
How to EÆiently Capture On-ChipIndutane E�et: Introduing aNew Ciruit Element KAnirudh DevganyHao Ji�Wayne Dai�UCSC-CRL-00-09April 3, 2000� y IBM Corp.11400 Burnet Rd.Austin, TX 78758� Jak Baskin Shool of EngineeringUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstratOn-hip indutane extration and analysis is beoming inreasing ritial. In-dutane extration an be diÆult, umbersome and impratial on large designsas indutane depends on the urrent return path | whih is typially unknownprior to extrating and simulating the iruit model. In this paper, we propose anew iruit element, K, to model indutane e�ets, at the same time being easierto extrat and analyze. K is de�ned as inverse of partial indutane matrix L, andhas loality and sparsity normally assoiated with a apaitane matrix. We pro-pose to apture indutane e�ets by diretly extrating and simulating K, insteadof partial indutane, leading to muh more eÆient proedure whih is amenableto full hip extration. This proposed approah has been veri�ed through severalsimulation results. Physial interpretation, proof that K is positive de�nite andmodi�ations to iruit simulation to handle K are presented in [1℄.Keywords: interonnet modeling, indutane extration, K-based method



1. Introdution 11 IntrodutionInreasing lok speeds, die sizes, and power dissipations have driven VLSI manufatur-ers to abandon the simple saling approah of interonnet wiring. Instead, they employ ahierarhy of metal wiring levels. Thinner wiring levels are used at the iruit level wheredensity is required, and thiker layers at the top or global levels in order to route low-skewlok trees, low-loss power distribution buses, and the fastest signal interonnets. Thistrend, oupled with the reent introdution of opper wiring (beause its resistivity is ap-proximately half that of aluminum wiring) has made on-hip indutane modeling neessaryfor loks and the fastest signal interonnets.Indutane extration is diÆult beause mutual indutane depends on the urrentreturn path | whih is unknown prior to extrating and simulating a iruit model. Rosaintrodued the onept of partial indutanes to avoid this diÆulty by assuming that eahsegment has a return urrent at in�nity [2℄. Ruehli introdued partial indutane to modernICs and proposed the PEEC (Partial Equivalent Element Ciruits) model to handle generalthree dimensional interonnets [3, 4℄. Kamon, et al more reently developed algorithms,FastHenry [5℄, to solve for the e�etive indutane from the partial indutanes with multi-pole aeleration.Nonetheless, the partial indutane approah, whih assigns portions of the loop indu-tanes to segments along the loop, results in a large, densely-oupled network representation,whih makes subsequent iruit simulation pratial only for small examples. Moreover,unlike apaitane matries whih an be trunated to represent only loalized ouplings,simply disarding faraway mutual indutanes an result in an unstable equivalent iruitmodel (positive poles) [6℄.As an alternative to simple trunation, a shift-trunate potential method was proposedby Krauter, et al [7, 6℄. This shift-trunate potential method assumes that the segmenturrents return at a �nite radius r0, instead of in�nity. Therefore, segments spaed morethan r0 apart have no indutive oupling. This tehnique an guarantee to generate positivede�nite sparse approximations of the original partial indutane matrix. Nevertheless, todetermine a proper value of r0 to ensure a desired auray will involve ompliated shemesand iterations. Moreover, this approah does not work well for long wires. Shepard, et alproposed the onept of \return-limited loop indutane" to sparsify the partial indutanematrix [8℄. It is based on the assumption that the urrents of signal lines return within theregion enlosed by the nearest same-diretion power-ground lines. However, this may notbe true when power-ground lines are of same order of dimensions as signal lines. Reently,Lin developed 2x mutual indutane sreening rule [9℄, whih is basially disarding faraway mutual partial indutane. Therefore, this sreening rule an not guarantee positivesemide�nite as disussed in [6℄.Thus, unlike that in apaitane extration, only the losest neighbor ondutors needto be onsidered, in indutane extration, a large number of ondutors are involved. Soit's almost impossible to onstrut libraries or analytial formulas diretly for indutaneextration like what people did for apaitane extration.However, we notied that although C matrix is sparse, the inverse of C is dense. Wespeulated that if L is dense, then the inverse of Lmay be sparse. In this paper, we introduea new iruit element to represent indutane e�et, while still preserve the C-like loality.This new iruit element, K, is basially the inverse of partial indutane.



2 2. Partial IndutaneTherefore, we proposed to apture on-hip indutane e�et by diretly extratingand simulating K, instead of partial indutane. Sine K has C-like loality, we onlyneed to onsider a small number of neighbors. As the result, the K matrix for iruitsimulation is very sparse. Thus it an save a great amount of CPU time and memory usagewhen apturing on-hip indutane e�et. Moreover, we an further onstrut libraries oranalytial formulas for K, whih will enable this K-based method to be a pratial oneto predit and apture indutane e�et for the whole hip. This new onept has beenveri�ed by the simulation results of pratial examples.2 Partial IndutaneSine our proposed K is de�ned as the inverse of the partial indutane, we begin witha brief review of partial indutane.It's well known that indutane is a property of losed loops. Sine for on-hip interon-nets, the indued urrent return paths are unknown, the prevailing indutane models arebuilt on partial indutane onepts. Partial indutane are best understood in terms ofthe normalized magneti vetor potential drop along a ondutor segment due to urrent inthat, or another segment. Consider the two ondutor segments, i and j, shown in Fig. 2.1.
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Figure 2.1: Partial indutane assoiated with magneti vetor potential dropalong the ondutor segments. Both segment loops are assumed to lose at in�nity.The partial indutane Lij between segment i and j is given byLij = 1ai hRai Rlj Aij � dli daiiIj (2.1)where Aij is the magneti vetor potential along segment i due to the urrent Ij in segmentj. Segment i has a ross setion aj. In magneto-statis, the relationship between themagneti vetor potential Aij and the urrent Ij is given byAij = �04�aj "Zaj Zlj Ijrij dlj daj# (2.2)where rij is the geometri distane between two points in segment i and j.



3. De�nition of New Ciruit Element K 3Substitute Eq. (2.2) into Eq. (2.1), we an getLij = �04�aiaj "Zai Zaj Zli Zlj dli � dljrij dai daj# (2.3)The partial indutane matrix for a set of n ondutors is a n�n real symmetri matrix.The orresponding linear system is given by264 L11 L12 � � �L21 L22 � � �... ... Lnn 375264 I1...In 375 = 2666664 nPi=1 � 1a1 R A1i � dl1da1�...nPi=1 � 1an R Ani � dlndan� 3777775 (2.4)From Eq. (2.3), we an see that the partial indutane Lij only depends on the relativeposition and length of segment i and j, and is independent on the existene of otherondutors. That is to say, the existene of other ondutors has no shielding e�et onthe indutive oupling between segment i and j, under this partial indutane de�nition.Furthermore, sine the integral kernel of Lij is rij, the o�-diagonal elements in the partialindutane matrix derease very slowly (at the order of log rij) with the inrease of spaingrij. Beause of this long range indutive oupling e�et for partial indutane of on-hipwires, apturing indutive ouplings beomes muh more diÆult than apturing apaitiveouplings, whih is known to be loal. Moreover, it is understood that making the matrixsparse by merely disarding the smallest terms an render the matrix inde�nite and therebyintrodue positive pole(s) in subsequent iruit simulations.3 De�nition of New Ciruit Element K[K℄ is de�ned as the inverse of partial indutane matrix [L℄.[K℄ = [L℄�1 (3.1)This de�nition originated from the well known relationship between apaitane andindutane for transmission line strutures,[Lloop℄ = �0�0[C0℄�1 (3.2)where �0 and �0 are permittivity and permeability in free spae, respetively. [C0℄ is theapaitane matrix whih would result if all dieletri layers were replaed by free spae.This relationship inspired us that for strutures other than transmission lines, althoughthe inverted indutane matrix, [K℄ (or [L℄�1), is not proportional to apaitane matrix,[C0℄, [K℄ may still have similar loal property as [C0℄. If this is true, then we an apply Kextration loally, and derive RKC equivalent iruit models, instead of RLC models tomodeling the indutane e�et.Here, we should emphasis that [Lloop℄ have omplete di�erent meaning with [L℄. Theelement in [Lloop℄ is loop indutane, and it was alulated with a pre-de�ned ground returnpath. That is to say, you an only get an (n� 1)� (n� 1) [Lloop℄ matrix for an n ondutorsystem. While the element in L matrix is partial indutane, and it was assume all urrentreturn in the in�nity. For an n ondutor system, you an get an n�n L matrix. Therefore,K matrix has nothing to do with C matrix, although, K has same loality like C.



4 3. De�nition of New Ciruit Element KThe following example demonstrate the loality of K matrix. Consider a layout examplewith �ve parallel buses, shown in Fig. 3.1. The length of all buses is 20 �m, the ross setionis 2x2 �m, and the spaing between the buses is 5 �m.
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Figure 3.1: Layout Example with 5 Parallel BusesWe alulated the partial indutane matrix, L, using FastHenry [5℄,[L℄ = 2666664 11:4 4:26 2:54 1:79 1:384:26 11:4 4:26 2:54 1:792:54 4:26 11:4 4:26 2:541:79 2:54 4:26 11:4 4:261:38 1:79 2:54 4:26 11:4
3777775 pH; (3.3)and then inverted L to get K matrix.[K℄ = 2666664 103 �34:1 �7:80 �4:31 �3:76�34:1 114 �31:6 �6:67 �4:31�7:80 �31:6 115 �31:6 �7:80�4:31 �6:67 �31:6 114 �34:1�3:76 �4:31 �7:80 �34:1 103

3777775� 109H�1 (3.4)From Eq. (3.3) and Eq. (3.4), we an see that the partial mutual indutane L51 is 1:3811:4or 12:1% of the partial self indutane L11, while jK51j is only 3:76103 or 3:7% of the self termK11.Meanwhile, we also alulated the apaitane matrix of the above struture shown inFig. 3.1 using FastCap [10℄.[C℄ = 2666664 555 �202 �43:8 �23:5 �20:9�202 631 �187 �37:0 �23:5�43:8 �187 634 �187 �43:9�23:5 �37:0 �187 631 �202�20:9 �23:5 �43:9 �202 555
3777775 pF (3.5)It an be observed the amazing similarity of the dereasing trend of the o�-diagonalelements in both K and C matrix. For example, the absolute value of mutual apaitanejC51j is about 20:9555 or 3:8% of the self apaitane C11.



4. Experiment Results 5That is to say, the o�-diagonal elements in K matrix derease faster than that of thepartial indutane matrix, and at a similar speed as that in apaitane matrix, whih weall K matrix has C-like loality. The physial explanation of this loality for K matrix isprovided in [1℄. Sine K has C-like loality, we only need to onsider a small number ofondutors enlosed in small window when extrating K. Our approah an be summarizedas follows.� Calulate the partial indutane matrix, L, of a small struture whih is enlosed ina small window.� Calulate the small K matrix by inverting the orresponding L matrix.� Compose the big Kall matrix by the olumn in eah small K matrix, whih is orre-sponding to the aggressor, like what people do in apaitane extration.� Simulate the subsequent RKC equivalent iruit.Therefore, for a large system, this approah will generate a very sparse system matrix inlater iruit simulation. Thus it an save a great amount of CPU time and memory usagewhen apturing on-hip indutane e�et.4 Experiment ResultsConsider the two power planes depited in Fig. 4.1. This is the same example presentedin Fig. 5 of [7℄. When power plane indutane and K matrix are modeled, power planessuh as these are meshed into separate x and y ondutor segments. (Even solid powerplanes are meshed into separate x and y ondutors.) Beause orthogonal ondutors donot ouple magnetially, the resulting indutane matrix and K matrix are blok diagonalmatries.
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Figure 4.1: Two Power Planes for Indutane E�et ModelingTo ompare our approah with the onventional and the shift-trunate method in [7℄,we alulated the eigenvalues of partial indutane matrix in the onventional and theshift-trunate method by stritly following Krauter's paper [7℄.That is, for the two planes depited in Fig. 4.1, we reated, using FastHenry [5℄, apartial indutane matrix to model the magneti oupling in the x diretion. Eah planewas meshed into 100 equal 10 mm square segments along the x diretion, and uniformurrent ow was assumed along all segments (FastHenry parameters nhin and nwin wereset to one).



6 4. Experiment ResultsFirstly, to visualize the derease speed of the o�-diagonal elements in L matrix and Kmatrix, we plotted the normalized mutual ouplings between the left-bottom most segmentand other segments in the same power plane with respet to the self term of the left-bottommost segment for both L and K matrix, depited in Fig. 4.2 and Fig. 4.3, respetively. Weobserved that the o�-diagonal elements in K matrix derease muh faster than that of thepartial indutane matrix, whih again illustrated the loality of K matrix ompared to Lmatrix. Sine K has C-like loality, we only need to onsider a small number of ondutorsenlosed in small window when extrating K.
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Figure 4.2: Normalized mutual ouplings between the left-bottom most segmentand other segments in the same power plane with respet to the self term of theleft-bottom most segment for L matrixSeondly, from this FastHenry partial indutane matrix, we reated two sparse approx-imations of the full matrix. The �rst approximation was formed using the shift-trunateproedure. That is, we set the urrent return radius r0 equal to 12 mm, and when theresult was negative, the matrix term was set to zero. The seond sparse approximationwas formed by disarding all mutual indutanes less than 0.75 nH. In both ases, 38,160of the total 40,000 matrix terms were set to zero, (i.e. both approximations were > 95%sparse). Finally, the eigenvalues of the full matrix and the two sparse approximations wereomputed. The 200 eigenvalues for eah matrix are plotted in Fig. 4.5.In our K-based approah, we alulated the K matrix of the ondutor segmentsinluded in the small window as those inluded in the urrent return shell in shift-trunatemethod to ensure same sparsity. The projetion on x-y oordinate of the small representivestruture inside the window is shown in Fig. 4.4.Therefore, the whole K system has exatly same sparsity (> 95%) as those in shift-trunate and trunation only method. Sine K matrix is the inverse of L matrix, theeigenvalues of K matrix should also be the inverse of those of L matrix. For betterillustration, we plotted the inverse of K's eigenvalues in Fig. 4.6.



4. Experiment Results 7
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Figure 4.3: Normalized mutual ouplings between the left-bottom most segmentand other segments in the same power plane with respet to the self term of theleft-bottom most segment for K matrix
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1 cm

1 cm

current return shell

r0

Figure 4.4: The Representive Struture in Modeling the Two Power PlanesIn observing Fig. 4.5, note that the approah of simply disarding the smallest terms inthe indutane matrix, yields both an inaurate and an unstable approximation as it failsto math the eigenvalues of the full matrix at both extremes and in the middle. Althoughthe smallest 100 eigenvalues of the shift-trunate method math those of the full L matrix,and shows the same disontinuous jump between the 100th and 101st eigenvalue, there aresigni�ant di�erene for larger eigenvalues between the shift-trunate method and the fullmatrix.Fig. 4.6 shows the exellent math of the eigenvalues between sparse K matrix and fullL matrix.Finally, to ompare the e�ets of full indutane matrix and sparse K matrix in iruit



8 4. Experiment Results
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Figure 4.5: Eigenvalues for Full and 95% Sparse L Matries Modeling the TwoPower Planes in Fig. 4.1
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Figure 4.6: Eigenvalues for Full L matrix and 95% Sparse K Matrix Modeling theTwo Power Planes in Fig. 4.1simulations, we hoose a struture presented in Fig. 8(b) of Krauter's paper [7℄. The iruit isillustrated in Fig. 4.7. We deliberately hose this iruit topology beause the urrent loopswere larger than that in Fig. 8(a) of Krauter's paper [7℄. Thus, it will be more obviouswhether or not the K-based method an apture enough mutual indutane oupling. Inthis struture, eah ondutor has ross setion of 2x2 mm square, d1 = 1 m, d2 = 4 m,and d3 = 40 m. Eah ondutor was broken into forty equal segments in order to reate alarge yet illustrative partial indutane matrix.To make the indutive e�ets dominate, Rs and Rt were set to 1 and 10 ohms, and a



5. Conluding Remark 9slow rise time (10ns) was onsidered so that apaitive oupling ould be ignored for thisexample.
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3Figure 4.7: Ciruit Example same as Fig. 8 from Krauter's paper[7℄In our approah, the window size was assumed to inlude at most 5 segments of eahondutor. The sparsity of the resulted K matrix is about 88%. The iruit simulationis performed by KSPICE [1℄, whih simulates RKC equivalent iruit, instead of RLC.The simulation results is shown in Fig. 4.8. We an see good agreement in terms of iruitsimulation results between the full L matrix and the sparse K matrix.
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Figure 4.8: Simulation Results for Ciruit Example in Fig. 4.7
5 Conluding RemarkPartial indutane are extremely useful in modeling iruit indutanes when the induedurrent loops are unknown. Unfortunately, these matries are dense and defy onventionalsimpli�ations (i.e. the smallest matrix annot be indisriminately disarded).
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