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tOn-
hip indu
tan
e extra
tion and analysis is be
oming in
reasing 
riti
al. In-du
tan
e extra
tion 
an be diÆ
ult, 
umbersome and impra
ti
al on large designsas indu
tan
e depends on the 
urrent return path | whi
h is typi
ally unknownprior to extra
ting and simulating the 
ir
uit model. In this paper, we propose anew 
ir
uit element, K, to model indu
tan
e e�e
ts, at the same time being easierto extra
t and analyze. K is de�ned as inverse of partial indu
tan
e matrix L, andhas lo
ality and sparsity normally asso
iated with a 
apa
itan
e matrix. We pro-pose to 
apture indu
tan
e e�e
ts by dire
tly extra
ting and simulating K, insteadof partial indu
tan
e, leading to mu
h more eÆ
ient pro
edure whi
h is amenableto full 
hip extra
tion. This proposed approa
h has been veri�ed through severalsimulation results. Physi
al interpretation, proof that K is positive de�nite andmodi�
ations to 
ir
uit simulation to handle K are presented in [1℄.Keywords: inter
onne
t modeling, indu
tan
e extra
tion, K-based method



1. Introdu
tion 11 Introdu
tionIn
reasing 
lo
k speeds, die sizes, and power dissipations have driven VLSI manufa
tur-ers to abandon the simple s
aling approa
h of inter
onne
t wiring. Instead, they employ ahierar
hy of metal wiring levels. Thinner wiring levels are used at the 
ir
uit level wheredensity is required, and thi
ker layers at the top or global levels in order to route low-skew
lo
k trees, low-loss power distribution buses, and the fastest signal inter
onne
ts. Thistrend, 
oupled with the re
ent introdu
tion of 
opper wiring (be
ause its resistivity is ap-proximately half that of aluminum wiring) has made on-
hip indu
tan
e modeling ne
essaryfor 
lo
ks and the fastest signal inter
onne
ts.Indu
tan
e extra
tion is diÆ
ult be
ause mutual indu
tan
e depends on the 
urrentreturn path | whi
h is unknown prior to extra
ting and simulating a 
ir
uit model. Rosaintrodu
ed the 
on
ept of partial indu
tan
es to avoid this diÆ
ulty by assuming that ea
hsegment has a return 
urrent at in�nity [2℄. Ruehli introdu
ed partial indu
tan
e to modernICs and proposed the PEEC (Partial Equivalent Element Cir
uits) model to handle generalthree dimensional inter
onne
ts [3, 4℄. Kamon, et al more re
ently developed algorithms,FastHenry [5℄, to solve for the e�e
tive indu
tan
e from the partial indu
tan
es with multi-pole a

eleration.Nonetheless, the partial indu
tan
e approa
h, whi
h assigns portions of the loop indu
-tan
es to segments along the loop, results in a large, densely-
oupled network representation,whi
h makes subsequent 
ir
uit simulation pra
ti
al only for small examples. Moreover,unlike 
apa
itan
e matri
es whi
h 
an be trun
ated to represent only lo
alized 
ouplings,simply dis
arding faraway mutual indu
tan
es 
an result in an unstable equivalent 
ir
uitmodel (positive poles) [6℄.As an alternative to simple trun
ation, a shift-trun
ate potential method was proposedby Krauter, et al [7, 6℄. This shift-trun
ate potential method assumes that the segment
urrents return at a �nite radius r0, instead of in�nity. Therefore, segments spa
ed morethan r0 apart have no indu
tive 
oupling. This te
hnique 
an guarantee to generate positivede�nite sparse approximations of the original partial indu
tan
e matrix. Nevertheless, todetermine a proper value of r0 to ensure a desired a

ura
y will involve 
ompli
ated s
hemesand iterations. Moreover, this approa
h does not work well for long wires. Shepard, et alproposed the 
on
ept of \return-limited loop indu
tan
e" to sparsify the partial indu
tan
ematrix [8℄. It is based on the assumption that the 
urrents of signal lines return within theregion en
losed by the nearest same-dire
tion power-ground lines. However, this may notbe true when power-ground lines are of same order of dimensions as signal lines. Re
ently,Lin developed 2x mutual indu
tan
e s
reening rule [9℄, whi
h is basi
ally dis
arding faraway mutual partial indu
tan
e. Therefore, this s
reening rule 
an not guarantee positivesemide�nite as dis
ussed in [6℄.Thus, unlike that in 
apa
itan
e extra
tion, only the 
losest neighbor 
ondu
tors needto be 
onsidered, in indu
tan
e extra
tion, a large number of 
ondu
tors are involved. Soit's almost impossible to 
onstru
t libraries or analyti
al formulas dire
tly for indu
tan
eextra
tion like what people did for 
apa
itan
e extra
tion.However, we noti
ed that although C matrix is sparse, the inverse of C is dense. Wespe
ulated that if L is dense, then the inverse of Lmay be sparse. In this paper, we introdu
ea new 
ir
uit element to represent indu
tan
e e�e
t, while still preserve the C-like lo
ality.This new 
ir
uit element, K, is basi
ally the inverse of partial indu
tan
e.



2 2. Partial Indu
tan
eTherefore, we proposed to 
apture on-
hip indu
tan
e e�e
t by dire
tly extra
tingand simulating K, instead of partial indu
tan
e. Sin
e K has C-like lo
ality, we onlyneed to 
onsider a small number of neighbors. As the result, the K matrix for 
ir
uitsimulation is very sparse. Thus it 
an save a great amount of CPU time and memory usagewhen 
apturing on-
hip indu
tan
e e�e
t. Moreover, we 
an further 
onstru
t libraries oranalyti
al formulas for K, whi
h will enable this K-based method to be a pra
ti
al oneto predi
t and 
apture indu
tan
e e�e
t for the whole 
hip. This new 
on
ept has beenveri�ed by the simulation results of pra
ti
al examples.2 Partial Indu
tan
eSin
e our proposed K is de�ned as the inverse of the partial indu
tan
e, we begin witha brief review of partial indu
tan
e.It's well known that indu
tan
e is a property of 
losed loops. Sin
e for on-
hip inter
on-ne
ts, the indu
ed 
urrent return paths are unknown, the prevailing indu
tan
e models arebuilt on partial indu
tan
e 
on
epts. Partial indu
tan
e are best understood in terms ofthe normalized magneti
 ve
tor potential drop along a 
ondu
tor segment due to 
urrent inthat, or another segment. Consider the two 
ondu
tor segments, i and j, shown in Fig. 2.1.
A

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��

������������������

��������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

I

jj ij

j

A

a

b c

d

Figure 2.1: Partial indu
tan
e asso
iated with magneti
 ve
tor potential dropalong the 
ondu
tor segments. Both segment loops are assumed to 
lose at in�nity.The partial indu
tan
e Lij between segment i and j is given byLij = 1ai hRai Rlj Aij � dli daiiIj (2.1)where Aij is the magneti
 ve
tor potential along segment i due to the 
urrent Ij in segmentj. Segment i has a 
ross se
tion aj. In magneto-stati
s, the relationship between themagneti
 ve
tor potential Aij and the 
urrent Ij is given byAij = �04�aj "Zaj Zlj Ijrij dlj daj# (2.2)where rij is the geometri
 distan
e between two points in segment i and j.



3. De�nition of New Cir
uit Element K 3Substitute Eq. (2.2) into Eq. (2.1), we 
an getLij = �04�aiaj "Zai Zaj Zli Zlj dli � dljrij dai daj# (2.3)The partial indu
tan
e matrix for a set of n 
ondu
tors is a n�n real symmetri
 matrix.The 
orresponding linear system is given by264 L11 L12 � � �L21 L22 � � �... ... Lnn 375264 I1...In 375 = 2666664 nPi=1 � 1a1 R A1i � dl1da1�...nPi=1 � 1an R Ani � dlndan� 3777775 (2.4)From Eq. (2.3), we 
an see that the partial indu
tan
e Lij only depends on the relativeposition and length of segment i and j, and is independent on the existen
e of other
ondu
tors. That is to say, the existen
e of other 
ondu
tors has no shielding e�e
t onthe indu
tive 
oupling between segment i and j, under this partial indu
tan
e de�nition.Furthermore, sin
e the integral kernel of Lij is rij, the o�-diagonal elements in the partialindu
tan
e matrix de
rease very slowly (at the order of log rij) with the in
rease of spa
ingrij. Be
ause of this long range indu
tive 
oupling e�e
t for partial indu
tan
e of on-
hipwires, 
apturing indu
tive 
ouplings be
omes mu
h more diÆ
ult than 
apturing 
apa
itive
ouplings, whi
h is known to be lo
al. Moreover, it is understood that making the matrixsparse by merely dis
arding the smallest terms 
an render the matrix inde�nite and therebyintrodu
e positive pole(s) in subsequent 
ir
uit simulations.3 De�nition of New Cir
uit Element K[K℄ is de�ned as the inverse of partial indu
tan
e matrix [L℄.[K℄ = [L℄�1 (3.1)This de�nition originated from the well known relationship between 
apa
itan
e andindu
tan
e for transmission line stru
tures,[Lloop℄ = �0�0[C0℄�1 (3.2)where �0 and �0 are permittivity and permeability in free spa
e, respe
tively. [C0℄ is the
apa
itan
e matrix whi
h would result if all diele
tri
 layers were repla
ed by free spa
e.This relationship inspired us that for stru
tures other than transmission lines, althoughthe inverted indu
tan
e matrix, [K℄ (or [L℄�1), is not proportional to 
apa
itan
e matrix,[C0℄, [K℄ may still have similar lo
al property as [C0℄. If this is true, then we 
an apply Kextra
tion lo
ally, and derive RKC equivalent 
ir
uit models, instead of RLC models tomodeling the indu
tan
e e�e
t.Here, we should emphasis that [Lloop℄ have 
omplete di�erent meaning with [L℄. Theelement in [Lloop℄ is loop indu
tan
e, and it was 
al
ulated with a pre-de�ned ground returnpath. That is to say, you 
an only get an (n� 1)� (n� 1) [Lloop℄ matrix for an n 
ondu
torsystem. While the element in L matrix is partial indu
tan
e, and it was assume all 
urrentreturn in the in�nity. For an n 
ondu
tor system, you 
an get an n�n L matrix. Therefore,K matrix has nothing to do with C matrix, although, K has same lo
ality like C.



4 3. De�nition of New Cir
uit Element KThe following example demonstrate the lo
ality of K matrix. Consider a layout examplewith �ve parallel buses, shown in Fig. 3.1. The length of all buses is 20 �m, the 
ross se
tionis 2x2 �m, and the spa
ing between the buses is 5 �m.
  h

w s

l

Figure 3.1: Layout Example with 5 Parallel BusesWe 
al
ulated the partial indu
tan
e matrix, L, using FastHenry [5℄,[L℄ = 2666664 11:4 4:26 2:54 1:79 1:384:26 11:4 4:26 2:54 1:792:54 4:26 11:4 4:26 2:541:79 2:54 4:26 11:4 4:261:38 1:79 2:54 4:26 11:4
3777775 pH; (3.3)and then inverted L to get K matrix.[K℄ = 2666664 103 �34:1 �7:80 �4:31 �3:76�34:1 114 �31:6 �6:67 �4:31�7:80 �31:6 115 �31:6 �7:80�4:31 �6:67 �31:6 114 �34:1�3:76 �4:31 �7:80 �34:1 103

3777775� 109H�1 (3.4)From Eq. (3.3) and Eq. (3.4), we 
an see that the partial mutual indu
tan
e L51 is 1:3811:4or 12:1% of the partial self indu
tan
e L11, while jK51j is only 3:76103 or 3:7% of the self termK11.Meanwhile, we also 
al
ulated the 
apa
itan
e matrix of the above stru
ture shown inFig. 3.1 using FastCap [10℄.[C℄ = 2666664 555 �202 �43:8 �23:5 �20:9�202 631 �187 �37:0 �23:5�43:8 �187 634 �187 �43:9�23:5 �37:0 �187 631 �202�20:9 �23:5 �43:9 �202 555
3777775 pF (3.5)It 
an be observed the amazing similarity of the de
reasing trend of the o�-diagonalelements in both K and C matrix. For example, the absolute value of mutual 
apa
itan
ejC51j is about 20:9555 or 3:8% of the self 
apa
itan
e C11.



4. Experiment Results 5That is to say, the o�-diagonal elements in K matrix de
rease faster than that of thepartial indu
tan
e matrix, and at a similar speed as that in 
apa
itan
e matrix, whi
h we
all K matrix has C-like lo
ality. The physi
al explanation of this lo
ality for K matrix isprovided in [1℄. Sin
e K has C-like lo
ality, we only need to 
onsider a small number of
ondu
tors en
losed in small window when extra
ting K. Our approa
h 
an be summarizedas follows.� Cal
ulate the partial indu
tan
e matrix, L, of a small stru
ture whi
h is en
losed ina small window.� Cal
ulate the small K matrix by inverting the 
orresponding L matrix.� Compose the big Kall matrix by the 
olumn in ea
h small K matrix, whi
h is 
orre-sponding to the aggressor, like what people do in 
apa
itan
e extra
tion.� Simulate the subsequent RKC equivalent 
ir
uit.Therefore, for a large system, this approa
h will generate a very sparse system matrix inlater 
ir
uit simulation. Thus it 
an save a great amount of CPU time and memory usagewhen 
apturing on-
hip indu
tan
e e�e
t.4 Experiment ResultsConsider the two power planes depi
ted in Fig. 4.1. This is the same example presentedin Fig. 5 of [7℄. When power plane indu
tan
e and K matrix are modeled, power planessu
h as these are meshed into separate x and y 
ondu
tor segments. (Even solid powerplanes are meshed into separate x and y 
ondu
tors.) Be
ause orthogonal 
ondu
tors donot 
ouple magneti
ally, the resulting indu
tan
e matrix and K matrix are blo
k diagonalmatri
es.
10 cm

10 cm

0.1 mm

plane thickness = 0.025 mm

z
y

x

Figure 4.1: Two Power Planes for Indu
tan
e E�e
t ModelingTo 
ompare our approa
h with the 
onventional and the shift-trun
ate method in [7℄,we 
al
ulated the eigenvalues of partial indu
tan
e matrix in the 
onventional and theshift-trun
ate method by stri
tly following Krauter's paper [7℄.That is, for the two planes depi
ted in Fig. 4.1, we 
reated, using FastHenry [5℄, apartial indu
tan
e matrix to model the magneti
 
oupling in the x dire
tion. Ea
h planewas meshed into 100 equal 10 mm square segments along the x dire
tion, and uniform
urrent 
ow was assumed along all segments (FastHenry parameters nhin
 and nwin
 wereset to one).



6 4. Experiment ResultsFirstly, to visualize the de
rease speed of the o�-diagonal elements in L matrix and Kmatrix, we plotted the normalized mutual 
ouplings between the left-bottom most segmentand other segments in the same power plane with respe
t to the self term of the left-bottommost segment for both L and K matrix, depi
ted in Fig. 4.2 and Fig. 4.3, respe
tively. Weobserved that the o�-diagonal elements in K matrix de
rease mu
h faster than that of thepartial indu
tan
e matrix, whi
h again illustrated the lo
ality of K matrix 
ompared to Lmatrix. Sin
e K has C-like lo
ality, we only need to 
onsider a small number of 
ondu
torsen
losed in small window when extra
ting K.
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Figure 4.2: Normalized mutual 
ouplings between the left-bottom most segmentand other segments in the same power plane with respe
t to the self term of theleft-bottom most segment for L matrixSe
ondly, from this FastHenry partial indu
tan
e matrix, we 
reated two sparse approx-imations of the full matrix. The �rst approximation was formed using the shift-trun
atepro
edure. That is, we set the 
urrent return radius r0 equal to 12 mm, and when theresult was negative, the matrix term was set to zero. The se
ond sparse approximationwas formed by dis
arding all mutual indu
tan
es less than 0.75 nH. In both 
ases, 38,160of the total 40,000 matrix terms were set to zero, (i.e. both approximations were > 95%sparse). Finally, the eigenvalues of the full matrix and the two sparse approximations were
omputed. The 200 eigenvalues for ea
h matrix are plotted in Fig. 4.5.In our K-based approa
h, we 
al
ulated the K matrix of the 
ondu
tor segmentsin
luded in the small window as those in
luded in the 
urrent return shell in shift-trun
atemethod to ensure same sparsity. The proje
tion on x-y 
oordinate of the small representivestru
ture inside the window is shown in Fig. 4.4.Therefore, the whole K system has exa
tly same sparsity (> 95%) as those in shift-trun
ate and trun
ation only method. Sin
e K matrix is the inverse of L matrix, theeigenvalues of K matrix should also be the inverse of those of L matrix. For betterillustration, we plotted the inverse of K's eigenvalues in Fig. 4.6.



4. Experiment Results 7
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Figure 4.3: Normalized mutual 
ouplings between the left-bottom most segmentand other segments in the same power plane with respe
t to the self term of theleft-bottom most segment for K matrix
x

y

1 cm

1 cm

current return shell

r0

Figure 4.4: The Representive Stru
ture in Modeling the Two Power PlanesIn observing Fig. 4.5, note that the approa
h of simply dis
arding the smallest terms inthe indu
tan
e matrix, yields both an ina

urate and an unstable approximation as it failsto mat
h the eigenvalues of the full matrix at both extremes and in the middle. Althoughthe smallest 100 eigenvalues of the shift-trun
ate method mat
h those of the full L matrix,and shows the same dis
ontinuous jump between the 100th and 101st eigenvalue, there aresigni�
ant di�eren
e for larger eigenvalues between the shift-trun
ate method and the fullmatrix.Fig. 4.6 shows the ex
ellent mat
h of the eigenvalues between sparse K matrix and fullL matrix.Finally, to 
ompare the e�e
ts of full indu
tan
e matrix and sparse K matrix in 
ir
uit



8 4. Experiment Results
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Figure 4.5: Eigenvalues for Full and 95% Sparse L Matri
es Modeling the TwoPower Planes in Fig. 4.1
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Figure 4.6: Eigenvalues for Full L matrix and 95% Sparse K Matrix Modeling theTwo Power Planes in Fig. 4.1simulations, we 
hoose a stru
ture presented in Fig. 8(b) of Krauter's paper [7℄. The 
ir
uit isillustrated in Fig. 4.7. We deliberately 
hose this 
ir
uit topology be
ause the 
urrent loopswere larger than that in Fig. 8(a) of Krauter's paper [7℄. Thus, it will be more obviouswhether or not the K-based method 
an 
apture enough mutual indu
tan
e 
oupling. Inthis stru
ture, ea
h 
ondu
tor has 
ross se
tion of 2x2 mm square, d1 = 1 
m, d2 = 4 
m,and d3 = 40 
m. Ea
h 
ondu
tor was broken into forty equal segments in order to 
reate alarge yet illustrative partial indu
tan
e matrix.To make the indu
tive e�e
ts dominate, Rs and Rt were set to 1 and 10 ohms, and a



5. Con
luding Remark 9slow rise time (10ns) was 
onsidered so that 
apa
itive 
oupling 
ould be ignored for thisexample.
Rs

Rt

d1

d

d

2

3Figure 4.7: Cir
uit Example same as Fig. 8 from Krauter's paper[7℄In our approa
h, the window size was assumed to in
lude at most 5 segments of ea
h
ondu
tor. The sparsity of the resulted K matrix is about 88%. The 
ir
uit simulationis performed by KSPICE [1℄, whi
h simulates RKC equivalent 
ir
uit, instead of RLC.The simulation results is shown in Fig. 4.8. We 
an see good agreement in terms of 
ir
uitsimulation results between the full L matrix and the sparse K matrix.
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Figure 4.8: Simulation Results for Cir
uit Example in Fig. 4.7
5 Con
luding RemarkPartial indu
tan
e are extremely useful in modeling 
ir
uit indu
tan
es when the indu
ed
urrent loops are unknown. Unfortunately, these matri
es are dense and defy 
onventionalsimpli�
ations (i.e. the smallest matrix 
annot be indis
riminately dis
arded).
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