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ABSTRACT

On-chip inductance extraction and analysis is becoming increasing critical. In-
ductance extraction can be difficult, cumbersome and impractical on large designs
as inductance depends on the current return path — which is typically unknown
prior to extracting and simulating the circuit model. In this paper, we propose a
new circuit element, K, to model inductance effects, at the same time being easier
to extract and analyze. K is defined as inverse of partial inductance matrix L, and
has locality and sparsity normally associated with a capacitance matrix. We pro-
pose to capture inductance effects by directly extracting and simulating K, instead
of partial inductance, leading to much more efficient procedure which is amenable
to full chip extraction. This proposed approach has been verified through several
simulation results. Physical interpretation, proof that K is positive definite and
modifications to circuit simulation to handle K are presented in [1].

Keywords: interconnect modeling, inductance extraction, K-based method



1. Introduction 1
1 Introduction

Increasing clock speeds, die sizes, and power dissipations have driven VLSI manufactur-
ers to abandon the simple scaling approach of interconnect wiring. Instead, they employ a
hierarchy of metal wiring levels. Thinner wiring levels are used at the circuit level where
density is required, and thicker layers at the top or global levels in order to route low-skew
clock trees, low-loss power distribution buses, and the fastest signal interconnects. This
trend, coupled with the recent introduction of copper wiring (because its resistivity is ap-
proximately half that of aluminum wiring) has made on-chip inductance modeling necessary
for clocks and the fastest signal interconnects.

Inductance extraction is difficult because mutual inductance depends on the current
return path  which is unknown prior to extracting and simulating a circuit model. Rosa
introduced the concept of partial inductances to avoid this difficulty by assuming that each
segment has a return current at infinity [2]. Ruehli introduced partial inductance to modern
ICs and proposed the PEEC (Partial Equivalent Element Circuits) model to handle general
three dimensional interconnects [3, 4]. Kamon, et al more recently developed algorithms,
FastHenry [5], to solve for the effective inductance from the partial inductances with multi-
pole acceleration.

Nonetheless, the partial inductance approach, which assigns portions of the loop induc-
tances to segments along the loop, results in a large, densely-coupled network representation,
which makes subsequent circuit simulation practical only for small examples. Moreover,
unlike capacitance matrices which can be truncated to represent only localized couplings,
simply discarding faraway mutual inductances can result in an unstable equivalent circuit
model (positive poles) [6].

As an alternative to simple truncation, a shift-truncate potential method was proposed
by Krauter, et al [7, 6]. This shift-truncate potential method assumes that the segment
currents return at a finite radius rg, instead of infinity. Therefore, segments spaced more
than ry apart have no inductive coupling. This technique can guarantee to generate positive
definite sparse approximations of the original partial inductance matrix. Nevertheless, to
determine a proper value of ry to ensure a desired accuracy will involve complicated schemes
and iterations. Moreover, this approach does not work well for long wires. Shepard, et al
proposed the concept of “return-limited loop inductance” to sparsify the partial inductance
matrix [8]. It is based on the assumption that the currents of signal lines return within the
region enclosed by the nearest same-direction power-ground lines. However, this may not
be true when power-ground lines are of same order of dimensions as signal lines. Recently,
Lin developed 2x mutual inductance screening rule [9], which is basically discarding far
away mutual partial inductance. Therefore, this screening rule can not guarantee positive
semidefinite as discussed in [6].

Thus, unlike that in capacitance extraction, only the closest neighbor conductors need
to be considered, in inductance extraction, a large number of conductors are involved. So
it’s almost impossible to construct libraries or analytical formulas directly for inductance
extraction like what people did for capacitance extraction.

However, we noticed that although C matrix is sparse, the inverse of C is dense. We
speculated that if L is dense, then the inverse of L may be sparse. In this paper, we introduce
a new circuit element to represent inductance effect, while still preserve the C-like locality.
This new circuit element, K, is basically the inverse of partial inductance.
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Therefore, we proposed to capture on-chip inductance effect by directly extracting
and simulating K, instead of partial inductance. Since K has C-like locality, we only
need to consider a small number of neighbors. As the result, the K matrix for circuit
simulation is very sparse. Thus it can save a great amount of CPU time and memory usage
when capturing on-chip inductance effect. Moreover, we can further construct libraries or
analytical formulas for K, which will enable this K-based method to be a practical one
to predict and capture inductance effect for the whole chip. This new concept has been
verified by the simulation results of practical examples.

2 Partial Inductance

Since our proposed K is defined as the inverse of the partial inductance, we begin with
a brief review of partial inductance.

It’s well known that inductance is a property of closed loops. Since for on-chip intercon-
nects, the induced current return paths are unknown, the prevailing inductance models are
built on partial inductance concepts. Partial inductance are best understood in terms of
the normalized magnetic vector potential drop along a conductor segment due to current in
that, or another segment. Consider the two conductor segments, ¢+ and 7, shown in Fig. 2.1.
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Figure 2.1: Partial inductance associated with magnetic vector potential drop
along the conductor segments. Both segment loops are assumed to close at infinity.

The partial inductance L;; between segment ¢ and j is given by

. [ Ju Jy, A - dli da
I

Lij = (2.1)

where A;; is the magnetic vector potential along segment ¢ due to the current /; in segment

J. Segment i has a cross section a;. In magneto-statics, the relationship between the
magnetic vector potential A;; and the current I; is given by

Ay = 47% l / /l oy da]] (2.2)

where r;; is the geometric distance between two points in segment 4 and j.
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Substitute Eq. (2.2) into Eq. (2.1), we can get
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The partial inductance matrix for a set of n conductors is a n X n real symmetric matrix.
The corresponding linear system is given by
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From Eq. (2.3), we can see that the partial inductance L;; only depends on the relative
position and length of segment 7 and j, and is independent on the existence of other
conductors. That is to say, the existence of other conductors has no shielding effect on
the inductive coupling between segment ¢ and j, under this partial inductance definition.
Furthermore, since the integral kernel of L;; is 7;;, the off-diagonal elements in the partial
inductance matrix decrease very slowly (at the order of log r;;) with the increase of spacing
rij. Because of this long range inductive coupling effect for partial inductance of on-chip
wires, capturing inductive couplings becomes much more difficult than capturing capacitive
couplings, which is known to be local. Moreover, it is understood that making the matrix
sparse by merely discarding the smallest terms can render the matrix indefinite and thereby
introduce positive pole(s) in subsequent circuit simulations.

3 Definition of New Circuit Element K

[K] is defined as the inverse of partial inductance matrix [L].

(K] =[] (3.1)

This definition originated from the well known relationship between capacitance and
inductance for transmission line structures,

[Lioop] = 110€0[Co] " (3.2)

where € and po are permittivity and permeability in free space, respectively. [Cy] is the
capacitance matrix which would result if all dielectric layers were replaced by free space.
This relationship inspired us that for structures other than transmission lines, although
the inverted inductance matrix, [K] (or [L]!), is not proportional to capacitance matrix,
[Co], [K] may still have similar local property as [Cy]. If this is true, then we can apply K
extraction locally, and derive RKC' equivalent circuit models, instead of RLC models to
modeling the inductance effect.

Here, we should emphasis that [L;,,,] have complete different meaning with [L]. The
element in [Ljo4,] is loop inductance, and it was calculated with a pre-defined ground return
path. That is to say, you can only get an (n — 1) X (n — 1) [Lj4ep) matrix for an n conductor
system. While the element in L matrix is partial inductance, and it was assume all current
return in the infinity. For an n conductor system, you can get an n X n L matrix. Therefore,
K matrix has nothing to do with C' matrix, although, K has same locality like C.
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The following example demonstrate the locality of K matrix. Consider a layout example
with five parallel buses, shown in Fig. 3.1. The length of all buses is 20 pm, the cross section
is 2x2 pm, and the spacing between the buses is 5 pm.
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Figure 3.1: Layout Example with 5 Parallel Buses

We calculated the partial inductance matrix, L, using FastHenry [5],

114 426 2.54 1.79 1.38
426 114 426 254 1.79
[L]=| 254 426 114 4.26 2.54 pH, (3.3)
1.79 254 4.26 114 4.26
1.38 1.79 254 426 114

and then inverted L to get K matrix.

103  —341 -7.80 -4.31 -3.76
~34.1 114 316 —6.67 —4.31

[K]=| -780 —-31.6 115 -31.6 -7.80 | x 10°H ! (3.4)
431 —6.67 -31.6 114 -34.1
—-3.76 —4.31 -7.80 —34.1 103

From Eq. (3.3) and Eq. (3.4), we can see that the partial mutual inductance Ls; is 123
or 12.1% of the partial self inductance L1, while |Kx| is only 328 or 3.7% of the self term

103
Kll-

Meanwhile, we also calculated the capacitance matrix of the above structure shown in
Fig. 3.1 using FastCap [10].

956  —202 —-43.8 -23.5 -20.9
—202 631 —187 —37.0 —-23.5
[C]=| —43.8 —187 634 —187 —43.9 pF (3.5)
—235 370 187 631 —202
—-20.9 -235 —-439 =202 555

It can be observed the amazing similarity of the decreasing trend of the off-diagonal
elements in both K and C matrix. For example, the absolute value of mutual capacitance

|C51] is about % or 3.8% of the self capacitance Cyy.
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That is to say, the off-diagonal elements in K matrix decrease faster than that of the
partial inductance matrix, and at a similar speed as that in capacitance matrix, which we
call K matrix has C-like locality. The physical explanation of this locality for K matrix is
provided in [1]. Since K has C-like locality, we only need to consider a small number of
conductors enclosed in small window when extracting K. Our approach can be summarized
as follows.

e Calculate the partial inductance matrix, L, of a small structure which is enclosed in
a small window.

e Calculate the small K matrix by inverting the corresponding L matrix.

e Compose the big K, matrix by the column in each small K matrix, which is corre-
sponding to the aggressor, like what people do in capacitance extraction.

e Simulate the subsequent RKC' equivalent circuit.

Therefore, for a large system, this approach will generate a very sparse system matrix in
later circuit simulation. Thus it can save a great amount of CPU time and memory usage
when capturing on-chip inductance effect.

4 Experiment Results

Consider the two power planes depicted in Fig.4.1. This is the same example presented
in Fig.5 of [7]. When power plane inductance and K matrix are modeled, power planes
such as these are meshed into separate x and y conductor segments. (Even solid power
planes are meshed into separate z and y conductors.) Because orthogonal conductors do
not couple magnetically, the resulting inductance matrix and K matrix are block diagonal
matrices.

plane thickness = 0.025 mm

7 10cm

y 10cm l

0.1 mm

|

Figure 4.1: Two Power Planes for Inductance Effect Modeling

To compare our approach with the conventional and the shift-truncate method in [7],
we calculated the eigenvalues of partial inductance matrix in the conventional and the
shift-truncate method by strictly following Krauter’s paper [7].

That is, for the two planes depicted in Fig.4.1, we created, using FastHenry [5], a
partial inductance matrix to model the magnetic coupling in the x direction. Each plane
was meshed into 100 equal 10 mm square segments along the z direction, and uniform
current flow was assumed along all segments (FastHenry parameters nhinc and nwinc were
set to one).
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Firstly, to visualize the decrease speed of the off-diagonal elements in L matrix and K
matrix, we plotted the normalized mutual couplings between the left-bottom most segment
and other segments in the same power plane with respect to the self term of the left-bottom
most segment for both L and K matrix, depicted in Fig.4.2 and Fig. 4.3, respectively. We
observed that the off-diagonal elements in K matrix decrease much faster than that of the
partial inductance matrix, which again illustrated the locality of K matrix compared to L
matrix. Since K has C-like locality, we only need to consider a small number of conductors
enclosed in small window when extracting K.

i VS L%
)
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o

Normalized mutual L.

Figure 4.2: Normalized mutual couplings between the left-bottom most segment
and other segments in the same power plane with respect to the self term of the
left-bottom most segment for L matrix

Secondly, from this FastHenry partial inductance matrix, we created two sparse approx-
imations of the full matrix. The first approximation was formed using the shift-truncate
procedure. That is, we set the current return radius ry equal to 12 mm, and when the
result was negative, the matrix term was set to zero. The second sparse approximation
was formed by discarding all mutual inductances less than 0.75 nH. In both cases, 38,160
of the total 40,000 matrix terms were set to zero, (i.e. both approximations were > 95%
sparse). Finally, the eigenvalues of the full matrix and the two sparse approximations were
computed. The 200 eigenvalues for each matrix are plotted in Fig. 4.5.

In our K-based approach, we calculated the K matrix of the conductor segments
included in the small window as those included in the current return shell in shift-truncate
method to ensure same sparsity. The projection on z-y coordinate of the small representive
structure inside the window is shown in Fig.4.4.

Therefore, the whole K system has exactly same sparsity (> 95%) as those in shift-
truncate and truncation only method. Since K matrix is the inverse of L matrix, the
eigenvalues of K matrix should also be the inverse of those of L matrix. For better
illustration, we plotted the inverse of K’s eigenvalues in Fig. 4.6.
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Figure 4.3: Normalized mutual couplings between the left-bottom most segment
and other segments in the same power plane with respect to the self term of the
left-bottom most segment for K matrix
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Figure 4.4: The Representive Structure in Modeling the Two Power Planes

In observing Fig. 4.5, note that the approach of simply discarding the smallest terms in
the inductance matrix, yields both an inaccurate and an unstable approximation as it fails
to match the eigenvalues of the full matrix at both extremes and in the middle. Although
the smallest 100 eigenvalues of the shift-truncate method match those of the full L matrix,
and shows the same discontinuous jump between the 100" and 101%* eigenvalue, there are
significant difference for larger eigenvalues between the shift-truncate method and the full
matrix.

Fig. 4.6 shows the excellent match of the eigenvalues between sparse K matrix and full
L matrix.

Finally, to compare the effects of full inductance matrix and sparse K matrix in circuit
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Figure 4.5: Eigenvalues for Full and 95% Sparse L Matrices Modeling the Two
Power Planes in Fig. 4.1
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Figure 4.6: Eigenvalues for Full L matrix and 95% Sparse K Matrix Modeling the
Two Power Planes in Fig. 4.1

simulations, we choose a structure presented in Fig. 8(b) of Krauter’s paper [7]. The circuit is
illustrated in Fig. 4.7. We deliberately chose this circuit topology because the current loops
were larger than that in Fig.8(a) of Krauter’s paper [7]. Thus, it will be more obvious
whether or not the K-based method can capture enough mutual inductance coupling. In
this structure, each conductor has cross section of 2x2 mm square, d; = 1 cm, dy = 4 cm,
and d3z = 40 cm. Each conductor was broken into forty equal segments in order to create a
large yet illustrative partial inductance matrix.

To make the inductive effects dominate, R; and R; were set to 1 and 10 ohms, and a
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slow rise time (10ns) was considered so that capacitive coupling could be ignored for this

example.

Figure 4.7: Circuit Example same as Fig. 8 from Krauter’s paper|[7]

In our approach, the window size was assumed to include at most 5 segments of each
conductor. The sparsity of the resulted K matrix is about 88%. The circuit simulation
is performed by KSPICE [1], which simulates RKC equivalent circuit, instead of RLC.
The simulation results is shown in Fig.4.8. We can see good agreement in terms of circuit
simulation results between the full L matrix and the sparse K matrix.
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Simulation results of V_34 for full matrix and sparse matrices modeling the circuit with 4 conductors
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Figure 4.8: Simulation Results for Circuit Example in Fig. 4.7

5 Concluding Remark

Partial inductance are extremely useful in modeling circuit inductances when the induced
current loops are unknown. Unfortunately, these matrices are dense and defy conventional
simplifications (i.e. the smallest matrix cannot be indiscriminately discarded).
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In this paper, we introduce a new circuit element, K, as the inverse of partial inductance.
We found out that K is capable of capturing inductance effect, while still preserve the C-like
locality. Since K has C-like locality, we only need to consider a small number of neighbors.
Therefore, we proposed to capture on-chip inductance effect by directly extracting and
simulating K, instead of partial inductance. As the result, the K matrix for circuit
simulation is very sparse. Thus it can save a great amount of CPU time and memory
usage when capturing on-chip inductance effect. This new concept has been verified by
the simulation results of practical examples, and showed remarkable accuracy over other
sparsification techniques, such as the shift-truncate method and truncation only method.

We further understand the physical meaning of K and the reason that K has local
property [1]. Most importantly, it can be proved that the sparse system matrix constructed
by ignoring far away mutual K is positive definite [1].

Therefore, we can later construct libraries or analytical formulas for K, which will enable
this K-based method to be a practical one to predict and capture inductance effect for the
whole chip.
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