
Avoiding Routing Instability during Graceful
Shutdown of OSPF

Aman Shaikhy

Rohit Dubez

Anujan Varmay

UCSC�CRL������

December ��� ����

y Computer Engineering Department
University of California� Santa Cruz

Santa Cruz� CA �����

z Xebeo Communications� Inc�
One Cragwood Rd� Suite ���
South Plain	eld� NJ �
���

abstract

Many recent router architectures decouple the routing engine from the forwarding engine�
so that packet forwarding can continue even when the routing software is not active� This
implies that one can avoid route �aps that occur when the routing process goes down
provided the forwarding engine remains active during that time period� Unfortunately�
the current de	nitions of routing protocols like BGP� OSPF and ISIS do not support this
behavior� In this paper� we propose means of extending OSPF by adding a new capability
called IBB �I�ll Be Back� Capability to it� so that packet forwarding can continue for a certain
time period when the OSPF process is down� IBB Capability can be used for avoiding route
�aps that occur when the OSPF process is brought down to facilitate protocol software
upgrade� operating system upgrade� router ID change� and AS and interface renumbering�
We identify the challenges� one of which is the inability of the inactive router to adapt to
routing changes� in making OSPF IBB Capable and propose solutions� We then describe
a prototype implementation of IBB Capability we have developed using GateD� Using the
prototype in an experimental setup� we demonstrate that the overhead of IBB Capability is
modest compared to the bene	t it o�ers and has good scaling behavior in terms of network
that the overhead of IBB Capability is modest compared to the bene	t it o�ers and has
good scaling behavior in terms of network size�

Keywords� Routing protocols� Routing stability� OSPF� IBB Capability

�� Introduction �

� Introduction

While data networks have been increasing in size and complexity over the last few years� little
attention has been paid to mechanisms that could ease software maintenance on the switches and
routers that make up these networks� Several cases of serious network outages have been reported
in recent years� some of which lasted several days� Two of these outages � AT�T �April ����� and
MCI �August ����� � are known to have been triggered due to software upgrades on the routers
in the network ��� and in at least one of them a version of OSPF was being used as the routing
protocol to distribute the network topology information� With the society�s increasing reliance on
data networks� the need to make software maintenance of the routers less disruptive is increasingly
being felt�

In this paper we study approaches for preventing routing instabilities when the routing protocol
software in a router is made temporarily inactive� for example� to perform a software upgrade� We
focus on routers in which the routing engine �software� is decoupled from the forwarding engine
�hardware�� Most of the currentgeneration core routers belong to this category� In these systems�
there can be situations when the router�s forwarding engine is active but its routing engine is down�
In these situations� the router can continue forwarding packets even if it cannot participate in the
routing protocol�s�� The current de	nitions of routing protocols like BGP ����� OSPF ��� �� and ISIS
��� do not support such behavior� These protocols implicitly assume that when the routing process
of a router goes down� the router is incapable of forwarding packets and therefore� other routers
start routing packets around it� This leads to massive route �apping and instability� especially if the
routing process goes down for a short period� This situation arises� for example� when the routing
process is brought down for upgrades to the routing software or the operating system� for changes to
the router ID or the AS �Autonomous System� number� or for interface renumbering� Route �apping
can be avoided if the routing protocol can respond to this special case by letting the a�ected router
continue forwarding packets� This requires extensions to the routing protocols to accommodate such
behavior�

In this paper� we focus on the OSPF routing protocol� We propose a way of extending OSPF by
adding a new capability called IBB �I�ll Be Back� to the protocol� This capability enables a router
undergoing software maintenance to forward packets for a certain period of time even if its OSPF
process is down� We distinguish between two cases in which the OSPF process becomes inactive �
graceful shutdown and process crash� IBB applies only to the 	rst case where the OSPF process
is brought down in a graceful fashion for a certain period of time� Before going down� the OSPF
process informs other routers that it is going down but its forwarding engine is functioning so that
the other routers can continue using it for forwarding packets� This avoids route �aps and instability
that would have followed had the OSPF process not informed its neighboring routers of its changed
state�

Ward and Scudder coined the term IBB while proposing a way of extending BGP to avoid route
�aps when the BGP process is brought down ����� Since BGP relies on underlying Interior Gateway
Protocols �IGPs� like OSPF and ISIS to resolve its nexthops� a similar capability must be built
into the IGPs� The IBB extension to OSPF allows us to achieve precisely this and serves as a base
for adding a similar capability to BGP as proposed by �����

Zinin� et al� proposed ways of extending OSPF so that the OSPF process in a router can come
up without causing route �aps ���� ���� Their scheme avoids route �aps only if other routers have
not started routing data tra�c around the router coming up� This means that the OSPF process in
the a�ected router must come up before other routers detect that it was down� Even if this could be
assured� it is di�cult to avoid route loops and black holes that can occur due to topological changes
while the OSPF process in the a�ected router was down� In comparison� our IBB scheme provides
an elegant way of avoiding routing loops and black holes under similar circumstances� Moreover�
we demonstrate the e�ectiveness of our scheme with a prototype implementation and evaluate its
overhead� To our knowledge� this is the 	rst time a comprehensive solution has been proposed�
implemented and analyzed for avoiding route �aps and instability when the OSPF process in a
router is brought down gracefully�

�� Overview of OSPF �

The paper is organized as follows� In Section �� we provide a brief overview of the OSPF routing
protocol� In Section �� we describe the IBB extensions that we propose to add to OSPF� In the next
section� we discuss details of the prototype implementation that we have developed using the GateD
OSPF implementation� In Section �� we present a detailed account of the experiments we performed
to characterize the overhead of IBB extensions� In particular� we discuss the experimentation
methodology and results in detail� Finally� in Section �� we present our conclusions and provide
directions for future work�

� Overview of OSPF

This section provides a brief overview of OSPF� For more details� we refer the reader to ��� �� ����
OSPF is a widely used intraAS routing protocol� It is a linkstate routing protocol which means
that every router running OSPF acquires the entire view of the AS topology� Every router then runs
Dijkstra�s singlesource shortest path algorithm to determine the shortest route to every destination
in the AS� Each router describes a part of the topology in one or more Link State Advertisements
�LSAs�� These LSAs are then �ooded reliably throughout the AS� Thus� every router receives LSAs
from every other router in the AS� This collection of LSAs forms a linkstate database in a router�s
memory and allows it to create the topological view of the AS�

Every router describes links to all its neighbor routers in a Router �Type �� LSA� Two routers are
neighbor routers if they have interfaces to a common network �i�e� they have a linklevel connectivity��
Neighbor routers form an adjacency so that they can exchange routing information with each other�
OSPF allows a link between the neighbor routers to be used for forwarding only if these routers
have the same view of the topology� i�e�� the same linkstate database� This ensures that forwarding
data packets over the link does not create loops� Thus� two neighbor routers have to make sure that
their linkstate databases are in sync� and they do so by exchanging parts of linkstate database
when they establish an adjacency between them� The OSPF speci	cation ��� de	nes a number of
states for an adjacency and ranks them in an increasing order� These states form part of a 	nite
state neighbor machine which is executed �independently� at each router� The highest state of an
adjacency is called full which indicates that the linkstate database of the neighbor is in sync with
the router running the state machine� Once the adjacency with a neighbor becomes full� the router
can advertise a link to the neighbor in its Router LSA� Every router uses Hello protocol to monitor
the state of its adjacencies�

More than two routers �lets say n� can have interfaces on a LAN� Instead of forming n� adjacencies
between each pair of n routers on such a LAN� OSPF elects one of the routers as the Designated
Router �DR� of the network� Every router on the network establishes a full adjacency with the
DR� The DR plays a central role in ensuring that the linkstate databases of all the n routers are
synchronized� The DR also originates a Network �Type �� LSA which contains links to all its fully
adjacent neighbors on the network� Each router on the network includes a link to the network �DR�
in its Router LSA if it is fully adjacent to the DR� OSPF also elects one of the n routers as a Backup
DR �BDR� which takes over as DR if the DR fails�

Since LSAs are �ooded reliably� all the routers in the AS converge to the same linkstate database�
Each LSA �Router or Network� in the database represents a vertex and all its outgoing links in the
topology graph� Every router runs Dijkstra�s algorithm on this topology graph with itself as the
root to determine the shortest path to every destination �router and networks� in the AS�

OSPF allows hierarchical routing by splitting an AS into a number of areas� The Router and
Network LSAs are areaspeci	c in the sense that they are not �ooded beyond area boundaries�
Thus� they are said to have an arealevel �ooding scope� Every interface of a router belongs to
exactly one area� Routers that have interfaces in more than one area are called Border Routers
�BRs�� Every router originates one Router LSA for each area it is attached to� The Router LSA
for a particular area describes all the links the originating router has in that area� Border Routers
originate Summary �Type � and �� LSAs for describing destinations of one area to routers in another
area� These LSAs also have an arealevel �ooding scope like the Router and Network LSAs� OSPF
requires one of the areas �area �� to be designated as the Backbone area which plays a central role

�� I�ll Be Back �IBB� Extension to OSPF �

in keeping the areas connected and making sure that loops do not occur when the source and the
destination of a path are in di�erent areas�

OSPF allows routing information to be imported from other routing protocols like BGP and RIP�
The router which imports external routing information into OSPF is called an AS Border Router
�ASBR�� An ASBR originates External �Type �� LSAs to describe the external routing information�
The External LSAs are �ooded in the entire AS irrespective of area boundaries� and hence have an
ASlevel �ooding scope�

Every router periodically refreshes� i�e�� reoriginates each of the LSAs it had originated earlier
even if the content of the LSA has not changed� This makes OSPF robust against loss or corruption
of LSAs� Moreover� each LSA is aged while it resides in the linkstate database of a router� and is
�ushed out of the linkstate database when its age reaches MaxAge �� � hour� after the last refresh
����

��� Opaque LSAs

As we observed in the previous section� OSPF has a reliable �ooding mechanism which ensures
that LSAs are received by all the routers within the �ooding scope �area or AS� of the LSA� Opaque
LSAs enable the use of this reliable �ooding to disseminate applicationspeci	c information to all the
routers in the area or the AS� The Opaque LSA speci	cation ��� introduces three new types of LSAs
in addition to the 	ve types of OSPF LSAs described above� �i� Type � LSA which has a linklevel
�ooding scope and is �ooded only on the attached links� �ii� Type �� LSA which has an arealevel
�ooding scope like a Router LSA� and �iii� Type �� LSA which has an ASlevel �ooding scope like
an External LSA� The applicationspeci	c information is stored in the Opaque Information 	eld of
an Opaque LSA� We make use of the Opaque LSA mechanism to disseminate information related
to the IBB extension� as explained in Section ��

� I�ll Be Back �IBB� Extension to OSPF

In this section� we provide a detailed description of our scheme to introduce IBB capability in
OSPF� We discuss the routing database inconsistency problems arising from the addition of IBB
capability and propose our solution�

With IBB capability� when the OSPF process on a router R is about to be shut down gracefully�
it informs other routers by sending them a message� The message contains the time period during
which the OSPF process in R plans to remain inactive� This time period is called the IBB Timeout
interval� Other routers� upon receiving the message� infer that although R�s OSPF process is down�
its forwarding engine is still active� Therefore� they continue using R for forwarding data tra�c�
avoiding route �aps� If R�s OSPF process returns to operation within the IBB Timeout interval� IBB
capability avoids route �aps completely� On the other hand� if the process remains inactive after
the IBB Timeout period� other routers conclude that something is seriously wrong with R and start
routing data tra�c around R� IBB Timeout is a con	gurable parameter which allows the system
administrator to set it to any value based on his�her estimate of how long the OSPF process of R is
likely to remain inactive� The set of routers that need to be aware of the state of R�s OSPF process
forms the IBB Scope of R� If R is an AS Border Router� its IBB scope is the scope of the External
LSAs it originates� otherwise its IBB scope contains all the routers in its attached area�s��

We assume that all the routers within the IBB scope of a router R are IBB capable and agree
on the same IBB Timeout value� Otherwise� routing loops and�or black holes can occur� The
capability negotiation needed to reach agreement among the routers to support IBB can be done in
an outofband manner �for example� through con	guration��

��� Link�State Database Inconsistency Problem

As observed in Section �� OSPF requires all the routers to have the same image of the linkstate
database� If two routers do not calculate their routing tables from the same image� routing loops or

�� I�ll Be Back �IBB� Extension to OSPF �

black holes can result� When router R goes down� its routing table remains frozen until it is back
up� If a topological change occurs while the routing process in R is down� it will not be able to
update its forwarding database to respond to the change in topology� This implies that within the
IBB Timeout period� the forwarding table of R is based on the linkstate database image it had at
the time it went down� This can lead to routing loops or black holes� Figure ��� illustrates how a
topological change occurring while the routing process in R is inactive can lead to a routing loop�

R
2

B

3 6

A

B
2

6

R

A

�a� Topology when R goes down� �b� Topology at some time after R has gone down�

Figure ���� An example of routing loop being formed while R is down�

In the 	gure� A� B and R are routers� As can be seen from the link costs in Figure ����a�� R�s
shortest path to A goes via B� Assume that R goes down at this point� thereby freezing its database
image and forwarding table� After a while� the link between A and B goes down �Figure ����b���
Under normal circumstances� B could have started using R as the next hop for reaching A because
R would have started using the direct link between itself and A to reach A� Since R�s routing table
is frozen� however� a loop is formed if B tries to use R as the next hop for reaching A� In summary�
when the router R is in IBB shutdown state� other routers such as B cannot calculate their Shortest
Path Trees �SPT� as they do normally� router B needs to take into account R�s shortest path tree
at the time it was shut down� and make sure no loops or black holes are formed� In this paper� we
concentrate on loop formation only� We provide a detailed account of when and how loops can form
when R�s database is not in sync with other routers� and how these loops can be avoided�

Loop Formation

To simplify the problem� let us assume that R is the only router in IBB shutdown state� and that
all the other routers are using the same image of the database for calculating their Shortest Path
Trees �SPTs� and routing tables� R�s SPT and routing table are based on the database image it had
at the time it was shut down� Since Dijkstra�s algorithm makes sure that no loop gets formed when
all the routers compute their SPTs from the same image of the database� router R must be part of
any loop that gets formed� In fact� the key to the problem lies in the routers that are used by R as
next hops for reaching one or more destinations� Since R is down� it is unable to modify its routing
table and continues using the same next hops for the IBB Timeout period� This is the root cause of
the loop formation problem� To see when packets destined to a particular destination loop� let us
pick some arbitrary destination D in the network� We assume that D exists in R�s SPT and routing
table� If not� R will drop packets destined to D and there cannot be any loops� Let Y be one of the
next hops used by R at the time it went down for reaching D� During the IBB Timeout period of
R� Y calculates its SPT as and when required according to the OSPF speci	cation ���� D�s position
with respect to that of R in Y �s SPT gives rise to the following two cases�

Case �� D is not in the subtree rooted at R in Y �s SPT	
Figure ��� �a� and �b� illustrate the case� In this case� we do not have to worry about loops
since packets destined to D cannot loop� Why� Clearly� once the packets reach Y � they cannot
loop because of the way Dijkstra�s algorithm operates� Consider some other router S which
has R in its path to D �see Figure ��� �c��� The next node after R on the path from S to D
in the SPT is shown as X which may or may not be equal to Y � But in any case� the packets

From now on� when we state that a router is going down� we mean only its OSPF process is being shut down�
unless speci�ed otherwise�

The situation where R or D does not exist in Y �s SPT is covered by this case�

�� I�ll Be Back �IBB� Extension to OSPF �

Y

D

R

(c) S’s SPT(b) Y’s SPT(a) R’s SPT when it went down

A single directed edge

A directed path (one or more edges)

D R

S

X

Y

R

D

Figure ���� D is not in the subtree rooted at R in Y �s SPT�

destined to D will reach R without looping� R will forward them to Y instead of forwarding
them to X as S would have expected� and we know that once the packets have reached Y �
they will reach D without looping� Thus� packets destined to D cannot loop in this case�

Case �� D is in the subtree rooted at R in Y �s SPT	
This case arises because R�s SPT has been calculated from the database image which is not in
sync with that of other routers �including Y �� This case de	nitely leads to the formation of a
loop as can be seen from Figure ���� Therefore� each router that has R on its path to D needs
to calculate a new path to D that does not have R on the path� Those routers which do not
have R on their paths can continue using them�

A single directed edge

R

A directed path (one or more edges)

(b) Y’s SPT(a) R’s SPT when it went down Actual path a packet takes

Y

D

R

Y

D

Figure ���� D is in the subtree rooted at R in Y �s SPT�

To summarize� packets destined to D cannot loop in case � whereas they de	nitely loop in case ��
This loop can be avoided if all the routers calculate a path to D from a topology graph which does
not have node R in it� If all the routers �except R� perform this calculation� Dijkstra�s algorithm
makes sure that the packets destined to D cannot loop� Note that only those routers that have R
on their paths to D in their original SPT have to actually carry out this calculation� The rest of
the routers can continue using their original paths to D since the calculation will not change these
paths anyway�

We now discuss how we can avoid the loop in case �� To start with� assume Y knows that R is
using it as the next hop for reaching D at the time it went down �Section ��� describes how Y gets
this information�� Then Y can check D�s position relative to that of R every time it calculates its
SPT during the IBB Timeout period of R� If Y encounters case �� it does not have to do anything�
If it encounters case �� on the other hand� it needs to recalculate its path to D such that R no longer
remains on the path� In addition to that� it also needs to send a message to all the routers asking
them not to use R for reaching D �see Section ��� for the format of the message and other related
details�� If some other router has R on its path to D� it needs to recalculate its path upon receiving
the message just like Y did� The router does not have to do anything if it does not have R on its

�� I�ll Be Back �IBB� Extension to OSPF �

path to D� Essentially� we make Y �in charge� of ensuring that packets destined to D do not loop
because of R�s frozen routing table� Generally speaking� for every destination in R�s SPT� the next
hop used by R is made �in charge� of ensuring that packets destined to that destination do not
loop� by informing others not to use R for reaching that destination if required� Looking at this in
a di�erent way� we can say that each next hop of R needs to make sure that packets destined to any
of its descendents in R�s SPT do not loop�

So far we have seen how loops can get formed and how we can avoid them� It remains to be
proved that all occurrences of loops resulting from R�s outofsync database are covered by the
case � above� We now sketch a proof� Again� we concentrate on some arbitrary destination D in the
topology graph� Let Y be the next hop used by R for reaching D as we had in the discussion above�
Consider any arbitrary router S in the graph� We want to show that if packets sent by S towards
D loop� Y will detect this loop as case �� Remember that all the routers �this includes both S and
Y � other than R use the same image of the database for calculating their SPTs� Accordingly� let us
say� S calculates its SPT at some point of time� If the path to D does not contain R on it� Dijkstra�s
algorithm makes sure that packets forwarded to D by S do not loop� Therefore� let us assume that
S�s path to D does contain R on it and the next node after R on this path is X �see Figure �����
If S uses this path to reach D� packets will not loop till they reach R� Once the packets reach R�

Y

Actual path a packet takes

A single directed edge

A directed path (one or more edges)

D

S

R

X

Figure ���� Router S�s SPT� According to S� the next node after R on its path to D should
be X � But R uses Y as the next hop for the packets destined to D�

S would expect R to forward them to X � but since R has Y as the next hop for D in its routing
table� it would forward the packets to Y � Note that Y may or may not be equal to X � If it is equal
to X � packets reach D without looping� Therefore� let us assume that Y is not equal to X � Even in
this case� any loop that gets formed will de	nitely involve R and Y because R�s routing table is not
in sync with other routers� Y is the next hop in its routing table for reaching D� and all the other
routers use the same database image to calculate their SPTs� The loop may or may not involve S
and based on that we get the following two situations�

Y

S

D

R

(b) The loop does involve S(a) The loop does not involve S
A directed path (one or more edges)

Actual path a packet takes

R

D

Y

S

Figure ���� Situation where packets sent by S to D loop�

�� The loop does not involve S� This happens only if Y lies between S and R on the path from
S to D� Figure ��� �a� shows this case�

�� I�ll Be Back �IBB� Extension to OSPF

�� The loop involves S� This is possible only if S lies between Y and R on Y �s path to D�
Figure ��� �b� shows this case�

In either of the cases� Y will get D in the subtree rooted at R in its SPT since both Y and S

calculate their SPTs from the same image of the database� In other words� Y will encounter case �
in both the cases and hence will detect the loop� Thus� we have shown that for any general router
S� packets sent to some destination D will loop only if the next hop Y used by R encounters case �
as far as D is concerned�

Till now� we have assumed that R is the only router that is down and all the other routers have
the same image of the database� Let us relax this and allow more than one router� say n of them�
down at the same time� We denote these n routers by R�� R�� � � � � Rn� As in the single router case�
we can have the next hop used by a particular router Ri for reaching a particular destination D �in
charge� of making sure that using Ri to reach D does not create loops� If the router �in charge�
detects a loop �case � as far as D�s position relative to Ri is concerned�� it asks the other routers
not to use Ri for reaching D� Other routers can calculate a new path to D by removing the said Ri

from the path if it is there� Note that with n routers down� other routers can get messages asking
them not to use j �� � j � n� of these n routers for reaching D� In that case� these routers can
calculate a new path to D without the j forbidden Ri�s on it� We take a simpler approach than
this� When a router receives a message asking it not to use one or more Ri�s on its path to D� the
router tries to calculate a path to D that does not have any of the n routers� not just the forbidden
ones� In order to calculate this path� the router simply calculates a new SPT which does not have
any of the n down routers in it� The simplicity comes from the fact that the router can use the
same SPT �that is� the one without any of the n down routers in it� for 	nding paths to all those
destinations for which it needs to 	nd a path without some Ri�s on it� We earlier showed that the
algorithm avoids loop in the case when one router is down� It can be shown that the algorithm just
mentioned avoids loops even when n routers are down� Figure ��� shows the procedure each router
has to follow after calculating its SPT in order to avoid loops when one or more routers are down�
We follow a similar approach in tackling the black hole problem�

We now describe the details of communicating IBBrelated information between the routers so
as to implement the ideas described above� This communication is achieved by the use of Opaque
LSAs in OSPF� We now de	ne various Opaque LSAs used for this purpose� For brevity� we omit
the detailed message formats of these LSAs�

Path Info LSA

As we observed in the previous section� the next hop�s� used by router R is �in charge� of making
sure that using R to reach a particular destination D does not lead to loops� Thus� before going
down� R needs to inform the next hop router that it is using the router as the next hop for reaching
D� R does so by sending one or more Opaque LSAs ��� out on its attached links and networks� The
type of these LSAs is set to � which means that the LSAs have a linklevel �ooding scope� These
LSAs are called Path Info LSAs� and describes R�s OSPF routing table by listing each destination
and one or more next hops used by R for reaching that destination� Before sending Path Info LSAs
out� R stops accepting any new LSAs and freezes its routing table� Other routers �R�s neighbors�
hold onto Path Info LSAs for the IBB Timeout period speci	ed by R and use them in the procedure
described in Figure ����

Avoid Router LSA

When a router wants to inform others not to use R for reaching a particular destination D� it
does so by �ooding an Opaque LSA ��� into the associated area� The type of this LSA is set to ��
which means that the LSA has an arealevel �ooding scope� This LSA is called an Avoid Router
LSA� The LSA lists the router ID of R and a list of those destinations for which using R on the path
leads to a loop as discovered by the originating router� As we saw earlier� the originating router is
always one of the next hop routers used by R for reaching each of the destinations mentioned in the
LSA� It should also be noted that a router has to originate one Avoid Router LSA per down router

�� I�ll Be Back �IBB� Extension to OSPF �

�� For each node D in the SPT� the router needs to perform the following steps�

�a� Consider each of the equal cost paths the router has to reach D one by one� For each

path� perform the following steps�

i� If the path does not go through any of the Ris� skip the next step�

ii� The path does go through some Ris� For each such Ri� �cancel� this path if

either of the following holds true�

� Some router �this includes the local router also� has sent a message asking

others not to use Ri for getting to D �see Section 	�� for the format of the

message��

� The router checks for the next hops used by Ri for reaching D and at least

one of them turns out to be equal to the local router �this corresponds to

case
 in Section 	����

If the path got �canceled� due to the second condition above� �remember� Ri

and D� At the end� for all such �remembered� Ri and D� the router will have to

send a message asking others not to use Ri on their paths to D�

�b� If all the paths to D in the router�s SPT got �canceled� above� �mark� D� Marking

of D means that the router needs to �nd an alternate path to D that does not have

any of the n down routers on it �this is done in step ii below��

� If at least one such D got �marked� in the previous step� calculate a new SPT with all the

Ris �� � i � n� removed�

	� For each un�marked� destination� determine the next hop�s� from the �rst SPT �the one

with all Ris in it�� For each �marked� destinations� determine the next hop�s� from the

second SPT �the one with all Ris removed�� If a �marked� destination does not exist in

the second SPT� declare it as unreachable�

� For each �remembered� pair consisting of some Ri �� � i � n� and some D� the router

needs to announce to others not to use Ri for reaching D� If no other router has sent a

message to that e�ect so far� the local router should do so now�

Figure ���� Extended SPT calculation each router has to perform for down routers� We
assume that R�� R�� � � � � Rn denote the routers that are down� Furthermore� we also assume
that the IBB Timeout of each of them is yet to elapse�

if there are more than one routers about which it wants to inform others� Any other router� upon
receiving an Avoid Router LSA� takes its recent SPT and executes the procedure given in Figure ���
for the destinations mentioned in the LSA�

��� Shutdown Process

When a router R is about to be shut down in the IBB mode� it needs to inform all the routers
in its IBB Scope just before it goes down� It does so by �ooding an Opaque LSA� In particular�
a nonASBR originates a type �� Opaque LSA for all its attached areas� An ASBR� whose IBB
Scope is equivalent to the External LSAs� �ooding scope� originates a type �� Opaque LSA� This
LSA is called an IBB Cease LSA� and contains the IBB Timeout value� As mentioned earlier� IBB
Timeout value indicates the time period during which R�s forwarding engine is considered up even
if its OSPF process is down� After R originates an IBB Cease LSA� it originates one or more Path
Info LSAs as described in Section ����

When a router receives an IBB Cease LSA from R� it holds onto all the LSAs originated by R

for the IBB Timeout period of time� Thus� LSAs originated by R are not �ushed when their age
reaches MaxAge as is done normally in OSPF� Instead� they are deleted only when the age of the
IBB Cease LSA reaches IBB Timeout value� This also applies to the Path Info LSAs originated by
R as well as Avoid Router and DR Change LSAs �we describe DR Change LSAs next� related to
R� Moreover� the router includes R as a down router in the procedure given in Figure ���� If the

�� I�ll Be Back �IBB� Extension to OSPF �

router is fully adjacent to R at the time it receives the IBB Cease LSA from R� it needs to continue
including links to R in those selforiginated Router and Network LSAs that had links to R at the
time R went down� This makes sure that there are links leading to R in the linkstate database�
The router continues doing so till IBB Timeout occurs�

When R is attached to a LAN� the link to the network is represented as a link to the Designated
Router �DR��s IP address in the Router LSA of R ���� If DR on such a network changes� R normally
originates its Router LSA with all the links again� But if R is down� it cannot reoriginate its Router
LSA when DR on one of its attached network changes� Reorigination of this link needs to be taken
care by the newly elected DR� The new DR generates an Opaque LSA called a DR Change LSA
that describes R�s link to the network� A DR Change LSA is a type �� Opaque LSA� and contains
the Router ID of R as well as the IP addresses of the previous DR and the newly elected DR �i�e��
itself�� When other routers in the associated area receive the DR Change LSA� they replace the link
to the previous DR in R�s Router LSA with a link to the the new DR� If R itself is a DR or a BDR
on some LAN� other routers on the LAN elect a new DR or a BDR when they receive the IBB Cease
LSA from R� This is because of the central role played by DR and BDR in keeping the linkstate
database of all the routers on the network in sync� This reelection of DR can lead to some amount
of route �apping which unfortunately is hard to avoid�

��� Returning from IBB Shutdown

If router R that had sent an IBB Cease LSA returns back to operation before the IBB Timeout
occurs� the goal is to achieve minimal route �apping and disruption� If it comes back after the IBB
Timeout has occurred� it is treated as if it is coming back from a normal shutdown� R needs to
write the fact that it sent an IBB Cease LSA along with the IBB Timeout value to some form of
permanent storage before it goes down� This allows it to determine whether it is coming back up
within the IBB Timeout period� If R 	nds that it has come back after the period �and hence all the
routers consider it as dead at present�� it undergoes the normal OSPF procedure as speci	ed in ����
If it comes back up within IBB Timeout period� however� it originates an Opaque LSA of type ��
or �� to announce that it is operational again� This LSA is called an ICB Open LSA� The router ID
used by R in the IBB Cease LSA is listed in the Opaque Information 	eld of the ICB Open LSA�
This allows other routers to relate the new router ID of R with its old router ID in the case when
R was brought down to facilitate a change in its router ID� R originates any other type of LSAs
�including its Router LSA� only after it has originated the ICB Open LSA�

R originates an ICB Open LSA after all its �potentially fully adjacent neighbors� have become
fully adjacent� In other words� R does not originate an ICB Open LSA as soon as its adjacency with
one neighbor becomes full if possible� Instead� whenever the adjacency with a neighbor becomes
full� R checks if its adjacency with any other neighbor is in a state greater than �way or not� If
it 	nds no such neighbor� it originates an ICB Open LSA� On the other hand� if R 	nds that one
or more of its neighbors are in a state greater than �way� it waits for these neighbors to become
fully adjacent� Since R originates all its other LSAs including the Router LSA only after it has
originated the ICB Open LSA� waiting for all potential fully adjacent neighbors to actually become
fully adjacent allows R to describe most� if not all� links it had before going down in its new Route
LSA� This plays a key role in avoiding route �aps that can occur due to premature origination of
Router LSA containing only a handful of the links that R had before going down�

When a router receives the ICB Open LSA from R� it assumes that R�s linkstate database is in
sync and does not consider R as a down router in the procedure given in Figure ���� For this reason�
we do not allow R to originate the ICB Open LSA till it has become fully adjacent to at least one
neighbor� Even after receiving the ICB Open LSA from R� the router holds onto all the LSAs of R
for the IBB Timeout period� This allows R to gradually refresh its LSAs after it has come back and
avoids route �apping� An important implication is that the system administrator can set the IBB
Timeout period to a value that gives R enough time to reoriginate all its LSAs after it has come

Like full� ��way is one of the states of an adjacency ��	�

�� Implementation of IBB Extension ��

back up� An ICB Open LSA is �ushed out when the IBB Timeout occurs� Note that R will not
refresh the ICB Open LSA unlike the other LSAs it originates�

	 Implementation of IBB Extension

This section describes a prototype implementation of our IBB extension to OSPF� We used GateD
�Gate Daemon� ��� which is a popular� publicdomain routing software platform for implementing
the prototype� This section describes the prototype and throws light on some key implementation
issues� We also used the prototype to measure the runtime overhead of the IBB extension� presented
in Section ��

	�� Overview of GateD

GateD is a routing software platform that runs on the UNIX operating system and its variants�
We used version ����
 of GateD for the prototype implementation� GateD has implementations of
various routing protocols� The version we used has implementations of BGP� EGP� ISIS� RIP and
OSPF�

GateD runs as a single UNIX process� The main abstraction implemented in GateD is that of
a task� A task is a thread of execution and di�erent tasks can be scheduled independently of one
another� Di�erent protocols make use of this abstraction in di�erent ways� For example� the entire
OSPF protocol is implemented as a single task whereas BGP uses one task per peer� Each task
normally has a socket associated with it� Tasks perform computation when some activity like packet
arrival occurs on the associated socket� Tasks can also perform computations by scheduling jobs�
For example� OSPF schedules its SPT calculation as a job� GateD also provides an abstraction
of timers which are normally used by protocols for variety of purposes� For instance� OSPF has a
HelloTimer associated with each of its interfaces and sends a Hello packet out on the interface when
the timer expires� Timers are also used for scheduling jobs� For example� OSPF uses a timer to
schedules a job that carries out the SPT calculation�

GateD maintains routes to various destinations in its RIB �Routing Information Base�� These
routes are installed in the RIB by various routing protocols� GateD also assigns a preference to each
route and in case of a tie� the route with the least preference is made the �active� route in the GateD
RIB� Changes in the RIB are communicated to the routing protocols using the �ash handler routine
registered by each protocol� This allows protocols to take appropriate actions when the GateD RIB
changes� For example� if the router is an ASBR� OSPF may have to originate an External LSA
if it learns of a new route from the RIB� It is important to note here that the FIB �Forwarding
Information Base� which is used by the operating system kernel for forwarding packets is di�erent
from GateD�s RIB� GateD is allowed to install routes into the FIB since it has root privileges� GateD
can also learn routes from the FIB and install them in its RIB�

	�� Implementation Details

This section describes the implementation details of the IBB extension to GateD� We assume
that R is the router that has gone down by sending an IBB Cease LSA for the purpose of the
discussion in this section� The prototype increases the binary size of GateD by about � �

In the prototype� a router stores information about each down router in an ibb
info block� So�
if R is the down router� this block stores the router ID of R� the IBB Timeout value and other
bookkeeping information� The block remains active until IBB Timeout occurs even if an ICB Open
LSA is received from R before the IBB Timeout period� The lifetime of an ibbinfo block is divided
into two parts� post
ibb
cease
mode and post
icb
open
mode� The block is in postibbceasemode
when it is created upon receiving an IBB Cease LSA from R and stays there till the router receives
an ICB Open LSA from R at which point the block transitions to posticbopenmode� It is obvious

GateD consortium has now become a company called NextHop Technologies and is the commercial provider of
GateD�

�� Implementation of IBB Extension ��

that the ibbinfo block of R can spend its entire lifetime in postibbceasemode if no ICB Open
LSA is received from R within the IBB Timeout period�

While the ibbinfo block of R is in postibbceasemode� the router ignores all nonIBB LSAs �e�g��
Router LSA� originated by R� This allows the router to clearly distinguish between the state of R
before it went down� the state of R while it is down� and the state after R comes back� Unfortunately�
this imposes some ordering requirements across di�erent types of LSAs related to R as described in
Section ���� Once the ibbinfo block transitions to posticbopenmode� the router starts accepting
nonIBB LSAs originated by R which allows R to gradually refresh its LSAs� The router does not
accept any IBB related LSAs other than the ICB Open LSA once the block transitions to posticb
openmode� During the entire lifetime of the ibbinfo block of R� LSAs originated by R are not
�ushed even if their age have reached MaxAge� This is essential to avoid route �aps as we have seen
in Sections ��� and ���� The ibbinfo block is deleted when the IBB Timeout occurs� Figure ���
summarizes the lifetime of the ibbinfo block related to R�

Create ibb−info block related to R

Ignore non−IBB LSAs originated by R if received

Include link to R in the Router and/or Network LSA if required

Accept and handle IBB related LSAs related to R if received

post−ibb−cease−mode

IBB Timeout

IBB Timeout

IBB Cease LSA of R with age=MaxAge received

ICB Open LSA received for the first time

IBB Cease LSA received for the first time

ICB Open LSA of R with age=MaxAge received

Include R as a down router in the SPT calculation

Delete ibb−info block related to R

Hold onto all LSAs originated by R

post−icb−open−mode

Accept ICB Open LSA if received

Dont include R as a down router in the SPT calculation

Hold onto all LSAs originated by R

Accept non−IBB LSAs originated by R if received

Ignore all IBB related LSAs other than ICB Open LSA related to R

Figure ���� The lifetime of an ibbinfo block related to R�

LSA Ordering

Under normal circumstances� OSPF is not sensitive to the order in which di�erent LSAs are
received ���� This is the reason why GateD does not care about the order in which LSAs are received
or sent� Unfortunately� this is not true with the IBB extension� Assume router R goes down after
originating an IBB Cease LSA� then comes back and originates an ICB Open LSA� If these LSAs are
delivered out of order to some router� the receiving router 	rst ignores the ICB Open LSA because
it does not know that R earlier sent an IBB Cease LSA� It subsequently receives the IBB Cease LSA
� considers R as down� and may never receive another ICB Open LSA� Thus� it is imperative that
the relative order of IBB Cease and ICB Open LSAs is preserved� Apart from this requirement of

�� Implementation of IBB Extension ��

Path Info LSA, DR Change LSA and Avoid Router LSA related to R

ICB Open LSA originated by R after it has come back up

‘ ‘After a while’’

Non−IBB LSAs originated by R before it goes down

IBB Cease LSA originated by R

Figure ���� The ordering that needs to be preserved amongst LSAs related to R in our
prototype�

preserving the order of an IBB Cease LSA and the corresponding ICB Open LSA� the prototype
also imposes some more ordering requirements� These requirements are summarized in Figure ����

The 	gure clearly shows that the ordering requirement is cyclic� It is important to mention here
that this ordering applies to LSAs related to R only� no ordering needs to be preserved between
LSAs related to di�erent routers� The prototype breaks the cycle shown in the 	gure by assigning
highest preference to the ICB Open LSA� In other words� the prototype sends out the LSAs in the
following order� ICB Open LSAs� nonIBB LSAs� IBB Cease LSAs� and other IBB related LSAs�
This automatically preserves the order in which LSAs related to R are originated while R is active�
A problem arises when some router has both the IBB Cease LSA of R generated before it went
down and the ICB Open LSA of R after it came up� The prototype will send out these two LSAs
outoforder which can lead to problems� We believe that chances of this event are rare since the
IBB Cease LSA and other IBB related LSAs related to R are deleted when an ICB Open LSA is
received�

The prototype imposes the above mentioned ordering by introducing priority levels amongst
LSAs that needs to be sent out� For example� ICB Open LSAs have the highest priority� the non
IBB LSAs are at the next priority level� and so on� The LSAs are then served in the strict priority
order� It is worth mentioning here that even with this prioritybased serving of LSAs� the LSAs can
arrive outoforder at a router due to losses at the link level� We believe that this can be avoided by
using sequence numbers in various LSAs related to R�

SPT Calculation

The prototype implements the procedure given in Figure ��� for avoiding loops when R is down�
As we mentioned earlier� OSPF allows hierarchical routing by splitting an AS into areas� OSPF
performs SPT calculation in three stages� In the 	rst stage it calculates all the intraarea routes
using Router and Network LSAs� in the second stage it calculates all the interarea routes using
Summary LSAs� and in the 	nal stage it calculates all the external routes using External LSAs ����
It turns out that we have to apply the procedure given in Figure ��� to each stage of SPT calculation�

In order to implement the procedure given in Figure ���� the prototype employs two passes of
Dijkstra�s algorithm� The 	rst pass is done normally� i�e�� it includes all the down routers in the
SPT calculation� The second pass� on the other hand� excludes all the down routers that are in
postibbceasemode while calculating the SPT� For every destination D� the prototype keeps track
of the down routers on each of the paths to D during the 	rst pass� At the end of the 	rst pass� the
prototype �cancels� one or more paths according to step ��a� of Figure ��� before proceeding with
the second pass� These two passes are employed in succession for each stage of the SPT calculation�
In other words� the prototype 	rst executes two passes for stage � �intraarea routes�� At the end
of stage �� it installs routes calculated according to the 	rst or the second pass for each destination
depending on whether the destination got �marked� according to step � of Figure ��� or not� The
prototype also keeps track of routes calculated in both the passes for every destination� It also keeps
track of the list of down routers along every path calculated in the 	rst pass for each destination�
This is required for later stages �interarea and external route calculation� since these stages build

	� Performance ��

upon the tree built in stage �� At present� the prototype implements the two passes only for intra
area stage� We believe that there should not be any fundamental di�culties in implementing the
same two pass procedure for interarea and external stages of the SPT calculation�

It is worth mentioning here that the two passes are invoked only if there is at least one down
router in postibbceasemode� When no such router exists� our prototype executes only one pass
with minimal overhead of the procedure� This ensures that the overhead of the procedure given in
Figure ��� is incurred only when it is actually required�

Future Enhancements

Our prototype does not currently support the entire IBB extension described in Section �� The
following are the features it currently does not support� which we plan to add in the future�

�� Change of router ID� Although one of the intentions of IBB extension is to facilitate a seamless
change of router ID� the prototype does not support it� We are currently working on the
prototype so that it can handle a change of router ID�

�� GateD withdraws the routes that it has installed in the kernel FIB when it goes down� Ideally�
this should be prevented� The prototype does not prevent GateD from withdrawing its routes
from the kernel FIB for two reasons� First� this requires interaction between OSPF and FIB
which is very much router architecture dependent� and hence is not a part of the IBB extension�
Second� the objective of the prototype is to see that OSPF running on other routers continue
using R in their routing table calculations as if it never went down� and not whether R�s FIB
is actually �usable� or not�

�� The procedure mentioned in Figure ��� is implemented only for the intraarea stage of SPT
calculation� We believe that the procedure can be implemented in a similar fashion for the
remaining stages of the SPT calculation�

�� The prototype allows only one down router at any given time� Extending the prototype to
allow more than one down router at a given time is part of ongoing work�

 Performance

This section describes the results of the experiments we performed to get an idea as to what the
overhead of the IBB extension is� First we will describe our experimental setup and then we will
present the results�

�� Experimental Setup

The experiments were carried out in a � router testbed� The testbed is shown in Figure ����
All the routers are PCs running Linux as their operating system� Router pc� has a ��� MHz Intel
PentiumII CPU with ��� MB of RAM whereas the other routers have ��� MHz AMDK�� CPU
with ��� MB of RAM each� Routers pc�� pc�� pc� and pc� run Gated as the routing software �IBB
extended or original� whereas pc� runs a modi	ed version of the OSPF implementation �ospfd�
from John Moy ����� We have extended ospfd so that it can act as a topology simulator as well
as a router� This allows us to make routers other than pc� believe as if there is a cloud of routers
and�or networks �behind� pc�� Note that all the routers in the testbed and the simulated topology
belong to the same area� namely area �� When ospfd on pc� comes up� it reads a con	g 	le which
speci	es the topology to be simulated and originates the appropriate LSAs� We do not change
the simulated topology once ospfd has started� but ospfd refreshes the simulated LSAs when their
age reach LSRefreshTime ��� minutes� as it does with its selforiginated LSAs ���� The age of the
simulated LSAs when they are originated for the 	rst time is selected randomly so that they are
refreshed by ospfd at di�erent times�

We characterize the overhead of IBB extensions in terms of two things� First� overhead per
SPT calculation because of the procedure given in Figure ���� In order to do this� we measure the
mean time it takes for GateD to compute its SPT with and without IBB extension under di�erent

	� Performance ��

pc3

pc5

20

Simulated point−to−point link

Simulated router

LAN

Simulated Topology
pc4

pc2
6

pc1

Figure ���� Experimental setup used for performance evaluation�

circumstances� Second� overall overhead of IBB extension� For this� we measure the total CPU time
used during the experiment by GateD with and without IBB extension� From here on� we refer to
the GateD with IBB capability as IBBGated and the original unmodi	ed GateD as OGateD� We
use the term GateD generically to refer to both� Both IBBGateD and OGateD are instrumented
to measure the time it takes for each SPT computation� As mentioned above� pc� refreshes the
simulated LSAs at random times which makes sure that Gated running on the other PCs receive
a number of refreshes during the course of an experiment� The number of such refreshes� though
random� depend on the number of simulated LSAs originated by pc�� It is worth mentioning here
that GateD schedules an SPT computation for every LSA it receives� hence the number of SPT
computations depends on the number of LSAs GateD receive during the course of the experiment�

To conduct our experiments� we perform the following sequence of events with IBBGateD as
well as OGateD using the same simulated topology� At time t � � minutes� we start ospfd on pc�
and GateD on pc� through pc�� At t � � minutes� �GateD on� pc� goes down for a while� With
OGated� pc� simply goes down� so its neighbors �pc�� pc� and pc�� drop their adjacencies with
pc�� With IBBGateD� on the other hand� pc� sends an IBB Cease LSA with IBB Timeout set to
�� minutes before going down �it also sends Path Info LSAs to its neighbors�� At t � � minutes�
a topology change happens in the testbed� Before the change� cost from pc� to the LAN�pc�� pc��
pc�� is � and the cost from pc� to the same LAN is ��� Cost of all the other links is �� This forces
pc� to use pc� as the next hop for reaching pc� and all the destinations in the simulated topology� At
t � � minutes� we change the cost of pc��s link to the LAN from �� to �� In the case of IBBGateD�
this forces pc� to generate Avoid Router LSAs for pc� and destinations in the simulated topology
which in turn forces both pc� and pc� to use a second pass for selecting the next hops for these
destinations� Thus� this change allows us to measure the overhead when a topology change happens
while a router is down� At t � ���� minutes� pc� comes back which is ��� minutes before the IBB
Timeout� Therefore� pc� originates an ICB Open LSA as mentioned in Section ���� At t � ��
minutes� the IBB Timeout happens and other PCs delete the ibbinfo block related to pc�� The
sequence terminates at t � �� minutes at which point GateD on pc� through pc� and ospfd on pc�
are terminated� Note that we give enough time for the routers to settle down with their adjacency
formation and routing tables before pc� goes down and after the IBB Timeout occurs� We use an
Expect �
� script which runs on pc� to carry out events in the sequence�

Our instrumentation of GateD code allows us to keep track of the time it takes GateD for each
SPT calculation� During the course of the sequence GateD performs a number of SPT calculations as
and when required� The instrumented GateD code logs time taken for each of these SPT calculations�
Apart from logging the time� GateD also logs enough information for each SPT calculation� so that
we can identify principal events that happened during the course of the sequence� For example�
for each SPT calculation� GateD logs the number of destinations for which it has to carry out the
second pass during that SPT calculation� This allows us to unambiguously determine which SPT
calculations happened after the topology change in the sequence� At the end of the sequence� GateD
also logs the total amount of CPU time it used during the course of the sequence which we use to
quantify the overall overhead of IBB extension as mentioned earlier�

For the simulated topology� we use a fully connected graph of n routers� In particular� each of
the n routers is connected by a pointtopoint link to every other router in the simulated topology�
The cost of each link is a randomly chosen integer between � and �� �inclusive�� Though this is
not a very realistic intraarea topology� it stresses the SPT calculation the most and hence helps us

	� Performance ��

measure the overhead in a worst case scenario� We present results for n in the range ��� ���
� upto
��� in the next section� For each simulated topology� we carry out the above mentioned sequence
for both IBBGateD and OGateD� In order to achieve statistical accuracy� we repeat the sequence
�� times for each instance of the simulated topology �i�e�� each value of n��

�� Results

Our 	rst set of results show the overhead that IBB extensions introduce to every SPT calculation�
The instrumented GateD code uses the Time Stamp Counter �TSC� ��� available on x��based PCs
to measure the time it spends in each SPT calculation� GateD reads the TSC before and after
each SPT calculation and uses the di�erence to calculate the SPT time� The TSC allows very
precise measurements of time� The only problem with TSC is that it is not process speci	c� so the
measurement can get skewed if the Linux scheduler intervenes and schedules another process while
SPT calculation is underway� We have seen skewed SPT calculation times in our measurements�
but the percentage of such skewed measurements is very small� Moreover� the sample variance of
mean SPT calculation time is � orders of magnitude smaller than the sample mean which validates
the accuracy of our measurements� Moreover� we have checked the sanity of our measurements by
comparing them with the SPT time values obtained with a function that reports CPU time used by
a process� albeit with much less precision than the TSC�

0

0.01

0.02

0.03

0.04

0.05

50 60 70 80 90 100

M
ea

n
S

P
T

 ti
m

e
(s

ec
on

ds
)

Number of nodes in the simulated topology (n)

Mean SPT calculation time (pc2)

pc4 not down, O-GateD
pc4 down, O-GateD

pc4 not down, IBB-GateD
pc4 down (post-ibb-cease-mode), IBB-GateD

pc4 down (post-ibb-cease-mode), topology change, IBB-GateD
pc4 down (post-icb-open-mode), IBB-GateD

0

0.01

0.02

0.03

0.04

0.05

50 60 70 80 90 100

M
ea

n
S

P
T

 ti
m

e
(s

ec
on

ds
)

Number of nodes in the simulated topology (n)

Mean SPT calculation time (pc5)

pc4 not down, O-GateD
pc4 down, O-GateD

pc4 not down, IBB-GateD
pc4 down (post-ibb-cease-mode), IBB-GateD

pc4 down (post-ibb-cease-mode), topology change, IBB-GateD
pc4 down (post-icb-open-mode), IBB-GateD

�a� pc� �b� pc�

Figure ���� Comparison of mean SPT calculation time under � di�erent cases�

Figure ��� shows the mean SPT time as measured on pc� and pc� for � di�erent cases� �i�
when pc� is up with OGateD� �ii� when pc� is down with OGateD� �iii� when pc� is up with
IBBGateD� �iv� when pc� is down �postibbceasemode� but no topology change has happened
with IBBGateD� �v� when pc� is down and the topology change has forced the other routers to
use second pass for almost all the destinations with IBBGateD� and �vi� when pc� has announced
it has come back but IBB Timeout is yet to happen �pc� would be in posticbopenmode at other
routers� with IBBGateD� Since cases �i� and �ii� represent the mean SPT time with OGateD� they
serve as the basepoints for comparison with mean SPT times obtained for IBBGateD� The mean
SPT time is computed from the appropriate SPT measurements in �� samples for OGateD and
IBBGateD� As can be seen from Figure ���� SPT computation incurs signi	cant overhead with IBB
extension when pc� is down �cases �iv� and �v��� Moreover� the overhead increases only slightly
after the topology change takes e�ect� This is because our prototype employs two passes even if
none of the destinations actually require the second pass� The slight increase after the topology

	� Performance ��

change stems from the fact that with the topology change� IBBGateD has to deal with the Avoid
Router LSA when it �cancel�s path calculated at the end of the 	rst pass for each destination in
the simulated topology� It is also worth noting here that in IBBGateD� SPT computation incurs
negligible overhead when no router is in postibbceasemode compared to OGateD �compare mean
SPT time in cases �iii� and �vi� with those of cases �i� and �ii��� Another surprising observation is
that mean SPT time lowers slightly when no router is down with IBBGateD �case �iii�� as compared
to the case when no router is down with OGateD �case �i��� We believe that this is a positive side
e�ect of the changes we had to make to the SPT computation part in GateD while developing the
prototype�

1.6

1.8

2

2.2

2.4

50 55 60 65 70 75 80 85 90 95 100

R
at

io

Number of nodes in the simulated topology (n)

Overhead of IBB extension to mean SPT Time

pc2
pc5

Figure ���� Overhead of IBB extension on mean SPT time versus the number of nodes �n�
in the simulated topology�

Figure ��� shows that IBB extension introduces the maximum overhead to SPT computation
after the topology change has happened while pc� is down� An interesting question to ask is how
this overhead varies as the size of the network increases� To answer this question� we compute the
ratio of mean SPT time in case �v� to that in case �ii�� Figure ��� shows how this ratio varies with
the number of nodes �n� in the simulated topology for both pc� and pc�� As we can see from the
	gure� the overhead ratio stays �at as the size of the network increases which clearly demonstrates
the scalability of the IBB extensions� The 	gure also shows that the ratio is roughly � which is
due to the two passes of the Dijkstra algorithm employed in the IBB extension when pc� is down�
We believe that this overhead incurred due to IBB extension is modest compared to the bene	ts
it o�ers� and it can be reduced further by employing an incremental SPT algorithm ��� ��� for the
second pass�

0

0.5

1

1.5

2

50 60 70 80 90 100

T
ot

al
 C

P
U

 ti
m

e
(s

ec
on

ds
)

Number of nodes in the simulated topology (n)

Total CPU time v/s number of nodes (pc2)

No IBB (mean)
IBB (mean)

No IBB (95% confidance interval for mean)
IBB (95% confidance interval for mean)

0

0.5

1

1.5

2

50 60 70 80 90 100

T
ot

al
 C

P
U

 ti
m

e
(s

ec
on

ds
)

Number of nodes in the simulated topology (n)

Total CPU time v/s number of nodes (pc5)

No IBB (mean)
IBB (mean)

No IBB (95% confidance interval for mean)
IBB (95% confidance interval for mean)

�a� pc� �b� pc�

Figure ���� Total CPU time used by IBBGateD and OGateD versus the total number of
nodes �n� in the simulated topology�

Having seen how much overhead IBB extension introduces to the SPT calculation� let us now
turn our attention to how much e�ect IBB extension has on the total CPU time used by GateD� As

� Conclusion �

we mentioned earlier� we log the total CPU time used by GateD at the end of every sequence when
GateD terminates� Since every sequence runs for a 	xed amount of time irrespective of the GateD
version and the simulated topology used� we believe that comparing the actual CPU time used by
GateD provides a good basis for evaluating IBB extension�s e�ect on the total CPU time� Figure ���
shows the mean value of �� samples of total CPU time for both IBBGateD and OGateD as the
value of n increases� It is important to mention here that though the total runtime of each sequence
is same� the CPU time used by GateD depends on a lot of external events� principal among them is
the number of SPT computations which in turn depends on how the simulated LSAs are refreshed
by pc�� Since this process is random� the total CPU time has more variation across samples than
the mean SPT time� Therefore� Figure ��� also shows �� con	dence interval for each data point�
As can be seen from the 	gure� for lower values of n� namely� �� and ��� the total CPU time used by
both versions of GateD is almost same� But as n increases� the total CPU time used by IBBGateD
starts increasing more rapidly than that for OGateD� The reason is that as n increases� GateD
spends more percentage of its CPU time in carrying out the SPT calculation� We have observed
that when n is equal to ��� GateD spends about �� of its time in SPT calculation� whereas it
spends close to ��� of its time in SPT calculation once n reaches ��� This means that most of the
overhead introduced by IBB extensions to GateD OSPF is to the SPT calculation�

� Conclusion

In this paper� we have described how OSPF can be made IBB capable� The IBB capability helps
avoid routing instabilities that arise when an OSPF process is brought down� provided the forwarding
engine is still functioning� We make use of the Opaque LSA mechanism ��� for communication related
to IBB between various routers� In particular� an IBB Cease LSA is used to inform others when
the routing process in a router wants to go down temporarily� and to specify the time interval �IBB
Timeout� during which the process is expected to be down� Other routers treat the originating router
as capable of forwarding packets for that time period� If the routing process in the originating router
returns to operation within the speci	ed time period� the network behaves as if the process never
went down with respect to packet forwarding� An ICB Open LSA is used for informing others when
the originating routing process is operational again� which acts as a trigger to restore normal OSPF
operation�

In any linkstate routing protocol� it is imperative that all the routers calculate their routing
tables from the same image of the linkstate database� To ensure that no loops or black holes occur�
a router must recalculate its routing table whenever a change in the topology occurs� With the
IBB extension� the router that has been gracefully shut down cannot update its linkstate database
and routing table during the IBB timeout period� This can lead to routing loops and black holes�
We presented a detailed analysis of the problem and developed a solution for avoiding such routing
instabilities� The solution relies on two new types of LSAs � Path Info LSA and Avoid Router LSA
� which enable the routers to determine loopfree paths during the IBB interval�

Although our solution in this paper is speci	c to OSPF� the fundamental problems addressed by
the solution are common to all linkstate protocols� Thus� our analysis and solution can be used as
a basis for introducing IBB capability in other linkstate protocols� such as ISIS�

We described a prototype implementation of our solution using the GateD implementation of
OSPF and used it to evaluate the overhead of introducing the IBB capability in OSPF� Our results
clearly demonstrate that most of the overhead is incurred during an SPT calculation� The overhead
associated with other IBBrelated processing is negligible� Our experimental results also show that
the IBB extension places negligible overhead when all the routers are fully operational� All these
results demonstrate the viability of using IBB to avoid routing instability�

In the future we plan to investigate ways of lowering the overhead incurred in the SPT calcu
lations� One possible approach is to use an incremental SPT algorithm ��� ���� We also plan to
investigate the situation where more than one router have been gracefully shut down at the same
time�

References ��

References

��� North American Network Operators Group �NANOG�� mailing list archives�
http���www�nanog�org�

��� The GateDaemon �GateD� Project� Merit GateD Consortium� http���www�gated�org�

��� Daniel P� Bovet and Marco Cesati� Understanding the Linux Kernel� O�Reilly � Associates� Inc��
Sebastopol� California� January �����

��� R�Callon� Use ofOSI IS!IS forRouting in TCP�IPandDual Enviornments� RFC����� December
�����

��� Rob Coltun� The OSPF Opaque LSA Option� RFC��
�� July �����

��� D� Frigioni� A� MarchettiSpaccamela� and U� Nanni� Incremental Algorithms for Single!Source
Shortest Path Trees� In Proceedings of Foundations of Software Technology and Theoretical
Computer Science� pages ���!���� December �����

�
� Don Libes� Exploring Expect� O�Reilly � Associates� Inc�� December �����

��� John T� Moy� OSPF � anatomy of an Internet routing protocol� Addison!Wesley Publishing
Company� Reading� Massachusetts� January �����

��� John T� Moy� OSPF Version �� RFC����� April �����

���� JohnT�Moy� OSPF � Complete Implementation� Addison!Wesley Publishing Company� Septem
ber �����

���� Paolo Narvaez� KaiYeung Siu� and HongYi Tzeng� New Dynamic SPT Algorithm based on a
Ball!and!string Model� In Proceedings of the IEEE Infocom� �����

���� Y� Rekhter and T� Li� A Border Gateway Protocol � �BGP��� RFC�

�� March �����

���� David Ward and John Scudder� BGP Noti	cation Cease� I�ll Be Back� Work in progress�
draft!ward!bgp�!ibb���txt� June �����

���� Alex Zinin� Abhay Roy� and Liem Nguyen� OSPF Out!of!band LSDB Resynchronization� Work
in progress� draft!ietf!ospf!oob!resync!���txt� November �����

���� Alex Zinin� Abhay Roy� and Liem Nguyen� OSPF Restart Signaling� Work in progress� draft!
ietf!ospf!restart!���txt� November �����

