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1. Introdution 11 IntrodutionModeling of indutane e�et of on-hip wiring is beoming inreasingly important aslok speeds inrease and less resistive lines are used to improve signal propagation speed.To model indutane of general 3D interonnet for whih the return paths are notknown a priori requires employing partial indutane elements. The partial indutaneonept, whih was developed by Rosa [4℄, was introdued to the iruit design �eld byRuehli [5, 6℄. Beause partial indutanes obey the same branh onstitutive relations aslosed-loop indutanes, they an be onveniently applied in the ontext of modi�ed nodalanalysis and used internally in iruit simulators suh as SPICE.However, sine the atual urrent and ux linkage loops are unknown, partial indutaneis de�ned by the ux reated by an aggressor segment through the virtual loop whih avitim segment forms at in�nity. Therefore, instead of oupling among all of the loops,there is now oupling among all of the wire segments. This orresponds to an extremelylarge, dense, partial indutane matrix. Beause it is diÆult to invert (or fator) a largedense matrix in iruit simulation, it is often desirable to sparsify the partial indutanematrix.One straight forward approah to make the indutane matrix sparse and, therefore,more tratable is simply to disard those mutual oupling terms of the partial indutanematrix whih are below a ertain threshold. This approah, however, does not guaranteethe positive semi-de�niteness of the resulting indutane matrix [3℄.A ouple of approahes were later proposed to generate sparse approximations withguaranteed stability, suh as, the shift-trunate potential method [2, 3℄, and \return-limitedloop indutane" onept [7℄. However, the auray of both approahes are sensitive tothe interonnets topology.Reently, a new iruit element was introdued to represent indutane e�et, whilestill preserve the C-like loality [1℄. This new iruit element, K, is basially the inverseof partial indutane. It was proposed to apture on-hip indutane e�et by diretlyextrating and simulating K, instead of partial indutane.However, the physial meaning of K and the reason that K has C-like loality is notlear. Furthermore, the stability of the sparse system matrix onstruted by ignoring faraway mutual K has not been proved yet, whih limit the appliation K in real situation.In this paper, we present the theoretial bakground for this new iruit element K.We provided the physial meaning of K and answered why K has loal property like C.The most important thing is that we proved that the sparse system matrix onstrutedby ignoring faraway mutual K is positive de�nite. That is to say, the subsequent RKCequivalent iruit is guaranteed to be stable. Finally, we developed a simulation tool,KSPICE, to diretly simulate RKC equivalent iruit by integrating the transient model ofK with Berkeley SPICE.We ompared the full L matrix method and the K-based method, together with thetrunation only and shift-trunate tehniques, in terms of iruit simulation results onpratial examples. The K-based method showed great advantages over the trunationonly and shift-trunate tehniques in terms of auray and eÆieny.2 Physial Meaning of New Ciruit Element KThe original de�nition of [K℄ is the inverse of partial indutane matrix [L℄ [1℄.



2 2. Physial Meaning of New Ciruit Element K[K℄ = [L℄�1 (2.1)In magneto-statis, the element of L matrix has the following formulation [5℄,Lij = �04�aiaj "Zai Zaj Zli Zlj dli � dljrij dai daj# (2.2)where ai and aj are ross setions of Segment i and j, respetively, and rij is the geometridistane between two points in segment i and j.The partial indutane matrix for a set of n ondutors is a n�n real symmetri matrix.The orresponding linear system is given by264 L11 L12 � � �L21 L22 � � �... ... Lnn 375264 I1...In 375 = 2666664 nPi=1� 1a1 R A1i � dl1da1�...nPi=1� 1an R Ani � dlndan� 3777775 (2.3)where A1j is the magneti vetor potential along segment 1 due to the urrent Ij in segmentj. Therefore, K satis�es the following linear equations,264 K11 K12 � � �K21 K22 � � �... ... Knn 3752666664 nPi=1� 1a1 R A1i � dl1da1�...nPi=1� 1an R Ani � dlndan� 3777775 = 264 I1...In 375 (2.4)From Eq. (2.4), we notied that K is best understood in terms of normalized urrentindued by the magneti vetor potential drop along a set of ondutor segments. However,unlike L's extration, in whih we an diretly give the formulation for every element Lij inthe partial indutane matrix, K dose not have suh simple formulation. The values of theelements of K matrix depend on the geometry of the ondutors. The alulation of thesevalues involves solving linear systems.If we set the magneti vetor potential drop along ondutor segment j to be 1, and themagneti vetor potential drops along all other ondutor segments to be 0, then we ansolve the urrent indued in eah ondutor segment, given the relationship between themagneti vetor potential drop and urrent,Aij = �04�aj "Zaj Zlj Ijrij dlj daj# (2.5)From Eq. (2.4), we an see that the urrent indued in eah ondutor segment in thisase is equal to eah element in the olumn i of the K matrix. Therefore, we an rede�nethe element of K matrix as: the element Kij is the urrent owing through the ith ondutorwhen the magneti vetor potential drop along all ondutors, exept the jth, are set to zero,and the magneti vetor potential drop along the jth ondutor is raised to unit potential.



3. Loality and Stability of K matrix 3This de�nition illustrates both the physial meaning of K matrix and how it an bealulated. That is, iteratively assigning the magneti vetor potential drop along ondutorsegment i, (i = 1; 2; : : : ; n), to be 1, while the magneti vetor potential drops along allother ondutor segments to be 0, we an obtain eah olumn i of the K matrix throughalulating the indued urrent in eah ondutor segments. In fat, this sheme resemblesthe apaitane alulation in eletrostatis.In next setion, we will further introdue the C-like properties of K matrix, suh asloality and positive de�niteness.3 Loality and Stability of K matrixIn fat, the de�nition and physial explanation of K matrix is so similar to that ofapaitane matrix, where the magneti vetor potential drop along a ondutor segmentresembles voltage drop, and the urrent in the ondutor segment resembles the harge onthe surfae of the ondutor. We an expet that K matrix has C-like properties. Theproof for loality and stability of K matrix also resembles the proof for apaitane matrixstated in [8℄.Beause orthogonal ondutors do not ouple magnetially, the resulting indutanematrix and K matrix are blok diagonal matries. Therefore, in following proof we onlyneed to onsider a set of parallel ondutors. The proof an also be easily extended tostrutures with lean ondutors, whih is omitted here due to spae limitation.3.1 LoalityAlthough the alulation of the elements of the K matrix involves solving linear systems,it is possible to learn a great deal about the K matrix and its elements by appealing tosimple physial priniples. Through the appliation of Green's Theorem it an be shownthat the K matrix is symmetri: Kij � Kji (3.1)Next, suppose that the magneti vetor potential drop along the ith ondutor is assignedsome positive value, and the magneti vetor potential drop along all of the other ondutorsare kept zero. In order for the magneti vetor potential drop along the ith ondutor tobe positive, it must arry a urrent at the same diretion as the magneti vetor potentialdrop. Thus it must be true that Kii > 0 (3.2)Moreover, in order for the magneti vetor potential drop along the other ondutors toremain at zero, they must arry urrents at the opposite diretion as the magneti vetorpotential drop along the ith ondutor. Hene,Kij < 0; i 6= j (3.3)One may doubt how an urrent ow in opposite diretions in di�erent segments of asame ondutor, when a long ondutor broken into several segments is under onsideration.In this ase, we an assume that there are in�nite thin gaps between any two neighborsegments, whih will not alter the partial indutane matrix or K matrix, while leave theurrent diretion in eah segment undetermined.



4 3. Loality and Stability of K matrixTherefore, if we assign some positive value to the magneti vetor potential drop alongone aggressor ondutor, and keep the magneti vetor potential drop along all otherneighbor ondutors as zero, as we stated above, the urrent indued on the neighbors areat the opposite diretion as the urrent indued on the aggressor ondutor. Same appliesto the magneti �eld generated by the urrents. Therefore, the magneti �eld generated byeah neighbor anels part of the �eld indued on the aggressor line, and shields the �eldindued on the aggressor line, shown in Fig. 3.1. That is the physial explanation of theloality of K matrix.Consider the layout example with three parallel buses, shown in Fig. 3.1. The length ofeah bus is 20 �m, the ross setion is 2x2 �m, and the spaing between the buses is 5 �m.
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1 2 3Figure 3.1: Layout Example with Three Parallel BusesWe alulated the partial indutane matrix, L, using FastHenry [9℄,[L℄ = 264 11:4 4:26 2:544:26 11:4 4:262:54 4:26 11:4 375 pH; (3.4)and then inverted L to get K matrix.[K℄ = 264 103 �34:7 �9:93�34:7 114 �34:7�9:93 �34:7 103 375� 109H�1 (3.5)If we removed the enter ondutor 2, and realulate the orresponding L andK matrix,[L℄ = " 11:4 2:542:54 11:4 # pH; (3.6)[K℄ = " 92:2 �20:5�20:5 92:2 #� 109H�1: (3.7)We an observe that the removal of ondutor 2 has no e�et on the mutual partialindutane between ondutor 1 and 3, while the mutual K between ondutor 1 and 3 isinreased by 20:5�9:939:93 or 106%. This data demonstrate the shielding e�et of ondutor 2for K.Sine K has C-like loality, we only need to onsider a small number of neighbors inK-based method. This approah will generate a very sparse system matrix in later iruitsimulation. So the next step, we need to prove the stability of this sparse system matrix.



3. Loality and Stability of K matrix 53.2 StabilityConsider the situation in whih the magneti vetor potential drop on all n ondutorsare raised to unit (positive) potential at the same diretion. Then the ux, �, through theloop omposed by any pair of ondutors is zero. Aording to original de�nition of loopindutane, we have � = LloopI (3.8)where I is the urrent ow through this loop. We an see that the urrent that ow throughthe loop omposed by any pair of ondutors is also zero, sine Lloop is not zero. That is tosay, no urrent indued in one ondutor returns through any other ondutor in this ase.Thus, all the urrents indued from the magneti vetor potential drop have to return fromthe in�nity (or, in reality, return from other ports or terminals). Therefore we an onludethat the urrent indued in eah ondutor has same diretion as the potential drop. FromEq. (2.4) with Pnj=1 (R Aij � dlj) = 1, for i = 1; 2; : : : ; n, we getIi = nXj=1Kij > 0 i = 1; 2; : : : ; n (3.9)Sine Kii > 0, and Kij < 0 for i 6= j, it follows from Eq. (3.9) thatKii > nXj=1;j 6=i jKijj (3.10)whih is the property known as strit diagonal dominane.Aording to Gersgorin Cirle Theorem, eah eigenvalue of a square matrix, A = (aij),of order n is in at least one of the disks in omplex planefz : jz � aiij � Rig; Ri =Pnj=1;j 6=i jaij j;i = 1; 2; : : : ; n (3.11)That is to say, all the eigenvalues are in the set of disks, whih is entered at the diagonalelement, aii, with the radius of the summation of the absolute value of o�-diagonal elementsin row i, i = 1; 2; : : : ; n. If A is strit diagonal dominant,Ri = nXj=1;j 6=i jaij j < jaiij; i = 1; 2; : : : ; n (3.12)and jaiij > 0, we an know that all the disks of A matrix lie in the right-hand side of theomplex plane, so do the eigenvalues. Therefore, A matrix is positive de�nite if A is stritdiagonal dominant and all the diagonal elements are positive.The property of strit diagonal dominane holds in K extration for what ever numberof ondutors and what ever the window size is. Therefore, the sparse K matrix for thewhole system, obtained by K-based method, is still strit diagonal dominant. Togetherwith the property of Eq. (3.2), thus, we an guarantee the positive de�niteness or stabilityof the sparse K matrix.



6 4. Equivalent Ciruit Model of K for Transient Analysis4 Equivalent Ciruit Model of K for Transient AnalysisAfter the sparse K matrix produed by K-based method is guaranteed the stability, wean now take advantage of K with on�dene. Sine K is a newly de�ned iruit element,the onventional SPICE does not support it. To best utilize the sparsity of K systemmatrix, however, we have to simulate K matrix diretly, instead of its inverted version Lmatrix whih is known to be dense. Therefore, in this setion, we disuss the equivalentiruit model of K for transient analysis.Sine K is the inverse of L, onsequently, the branh equation for this new element Kis KV = dIdt (4.1)whih is again the inverse linear system of L.For transient iruit analysis, if we apply the bakward Euler method, it is assumed thatthe time derivative of urrent, dIdt , is onstant over the time interval [kh; (k +1)h℄, and it isgiven by dIdt = Ik+1 � Ikh (4.2)where h is the hosen step size, Ik is known, while Ik+1 is to be alulated.For the iruit example shown in Fig. 4.1, the iruit di�erential equations are writtenas ( K11V1 +K12V2 = dI1=dtK21V1 +K22V2 = dI2=dt (4.3)
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Figure 4.1: Ciruit Example with mutual KUsing the bakward Euler method, i.e., substitute Eq. (4.2) into Eq. (4.3), we an obtain( Ik+11 = K11hV k+11 +K12hV k+12 + Ik1Ik+12 = K21hV k+11 +K22hV k+12 + Ik2 (4.4)Therefore, the transient equivalent model of K is omposed of one resistor, one voltageontrol urrent soure, and one independent urrent soure in parallel, shown in Fig 4.2.We also derived the equivalent iruit model of K aording to the Trapezoidal method.It is also omposed of one resistor, one voltage ontrol urrent soure, and one independent
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Figure 4.2: Equivalent Ciruit Model for Ciruit Example in Fig. 4.1 for TransientAnalysisurrent soure in parallel. The resistor and the voltage ontrol urrent soure in this Trape-zoidal method are of half value of those in Euler method, respetively. The independenturrent soure has the expression of 0:5 �Ki1hV k1 + 0:5 �Ki2hV k2 + Iki , i = 1; 2, for the twobranhes, respetively.We add K as a new devie in Berkeley SPICE aording to its transient model in bothEuler method and Trapezoidal method, and swith between these two methods aordingto the onvergene speed automatially. We all this modi�ed SPICE as KSPICE, sine itan diretly simulate RKC iruit model.5 Experiment ResultsTo ompare the e�ets of full indutane matrix and sparse K matrix in iruit simula-tions, we hose a periodi signal bus struture similar to that presented in Fig. 7(b) of He'spaper [3℄. The iruit is depited in Fig. 5.1. We deliberately hose this iruit topologybeause all the signal lines share one return path. It was proven to be a bad design withfar away urrent return path, sine the indutive oupling between more periods has to betaken into aount in partial indutane modeling [3℄. The length of all 30 wires is 40 m,the ross-setion is 2x2 mm, and the spaing between the wires is 1 m. Partial indutanesand K were derived assuming eah ondutor was broken into ten equal segments in orderto reate a large yet illustrative system matrix.To make the indutive e�ets dominate, Rs and Rt were set to 1 and 10 ohms, and aslow rise time (10ns) was onsidered so that apaitive oupling ould be ignored for thisexample.The iruit shown in Fig. 5.1 was analyzed using four di�erent methods as follows.� Use full partial indutane matrix.� Use the shift-trunate method. Sine the segment length is 4 m, to apture enoughforwarding magneti oupling, we had to set the radius of the urrent return shellto be at least 8.1 m. Therefore, on the same ondutor, two neighbor segments ofeah side of the aggressor segment were onsidered to have mutual partial indutanerespet to the aggressor segment. In this ase, 11,184 of the total 90,000 matrix terms



8 5. Experiment Results
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Figure 5.1: Ciruit Example Similar to Fig. 7 from He's paper[3℄were set to zero (about 87.6% sparse). Here, we an see that the shift-trunate methoddoes not work well for long wires.� Use the trunation only method. To ahieve the same sparsity, 87.6%, as the shift-trunate method, the sparse matrix was formed by disarding all mutual indutanesless than 1.9753 nH.� Use K-based method. Our K matrix was onstruted by setting the window size ofboth segments and di�erent ondutors to be 5. That is to say, on the same ondutor,two neighbor segments of eah side of the aggressor segment were onsidered to havemutual K respet to the aggressor segment, and two neighbor ondutors of eah sideof the aggressor ondutor were onsidered to have mutual K respet to the aggressorondutor. In this ase, 83,664 of the total 90,000 matrix terms were set to zero (about93% sparse).To view the indutane e�et learly, we hose the urrent ow through the Rt whih isdiretly onneted to the ℄2 ondutor. The positive urrent diretion is spei�ed as fromleft to right. The simulation results are depited in Fig. 5.2.From Fig. 5.2, we an see that the results of the K-based method mathes very wellwith that of full L matrix simulation, while the results of both shift-trunate method andtrunation only method deviate a lot from the full Lmatrix simulation result. Here, we needto point out that the sparsity of the K matrix is even larger than the partial indutanematries produed in both shift-trunate method and trunation only method, while still hasbetter agreement in simulation result. Moreover, the di�erene in the shift-trunate methodis even larger than that in trunation only method, whih again exposed the shortomingof the shift-trunate method for handling long wires. Besides, the far away urrent returnpath is another reason aounting for the inauray of the shift-trunate method.From the sparsity of theK matrix, one an imagine the speed up of the iruit simulationusing K matrix. The CPU time and memory usage of the iruit simulation using di�erentmethods is stored in Table 1.From Table 1, we observe that the K-based method an speed up 40 times, and onlyonsume 16% of memory, ompared to the original method using full L matrix. Here,although the system matrix generated by the trunation only method is of same sparsityof that generated by the shift-trunate method, the trunation only method need more
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Figure 5.2: Simulation results of I(Rt2) for full matrix and sparse matries mod-eling the iruit with 30 ondutorsomputer resoure than the shift-trunate method. This is beause the system matrixgenerated by the trunation only method is worse-onditioned, if not unstable, than thatgenerated by the shift-trunate method.Table 1. Consumption of Computer Resouresmethod CPU time(s) memory(MB)full L matrix 743.76 20.13shift-trunate 144.96 6.00trunation only 157.36 6.14K-based method 17.31 3.196 ConlusionsOn-hip indutane e�et is diÆult to apture beause the urrent return path isunknown prior to extration. Reently a new iruit element, K, has been introduedto apture on-hip indutane e�et eÆiently [1℄. In this paper, we provide physialinterpetation of K to answer why K has loal property, that is, the faraway mutual Kan be ignored, and to prove why the RKC simulation is stable, that is the K matrix afterignoring faraway mutual K is positive de�nite. We have developed a new simulation tool,KSPICE, by inorporating the iruit element K into Berkeley SPICE. The experimentalresults indiate that our RKC simulation not only more aurate, but also more eÆient,both in terms of time and memory, than other methods, suh as truation only method andshift-trunate method [2, 3℄.
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