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tOn-
hip indu
tan
e extra
tion is diÆ
ult due to the global e�e
t of indu
tan
e.The 
urrent return path is usually unknown prior to extra
tion. Re
ently a new
ir
uit element, K, has been introdu
ed [1℄. K 
aptures global e�e
t of indu
tan
e,but has 
apa
itan
e like lo
al properties. In this paper, we present the physi
alinterpretation of K. Based on the physi
al interpretation, we explain why thefaraway mutal K 
an be ignored (lo
ality) and prove that after ignoring farawaymutal K, the resultant K matrix is positive de�nite (stability). Together with aRKC equivalent 
ir
uit model, the lo
ality and stability enables us to simulateRKC 
ir
uit dire
tly and eÆ
iently for real 
ir
uits. A new 
ir
uit simulationtool, KSPICE, has been developed by in
orporated the new 
ir
uit element Kinto Berkeley SPICE. The RKC simulation mat
hes better with the full L matrixsimulation with signi�
ant less 
omputing time and memory uasge, 
ompared toother proposed methods, su
h as trun
ation only method and shift-trun
ate method[2, 3℄.Keywords: inter
onne
t modeling, indu
tan
e extra
tion,K-based method, KSPICE,
ir
uit simulation, stability



1. Introdu
tion 11 Introdu
tionModeling of indu
tan
e e�e
t of on-
hip wiring is be
oming in
reasingly important as
lo
k speeds in
rease and less resistive lines are used to improve signal propagation speed.To model indu
tan
e of general 3D inter
onne
t for whi
h the return paths are notknown a priori requires employing partial indu
tan
e elements. The partial indu
tan
e
on
ept, whi
h was developed by Rosa [4℄, was introdu
ed to the 
ir
uit design �eld byRuehli [5, 6℄. Be
ause partial indu
tan
es obey the same bran
h 
onstitutive relations as
losed-loop indu
tan
es, they 
an be 
onveniently applied in the 
ontext of modi�ed nodalanalysis and used internally in 
ir
uit simulators su
h as SPICE.However, sin
e the a
tual 
urrent and 
ux linkage loops are unknown, partial indu
tan
eis de�ned by the 
ux 
reated by an aggressor segment through the virtual loop whi
h avi
tim segment forms at in�nity. Therefore, instead of 
oupling among all of the loops,there is now 
oupling among all of the wire segments. This 
orresponds to an extremelylarge, dense, partial indu
tan
e matrix. Be
ause it is diÆ
ult to invert (or fa
tor) a largedense matrix in 
ir
uit simulation, it is often desirable to sparsify the partial indu
tan
ematrix.One straight forward approa
h to make the indu
tan
e matrix sparse and, therefore,more tra
table is simply to dis
ard those mutual 
oupling terms of the partial indu
tan
ematrix whi
h are below a 
ertain threshold. This approa
h, however, does not guaranteethe positive semi-de�niteness of the resulting indu
tan
e matrix [3℄.A 
ouple of approa
hes were later proposed to generate sparse approximations withguaranteed stability, su
h as, the shift-trun
ate potential method [2, 3℄, and \return-limitedloop indu
tan
e" 
on
ept [7℄. However, the a

ura
y of both approa
hes are sensitive tothe inter
onne
ts topology.Re
ently, a new 
ir
uit element was introdu
ed to represent indu
tan
e e�e
t, whilestill preserve the C-like lo
ality [1℄. This new 
ir
uit element, K, is basi
ally the inverseof partial indu
tan
e. It was proposed to 
apture on-
hip indu
tan
e e�e
t by dire
tlyextra
ting and simulating K, instead of partial indu
tan
e.However, the physi
al meaning of K and the reason that K has C-like lo
ality is not
lear. Furthermore, the stability of the sparse system matrix 
onstru
ted by ignoring faraway mutual K has not been proved yet, whi
h limit the appli
ation K in real situation.In this paper, we present the theoreti
al ba
kground for this new 
ir
uit element K.We provided the physi
al meaning of K and answered why K has lo
al property like C.The most important thing is that we proved that the sparse system matrix 
onstru
tedby ignoring faraway mutual K is positive de�nite. That is to say, the subsequent RKCequivalent 
ir
uit is guaranteed to be stable. Finally, we developed a simulation tool,KSPICE, to dire
tly simulate RKC equivalent 
ir
uit by integrating the transient model ofK with Berkeley SPICE.We 
ompared the full L matrix method and the K-based method, together with thetrun
ation only and shift-trun
ate te
hniques, in terms of 
ir
uit simulation results onpra
ti
al examples. The K-based method showed great advantages over the trun
ationonly and shift-trun
ate te
hniques in terms of a

ura
y and eÆ
ien
y.2 Physi
al Meaning of New Cir
uit Element KThe original de�nition of [K℄ is the inverse of partial indu
tan
e matrix [L℄ [1℄.



2 2. Physi
al Meaning of New Cir
uit Element K[K℄ = [L℄�1 (2.1)In magneto-stati
s, the element of L matrix has the following formulation [5℄,Lij = �04�aiaj "Zai Zaj Zli Zlj dli � dljrij dai daj# (2.2)where ai and aj are 
ross se
tions of Segment i and j, respe
tively, and rij is the geometri
distan
e between two points in segment i and j.The partial indu
tan
e matrix for a set of n 
ondu
tors is a n�n real symmetri
 matrix.The 
orresponding linear system is given by264 L11 L12 � � �L21 L22 � � �... ... Lnn 375264 I1...In 375 = 2666664 nPi=1� 1a1 R A1i � dl1da1�...nPi=1� 1an R Ani � dlndan� 3777775 (2.3)where A1j is the magneti
 ve
tor potential along segment 1 due to the 
urrent Ij in segmentj. Therefore, K satis�es the following linear equations,264 K11 K12 � � �K21 K22 � � �... ... Knn 3752666664 nPi=1� 1a1 R A1i � dl1da1�...nPi=1� 1an R Ani � dlndan� 3777775 = 264 I1...In 375 (2.4)From Eq. (2.4), we noti
ed that K is best understood in terms of normalized 
urrentindu
ed by the magneti
 ve
tor potential drop along a set of 
ondu
tor segments. However,unlike L's extra
tion, in whi
h we 
an dire
tly give the formulation for every element Lij inthe partial indu
tan
e matrix, K dose not have su
h simple formulation. The values of theelements of K matrix depend on the geometry of the 
ondu
tors. The 
al
ulation of thesevalues involves solving linear systems.If we set the magneti
 ve
tor potential drop along 
ondu
tor segment j to be 1, and themagneti
 ve
tor potential drops along all other 
ondu
tor segments to be 0, then we 
ansolve the 
urrent indu
ed in ea
h 
ondu
tor segment, given the relationship between themagneti
 ve
tor potential drop and 
urrent,Aij = �04�aj "Zaj Zlj Ijrij dlj daj# (2.5)From Eq. (2.4), we 
an see that the 
urrent indu
ed in ea
h 
ondu
tor segment in this
ase is equal to ea
h element in the 
olumn i of the K matrix. Therefore, we 
an rede�nethe element of K matrix as: the element Kij is the 
urrent 
owing through the ith 
ondu
torwhen the magneti
 ve
tor potential drop along all 
ondu
tors, ex
ept the jth, are set to zero,and the magneti
 ve
tor potential drop along the jth 
ondu
tor is raised to unit potential.



3. Lo
ality and Stability of K matrix 3This de�nition illustrates both the physi
al meaning of K matrix and how it 
an be
al
ulated. That is, iteratively assigning the magneti
 ve
tor potential drop along 
ondu
torsegment i, (i = 1; 2; : : : ; n), to be 1, while the magneti
 ve
tor potential drops along allother 
ondu
tor segments to be 0, we 
an obtain ea
h 
olumn i of the K matrix through
al
ulating the indu
ed 
urrent in ea
h 
ondu
tor segments. In fa
t, this s
heme resemblesthe 
apa
itan
e 
al
ulation in ele
trostati
s.In next se
tion, we will further introdu
e the C-like properties of K matrix, su
h aslo
ality and positive de�niteness.3 Lo
ality and Stability of K matrixIn fa
t, the de�nition and physi
al explanation of K matrix is so similar to that of
apa
itan
e matrix, where the magneti
 ve
tor potential drop along a 
ondu
tor segmentresembles voltage drop, and the 
urrent in the 
ondu
tor segment resembles the 
harge onthe surfa
e of the 
ondu
tor. We 
an expe
t that K matrix has C-like properties. Theproof for lo
ality and stability of K matrix also resembles the proof for 
apa
itan
e matrixstated in [8℄.Be
ause orthogonal 
ondu
tors do not 
ouple magneti
ally, the resulting indu
tan
ematrix and K matrix are blo
k diagonal matri
es. Therefore, in following proof we onlyneed to 
onsider a set of parallel 
ondu
tors. The proof 
an also be easily extended tostru
tures with lean 
ondu
tors, whi
h is omitted here due to spa
e limitation.3.1 Lo
alityAlthough the 
al
ulation of the elements of the K matrix involves solving linear systems,it is possible to learn a great deal about the K matrix and its elements by appealing tosimple physi
al prin
iples. Through the appli
ation of Green's Theorem it 
an be shownthat the K matrix is symmetri
: Kij � Kji (3.1)Next, suppose that the magneti
 ve
tor potential drop along the ith 
ondu
tor is assignedsome positive value, and the magneti
 ve
tor potential drop along all of the other 
ondu
torsare kept zero. In order for the magneti
 ve
tor potential drop along the ith 
ondu
tor tobe positive, it must 
arry a 
urrent at the same dire
tion as the magneti
 ve
tor potentialdrop. Thus it must be true that Kii > 0 (3.2)Moreover, in order for the magneti
 ve
tor potential drop along the other 
ondu
tors toremain at zero, they must 
arry 
urrents at the opposite dire
tion as the magneti
 ve
torpotential drop along the ith 
ondu
tor. Hen
e,Kij < 0; i 6= j (3.3)One may doubt how 
an 
urrent 
ow in opposite dire
tions in di�erent segments of asame 
ondu
tor, when a long 
ondu
tor broken into several segments is under 
onsideration.In this 
ase, we 
an assume that there are in�nite thin gaps between any two neighborsegments, whi
h will not alter the partial indu
tan
e matrix or K matrix, while leave the
urrent dire
tion in ea
h segment undetermined.



4 3. Lo
ality and Stability of K matrixTherefore, if we assign some positive value to the magneti
 ve
tor potential drop alongone aggressor 
ondu
tor, and keep the magneti
 ve
tor potential drop along all otherneighbor 
ondu
tors as zero, as we stated above, the 
urrent indu
ed on the neighbors areat the opposite dire
tion as the 
urrent indu
ed on the aggressor 
ondu
tor. Same appliesto the magneti
 �eld generated by the 
urrents. Therefore, the magneti
 �eld generated byea
h neighbor 
an
els part of the �eld indu
ed on the aggressor line, and shields the �eldindu
ed on the aggressor line, shown in Fig. 3.1. That is the physi
al explanation of thelo
ality of K matrix.Consider the layout example with three parallel buses, shown in Fig. 3.1. The length ofea
h bus is 20 �m, the 
ross se
tion is 2x2 �m, and the spa
ing between the buses is 5 �m.
I1

B1
I2

I3

B2 B3

1 2 3Figure 3.1: Layout Example with Three Parallel BusesWe 
al
ulated the partial indu
tan
e matrix, L, using FastHenry [9℄,[L℄ = 264 11:4 4:26 2:544:26 11:4 4:262:54 4:26 11:4 375 pH; (3.4)and then inverted L to get K matrix.[K℄ = 264 103 �34:7 �9:93�34:7 114 �34:7�9:93 �34:7 103 375� 109H�1 (3.5)If we removed the 
enter 
ondu
tor 2, and re
al
ulate the 
orresponding L andK matrix,[L℄ = " 11:4 2:542:54 11:4 # pH; (3.6)[K℄ = " 92:2 �20:5�20:5 92:2 #� 109H�1: (3.7)We 
an observe that the removal of 
ondu
tor 2 has no e�e
t on the mutual partialindu
tan
e between 
ondu
tor 1 and 3, while the mutual K between 
ondu
tor 1 and 3 isin
reased by 20:5�9:939:93 or 106%. This data demonstrate the shielding e�e
t of 
ondu
tor 2for K.Sin
e K has C-like lo
ality, we only need to 
onsider a small number of neighbors inK-based method. This approa
h will generate a very sparse system matrix in later 
ir
uitsimulation. So the next step, we need to prove the stability of this sparse system matrix.



3. Lo
ality and Stability of K matrix 53.2 StabilityConsider the situation in whi
h the magneti
 ve
tor potential drop on all n 
ondu
torsare raised to unit (positive) potential at the same dire
tion. Then the 
ux, �, through theloop 
omposed by any pair of 
ondu
tors is zero. A

ording to original de�nition of loopindu
tan
e, we have � = LloopI (3.8)where I is the 
urrent 
ow through this loop. We 
an see that the 
urrent that 
ow throughthe loop 
omposed by any pair of 
ondu
tors is also zero, sin
e Lloop is not zero. That is tosay, no 
urrent indu
ed in one 
ondu
tor returns through any other 
ondu
tor in this 
ase.Thus, all the 
urrents indu
ed from the magneti
 ve
tor potential drop have to return fromthe in�nity (or, in reality, return from other ports or terminals). Therefore we 
an 
on
ludethat the 
urrent indu
ed in ea
h 
ondu
tor has same dire
tion as the potential drop. FromEq. (2.4) with Pnj=1 (R Aij � dlj) = 1, for i = 1; 2; : : : ; n, we getIi = nXj=1Kij > 0 i = 1; 2; : : : ; n (3.9)Sin
e Kii > 0, and Kij < 0 for i 6= j, it follows from Eq. (3.9) thatKii > nXj=1;j 6=i jKijj (3.10)whi
h is the property known as stri
t diagonal dominan
e.A

ording to Gersgorin Cir
le Theorem, ea
h eigenvalue of a square matrix, A = (aij),of order n is in at least one of the disks in 
omplex planefz : jz � aiij � Rig; Ri =Pnj=1;j 6=i jaij j;i = 1; 2; : : : ; n (3.11)That is to say, all the eigenvalues are in the set of disks, whi
h is 
entered at the diagonalelement, aii, with the radius of the summation of the absolute value of o�-diagonal elementsin row i, i = 1; 2; : : : ; n. If A is stri
t diagonal dominant,Ri = nXj=1;j 6=i jaij j < jaiij; i = 1; 2; : : : ; n (3.12)and jaiij > 0, we 
an know that all the disks of A matrix lie in the right-hand side of the
omplex plane, so do the eigenvalues. Therefore, A matrix is positive de�nite if A is stri
tdiagonal dominant and all the diagonal elements are positive.The property of stri
t diagonal dominan
e holds in K extra
tion for what ever numberof 
ondu
tors and what ever the window size is. Therefore, the sparse K matrix for thewhole system, obtained by K-based method, is still stri
t diagonal dominant. Togetherwith the property of Eq. (3.2), thus, we 
an guarantee the positive de�niteness or stabilityof the sparse K matrix.



6 4. Equivalent Cir
uit Model of K for Transient Analysis4 Equivalent Cir
uit Model of K for Transient AnalysisAfter the sparse K matrix produ
ed by K-based method is guaranteed the stability, we
an now take advantage of K with 
on�den
e. Sin
e K is a newly de�ned 
ir
uit element,the 
onventional SPICE does not support it. To best utilize the sparsity of K systemmatrix, however, we have to simulate K matrix dire
tly, instead of its inverted version Lmatrix whi
h is known to be dense. Therefore, in this se
tion, we dis
uss the equivalent
ir
uit model of K for transient analysis.Sin
e K is the inverse of L, 
onsequently, the bran
h equation for this new element Kis KV = dIdt (4.1)whi
h is again the inverse linear system of L.For transient 
ir
uit analysis, if we apply the ba
kward Euler method, it is assumed thatthe time derivative of 
urrent, dIdt , is 
onstant over the time interval [kh; (k +1)h℄, and it isgiven by dIdt = Ik+1 � Ikh (4.2)where h is the 
hosen step size, Ik is known, while Ik+1 is to be 
al
ulated.For the 
ir
uit example shown in Fig. 4.1, the 
ir
uit di�erential equations are writtenas ( K11V1 +K12V2 = dI1=dtK21V1 +K22V2 = dI2=dt (4.3)
V2

2I

K22
V1

1I

K11

K12

21K

m

n

+

-

i

j
-

+

Figure 4.1: Cir
uit Example with mutual KUsing the ba
kward Euler method, i.e., substitute Eq. (4.2) into Eq. (4.3), we 
an obtain( Ik+11 = K11hV k+11 +K12hV k+12 + Ik1Ik+12 = K21hV k+11 +K22hV k+12 + Ik2 (4.4)Therefore, the transient equivalent model of K is 
omposed of one resistor, one voltage
ontrol 
urrent sour
e, and one independent 
urrent sour
e in parallel, shown in Fig 4.2.We also derived the equivalent 
ir
uit model of K a

ording to the Trapezoidal method.It is also 
omposed of one resistor, one voltage 
ontrol 
urrent sour
e, and one independent



5. Experiment Results 7
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Figure 4.2: Equivalent Cir
uit Model for Cir
uit Example in Fig. 4.1 for TransientAnalysis
urrent sour
e in parallel. The resistor and the voltage 
ontrol 
urrent sour
e in this Trape-zoidal method are of half value of those in Euler method, respe
tively. The independent
urrent sour
e has the expression of 0:5 �Ki1hV k1 + 0:5 �Ki2hV k2 + Iki , i = 1; 2, for the twobran
hes, respe
tively.We add K as a new devi
e in Berkeley SPICE a

ording to its transient model in bothEuler method and Trapezoidal method, and swit
h between these two methods a

ordingto the 
onvergen
e speed automati
ally. We 
all this modi�ed SPICE as KSPICE, sin
e it
an dire
tly simulate RKC 
ir
uit model.5 Experiment ResultsTo 
ompare the e�e
ts of full indu
tan
e matrix and sparse K matrix in 
ir
uit simula-tions, we 
hose a periodi
 signal bus stru
ture similar to that presented in Fig. 7(b) of He'spaper [3℄. The 
ir
uit is depi
ted in Fig. 5.1. We deliberately 
hose this 
ir
uit topologybe
ause all the signal lines share one return path. It was proven to be a bad design withfar away 
urrent return path, sin
e the indu
tive 
oupling between more periods has to betaken into a

ount in partial indu
tan
e modeling [3℄. The length of all 30 wires is 40 
m,the 
ross-se
tion is 2x2 mm, and the spa
ing between the wires is 1 
m. Partial indu
tan
esand K were derived assuming ea
h 
ondu
tor was broken into ten equal segments in orderto 
reate a large yet illustrative system matrix.To make the indu
tive e�e
ts dominate, Rs and Rt were set to 1 and 10 ohms, and aslow rise time (10ns) was 
onsidered so that 
apa
itive 
oupling 
ould be ignored for thisexample.The 
ir
uit shown in Fig. 5.1 was analyzed using four di�erent methods as follows.� Use full partial indu
tan
e matrix.� Use the shift-trun
ate method. Sin
e the segment length is 4 
m, to 
apture enoughforwarding magneti
 
oupling, we had to set the radius of the 
urrent return shellto be at least 8.1 
m. Therefore, on the same 
ondu
tor, two neighbor segments ofea
h side of the aggressor segment were 
onsidered to have mutual partial indu
tan
erespe
t to the aggressor segment. In this 
ase, 11,184 of the total 90,000 matrix terms
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Figure 5.1: Cir
uit Example Similar to Fig. 7 from He's paper[3℄were set to zero (about 87.6% sparse). Here, we 
an see that the shift-trun
ate methoddoes not work well for long wires.� Use the trun
ation only method. To a
hieve the same sparsity, 87.6%, as the shift-trun
ate method, the sparse matrix was formed by dis
arding all mutual indu
tan
esless than 1.9753 nH.� Use K-based method. Our K matrix was 
onstru
ted by setting the window size ofboth segments and di�erent 
ondu
tors to be 5. That is to say, on the same 
ondu
tor,two neighbor segments of ea
h side of the aggressor segment were 
onsidered to havemutual K respe
t to the aggressor segment, and two neighbor 
ondu
tors of ea
h sideof the aggressor 
ondu
tor were 
onsidered to have mutual K respe
t to the aggressor
ondu
tor. In this 
ase, 83,664 of the total 90,000 matrix terms were set to zero (about93% sparse).To view the indu
tan
e e�e
t 
learly, we 
hose the 
urrent 
ow through the Rt whi
h isdire
tly 
onne
ted to the ℄2 
ondu
tor. The positive 
urrent dire
tion is spe
i�ed as fromleft to right. The simulation results are depi
ted in Fig. 5.2.From Fig. 5.2, we 
an see that the results of the K-based method mat
hes very wellwith that of full L matrix simulation, while the results of both shift-trun
ate method andtrun
ation only method deviate a lot from the full Lmatrix simulation result. Here, we needto point out that the sparsity of the K matrix is even larger than the partial indu
tan
ematri
es produ
ed in both shift-trun
ate method and trun
ation only method, while still hasbetter agreement in simulation result. Moreover, the di�eren
e in the shift-trun
ate methodis even larger than that in trun
ation only method, whi
h again exposed the short
omingof the shift-trun
ate method for handling long wires. Besides, the far away 
urrent returnpath is another reason a

ounting for the ina

ura
y of the shift-trun
ate method.From the sparsity of theK matrix, one 
an imagine the speed up of the 
ir
uit simulationusing K matrix. The CPU time and memory usage of the 
ir
uit simulation using di�erentmethods is stored in Table 1.From Table 1, we observe that the K-based method 
an speed up 40 times, and only
onsume 16% of memory, 
ompared to the original method using full L matrix. Here,although the system matrix generated by the trun
ation only method is of same sparsityof that generated by the shift-trun
ate method, the trun
ation only method need more
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Figure 5.2: Simulation results of I(Rt2) for full matrix and sparse matri
es mod-eling the 
ir
uit with 30 
ondu
tors
omputer resour
e than the shift-trun
ate method. This is be
ause the system matrixgenerated by the trun
ation only method is worse-
onditioned, if not unstable, than thatgenerated by the shift-trun
ate method.Table 1. Consumption of Computer Resour
esmethod CPU time(s) memory(MB)full L matrix 743.76 20.13shift-trun
ate 144.96 6.00trun
ation only 157.36 6.14K-based method 17.31 3.196 Con
lusionsOn-
hip indu
tan
e e�e
t is diÆ
ult to 
apture be
ause the 
urrent return path isunknown prior to extra
tion. Re
ently a new 
ir
uit element, K, has been introdu
edto 
apture on-
hip indu
tan
e e�e
t eÆ
iently [1℄. In this paper, we provide physi
alinterpetation of K to answer why K has lo
al property, that is, the faraway mutual K
an be ignored, and to prove why the RKC simulation is stable, that is the K matrix afterignoring faraway mutual K is positive de�nite. We have developed a new simulation tool,KSPICE, by in
orporating the 
ir
uit element K into Berkeley SPICE. The experimentalresults indi
ate that our RKC simulation not only more a

urate, but also more eÆ
ient,both in terms of time and memory, than other methods, su
h as tru
ation only method andshift-trun
ate method [2, 3℄.
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