, the three basi bloks in a single trae aheline. This way, it allows to feth in a single yle all basi bloks if the predition for allintermediate branhes is the same.Friendly et al. [FRI97℄ proposed alternative feth and issue poliies to the trae ahefeth. Essentially they studied the e�ets of partial mathing when the preditor requestsa sequene of bloks (trae) whih is not ompletely stored in the trae ahe. Or, in otherases, the trae stored does not math exatly the preditor's sequene but only a partialmath is observed. In this ase, the preditor selets whih bloks from the trae will beissued to the ore.



26 3. The Role of Branhes and Branh PreditionFurthermore, they also propose a tehnique alled inative issue. The sense of thistehnique is to issue also the bloks of the trae that do not math exatly the predition.That is, with the partial mathing tehnique alone, the bloks that do not math thepreditor are disarded. With inative issue, all bloks within a trae are issued whetherthey math or not the predition made.The bloks that do not math the predition are issued inatively and the hangesthey make to the register table are not onsidered valid for subsequent issue yles. Ifthe predition made was orret the inative instrutions are disarded. If the preditionwas inorret, the proessor has already fethed, issued and possibly exeuted some ofthe instrutions along the orret path [FRI97℄. The partial mathing tehnique improvesperformane of the SPECint95 benhmarks by an average of 12% over a trae ahe notimplementing partial mathing. Adding the inative issue on top of partial mathing theaverage improvement reahes its 15%.Patel et al. [PAT98℄ proposed the ombination of two tehniques to improve the e�e-tiveness of the trae ahe approah. They proposed to promote some branhes in orderto alleviate the pressure on the branh preditor, reduing the interferene of some easy topredit branhes over the overall performane of the preditor. Branh promotion dynami-ally onverts strong biased branhes into statially predited branhes. Branh promotionallows to inrease the number of available instrutions to be paked into a trae by reduingthe number of branhes and inreasing the preditor's bandwidth.Another tehnique alled trae paking was employed together with branh promotionin order to pak as many instrutions as possible into a trae ahe line. When appliedtogether, both tehniques allowed an inrease in 17% of the e�etive feth rate over a traeahe whih used neither. However, a small 4% improvement in performane was observed,even dereasing the number of mispredited branhes and inreasing the e�etive feth rate.Moreover, promotion and paking lose performane potential due to an inrease in branhresolution time. An arhiteture with ideal memory sheduling realized an improvement of11% aording with the studies presented by [PAT98℄.Friendly et al. [FRI98℄ proposed to add funtion to the �ll unit whih is responsible toollet bloks of instrutions and ombine them into traes to be stored within the traeahe. The �ll unit applied dynami optimizations to the sequene of instrutions olleted,before to store them into the trae ahe.The tehniques exploited the lateny tolerane of the �ll unit beause it is not on theritial path. Four types of optimizations were studied and the performane gain showed anaverage improvement of more than 17% for the SPECint95 benhmarks. Another advantageis that the �ll unit an perform multi-yle operations without a�eting the performaneand by ombining multiple bloks of instrutions from a single path of exeution it aneasily perform optimizations aross the basi bloks boundaries.In a follow-on work, Rotenberg et al. evaluated di�erent alternatives for the trae ahemiroarhiteture. Trae ahes provide the apability of fething past multiple, possibletaken branhes without the omplexity and lateny of equivalent bandwidth instrutionahe designs [ROT99a℄. The authors showed that the trae ahe an improve from 15%to 35% over an equally-sophistiated but ontiguous multiple blok feth mehanism.Furthermore, authors summarized their experiments with some major onlusions. Theydeteted that longer traes improve trae predition auray and that the overall perfor-mane is sensitive to the size and assoiativity of the trae ahe. However, the ost is onthe redundant instrutions storage.



3.6. Branh Predition and Feth Bandwidth 27Larriba et al. [RAM00℄ analyzed the level of redundany generated by a onventionaltrae ahe where traes are not seletively stored. The work is based on the assumptionthat some traes may ontain sequenes of instrutions that are already stored in theinstrution ahe. This is partiularly true when branhes are not taken, hene the samesequenes stored in the trae ahe are also stored in the instrution ahe, for example.They proposed a seletive trae storage to avoid trae redundany between the trae aheand the instrution ahe. A modi�ation introdued to the �ll unit allowed the trae aheto store only those traes ontaining taken branhes whih annot be obtained in a single-yle from the instrution ahe. The results showed that seletive trae storage and thetrae ahe software, employed with a 2KB trae ahe, performed as good as a 128KBtrae ahe without seletion.A deoupled preonstrution mehanism was proposed by Jaobson [JAC00℄ to redueompulsory and apaity trae ahe misses. The idea is that the preonstrution mehanismobserves the dispath stream in order to predit the future paths to be followed. In thatway, the preonstrution mehanism is able to feth stati instrutions from the preditedfuture region of the program and onstruts a set of traes in advane, similar to a prefethsheme.The trae preonstrution presented by Jaobson redued the trae ahe miss ratesfrom 30% to 80% for SPECint95 benhmarks. An overall performane improvement of 3%to 10% was reported with preonstrution.Sezne et al. [SEZ97℄ also proposed a mehanism to feth multiple non-onseutivebloks. Information from the urrent instrution blok was used to predit the blokfollowing the next instrution blok instead of use it to predit the address of the nextinstrutions or blok as usual.Mihaud et al. [MIC98℄ ompared Pros and Cons of TBA (Two-Blok Ahead) againstthe Trae Cahe [ROT96℄. The authors showed that TC outperforms TBA in many aspetsfrom providing more feth bandwidth to presenting smaller mispredition penalties due toa less omplex pipeline.On the other hand, TBA outperformed TC for small ahe sizes. Aordingly with theauthors, this was due to the poor TC hit ratio. Both shemes rely mainly on the branhpredition to deide whih bloks to feth or to deide whih bloks to onatenate and storein the trae ahe. Hene, there is the need for more aurate multiple branh preditorsto get more bene�ts from both shemes.Again Mihaud et al. [MIC99℄ proposed an extension of the Two-blok Ahead Preditor:the Extended Two-blok Ahead Preditor (E-TBA). The sheme allows to feth 4 basibloks in a single yle when the �rst and third branhes are both taken, whih restrits thesheme. They ompared the latter against previous shemes: (One Blok Ahead preditor(OBA), Extended One Blok Ahead preditor (E-OBA) and Two blok Ahead Preditor(TBA).They demonstrate that the available parallelism in an instrution window grows ap-proximately as the square root of its size. The instrution parallelism extratable from aprogram grows as the square root of the inverse of the mispredition rate. They analyti-ally prove that there is a very low performane bene�t of inreasing the feth rate over athreshold also proportional to the square root of the distane (in instrutions) between twoonseutive mispreditions.To redue the branh mispredition problem other alternatives an be pursued. Aompiler based approah suh as prediation an onvert ontrol dependenies into data



28 3. The Role of Branhes and Branh Preditiondependenies. When the orret branhes are hosen the bene�t of a larger pool of validinstrutions overomes the addition of new data dependenies [MIC99, ?℄.A seond alternative is to exeute both paths of a onditional branh rather thanpredited the most likely taken path. Some shemes fork both paths of every onditionalbranh at the expense of a exponentially growth as more branhes are very likely foundin eah new path reated [UHT95℄. Other approahes fork both paths of only ertainbranhes [AHU98, HEI96, KLA98a℄ based on a on�dene preditor [JAC96℄. The fethengine is a bottlenek in suh approahes beause multiple paths must be fethed at thesame yle to mimi a perfet branh preditor and improve feth bandwidth.



294. Branh Mispredition and MultipathAs presented previously most of the urrent researh to inrease instrution supplyrely on branh predition [LEE84℄. Their intention is basially allow more than one basiblok follow to the deoder thus inreasing instrution throughput. Obviously, performanedepends on auray of the preditor sine instrutions belonging to predited paths areusually exeuted speulatively. If the predition is not orret a mispredition penalty ispaid.Mispredition penalty has many e�ets on the performane. The deeper the pipelinethe greater the penalty. As the penalty is alulated as the time between the mispreditedbranh has been deteted and the orret instrution enters the pipeline, so as more stagesare added more time is required to �ll again the pipeline with useful instrutions.The performane of urrent branh preditors suggest an auray rate of about 95%or more. Despite that great performane, few mispreditions are enough to harm theperformane, beause the penalty is still very high.Current preditors are onstantly inreasing their auray by inreasing the size of thebranh table or ombining di�erent preditors in order to try to apture the behaviour ofdi�erent behaved branhes. The suess of a predition usually depends on the history ofsuh a branh or sometimes on the behavior of other (orrelated) branhes. Unfortunately,some branhes are hard-to-predit imposing more diÆulties to preditors get to 100%auray.One interesting form of reduing the probabilities of mispredition is multipath. Multi-path has been studied but always deemed as very expensive beause of its nature of repliatetoo many resoures. To ahieve the same performane as a mahine with an orale preditor(i.e. no instrutions have to wait for branhes to be resolved and the outome is alwaysknown) a onventional mahine must exeute all possible paths through a program [LAM92℄.Pursuing multiple paths may be expensive but it is the only way to eliminate mispre-dition penalty assoiated with the exeution of instrutions belonging to the wrong pathof a branh.4.1 Following Multiple Paths4.1.1 Eager and Disjoint Eager ExeutionVarious proposals have been made onerning the exeution of multiple paths. The ideaseems to be very attrative in the way that it an potentially eliminate the ost (in yles)due to mispreditions. As this ost is very high, eliminate it ompletely is undoubtedly avery attrative feature whih ompounds this paradigm.Uht presented one of the most lassial works on multipath. For reduing the negativebranh e�ets and minimize the dependenies he proposed DEE - Disjoint Eager Exeu-tion [UHT95℄. DEE is based on the idea of exeuting multiple paths simultaneously inorder to avoid ompletely or partially mispreditions and misspeulations. Uht presentedbasially two ideas around whih he designed two models of multipath. The two modelsare:Eager Exeution is a full aggressive multipath. The feth follows down both paths ofevery branh enountered. The penalty assoiated with mispreditions is nulli�ed one bothpaths are fethed and exeuted. When the outome of a branh is known the inorret path



30 4. Branh Mispredition and Multipathis squashed. The problem is that this model grows exponentially with the outstandingbranhes. The good thing is that no branh predition needs to be made. Therefore, theamount of resoures needed to implement the Eager model may turn the implementationunfeasible.DEE - Disjoint Eager Exeution. DEE is a seletive multipath model where only themost likelihood branh paths are provided with resoures. DEE is based on the umulativeprobability of a branh path is exeuted. Instead of feth and exeute both paths ofa branh DEE follows only the most probably branh paths thus reduing the amountof resoures needed. Resoures are assigned to paths aordingly to their umulativeprobability or likelihood of exeution. The DEE exhibits better performane than a singlepath arhiteture and Eager with onstrained resoures without eager exeution's highost [UHT95℄.
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Figure 4.1: Single Path Arhiteture with Cumulative Branh ProbabilitiesFigure 4.1 shows an example of several branh paths along with their umulative prob-abilities. The example follows an arbitrarily �xed probability of .7 (70%) and .3 (30%)for eah path, respetively left and right paths. For eah branh there are two possiblepaths (left and right arrows) with loal probabilities (70% and 30%). Along the tree theprobabilities are alulated based on the predeessor branhes. Thus the probabilities alongthe dynami tree are umulative. As the branhes are resolved the probabilities must berealulated to reet the result of the oldest branh. Eah time a branh is resolved a newprobability for eah outstanding branh is alulated. This an be done by assuming theloal probabilities are known by the time the branh is enountered and for eah resolvedbranh a new set of probabilities must be re-alulated for all outstanding branhes.The numbered squares represents the order in whih eah path would be pursued in asingle path arhiteture respeting the umulative probabilities depited in �gure 4.1.
.7 .3

1 2

3

4 5

6
.49 .21 .21 .09

.7 .3

.49 .21

.34 .15

.24 .10

1

2

3

4

5

6

Figure 4.2: Eager and DEE Multiple Path ArhiteturesFigure 4.2 shows the dynami tree now for the Eager and DEE models presented byUht. In the left-most �gure we see the Eager model. In the Eager exeution, assuming 6paths an be handled simultaneously, the order in whih eah path would be onsidered



4.1. Following Multiple Paths 31follows the square numbered from 1 through 6. The di�erene from �gure 4.1 is that theexeution (i.e. the arhiteture) is fully divided among all paths for every branh, i.e. foreah enountered branh the exeution goes down both path does not matter the probabilityof eah path to be taken or not.In the right-most side of the �gure 4.2 we see the DEE model. DEE is seletive in the waythat paths are seleted based on their umulative probability. So the order in whih 6 pathswould be onsidered would follow the dynami probabilities for all outstanding branhesinstead of simply exeuted both paths of every branh as done in the Eager model.The di�erene between the DEE and a single path is that in the �rst only one path ofeah branh is exeuted depending on the predition, in this ase the probability. In theEager, a given branh may have both paths exeuted sine their probabilities are the highestamong all outstanding (fethed but not exeuted) branhes. For example, for the �rst andseond branhes in the DEE tree we have both paths exeuted. But the least likely pathof the �rst branh is only pursued after the most likely path of the fourth branh (step 5)is pursued. After that, the most likely path among all outstanding paths beome the rightside path of the �rst branh. The same for the right side path of the seond branh in thattree and so on.Notie that a new branh an hange all the probabilities as well as a branh that beomesolved at the time we have to deide whih path to pursue.In DEE it is assumed that the loal probabilities are known at the time the branh isenountered and they an be updated eah time a new branh is enountered or a branhis resolved.Despite its inredible potential, DEE depends on the alulus of the probability thatall preeding branhes have been orretly predited. Eah branh has a probability ofbeing inorret. The apparatus involved in the alulation of this dynami umulativeprobabilities is ritial in this sheme. The authors suggested a way to bypass this howeverthey �xed probabilities based on a pro�led analysis. Although the sheme performed wellbeause mispreditions were redued, �xed probabilities result in paths being exeuted in a�xed pattern whih redues the essene dynamis of the original model.4.1.2 Seletive Dual Path ExeutionAnother interesting work, presented by Heil and Smith [HEI96℄, suggested an alternativeSeletive Dual Path Exeution model (SDPE). SDPE restrits the number of simultaneouslyexeuted paths to two and uses a branh predition on�dene mehanism to fork seletivelyonly branhes that are more likely to be mispredited. The approah intents to redue thetotal number of outstanding paths. Only those branhes whih the predition is onsideredlow on�dene have their both paths exeuted.For the benhmarks and the branh preditor simulated in their experiments a branhon�dene table with 3-bit resetting ounters identi�ed 20% of the branh preditions as lowon�dene, and those ontained 75% of all mispreditions. The SDPE also uses a forkingpoliy to deide whether a branh has to be forked or not when two paths are already inexeution. The best poliy allows 50% of redution on yles lost due to mispreditionsaounting on almost 10% of redution of total exeution time.In their experiments an interleaved instrution ahe with next line prefething wasused allowing 32 instrutions from two onseutive lines to be brought from the ahe ina yle. From these 32 instrutions up to 8 instrutions following the urrent PC an



32 4. Branh Mispredition and Multipathbe seleted. But only one branh predition an be performed and any ontrol transferinstrution terminates a blok of fethed instrutions. The feth thus is limited to one basiblok or 8 instrutions per yle for only one path. The feth alternates between the twoative paths aordingly to some heuristi, e.g. the most likely orret path deserves morefeth bandwidth.The authors identi�ed that mispredited branhes tend to ome in lusters. Theymeasured that 29% of the mispredited branhes are distane one and 58% of mispreditedbranhes are within 3 branhes of the previous mispredited branh. The distane betweenmispredited branhes is the number of branhes that separate them. If a mispreditedbranh is immediately followed by a seond, the distane is one [HEI96℄. Moreover, lowon�dene branh preditions also our in lusters.This an degrade the performane of SDPE in two ways. First, if a branh is mispreditedbut not forked, i.e. only one path is being exeuted, any posterior fork will not bene�t sineit will be squashed when the branh is resolved. Seond, if a low on�dene branh is forkedany other low on�dene branh will not be forked sine only two paths an be ative atthe same time in SDPE.4.2 Multipath: Pros and ConsSo far, solutions proposed to inrease feth bandwidth were desribed throughout thiswork. Moreover, simulated results proved that branhes an really harm the performaneand mehanisms to revert this situation are essential to improve future miroproessor'sperformane.We have shown that only prediting branhes is not enough. It is neessary to fethmultiple basi bloks in order to provide suÆient number of instrutions to feed theexeution units of an aggressive multiple issue proessor. Multipath has been presented asa good tehnique to redue mispredition penalty, redue mispredition ourrene, supplymore instrutions reduing instrutions ow disruptions and inrease the potential for goodperformane.Tough multipath may provide all desirable features of a modern miroproessor, there aresome problems that may drown out the bene�ts. There are urrently two forms of multipath:(i) eager multipath and (ii) seletive multipath. The eager multipath, exeutes instrutionsdown both paths of all branhes upon the availability of resoures. The seletive multipath,pursue multiple paths of only branhes whih are onsidered likely to mispredit. For thelater, usually a on�dene sheme is added to the branh preditor so only those branheswhih have low on�dene preditions are onsidered for multipath. In this hapter, wepresent an overview of multipath by analysing the pros and ons of this tehnique.4.2.1 An Introdutory ExampleFigure 4.3 is a opy of a simple piee of ode written in C language found in [?℄. A "C"if-then-else statement is presented in order to illustrate the advantages and disadvantagesof using a multipath approah.The if statement tests if I and J are equal. If so, F will hold the result of adding thevariables G and H. If not, F will hold the subtration of H from G. With this example, wehave illustrated a very simple ase where there is a onditional operation being taken.
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Exit

then path else path

if (I == J) F = G + H; else F = G − H;

I <> J
I = J ?

I = J

F = G + H F = G − H

Figure 4.3: A "C" if StatementFigure 4.4 shows the orresponding MIPS assembly assuming that eah "C" variable (F,G, H, I, J) is mapped to a register (s0, s1, s2, s3, s4). For example, F is mapped to s0, Gis mapped to s1 and so on.To simplify, we assoiated a letter to eah instrution in the assembly ode, lets say a,b, , d, e, f and so on. Figure 4.5 shows how the ode looks like and the position of theinstrutions inside an 8 instrutions memory ahe line.
bne $s3, $s4, Else

add $s0, $s1, $s2

j Exit

sub $s0, $s1, $s2Else:

Exit:

# go to Else if I <> J

# F = G + H

# go to Exit

# F = G − HFigure 4.4: The Compiled MIPS AssemblyWhen the ahe line ontaining the if-then-else statement is fethed, the proessor needsto deide whether the onditional branh (if (I == J)) will be taken or not in order to deidewhat instrutions to sent to the deoder. Hene, the next dynami instrution to follow amust be hosen as soon as possible in order to avoid any performane delays.If a predition is made, there is always the hane that the predition turns out to beinorret. In this ase, a mispredition penalty is harged. If the predition is orret,nothing ours sine the orret instrutions are probably already being exeuted.
a c db ... ... ...

cache line
e

a
b
c
d
e
...Figure 4.5: The Symboli ExampleThe greatest bene�t of using a multipath sheme is that sine both paths are fethedand exeuted, there is no mispredition at all. If the eager model is employed, there is noneed to predit branhes sine both paths are always exeuted. If the seletive model isemployed then the proessor still inurs in some penalties, if multipath is not applied for amispredited branh.



34 4. Branh Mispredition and MultipathUndoubtedly, the ideal would be to use eager multipath sine mispreditions are om-pletely eliminated. However, the eager model inurs an exponential growth in the amountof used resoures.Figure 4.6 presents the dynami sequenes of ode required for exeuting the taken andnot taken paths separately, regarding branh a being handled in a onventional, one branhper yle, arhiteture. If the branh is not taken (left side of the tree) a, b and  an besent to the deoder and an extra aess, to the same ahe line, is neessary to bring e. Ifthe branh is taken, only a is sent to the deoder and an extra aess is made to bring dand e.
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Figure 4.6: The Dynami Sequenes - Taken and not TakenNotie that, the extra aesses were emphasized in order to highlight that these extraaesses are made to the same ahe line. Two aesses to the same ahe line, in twoonseutive feth yles, is not an eÆient use of resoures nor an optimal form of fething,but a simple solution to allow branh predition.It is neessary to feth, to detet the branh, to predit it and then feth the target,if the branh is taken. What turns out, is that sometimes the target is ontained in thesame ahe line where the branh is, as shown in Figure 4.5. This problem is inherent toa onventional, non-multipath miroproessor apable of prediting only one branh peryle.When multipath is applied, this problem potentially grows sine new paths are reatedand handled separately. In Figure 4.7, three aesses to the same ahe line are neessaryto bring instrutions for both taken and not taken paths of branh a.
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pathFigure 4.7: The Eager Multiple Paths VersionAnother important issue omes when merge points are onsidered. Every onditionalbranh has two possible paths to follow: taken and not taken. But, after most onditionalbranhes there is a onvergent point: merge point. A merge point is the point where bothtaken and not taken paths onverge. In the example of Figure 4.5, the merge point is e.Notie that, e is repliated in both taken and not taken paths when multipath is applied.Sine paths are handled separately, after the branh, feth addresses are generated inseparate for eah path. Thus, the feth for eah path will pass through a ommon point(onvergent) in the future.



4.2. Multipath: Pros and Cons 354.2.2 An Extended ExampleThe examples showed previously intended to maximize the understanding of multipathissues through the analysis of a simple ase. Of ourse, more omplex situations our inreal ases, espeially when series of onseutive branhes are onsidered. Figure 4.8 extendsthe previous example introduing another onditional branh to the ase.
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cache line
e f g h

a
b
c
d
e
f
g
h
... Figure 4.8: An Extended CaseThe extended example has two onditional branhes a and f. The number of outstandingbranhes and the time needed to resolve eah branh determines the number of ative pathsneessary to ahieve the desired goal whih is to eliminate mispreditions. If, for any reason,a path annot be ativated, a potential situation for mispredition arises. When there are noresoures available to ativate both paths of a given branh, the proessor must either stallor hoose one of the paths to feth and exeute, reating potentially needs for predition.
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hFigure 4.9: The Result: an exponential growthFigure 4.9 shows the dynami tree with four ative paths and two outstanding branhes.Note that not only the number of paths grew exponentially with the inreased numberof branhes but also the instrutions repliated throughout the tree. Instrution e wasrepliated again, as ourred in the example presented in Figure 4.7. Instrution f was in-trodued also but it represents the same situation as instrution e sine they are onseutivewith no branhes between them.However, observe that instrutions g and h are repliated too. Moreover, instrution happears four times in eah of the ative paths and instrution g appears in only two paths.This happened beause instrution h is on the merged path of both onditional branhes aand f.4.2.3 New Data DependeniesAlthough instrutions are repliated, in fat they are not exatly the same instrution.They are dynami instanes of the same stati instrution as they pertain to di�erent datadependeny hains. As instrutions are brought into the pipeline through di�erent paths,the dependeny hains are di�erent.



36 4. Branh Mispredition and MultipathLets Assume, for example, that instrution e is X = F + 1, on Figure 4.7. As e is onthe merge point after branh a, then e is repliated in both taken and not-taken paths.Therefore, the dynami instane of e, on the not-taken path, would be X = (G - H) + 1.And, the dynami instane of e, on the taken path, would be X = (G + H) + 1.There are two problems. First, F is written in both taken and not-taken paths. Thatis, an output dependeny is introdued by issuing instrution from both paths of branh a.Seond, eah instane of e must wait for its orret opy of F in order to respet the truedata dependeny between X and F.A register renaming tehnique an be applied in order to eliminate the false output datadependenies introdued by issuing multiple paths. But if there is an instrution on themerge point whih uses the oniting value, then eah opy of the instrution must belinked to the orret predeessor in the data dependeny hain.4.2.4 Outstanding Branhes and DepthAs mentioned previously, the number of outstanding branhes determine the number ofpaths whih may be neessary in order to avoid ompletely any mispredition, in a eagermultipath arhiteture. That is, the number of neessary ative paths depends on thelateny of the previous branhes.Figure 4.10 shows an hypotheti situation where the oldest branh takes 4 yles to beresolved. The oldest branh is fethed at yle n and then it takes one yle in eah of thenext four pipeline stages until it is resolved at yle n+4.Assuming that only one branh is predited per yle for eah path, after 4 yles theproessor may have a total of 16 paths ative by the time the oldest branh is resolved.That means that at yle n+4 the feth unit may need 16 ports to the instrution ahe inorder to feth instrutions to the 16 ative paths.Furthermore, this assumption is based in a onstant branh resolution time. If the oldestbranh takes more than four yles to resolve, the number of ative paths may inrease.
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n+4Figure 4.10: The Dynami Tree After the Oldest Branh is FethedFigure 4.11 assumes that at yle n+4 the oldest branh is resolved. Half of the dynamitree an be ushed at this time beause there is no need to keep instrutions from the wrongpath sine the branh is already resolved.If the eager multipath model is used, two new paths are reated eah time a branh ispredited. Also, for eah ative path it is neessary to be able to predit at least one branhper yle. So, the dynami tree grows exponentially and the size depends on the resolutionof the oldest branh.
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Figure 4.11: The Dynami Tree After the Oldest Branh is ResolvedOn the other hand, when the oldest branh is resolved one entire side of the dynamitree an be squashed. Hene, the maximum number of ative paths is a power of 2 of thenumber of yles neessary to resolve the oldest branh. In the example presented here, theoldest branh takes four yles to be resolved (after being fethed) so the resulting numberof ative paths is 16 (24).4.2.5 Conluding RemarksEssentially the most interesting bene�t of using a multipath tehnique is to avoidmispreditions. However this major bene�t may inur additional problems suh as inreaseof neessary feth and exeution bandwidths.The instrutions fethed and issued from wrong-paths and their subordinates allowto mimi a perfet branh predition but introdue pollution that may drown out theperformane. It is well known that multipath o�ers an interesting form of reduing thee�ets of ontrol dependeny by eliminating mispreditions but persistent problems do notallow arhitets to onsider it as a ommerial alternative.Unfortunately, the eager model has been studied but not ever implemented beause of itsexaggerated use of resoures. The exponential onsumption of resoures makes this model anunfeasible option. The seletive multipath, on the other hand, is most suitable way to reduemispreditions but the performane reported previously did not motivate implementations.It is neessary still a onsiderable amount of resoures to exeute instrutions from thewrong paths and the on�dene estimators do not ath all mispreditions. If they did,then mispreditions ould be eliminated without using a multipath tehnique.The feth bandwidth neessary to implement the eager multipath is ertainly the majoronstraint. Also, the high number of instrutions in-ight issued from wrong paths mayinterfere with the shedule of useful instrutions. These two problems will addressed in thenext setions.



38 5. DCE - Dynami Conditional Exeution5. DCE - Dynami Conditional ExeutionSo many ideas have been proposed reently from exeuting multiple paths of onditionalbranhes [AHU98℄ to exeuting multiple threads and proesses in a single one-hip proessor.All of them rely on fething more instrutions to feed starving funtional units. Fethingmore instrutions is ompliated beause orret instrution addresses are ompletely un-known during feth after a onditional branh. Branh predition is applied to predit thoseaddresses thus avoiding to stall the feth on the presene of onditional branhes. Despitethe auray of branh preditors, the small remaining mispreditions degrade onsiderablythe performane.DCE is been proposed as a new arhiteture where it will be possible to exploit multipathwith low ost implementation. Not only that, DCE is expeted to diminish mispreditionsand omplexity at the feth unit.The feth unit is a ritial part of any urrent miroproessor. We want to make itsimpler. By using DCE, we expet to allow a more natural operation of the feth unit andtake advantage from things urrently unused. Looking at the operation of a onventionalfeth unit, one an say that its operation is omplex, expensive and extremely ritialbeause it interats diretly with the memory and su�er the e�ets of unknown onditionsprodued by ontrol transfer instrutions, whih may redue its eÆieny.DCE is not expeted to inrease the omplexity of the feth unit. On the other hand,DCE is being designed to bene�t from things whih are already present, but unused. Anexample of suh "unused things" are instrutions that ome into the line brought from theinstrution ahe, but are not used beause a branh is present and its outome is unknown.Suh instrutions, depending on the size of the ahe line, often represent the target of thebranh whih is breaking the sequentially of the instrution ow.The onventional form of feth is driven by the exeution unit and antiipated by thebranh predition mehanism. So, the ahe line brought is determined by the fethunit and instrutions present into the line are seleted and sent to the deoder. Asthe outome of onditional branhes is predited, sometimes the seletion is wrong andthe instrutions exeuted must be aneled. Current implementations already onsider areovery mehanism to �x suh mistakes !5.1 MotivationIf the a ahe line ontains, in suh way, useful instrutions, why not to exeute themif they are fethed ? This was the question whih motivated the start of this work. Notrarely, a big portion of the ahe line is wasted beause of instrutions are unaligned orbeause there is one or more branhes in the line. Therefore, bandwidth is wasted.The point is, if an instrution exists, it should be useful somehow in the future. If not ina given moment, we presume that if the instrution is there, that is beause the instrutionis useful. Otherwise, the instrution should not exist.Looking deeply into the loality of suh instrutions, we deteted a very interestingpattern. Some branhes have their targets very near, often inside the same ahe line. Ifthe taken target is inside the same line, that means that the whole not taken path is alsoentirely ontained inside that line.



5.2. Multipath as a form of Avoiding Mispreditions 39Moreover, if the taken target is inside the line, at least one instrution of the taken pathis on that line and the rest is on the next sequential line, up to the next branh.In a VLIW arhiteture with prediated exeution this is done intentionally by theompiler. The instrutions of both paths are brought automatially into the exeution orebut only the instrutions whih satisfy the ondition are really exeuted.DCE is similar in the sense that instrutions from both paths are brought into theproessor, just as a multipath or a VLIW with prediated exeution. Then all instrutionsare exeuted and ommitted aordingly with the outome of the non-speulative branhes.Instrutions that satisfy the ondition are ommitted and the leftover is disarded.In this way, DCE is a hybrid model where multipath is exploited more naturally thanprevious proposals. In DCE, a whole ahe line is the unit of fething and all instrutionsontained into the ahe line are expeted to be useful in some way.The eÆieny will depend on the agility of the feth unit to bring the orret lines in asequene where it is possible to have multiple paths naturally and so exeute them assuringthat there will be no mispreditions.Of ourse, some branhes have targets in far loations and annot be exeuted eagerlyin the same form as desribed above. For those branhes is better to make a predition andtrust the results until the ondition is evaluated.5.2 Multipath as a form of Avoiding MispreditionsMultipath is not a new idea. Multipath is oneptually simple but requires an exaggerateamount of resoures to be implemented. Suh an aggressive e�ort to avoid only about 3-6%[MCF93℄ of remaining mispreditions seems to be worthless and not marketable.Multipath has been studied under two di�erent approahes: eager multipath whiheliminates all mispreditions while it does need very large feth and exeution bandwidths,and seletive multipath whih requires less resoures by seleting branhes whih are morelikely to be mispredited, but is unable to eliminate all mispreditions.5.3 Eager Multipath ExeutionDespite the possible great bene�t of eliminating all mispreditions, an eager implemen-tation of multipath also brings new problems. First of all, the exponential growth indeedrestrits the appliation of suh an aggressive model. As for eah branh two new paths arereated and kept until the branh is resolved, the dynami tree ontaining both paths of allbranhes grows until the oldest branh is resolved. At this time, the side whih ontainsthe wrong path is squashed. Hene, the size (that is, the number of ative paths) of thedynami tree depends on the duration (lateny) of the oldest branh.Besides, the exeution of instrutions along the wrong path may pollute the exeutionunits with useless instrutions. As more instrutions are dispathed, beause multiple pathsare ative at the same time, the sheduling is more ompliated. An example is how to deidebetween two instrutions whih have all operands available but only one funtional unit isfree? If the instrution issued pertains to the wrong path then the resoure is wasted witha useless instrution.Basially, there are two problems with the eager model. First, the large bandwidthneessary to feth and exeute multiple paths and instrutions. Seond, the pollutiongenerated by useless instrutions.



40 5. DCE - Dynami Conditional Exeution5.4 Reduing Neessary Feth BandwidthPrevious works already analyzed the behavior of onditional branhes and loalitypriniples whih are being used in every single implementation nowadays.Experiments ondued measured the distane between branhes and their taken tar-gets. If the branh is not taken the target is the next instrution (distane=1). If thebranh is taken then the target may be inside the same line (IN) or not (OUT). The ex-periments onsidered the number of instrutions in the ahe line (4, 8, 16, 32 and 64), thedistane between the branh and the target, the outome of the branh and the diretion(forward/bakward). Afterwards, the mispredition rate was measured aordingly withthe branh lass whih they were assoiated.It was interesting to see that a onsiderable amount of mispreditions ourred inbranhes with very near targets. Starting from 4 instrutions per line (16 bytes aheline) the experiments showed that for integer benhmarks (SPECint95) around 4% of allonditional branhes have targets inside the same line and 3% of mispreditions ourredwhen prediting these branhes.With a ahe line ontaining 32 instrutions (128 bytes) was reported an average of 54.5%of onditional branhes with targets within the same line and almost 60% of mispreditionswere onentrated within this subset.The idea is to take advantage of the spatial loality towards the implementation ofmultipath. The key is to feth a long ahe line in a single aess and then split it intodi�erent paths deteting branhes and targets within that ontext.Considering the proessor tends to be muh faster than the memory, the split proessan be done in the yle following the feth if the next ahe line to be fethed is known.A ahe line preditor may be used instead of a branh preditor. That would be moreeÆient to allow the split stage to partition the previous line while the feth is alreadyfething the next one.Multiples paths an be delivered to the exeution ore using only one ahe port soreduing the feth bandwidth neessary. However, the exeution bandwidth required is stilllarge, onsidering that an enormous number of instrutions an be issued.5.5 Reduing PollutionWhen multiple paths are pursued, most likely many instrutions are repliated. Thatis, beause of onditional branhes always merge into a onvergent point, many instanesof onvergent points are ativated from eah ative path.However, a repliated path is ommitted only one. All other instanes of instrutionsbelonging to a repliated path are aneled as soon as all previous branhes are resolved oraneled. Those opies, whih are aneled, are onsidered pollution, sine they onsumeresoures but do not ommit.In order to redue pollution, the onvergent paths need to be deteted and ativatedonly one. This onept is very similar to the idea of exploit ontrol independene [ROT99℄.Convergent paths are ontrol independent but not "data independent". Eah instaneof a ontrol independent path, in a multipath arhiteture, pertain to a di�erent datadependeny hain.



5.6. Replaying Instrutions 41In this approah, only one instane of a ontrol independent path is ativated. Thisan redue drastially the number of in-ight instrutions reduing pollution and exeutionbandwidth.5.6 Replaying InstrutionsA ontrol independent path may have instrutions whih are dependent on results pro-dued by multiple paths pursued previously. To guarantee data dependenies, a ontrolindependent path should wait until all previous onditional branhes are resolved or an-eled.However, this would delay the exeution of suh instrutions hiding possible bene�ts.Instead, data instrutions whih arry true data dependenies and pertain to ontrol inde-pendent paths an be issued based on value predition. If the predition is not orret theinstrutions are replayed.5.7 An Overview of the DCE ArhitetureThe Dynami Conditional Exeution model is based on the onept that multiple pathsare extrated from a single ahe line in a single aess and sent to the exeution ore. Inother words, exeution is done onditionally and instrutions are ommitted aording withthe dynami behavior of onditional branhes.Multiple paths are pursued based on the loality of eah path. If both paths of a givenbranh are present they are exeuted onditionally. Future steps will onsider the interationbetween the arhiteture and the ompiler.Merge points are deteted and only one path is ativated from these points. Inputoperands are predited and instrutions belonging to ontrol independent paths are issuedbased on the availability of eah operand or a predition. If a wrong predition is made,the instrution is replayed.The feth is driven by the next ahe line predition [CAL95℄. This way, the next linean be fethed while the previous line is segmented into di�erent paths. The next line issupposed to bring more paths to omplete the exeution of previous onditional branhes.If a line ontains a far branh, a predition is made for the far branh and the next line tobe fethed is determined by the branh preditor. The branh preditor holds informationabout far branhes only, minimizing the preditor itself.Instrutions are renamed aording with the position of the path on the dynami treeand value predition may be used to predit the input operands of instrutions belongingto ontrol independent paths whih are waiting for suh operands.5.8 Expeted ResultsDCE is intended to redue the feth and exeution bandwidths neessary to implementa multipath arhiteture. Even though DCE is not an eager multipath in its essene, thepossibility to exeute eagerly both paths of short branhes is an attrative approah.The bene�ts reside in the fat that it is not neessary to predit short branhes. Sinethey have both targets within the line, they an be exeuted in a multipath form. Othersigni�ant portion of branhes have targets in the next sequential line. If the feth bringssequential lines, those branhes will also bene�t automatially of a multipath approah.



42 5. DCE - Dynami Conditional ExeutionMinimizing the needs for predition an improve the predition itself and the implemen-tation osts. Moreover, the use of multipath for the exeution of short branhes an isolateup to 60% of mispreditions for a 32 instrutions ahe line. As the remaining mispredi-tions are onentrated in easily preditable branhes, the performane expeted is lose toa full eager multipath.Previous seletive multipath, besides the normal preditor, needed also a on�denemehanism to be used in onjuntion with the preditor in order to determine whether abranh should be exeuted eagerly or not.



436. Revisiting BranhesThis hapter presents a new insight into branhes. Several di�erent ahe on�gurationswere simulated in order to study the distribution, target position and behavior of onditionaland unonditional branhes. Following setions present several analysis whih allow tounderstand better the relations between branhes and mispreditions.In the graphs presented in this hapter, unonditional branhes with register basedrelative targets were not onsidered. Only diret relative onditional and unonditionalbranhes were measured.6.1 Branh Diretion and Outome
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Figure 6.1: Branh DiretionDiretion is based on the position of the taken target of a branh instrution. If thetaken target is loated in an address greater than the address of the branh itself than thetarget is in a forward position hene the branh is alled forward branh. The oppositehappens when the target is loated before the branh in a smaller address. In this ase, thebranh is alled bakward branh.Figure 6.1 shows the distribution of forward and bakward branhes for the integerbenhmarks of the SPEC95 suite. The diretion onsidered only the position of the takentarget and not the outome of the branh. About 72% of branhes have targets in a forwarddiretion but this does not mean that those branhes were taken or not.Figure 6.2 presents the perentage of taken and not taken branhes. Here, only theoutome is onsidered. A taken branh may have a bakward or forward target but a nottaken branh has always a forward target. About 64% of branhes were taken and 36%were not taken.6.2 Mispreditions based on Diretion and OutomeFigure 6.3 presents mispreditions based on diretion. The graph shows the perentageof mispreditions that ourred in forward branhes independent of its outome (taken ornot taken). In average, 80% of mispreditions are onentrated in forward branhes. Here



44 6. Revisiting Branhes

Compress Gcc Go Ijpeg Li M88ksim Perl Vortex
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Taken Branches
Not Taken BranchesBranch Outcome

Taken x Not Taken

Figure 6.2: Branh Outome
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Figure 6.3: Mispreditions based on Diretionagain, the diretion is based on the position of the target and does not depend on theoutome of the branh nor the size of the ahe line.For benhmark Perl, all mispreditions happened for indiret jumps whih are notonsidered here. So, the benhmark presented no mispreditions for diret onditionaland unonditional branhes.Figure 6.4 presents mispreditions distributed along with the outome of the branhes.Around 55% of all mispreditions ourred for taken branhes. That means that thosebranhes were onsidered not taken when the predition was made. On the other hand,45% of mispreditions happened for not taken branhes. In this ase, those branhes wereonsidered taken when the predition was made.Benhmark Perl again presented no mispreditions beause all mispreditions ourredon indiret branhes whih were not onsidered. Although, benhmark M88ksim onen-trated all mispreditions in taken branhes. That means that 100% of mispreditions de-termined that branhes were not taken where they should be assumed taken.It is possible to pereive that mispreditions are more likely to our in forward branhesthan in bakward branhes. Regarding the outome, we an see more or less a welldistributed ourrene whih so far tells that the outome exerises no strong inueneon the predition, exept for benhmark M88ksim.
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Figure 6.4: Mispreditions based on Outome6.3 Target Position - Short BranhesAnother analysis is presented onsidering the position (in/out) of the taken target ofdiret relative onditional and unonditional branhes regarding a ertain distane.Again, the taken target is onsidered when lassifying a branh as in or out. The takentarget is used beause that is the farthest target possible of a branh. The not taken targetis always the next instrution. In this analysis, a branh whih the taken target is within aertain distane is alled short branh for the distane onsidered.
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Figure 6.5: Short Branhes for Di�erent DistanesFigure 6.5 shows the position of the taken targets of all diret onditional and unon-ditional branhes aording with a ertain distane. The averages are shown on table 6.1.For a 4 instrutions distane (16 bytes), the average number of short branhes is 22%. Theaverage raises to 34.43% of short branhes when the distane is inreased to 8 instrutionsor 32 bytes. For a 16 instrutions distane the average is 57.14%, for 32 instrutions is70.71% and for a 64 instrutions distane the average is 84.29% of short branhes.The distane is measured from the branh to the taken target. If the distane of thetaken target is within the distane onsidered then the branh is alled short branh.



46 6. Revisiting BranhesTable 6.1: Short Branhes and Mispreditionsinsn/line (bytes) % of short branhes % of Mispreditionsaverage within short branhes4 (16) 22.00 36.578 (32) 34.43 48.4316 (64) 57.14 65.8632 (128) 70.71 83.5764 (256) 84.29 93.00The analysis is based on the taken target disregarding the outome of the branh beausethe not taken target is always the next sequential instrution. So the distane between thebranh and its not taken target is always 1 instrution.Usually, the worst ase is when the branh is taken beause that requires a seondaess to the ahe to bring the taken target if it is not in the same line. Furthermore, theinstrutions that are between the branh and the taken target need to be disarded eventhough they an be already into the feth unit if the when branh is predited taken.As the worst ase is the taken branhes we ondued this experiment looking to theposition of the taken targets of every diret branh/jump. The outome was not importantat this time beause we wanted to ompute the average number of branhes with the farthesttarget within a distane. So the taken target give us the maximum distane independentof the outome of the branh.
Compress Gcc Go Ijpeg Li M88ksim Perl Vortex

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 instructions (16 bytes)

8 instructions (32 bytes)

16 instructions (64 bytes)

32 instructions (128 bytes)

64 instructions (256 bytes)

Percentage of Total Misprediction Falling on Short Branches

Figure 6.6: Mispreditions Falling on Short BranhesFigure 6.6 presents the perentage of mispreditions that felt within short branhes.The averages are presented on table 6.1, third olumn. For a 4 instrutions distane,36.57% of all mispreditions ourred into the 22% of short branhes, and so on. Fora 8 instrutions distane, the short branhes onentrated an average of 48.43% of allmispreditions. 65.86%, 83.57% and 93% of mispreditions ourred in short branhes forthe 16, 32 and 64 instrutions distanes, respetively.Benhmarks M88ksim and Perl presented interesting results. For M88ksim all mispre-ditions ourred within short branhes starting from 4 instrutions distanes. For Perl, nomispredition at all was reported within short branhes from 4 to 64 instrutions line. Thismeans that mispreditions ourred only for indiret branhes or for branhes with takentargets more than 64 instrutions far from the branh itself. Perl was not onsidered on theaverages presented on this setion.



477. Miroarhiteture OverviewDCE is being proposed as a new arhiteture model to redue mispredition penalties.By applying multipath tehniques to short branhes and prediting the behavior and out-ome of far branhes, DCE is expeted to produe good results based on the assumptionsbelow.We de�ne initially, a short branh as a branh whih has the taken target within aertain distane from the branh itself. A far branh is onsidered to be a branh whihtargets a position outside of that distane.The intention of DCE is to redue short branh mispreditions as lose to zero as possible.The orale DCE would eliminate ompletely any mispredition within short branhes.Table 7.1 presents a omparison of the performane of an Orale DCE mahine againstthe performane of a base and an ideal mahines. The base mahine is a 16 way supersalarwith two-level g-share branh predition and perfet ahe system (i.e., no misses). Theideal mahine is the base mahine with perfet branh predition.There are two Orale DCEs mahines. The �rst one uses perfet predition for onlyshort forward branhes. The seond one, uses perfet predition for every short branh,forward or bakward. Both DCE mahines onsidered short branhes those branhes withtaken targets within 32 instrutions from the branh. An open question is to determine theideal distane for lassifying short branhes.The e�et expeted is to get the upper bound performane of a DCE mahine whenmultipath is applied to short branhes. When multipath is applied to a branh, the e�etis the same as predit it with 100% auray.However, as perfet predition is applied, only the orret path is exeuted so theresoure onits are not modeled in the experiments reported below. Also, data is alwaysdependent on the orret path. As a result, the performane of a real DCE mahine isexpeted to be below the performane indexes showed by the orale mahines sine exeutingboth paths of a branh will demand more resoures and ause some instrutions to be re-exeuted. Therefore, an optimisti upper-bound is shown.Table 7.1: Potential Upper Bound Performane of DCEBenhmark Base Orale DCE Orale DCE IdealFW IN FW BW IN Perfet PreditionSpeed-up IPC Gap % Speed-up IPC Gap % Speed-up IPC Gap % Speed-up IPC Gap %Compress 1 1.321 80.79 3.21 4.238 38.38 3.21 4.238 38.38 5.21 6.877 0G 1 2.196 68.07 1.93 4.238 38.37 1.93 4.238 38.38 3.13 6.877 0Go 1 1.777 70.58 1.49 2.651 56.11 1.59 2.82 53.26 3.40 6.040 0Ijpeg 1 4.219 49.99 1.50 6.330 24.98 1.58 6.682 20.8 2.0 8.438 0Average 1 2.38 67.36 2.03 4.36 39.46 2.08 4.50 37.7 3.43 7.06 0We measured IPC (Instrutions per Cyle), speed-up and gap. Speed-up is the ratiobetween the IPC of the improved mahine and the IPC of the base mahine. Gap is theperentage of Ideal performane unmet by a given arhiteture, in terms of IPC.So the speed-up tells how faster is a given arhiteture over the base arhiteture andthe gap tells how muh of the ideal performane is still unmet by a given arhiteture. Infat, speed-up and gap are redundant metris used for the only purpose of quantifying theexistent room for improvement.By omparing the performane of both base and ideal performane we intended to showthat there is room for improvement. The goal was to show that about 67.36% of the ideal



48 7. Miroarhiteture Overviewperformane is unmet by the base arhiteture just beause the base arhiteture relies onbranh predition.We presented also the performane of two di�erent DCE Orale mahines. The analysishas a twofold goal. First, show that with DCE we an redue the gap in almost 40% relativeto the performane of the Ideal mahine. Seond, between the two DCE mahines we anrealize the impat of DCE for both forward and bakward branhes.There is not a big di�erene between the two DCE Orale mahines. This means thatapplying DCE for only forward branhes an result in a good performane or almost all theperformane gain an be obtained by just applying DCE for forward branhes. However,it is not possible to on�rm it at this point whih one of the models will deliver the bestperformane sine other fators as resoure ontention were not simulated.7.1 Miroarhiteture Spei�ationWe strongly believe that onentrating e�orts on reduing mispreditions for shortbranhes only is worth. First, beause short branhes an be easily exeuted eagerly withoutrequiring the same amount of resoures needed to exeute all branhes eagerly. Seond,beause most of mispreditions happen on those branhes, to onentrate e�orts on thatsounds very promising.7.1.1 FethFething instrutions in DCE will be easy. A preditor will determine what is the nextline to be fethed as in a onventional supersalar arhiteture. However, the preditor onlydetermines a new line when a far branh is fethed.When determining the distane whih will de�ne whether a branh is short or far, wewill onsider the amount of resoures to exeute eagerly all branhes that will fall in theshort branh ategory. Determining the orret distane may ause a big impat in theimplementation but also leaves an interesting way to apply a very exible implementation.For example, let's de�ne a short branh as any branh whih has the target within 4instrutions from the branh itself. So, if a branh has the target within 5 instrutions fromit then that branh is deemed a far branh. A far branh will disontinue the multipathexeution of previous short branhes.In fat, DCE exeutes eagerly all short branhes until it founds a far branh. A far branhis predited using a branh or ahe line preditor (disussed latter). So, the exibilityresides in the fat that it is possible to determine, even dynamially, what is the distanewhih is onsidered for eagerly exeution. The more distant the target is, when exeutingeagerly, the more branhes will be exeuted in a multipath fashion and more short branhesprobably will appear in a ontiguous sequene.In other words, the distane hosen will determine how many short branhes will appearbetween two far branhes. If the de�ned distane aptures all branhes, then all branhesare exeuted eagerly and no mispreditions our at all. Obviously, the distane must besuh as to avoid a large number of resoures but an aeptable bene�t in order to justify thee�ort. In the same sense, if the distane is 1, all branhes will be onsidered far branhesthus all of them will be predited and the behavior will be the same as a normal supersalararhiteture.



7.1. Miroarhiteture Spei�ation 49The feth will start from the entry point of a program and will feth sequentiallythroughout the program until a far branh is fethed. When a far branh is found, thepreditor must reognize the far branh and rediret the feth to the far target address.Short branhes found in the middle of ahe lines are just sent down the pipeline, togetherwith all instrutions ontained in the line. No seletion is made at the feth or deoder inorder to deide whether an instrution has to be sent or not to the pipeline. All instrutionsontained on the line are sent, exept those that ome before or after a far branh.So a small limit distane hosen will determine more far branhes therefore more pre-ditions and more predisposition for mispreditions. Larger distanes will determine moreshort branhes and more multipath resoures will be needed to exeute them. However, lessmispreditions are likely to happen.7.1.2 Branh PreditorBeause feth rediretion will be done only when far branhes are fethed, the preditormust reognize and thus predit only far branhes.For larger distanes, the arhiteture must be able to exeute more short branhes in amultipath fashion. On the other hand, the feth is simpli�ed beause less rediretions arelikely to our.The term simpli�ed means smaller branh table sine less branhes need to be predited.Also, prefething a sequential line does not require any kind of information being transferredbetween the prefeth and the preditor.There are two ideas regarding the preditor. First is to use a small table and store thereonly far branhes. If a line brought from the iahe hits into the branh table that meansthat a far branh is inside the line. So the predition is used to determine the next line andthis information is bypassed to the following stages in order to proeed with the multipathonlusion for the previous outstanding branhes.The balane between the size of the predition table and the amount of resoures toexeute the short branhes will be de�ned by the distane limit used to determine whethera branh is short or far.Another idea is to use a next ahe line preditor as proposed in [CAL95℄. Therefore,no branh is handled at the feth but only the ahe line and set. For a given ahe line thepreditor must tell the feth unit whih is the next ahe line and set. The trade-o� betweenthese two alternatives will be onsidered when determining whih is the best sheme to beused with DCE.7.1.3 DeodeInstrutions are deoded normally. The major issue on the deode is attributed to theminimum number of instrutions deoded per yle in order to allow a suÆient amount ofinstrutions to be sent to the rest of the pipeline in order to keep an aeptable performanebene�t.An important information regarding branhes is to deode the o�set for diret ondi-tional and unonditional branhes. This information is important to the renaming stage inorder to apture the beginning and end of eah path.The deode itself an be done normally without requiring unonventional proesses tobe added due to the DCE onept implementation.



50 7. Miroarhiteture Overview7.1.4 RenamingRenaming is probably one of the most important, perhaps omplexes, parts of DCE. TheeÆieny of the renaming will most likely determine the gains of applying the tehnique.The reason is beause multiple instrutions belonging to di�erent paths will be inexeution at the same time. It is possible to isolate the e�et of eah instrution's exeutionby using multiple register �les as used in simultaneous multithreading arhitetures. Butthis would ost probably too muh to justify the implementation of DCE. It is neessary tohave a large number of instrutions, being exeuted independently, to justify the alloationof an entire register �le just to ompensate some temporary false data dependenies.As onsidered paths will be short, beause of only short branhes are onsidered formultipath exeution, the number of instrutions belonging to an unique path will not bevery large. Thus alloate an entire register �le to separate the exeution and failitate thesquash afterwards is probably not the best solution.Instead, the renaming phase will be responsible for renaming instrutions aordinglywith the path whih they belong and handle all data dependenies regardless of the positionof the instrution and whether the instrutions will be squashed or not.The renaming will be done based on the limits of eah path (i.e. basi blok). Theinformation extrated from the branhes during the deode phase (o�sets) will be used todetermine how to rename the instrution.The R10000 renaming sheme [MIP95℄ adapted previously to be used in the Muluxprojet [SAN99, CHA99℄ will be slightly modi�ed to be used in DCE [SAN01℄.The renaming implements a free register list and an ative register list just as done inthe R10000. The free list handles all registers not yet used whih are available for renaming.The ative list holds all output registers whih are urrently in use by an in-ight instrution.A register is released (transferred from the ative list to the free list) only when no furtherinstrution depends on its urrent value.In the Mulux projet, two modi�ations were added to the original sheme. First,multiple mapping tables were introdued to handle the temporary false data dependenies(disussed latter). Seond, an ative register's ounter was assoiated to eah physialregister in order to avoid two entries of the same register into the free list.Notie that using multiple mapping tables, with ative register ounters, requires onlyone physial register �le, one free register list and one ative register list.7.1.5 Handling Multiple Mapping TablesRenaming is done as on the R10000 renaming proedure. Exept for the multiple tablesand the ounters assoiated to eah physial register, the proedure is very similar.When an instrution is renamed, a physial register id is retrieved from the free registerlist. The logial register is then mapped to a physial register and the mapping informationis stored into the mapping table.When a short branh is found, a new mapping table is alloated. The new mappingtable is a opy of the urrent mapping table, being used to rename the urrent path.Therefore, the new mapping table inherits automatially all mappings done previously. Aseond mapping table an be also alloated/reated to handle the renaming for the ontrolindependent path.



7.1. Miroarhiteture Spei�ation 51The new mapping table will be used afterwards when the instrutions from the takenpath are renamed. The renaming proess is done sequentially throughout the feth bu�er,renaming all instrutions in the order they were fethed.Instrutions that ome right after a onditional branh are instrutions that belong tothe not-taken path. Those instrutions are renamed using the urrent mapping assoiations,present into the urrent mapping table. Notie that the new table alloated is not used atthis time nor the seond table whih will be used latter on.When the not-taken path �nishes, the target instrution of the last branh is reahedat the renaming, the renaming starts to use the mappings stored into the new mappingtable. Reall that the new mapping table holds exatly the mappings as of the time thebranh was renamed and is updated with the mappings orresponding to the taken pathinstrutions. So, the new mapping table will hold the mappings to the taken path and theprevious mapping table holds the mappings for the not-taken.All data dependenies are respeted with this strategy and a reovery is easily done byjust releasing the register stored in the mapping table whih holds the mappings for thewrong-path.The ounters are used to guarantee that only one entry of a given register is insertedinto the free list by the time the register is released. Beause of the nature of the DCEmodel, mapping tables may have idential mappings at one time but they may have twodi�erent instrutions writing at the same output register (temporary output dependene).If an instrution writes into a previously mapped register, the previous register must goto the ative list. But, that may happen also for another table when renaming an instrutionfor another path. In this ase, the same register is inserted into the ative list twie. Eahtime a register is inserted into the ative list its ounter is inremented, so it reets thenumber of times a register was written in di�erent paths of exeution.A register is moved from the ative list to the free list only if its ounter is zero. Thusguaranteeing that there is only one entry into the free list [CHA99℄.7.1.6 Control and Data IndependeneDespite its ability to exeute multiple paths of ertain branhes, DCE is also intendedto take advantage of ontrol independene [ROT99b℄.Aordingly with the previous desription of the renaming proess, two tables an bereated after a short branh whih is going to be exeuted eagerly. Both tables are opiesof the urrent table and one will be used to rename the instrutions on the taken path andthe other one will be used to rename the instrution on the ontrol independent path.A seond table is used to rename the instrutions on the ontrol independent path sothe dependenies are easier handled by the instrutions that are oming. This beause anew branh may fork from the ontrol independent path and then the dependenies areorretly kept.When the ontrol independent point is reahed, the table reated previously also holdsthe mappings as of the time the orresponding branh was renamed.Notie that at the time the CI ode is been renamed there are two tables. One holdsthe mappings for the main path and the not-taken path and the other one holds the mainpath mappings and the taken path mappings.



52 7. Miroarhiteture OverviewWhen an instrution on the CI path is renamed and its input operands were renamedonly one (i.e. same mappings in both tables) that means that no writing was done on theregister during the taken or not-taken path but only before the branh. So, a instrutionwhih has the same mappings on both tables, for the input operands, or have all immediateoperands is also data independent in this ontext.A ontrol and data independent instrution (CIDI) an be exeuted as soon as all inputsoperands are ready and it will not be squashed if any previous far branh was orretlypredited.In DCE, far branhes are predited as usual. Thus, if a far branh is mispredited a fullsquash is done. The pipeline is ushed and all mapping tables are released. If all previousfar branhes were orretly predited any short branh previously exeuted will not resultin mispredition, beause both paths are exeuted, so CIDI instrutions an be ommitted.If an instrution has two di�erent mappings on the taken and not-taken tables, is beausethe instrution was written during the onditional exeution of one of the paths. In thisase, does not matter whih path wrote into the register, but the instrution would have tobe stalled until the branh and the input operands are ready.To avoid stall an instrution and delay its issue, DCE will issue CIDD (ontrol inde-pendent data dependent) instrution based on value predition. Therefore all instrutionsbelonging to the CI path an be issued. CIDI instrution are issued normally and CIDDinstrutions are issued upon o value predition.The value predition will allow to issue the CIDD instrution regardless of the outomeof the previous branh and even when the input operands are not ready. Thus, this willaelerate the exeution of the CI path. If the value predited is wrong the instrution isre-exeuted latter.Re-exeution will require a seletive re-issue of CIDD instrutions with mispreditedvalues. The re-issuing tehnique will be part of the future work. Another alternative is stallthe CIDD instrution until the branh is resolved and the orret input register has beenwritten.7.1.7 ShedulingAfter renamed, an instrution is tagged with the mapping table id used to rename it.The mapping table id is also used latter to determine the beginning and the end of a givenbasi blok by the time of retirement.An instrution already renamed, whih has all input operands ready, an be issuednormally. However, the sheduler has to stall CIDD instrutions if no value predition isused. Or, if value predition is used, the sheduler has to wait until the preditor an informwhat is the predited input value.The sheduler is not supposed to apply any priority in order to shedule an instrutionfrom the taken, not-taken or CI paths sine no predition of any kind is used for thispurpose. However, depending on the number of instrutions and outstanding branhes thismay be something to onsider in order to alloate more eÆiently the resoures available.7.1.8 RetiringInstrutions are fethed, deoded and renamed in order. The dispath (sheduling andissue) is where instrutions are plaed out of its original order in order to overpass datadependenies.



7.2. Final Considerations 53A reorder bu�er will be used to keep the original order. An instrution an be retired ifit reahes the top of the reorder bu�er.When a branh reahes the top of the reorder bu�er, all previous instrutions are alreadyommitted and the arhitetural state is deemed orret. If the branh was predited (farbranh), then the predition is ompared against the orret ondition. If the preditionis inorret, all instrutions are ushed and the feth is restarted from the orret targetaddress.If the branh is orretly predited, nothing ours and the retiring ontinues sine theinstrutions that were fethed after the branh are in the orret path.If the branh is a short branh, no predition was made and both not-taken and takenpaths are ontiguously present into the reorder bu�er. When the branh reahes the topof the reorder bu�er, and is ready to ommit, the ondition is known and the deision ofwhih path is orret an be taken at this time.If the branh is taken, the instrutions that follow the branh into the reorder bu�ermust be aneled until the �rst instrution of the taken path reahes the top of the reorderbu�er. The mapping table id, is used to detet the end of the not-taken path.When a di�erent tag is found, that indiates that the beginning of the taken path wasreahed. If there were nested short branhes, the same proedure applies for the renaming,detetion, ommit and squash of instrution from the orret and wrong paths.By heking the tag of an instrution it is possible to keep trak of what mapping tablewas used and easily keep a dynami hierarhy assoiating paths to branhes and vie-versa.7.2 Final ConsiderationsOne more, DCE has been thought as a simple form of multipath. We strongly believethat DCE will provide great results. Our primary goal is to address mispreditions on shortbranhes, sine those an be exeuted eagerly without putting exessive pressure on thefeth unit nor on the exeution ore.Indeed, a more omplex renaming and a reovery sheme to handle data mispreditionis required. On the other hand, the ost of the multiple tables for renaming and the datapredition tables will be partially absorbed by reduing the size of the branh tables sineonly far branhes need to be memorized.An open question is to understand exatly how the arhiteture an interat with theompiler. We know that the ompiler an optimize the soure ode in order to redue thenumber of branhes, invert the diretion or even the outome of most of the branhes byapplying optimization tehniques. However, we know that mispreditions still our evenfor the most optimized odes.A omparison against other shemes is neessary. It is important to show that DCE is rel-atively simple when ompared with other alternatives suh as trae ahe [ROT96, RAM00℄,trae proessors [SMI97℄, dynami prediation [KLA98b℄ and other multiple branh predi-tor tehniques [MIC99, YEH93b, RAK00℄ as well as other multipath arhitetures [SKA99,?, KLA98a℄.



54 8. Appendix A8. Appendix ATable 8.1: Branh Pro�le for a 4 Instrutions Distane (16 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.539 0.768 0.809 0.568 0.774 0.750 0.905 0.849 0.671BW 0.461 0.232 0.191 0.432 0.226 0.250 0.095 0.151 0.329IN 0.419 0.170 0.167 0.104 0.149 0.392 0.165 0.140 0.215OUT 0.581 0.830 0.833 0.896 0.851 0.608 0.835 0.860 0.785Taken 0.680 0.570 0.607 0.765 0.579 0.679 0.591 0.593 0.655NOT Taken 0.320 0.430 0.393 0.235 0.421 0.321 0.409 0.407 0.345FW IN Taken 0.280 0.095 0.111 0.063 0.105 0.214 0.116 0.094 0.137FW IN NOT Taken 0.139 0.055 0.054 0.018 0.033 0.107 0.050 0.043 0.066BW IN Taken 0.000 0.011 0.002 0.014 0.005 0.071 0.000 0.003 0.007BW IN NOT Taken 0.000 0.009 0.001 0.009 0.006 0.000 0.000 0.001 0.005FW OUT Taken 0.120 0.297 0.357 0.315 0.310 0.215 0.409 0.355 0.272FW OUT NOT Taken 0.000 0.321 0.287 0.172 0.326 0.214 0.331 0.358 0.195BW OUT Taken 0.280 0.167 0.137 0.372 0.159 0.179 0.066 0.141 0.239BW OUT NOT Taken 0.181 0.046 0.051 0.036 0.055 0.000 0.029 0.006 0.079Table 8.2: Mispredition Pro�le for a 4 Instrutions Distane (16 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.743 0.763 0.736 0.856 0.735 1.000 0.000 0.708 0.738BW 0.257 0.237 0.264 0.145 0.265 0.000 0.000 0.292 0.262IN 0.743 0.178 0.149 0.230 0.086 0.996 0.000 0.168 0.309OUT 0.257 0.822 0.851 0.771 0.914 0.004 0.000 0.837 0.692Taken 0.427 0.542 0.455 0.444 0.518 1.000 0.000 0.510 0.483NOT Taken 0.573 0.458 0.545 0.556 0.482 0.000 0.000 0.490 0.517FW IN Taken 0.316 0.085 0.074 0.068 0.040 0.996 0.000 0.089 0.141FW IN NOT Taken 0.427 0.057 0.070 0.067 0.033 0.000 0.000 0.052 0.151BW IN Taken 0.000 0.016 0.002 0.034 0.004 0.000 0.000 0.004 0.005BW IN NOT Taken 0.000 0.021 0.003 0.060 0.010 0.000 0.000 0.022 0.011FW OUT Taken 0.000 0.347 0.291 0.330 0.390 0.004 0.000 0.307 0.236FW OUT NOT Taken 0.000 0.274 0.300 0.389 0.273 0.000 0.000 0.265 0.210BW OUT Taken 0.111 0.095 0.087 0.013 0.083 0.000 0.000 0.110 0.101BW OUT NOT Taken 0.146 0.107 0.172 0.039 0.167 0.000 0.000 0.156 0.145Table 8.3: Branh Pro�le for a 8 Instrutions Distane (32 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.539 0.768 0.809 0.568 0.774 0.750 0.905 0.849 0.671BW 0.461 0.232 0.191 0.432 0.226 0.250 0.095 0.151 0.329IN 0.459 0.311 0.315 0.121 0.283 0.570 0.322 0.357 0.301OUT 0.541 0.689 0.685 0.879 0.717 0.430 0.678 0.643 0.699Taken 0.680 0.570 0.607 0.765 0.579 0.679 0.591 0.593 0.655NOT Taken 0.320 0.430 0.393 0.235 0.421 0.321 0.409 0.407 0.345FW IN Taken 0.320 0.155 0.175 0.063 0.136 0.285 0.157 0.250 0.178FW IN NOT Taken 0.139 0.112 0.101 0.021 0.085 0.214 0.165 0.092 0.093BW IN Taken 0.000 0.026 0.027 0.014 0.026 0.071 0.000 0.012 0.017BW IN NOT Taken 0.000 0.018 0.011 0.023 0.035 0.000 0.000 0.003 0.013FW OUT Taken 0.080 0.237 0.293 0.315 0.278 0.143 0.368 0.199 0.231FW OUT NOT Taken 0.000 0.263 0.240 0.169 0.275 0.108 0.215 0.309 0.168BW OUT Taken 0.280 0.152 0.112 0.372 0.138 0.179 0.066 0.133 0.229BW OUT NOT Taken 0.181 0.036 0.040 0.022 0.026 0.000 0.029 0.003 0.070



55Table 8.4: Mispredition Pro�le for a 8 Instrutions Distane (32 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.763 0.759 0.735 0.847 0.767 1.000 0.000 0.733 0.747BW 0.237 0.241 0.265 0.153 0.232 0.000 0.000 0.271 0.254IN 0.763 0.351 0.293 0.228 0.256 0.996 0.000 0.495 0.475OUT 0.237 0.649 0.707 0.772 0.744 0.004 0.000 0.505 0.525Taken 0.415 0.537 0.453 0.442 0.498 1.000 0.000 0.520 0.481NOT Taken 0.585 0.463 0.547 0.558 0.502 0.000 0.000 0.484 0.520FW IN Taken 0.322 0.156 0.123 0.070 0.038 0.996 0.000 0.247 0.212FW IN NOT Taken 0.441 0.115 0.111 0.066 0.032 0.000 0.000 0.116 0.196BW IN Taken 0.000 0.033 0.018 0.031 0.060 0.000 0.000 0.034 0.021BW IN NOT Taken 0.000 0.048 0.042 0.063 0.125 0.000 0.000 0.098 0.047FW OUT Taken 0.000 0.272 0.246 0.325 0.369 0.004 0.000 0.200 0.179FW OUT NOT Taken 0.000 0.215 0.256 0.387 0.329 0.000 0.000 0.171 0.161BW OUT Taken 0.093 0.075 0.067 0.017 0.031 0.000 0.000 0.040 0.069BW OUT NOT Taken 0.145 0.086 0.138 0.042 0.015 0.000 0.000 0.098 0.117Table 8.5: Branh Pro�le for a 16 Instrutions Distane (64 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.539 0.768 0.809 0.568 0.774 0.750 0.905 0.849 0.671BW 0.461 0.232 0.191 0.432 0.226 0.250 0.095 0.151 0.329IN 0.920 0.477 0.474 0.387 0.540 0.642 0.397 0.560 0.565OUT 0.080 0.523 0.526 0.613 0.460 0.358 0.603 0.440 0.435Taken 0.680 0.570 0.607 0.765 0.579 0.679 0.591 0.593 0.655NOT Taken 0.320 0.430 0.393 0.235 0.421 0.321 0.409 0.407 0.345FW IN Taken 0.320 0.228 0.242 0.231 0.223 0.357 0.227 0.296 0.255FW IN NOT Taken 0.139 0.169 0.164 0.119 0.194 0.214 0.165 0.208 0.148BW IN Taken 0.280 0.052 0.047 0.014 0.065 0.071 0.000 0.050 0.098BW IN NOT Taken 0.181 0.028 0.022 0.024 0.058 0.000 0.004 0.005 0.064FW OUT Taken 0.080 0.164 0.226 0.148 0.192 0.072 0.298 0.152 0.154FW OUT NOT Taken 0.000 0.206 0.178 0.070 0.165 0.107 0.215 0.193 0.114BW OUT Taken 0.000 0.126 0.093 0.372 0.100 0.178 0.066 0.094 0.148BW OUT NOT Taken 0.000 0.026 0.030 0.022 0.003 0.000 0.025 0.001 0.020Table 8.6: Mispredition Pro�le for a 16 Instrutions Distane (64 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.743 0.745 0.735 0.834 0.779 1.000 0.000 0.725 0.737BW 0.257 0.256 0.265 0.166 0.221 0.000 0.000 0.275 0.263IN 1.000 0.507 0.498 0.416 0.503 0.992 0.000 0.686 0.673OUT 0.000 0.494 0.502 0.584 0.497 0.008 0.000 0.319 0.329Taken 0.389 0.528 0.451 0.428 0.524 0.992 0.000 0.505 0.468NOT Taken 0.611 0.472 0.549 0.571 0.476 0.008 0.000 0.499 0.533FW IN Taken 0.307 0.218 0.203 0.163 0.187 0.984 0.000 0.281 0.252FW IN NOT Taken 0.436 0.163 0.190 0.162 0.111 0.008 0.000 0.155 0.236BW IN Taken 0.081 0.043 0.033 0.029 0.096 0.000 0.000 0.045 0.051BW IN NOT Taken 0.176 0.082 0.072 0.061 0.109 0.000 0.000 0.200 0.133FW OUT Taken 0.000 0.200 0.168 0.220 0.230 0.008 0.000 0.154 0.130FW OUT NOT Taken 0.000 0.164 0.175 0.288 0.251 0.000 0.000 0.135 0.118BW OUT Taken 0.000 0.067 0.047 0.016 0.010 0.000 0.000 0.022 0.034BW OUT NOT Taken 0.000 0.063 0.112 0.060 0.006 0.000 0.000 0.008 0.046Table 8.7: Branh Pro�le for a 32 Instrutions Distane (128 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.539 0.768 0.809 0.568 0.774 0.750 0.905 0.849 0.671BW 0.461 0.232 0.191 0.432 0.226 0.250 0.095 0.151 0.329IN 0.920 0.647 0.633 0.559 0.752 0.679 0.508 0.756 0.690OUT 0.080 0.353 0.367 0.441 0.248 0.321 0.492 0.244 0.310Taken 0.680 0.570 0.607 0.765 0.579 0.679 0.591 0.593 0.655NOT Taken 0.320 0.430 0.393 0.235 0.421 0.321 0.409 0.407 0.345FW IN Taken 0.320 0.281 0.317 0.288 0.264 0.357 0.293 0.361 0.302FW IN NOT Taken 0.139 0.233 0.229 0.173 0.338 0.214 0.207 0.339 0.194BW IN Taken 0.280 0.091 0.060 0.072 0.091 0.107 0.004 0.050 0.126BW IN NOT Taken 0.181 0.042 0.026 0.025 0.059 0.000 0.004 0.006 0.069FW OUT Taken 0.080 0.111 0.150 0.091 0.151 0.072 0.231 0.087 0.108FW OUT NOT Taken 0.000 0.142 0.113 0.016 0.021 0.107 0.174 0.062 0.068BW OUT Taken 0.000 0.087 0.079 0.314 0.073 0.143 0.062 0.094 0.120BW OUT NOT Taken 0.000 0.013 0.025 0.020 0.003 0.000 0.025 0.001 0.015
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Table 8.8: Mispredition Pro�le for a 32 Instrutions Distane (128 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.738 0.745 0.735 0.837 0.787 1.000 0.000 0.737 0.739BW 0.263 0.254 0.264 0.163 0.213 0.000 0.000 0.263 0.261IN 1.000 0.662 0.693 0.814 0.871 0.996 0.000 0.820 0.794OUT 0.000 0.338 0.307 0.186 0.130 0.004 0.000 0.180 0.206Taken 0.374 0.530 0.449 0.427 0.511 0.996 0.000 0.472 0.456NOT Taken 0.626 0.471 0.550 0.573 0.489 0.004 0.000 0.528 0.544FW IN Taken 0.305 0.275 0.284 0.347 0.361 0.992 0.000 0.329 0.298FW IN NOT Taken 0.433 0.215 0.278 0.375 0.310 0.004 0.000 0.255 0.295BW IN Taken 0.070 0.062 0.042 0.029 0.088 0.000 0.000 0.047 0.055BW IN NOT Taken 0.193 0.110 0.089 0.063 0.111 0.000 0.000 0.193 0.146FW OUT Taken 0.000 0.146 0.087 0.039 0.050 0.004 0.000 0.080 0.078FW OUT NOT Taken 0.000 0.109 0.087 0.076 0.065 0.000 0.000 0.073 0.067BW OUT Taken 0.000 0.047 0.038 0.011 0.011 0.000 0.000 0.019 0.026BW OUT NOT Taken 0.000 0.036 0.096 0.059 0.003 0.000 0.000 0.007 0.035

Table 8.9: Branh Pro�le for a 64 Instrutions Distane (512 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.539 0.768 0.809 0.568 0.774 0.750 0.905 0.849 0.671BW 0.461 0.232 0.191 0.432 0.226 0.250 0.095 0.151 0.329IN 0.960 0.760 0.765 0.940 0.862 0.786 0.537 0.825 0.856OUT 0.040 0.240 0.235 0.060 0.138 0.214 0.463 0.175 0.144Taken 0.680 0.570 0.607 0.765 0.579 0.679 0.591 0.593 0.655NOT Taken 0.320 0.430 0.393 0.235 0.421 0.321 0.409 0.407 0.345FW IN Taken 0.360 0.320 0.361 0.379 0.302 0.358 0.310 0.390 0.355FW IN NOT Taken 0.139 0.285 0.270 0.188 0.356 0.321 0.219 0.379 0.220BW IN Taken 0.280 0.107 0.095 0.333 0.142 0.107 0.004 0.050 0.204BW IN NOT Taken 0.181 0.048 0.039 0.041 0.062 0.000 0.004 0.006 0.077FW OUT Taken 0.040 0.072 0.107 0.000 0.113 0.071 0.215 0.058 0.055FW OUT NOT Taken 0.000 0.090 0.072 0.002 0.003 0.000 0.161 0.022 0.041BW OUT Taken 0.000 0.071 0.044 0.053 0.022 0.142 0.062 0.094 0.042BW OUT NOT Taken 0.000 0.006 0.013 0.005 0.000 0.000 0.025 0.001 0.006
Table 8.10: Mispredition Pro�le for a 64 Instrutions Distane (512 bytes)Benhmark Compress G Go Ijpeg Li M88ksim Perl Vortex AvgFW 0.734 0.743 0.736 0.841 0.807 1.000 0.000 0.758 0.743BW 0.266 0.257 0.264 0.159 0.193 0.000 0.000 0.245 0.258IN 1.000 0.794 0.838 0.973 0.996 1.000 0.000 0.910 0.886OUT 0.000 0.206 0.162 0.027 0.004 0.000 0.000 0.089 0.114Taken 0.374 0.530 0.448 0.432 0.525 0.992 0.000 0.490 0.460NOT Taken 0.626 0.470 0.552 0.568 0.475 0.008 0.000 0.510 0.540FW IN Taken 0.303 0.329 0.317 0.392 0.437 0.992 0.000 0.387 0.334FW IN NOT Taken 0.431 0.257 0.320 0.449 0.365 0.008 0.000 0.304 0.328BW IN Taken 0.071 0.082 0.060 0.029 0.085 0.000 0.000 0.045 0.065BW IN NOT Taken 0.195 0.126 0.140 0.103 0.107 0.000 0.000 0.178 0.160FW OUT Taken 0.000 0.092 0.052 0.000 0.001 0.000 0.000 0.040 0.046FW OUT NOT Taken 0.000 0.067 0.046 0.000 0.003 0.000 0.000 0.028 0.035BW OUT Taken 0.000 0.027 0.018 0.010 0.000 0.000 0.000 0.018 0.016BW OUT NOT Taken 0.000 0.020 0.046 0.016 0.000 0.000 0.000 0.003 0.017
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Compress - Branches and Mispredictions by Types

F/B - Forward/Backward; I/O - In/Out; T/NT - Taken/Not Taken

Figure 9.1: Short branhes and Mispreditions - Compress
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Gcc - Branches and Mispredictions by Types

F/B - Forward/Backward; I/O - In/Out; T/NT - Taken/Not Taken

Figure 9.2: Short branhes and Mispreditions - G
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Go - Branches and Mispredictions by Types

F/B - Forward/Backward; I/O - In/Out; T/NT - Taken/Not Taken

Figure 9.3: Short branhes and Mispreditions - Go
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Ijpeg - Branches and Mispredictions by Types

F/B - Forward/Backward; I/O - In/Out; T/NT - Taken/Not Taken

Figure 9.4: Short branhes and Mispreditions - Ijpeg
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Li - Branches and Mispredictions by Types

F/B - Forward/Backward; I/O - In/Out; T/NT - Taken/Not Taken

Figure 9.5: Short branhes and Mispreditions - Li
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Figure 9.6: Short branhes and Mispreditions - M88ksim
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No misprediction reported for direct branchesFigure 9.7: Short branhes and Mispreditions - Perl

FIT

FINT

FOT

FONT

BOT

4 Instructions

16 bytes

FIT
FINT

BIT

FONT

BOT

8 instructions

32 bytes

FIT

FINT

BIT

FOT
FONT

BOT

16 instructions

64 bytes

FIT

FINT

BIT FOT

FONT

BOT

32 instructions

128 bytes

FIT

FINT

BIT
FOT

BOT

64 instructions 

256 bytes

FIT

FINT

FOT

FONT

BOT

BONT

FIT
FINT

BINT

FOT

FONT

BOT

BONT

FITFINT

BIT

BINT

FOT

FONT

FIT

FINT

BIT

BINT
FOT

FONT

FIT

FINT

BIT BINT

FOT
FONT

Vortex - Branches and Mispredictions by Types

F/B - Forward/Backward; I/O - In/Out; T/NT - Taken/Not Taken

Figure 9.8: Short branhes and Mispreditions - Vortex
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