Unified Arbitrary Rectilinear Block
Packing and Soft Block Packing
Based on Sequence Pair

Huaizhi Wu
Wayne Dai

UCSC-CRL-00-07
May 4, 2000

Jack Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064 USA

ABSTRACT

To the best of our knowledge, this is the first algorithm ungiarbitrary rectilinear
block packing and soft block packing. Furthermore, this algorithm baraiibitrary
convex or concave rectilinear block packing in the most efiicway compared to
other sequence pair-based approaches. At the same time, th¢haigoain handle
rectangle soft block effectively. The concept of non-redundantreamisgraph together
with its algorithms play critical role in unifying the attairy rectilinear block packing
and soft block packing. This general block packing tool buitds foundation for
floorplanning with IP reuse. The experimental results demongtaetefficiency and
effectiveness of this general block packing.

Keywords: floorplan, block packing, soft block, rectilinear block, seqeaepair, non-
redundant constraint graph, related-vertics-grouped constraint giegible slack,
bottleneck path, simulated annealing.

. Introduction

Due to the rapid scaling of circuit size and increasing complexXiiC design, design reuse has
become of great interest of the design community. As thedékblto be reused are not often of
rectangle shapes, good packing algorithm for floorplans with anpitegtilinear (hard) blocks is
desired. On the other hand, as many blocks have not been detailstipedein the early
floorplanning stage, shape flexibility is to be exploited t@rowve the floorplanning quality, and
good algorithm for floorplans with soft (rectangle) block is dedsal. Several works have been
done in each of the two areas ([1], [2], [3] for arbitrargtitenear block packing; [4], [5] for soft
block packing with general non-slicing structure), but no methodnacmdating both of the two
aspects have been proposed so far. By addressing this problempafkis makes the following
major contributions: (1) It proposes a new technique for evaluagiggesice pair; (2) It re-designs
the rectilinear block packing algorithm and soft block packilygrithm and unifies them together,
based on some existing techniques and more importantly, severalolbssvvations of the
rectilinear/soft block packing properties; (3) It extends akisting stochastic moves to be more
globally.

The following of this paper is organized as follows: Sectidorigfly introduces the sequence pair
structure. Section Il describes in details the new method of araduSP. Section IV and section V
describe the rectilinear block packing and soft block pac&iggrithms, respectively. Section VI
describes the extended stochastic moves. Section VIl preberggpgerimental results and section
IX gives some concluding remarks.

II. Sequence Pair (SP) Sructure

A sequence pair for a set pfrectangle blocks is a pair of permutations of thgdock names [6].
For example,dbaefc,abcdgik asequence pair of the block sath, c, d, e }f

The topological constraint between every pair of blocksis defined as follows:

H-constraint: (..X..y.., .x..y.)O xis left ofy

V-constraint: (..y..X.., .X..y..) O xis belowy

Given a sequence pair, a compacted packing of the blocks cartaiedtby using the directed
acyclic H/V-constraint graph&s, / G, which are constructed faithfully to the H/V-constraint
described above. That is to say, for every pair of blacksif x is left ofy, we add an edge,(y) to
G, if x is belowy, we add an edge,(y) to G,. Moreover, there is a soureg/ s, connected to each
leftmost / lowest block and a sik/ t, connected to each rightmost / upmost bloctirt G,. Fig 1
shows an example. The weight of the each vertexgin/ G, is the width / height of the
corresponding block. The X/Y-coordinate of each block can berdeted by the length of the
longest path from the soursg/ s, to the corresponding vertex @, / G,.

(@) Gy, (b)Gy

Fig 1 Constraint Graphs of Sequence Pair

[11. Non-redundant Constraint Graph

Sequence Pair defines a “left/right” or “below/above” relatbetween every pair of blocks. So the
union of the complete horizontal constraint gr&phand the complete vertical constraint graah
hasC(n, 2) = n(n-1)/2edges. A quick glance at the graphs in Fig 1 shows that soree @g. &,

f) in Gy, (a, d) in G,) are redundant. In general, a horizontal edge between twossgrandv; doe
not need to be present if there is another path fraandyv; passing one or more other vertics. And
we define such edge asdundant edgeSpecifically, if there is an edge fromto v, and fromv to

v;, then the left/right constraint betweerandy, is implicitly endured by the transition. So the edge
(vi, v;) can be removed without changing any constraint defined by th& @mistraint graph with
all redundant edges removed is callatba-redundant constraint graph

As the time of calculating the longest path for each blodinéar to the number of edges in the
graph, removing those redundant edges will result in a signifreaiiction of time in evaluating a
SP. Next we will show how to build such non-redundant constraint @apindG, from a given
SP in the time linear to the total number of edges,irandG, .

Given a SPI(,, I')), we will build G, andG,” simultaneously by finding all the immediate left-
predecessors and below-predecessors for each block. As we krimackifa is left of or below
block b, a precedes in I'_. Therefore, for each block, we only need to consider the blocks
precedingd in I'_. And naturally we should process all the blocks in the ordendiyd _. Without
loss of generality, we assume that= (a; & ... &). Then the algorithm goes as follows:

First we see how to get a pair of redundancy-reduced constp@iph G, and G, which are
equivalent td5, andG, in terms of the topological constraints they define.

(1) @& has no predecessor@ or G’

(2) Suppose we are done for ajl(k<i). Then fora;:

i. letj =i-1;

ii. compard . (&) (the index of blocla inT';) andr . (&) to decide whethes; is left of or below
a;, and add an edgey(a) to G, or G, accordingly. Supposg is left of / below a Then we check
whetherg; has any predecessor in curr@t / Gy, If not, stops; otherwise, we pick up its below-
predecessor / left-predecessor with the highest indEx, ia. Letj = k, goto ii again.

Fig 2 Algorithm RRCG

Lemma 1 The constraint grapls, and G, output by algorithm RRCG is equivalent to the SP
which it is built from in terms of topological constraints.

Proof As G, andG, are subsets @&, andG,, respectivelyG, andG, do not alter any topological
constraint defined by the corresponding SP. If we can proveGhaind G, do not reduce any
topological constraint defined by the corresponding SP eitheprdud is obviously done. For the
latter, we only need to show that for any blagkit's reachable from any of the blocks preceding it
in I_in eitherG, or G,, which means the topological relation between any pair of blisciven

by G, andG, .

Without loss of generality, we assume tlaat is left of a, as shown in Fig 3(a). All blocks
precedinga; in ['_ are either in region | or in region Il of the constraint grafé.all blocks in
region | can reach.ain Gy, they can also reachia G, through the edgea(, &). Let us consider
blocks in region Il. Ifa,; has no predecessor @, then region Il contains no block, we are done.
Otherwise, lety be the predessor af4 in G, with largest index irf _. a is either left of or below
a.

(i)

(ii)

4

a. is left of g : As shown in Fig 3(b), there is an edgg, &) in G, according to the
algorithm RRCG. All blocks in region ll(a) can reaghin Gy, so they can also reaehin
G, through the edgeaf, a). Region ll(b) must contain no block, otherwigecan not be
the predessor of, in G, with largest index i _. We are left with Region 1i(c). The
problem is reduced to a smaller size than that in Fig 3(a).

a is belowa, : As shown in Fig 3(c), there is an edgg, @) in G, according to the
algorithm RRCG. Again, region II(b) contains no block. All bloakseagion ll(c) can reach
a, in G,, so they can also reaehthrough the edgea{, a). Now for region li(a). Ifa, has
no predecessor i@, then region ll(a) contains no block, we are done. Otherwisa, het
the predecessor af in G, with largest index iff -, as shown in Fig 3(d). Again, is either
left of or belowa,. For the former case, we are left with region ll(a)-1;tfa latter case
case, we are left with region ll(a)-2. In both case the prolderaduced to a smaller size
than that in Fig 3(c).

Therefore by deduction we can prove that any block preceding &latk - can reach it either by a
horizontal path irG, or by a vertical path i, "

ion | gi-1
‘ a1 _ region | & a
region | I\ > g :
: &
,ak region H(a) .
region Il region li(c)region li(b)
(@)) (b
ai-
a) i a
region | 'H/,' & region | 'E\ /I
AN/ N7
\ 7 ~av
& a
a(.
region li(a) . region 1i(2)-2
region)" '®)"region li@)-1, . 1 segion (o)

(© d)(

Fig 3 lllustration of Proof for Lemma 1 (A solichk represents a horizontal
edge and a dashed line represents a vertical edge)

By the algorithm RRCG, we can obtain a pair of graBhsandG, equivalent to but smaller than
Gh andG,. But it may still contain some redundant edges in the sla@en in Fig 4. BlockK is left
of block h; block ¢ is f's rightmost below-predecessor @, andc is belowh; b is ¢'s upmost left-
predecessor iB,. As b may be left of, in which casé can reacth through the path frorb to f
and the the edgé,), so edgelf, h) may be a redundant edge.

Fig 4 lllustration of Selecting Predecessors

To avoid adding an edgb, () in G, in such case, we modify the algorithm RRCG and get the non-
redundant constraint graj@, andG, as follows:

(1) a, has no predecessor®, orG,;

(2) Suppose we are done for all(k<i). Fora;:

i. letj =i-1, last_dir = no_def, last_blk = no_def;

ii. comparel . (&) andrl'. (&) to decide whethes, is left of or belowa;, add an edgegf, &) to
G, orG,, and record the direction of this iteration as ‘h’ or ‘v’ actingly. If the direction of last
iteration is not ‘no_def and is different from the direction bfstiteration, then modify the
reference-block to be treg of last iteration. Supposg is left of/belowa;. Then we check whether
a has any predecessor in curréii/ G, which is not below/left-of the reference-block (if the
reference-block is no_def, we just ignore this requirementjotif stops; otherwise, we pick up the
one among them with the highest indeX ina,. Letj = k, goto ii again.

Fig 5 Algorithm NRCG

Lemma2 The constraint grapks, and G, output by algorithm NRCG is equivalent to the SP
which it is built from in terms of topological constraints.

This is easy to prove following the line of thought in the prodferhma 1. The details are omitted
here due to the limit of space.

L emma3 Algorithm NRCG does not produce any redundant edge in &iher G,

Proof Take the example in Fig 4. Suppoge= h, & = ¢ now and blocka is blockc's left-
predecessor i, which is not left-of (i.e. is below) blodkwith the largest index ifi.. Suppose
no redundant edge has been produced so far, then theagtlyes (hot redundant either, in either of
the two cases:

(i) ais left of h. If edge 4, h) is redundant irG,,’, there must be another blogksuch that the
path froma to g and the path frong to h already exist irG, . As the reference blodkis the last
block before changing direction again, all blocks visited df{ep till c) are belowh. So blockg
can not be any of theng;is notf either, fora is belowf. Sog must have higher index in. than f,
and be either right of or abo¥eg can not be right, otherwise f, h) is redundantg can not be
abovef either, otherwise is abovea the same ak So blockg can not exist, and edge, f) is not
redundant.

(i) ais belowh. If edge &, h) is redundant irG,’, there must be another blogksuch that the
path froma to g and the path frong to h already exist irG,". g is notc, for ¢ is right ofa. Sog
must have higher index ih- thanc, and be either right of or above g can not be above,
otherwise ¢, h) is redundantg can not be right of either, otherwisey is right ofa the same as.
So blockg can not exist, and edga, f) is not redundant.

6

Lemma 4 Algorithm NRCG outputs, andG, in time linear to &, | + E, |).

Proof The main operations in this algorithm are comparisons of twdkslaudics inl", to decide
their topological relation. Each comparison belongs to eithenetwo classes: (1) It leads to an
edge to be added @, or G, ; (2) It is used in selecting a proper left/below-predeceskarblock
to continue the process, but does not yield an ed@g ior G, . The total number of comparisons
in the ' class is obviously the total number of edge§inandG, . It can be proved that the total
number of comparisons in th&'2lass is no more than the total number of edg&, imndG,’, for
there is an injection from the set of comparisons in fielass to the set of edges@ andG, .
The detailed proof is omitted here due to the limit of space.

Apart from reducing the evaluation time remarkably, the m@nifscance of this approach lies in
that it makes it very convenient for building the relatedties-grouped constraint graph in the
following rectilinear block packing algorithm and finding a bertéck path in the following soft
block packing algorithm (both of which are critical stepsthie corresponding algorithms) and
therefore serves as the basis of the whole unified rectilse#ablock packing algorithm.

For convenience we will refer to the non-redundant constraint g@ptendG, asG, andG, in
the following sections.

V. Efficient Arbitrary Rectilinear Block (Convex & Concave) Packing

1. Fundamentals of rectilinear block packing

Up to the present the rectilinear block packing problem i# détn mostly by partitioning each
rectilinear blockA into a set of rectangle sub-blocks, representing them indivig@adtl packing
the mixture of these rectangle sub-blocks and original mglgeblocks by some existing rectangle
packing algorithms. Fig 6(a) and Fig 6(b) give examples of twotd partitioning and vertical
partitioning, respectively. A representation of a rectilinpacking by SP is therefore a pair of
permutations of all the unit block (rectangle sub-block or original mgéteblock) names.

2N
& & o
& %

(@) (b)

Fig 6 H/V-partition of A Rectilinear Block

Certain measures need to be taken to guarantee the rglaBiteons of sub-blocks of a same
rectilinear block so that this rectilinear block can keepiiiginal shape after the packing process (a
SP satisfying this need is called a feasible SP). A mastbleo measure is to apply the three
necessary sufficient conditions of the feasibility of SP, as propondél

Condition-1: For any H-partitioned / V-partitioned blo#k the permutation pair ¢k equals the H-
Pair / V-Pair ofA.

Condition-2: Any two unit blocksa;, a; [J A are not interrupted by a unit blockd A.

Condition-3: Any two pairs of unit blocks;, & O A andb,, by 0 B, A% B, (&, &) separatesby, b)

in the first or second sequence.

Where the unit block relations “interrupt” and “separate” arengefias:

« Given three unit blocks;, & [0 Aandc O A, if c is betweers; andg; in both sequences, e.g; ¢
a;, g C &), we callcinterruptsa, anda;.

* Given two pairs of unit blocka;, & 00 A andb,, by O B, A# B, if in the Fyond sequences; .. g; ..
b,..bgorb,..by..a ..a, we @,) and by, by) asseparatesf each other in the'12™ sequence.

2. Packing rectilinear blocks based on a related-vertics-grouped constraint graph

In SP-based rectilinear block packing, as SP only define®pwdogical constraints among all the
unit blocks (including both original rectangle blocks and rectasgiteblocks of rectilinear blocks),
the constraint graph built from SP doesn’t contain information aboartthe sub-blocks of a same
rectilinear block should be placed relative to each othesréfare the packing obtained from such
constraint graph needs a post-process alignment to adjust themmsitithe unit blocks such that
the relative positions of each rectilinear block’'s sub-bloossform to its initial shape and the
topological constraints among all unit blocks are preservedh Saparate compaction and
alignment makes it difficult for shape optimization of floorplammsntaining rectilinear blocks. In
the following we will show how to bypass this difficulty by axneethod of rectilinear packing,
where we construct a pair of smaller sized non-redundant comngjraphsG, andG, from the
original non-redundant constraint grapl$%, and G,, and calculate the position of each
rectangle/rectilinear block based on ti8s and G,. G, and G, not only give the topological
constraints among all the unit blocks, but also implies theivelabsitions of the sub-blocks of a
same rectilinear block.

We getG,, andG, by grouping all vertics i®, andG, representing sub-blocks of a same rectilinear
block together and representing the whole rectilinear blocla ksingle vertex inG, and G,.
Therefore we call themrelated-vertics-grouped constraint grapfghe edges G, will be obtained

in the following way:

For each edgev, vy) in Gy,

(i) If bothv, and v, represent original rectangle blockandb, we add an edge,(b) in G, and
the weight remains the same;

(i) If v, represents a sub-bloekof rectilinear blockA, v, represents an original rectangle block
b, we add an edgeA(b) in G, if it's not present inG, yet, and the weight islx(a)+w(a;);
otherwise, we update the weight of the existing edge milx(old_weight, dx(aw(a;)). Where
dx(a) is the horizontal distance from the bottom-left cornep,ab the bottom-left corner of the
bounding box oA under current orientation &f, w(g) is the width ofg;;

(i) If v, represents represents an original rectangle blmck, represents a sub-block of
rectilinear blockA, we add an edgeb,(A) in G, if it's not present inG, yet, and the weight is
w(b)-dx(a); otherwise, we update the weight of the existing edge witix(old_weight,
w(b)-dx(a));

(iv) If v, represents a sub-bloek of rectilinear blockA, v, represents a sub-blodk of another
rectilinear blockB, we add an edgeA(B) in G, if it’s not present inG, yet, and the weight is
dx(a)+w(a;)-dx(h); otherwise, we update the weight of the existing edge mib(old_weight,
dx(@)+w(a;) -dx(b));

(v) If v, andy, represent two sub-blocks anda; of a same rectilinear blook, we add an edge
(A, A) in Gy, if i it's not present inG,, yet and the weighdx(a)+w(a;)-dx(g) is not zero.

Then, we add an edge from the horizostasource to every block i, and the weight is zero.
This is not significant in rectangle block packing, but iitdispensable here. It is to prevent the
coordinate of any block from being negative. Look at the exanmole 1 Fig 7. Asb is left of a,,

b is left of A in G,. Thereforeb’s x-coordinate is calculated befofe As b's x-coordinate is zero
andA’s relative position td is negative A's x-coordinate is going to be negative without an edge
(s, A) in Gy, with weight zero.

4 a1
! 22 . =2

Fig 7 lllustration of Why Edges Connected to Souscieeded

The edges B, can be obtained similarly.

After G, and G, are drawn, we derive corresponding horizontal and vertical topmalogrders
from them, and then we can get the location of each block (eilstangle or rectilinear) by
applying the longest path algorithm@ andG, in such orders.

Lemma 5 The algorithm described above can achieve simultaneous coampaatl alignment for
rectilinear block packing.

Proof As we treat each rectilinear block as a whole, obviouslyrdleive positions among sub-
blocks of a same rectilinear block have been taken care of.I&tprove thaiG, andG, have
preserved the topological constraints containedsjnand G,. There must be no doubt about
operation (i). Operations (ii), (iii) and (iv) are illustrated in Fig B (B) and (c), respectively. In (a),
there is an edgey, b) in Gy, which mean® must be right of;. Therefore the bottom-left corner of
b must be right of the bottom-left cornerafby the amount of at leagt(a;). This is equivalent to
the constraint that the bottom-left corner lfmust be right of the bottom-left corner of the
rectilinear blockA by the amount of at leadk(a)+w(a;), for the bottom-left corner of every sub-
block & to the bottom-left corner of the whole rectilinear bloclaliways a constarix(a). In (b),
there is an edgd(ay) in Gy, which meang, must be right ob. Therefore the bottom-left corner of
a, must be right of the bottom-left corner lmby the amount of at least(b). This is equivalent to
the constraint that the bottom-left corner of the rectilinear bfoolust be “right of” the bottom-left
corner of blockb by the amount of at least(b)-dx(&) for the reason as stated for Fig 8(a). Note
that this value may be negative, which means rectilineakbdocan be left of blockb by the
amount of at most(b)-dx(a)|. Combining the two facts together, we can easily defer the farmul
in (iv). And case (v) is similar to (iv). The operation in (vugeful only for checking the feasibility
of the corresponding SP. If the SP is feasible, no edge isladdg), otherwise, a positive self-
circle is added indicating the infeasibility of the SP.

And once we have this pair of related-vertics-grouped constgaaph G, and G,, and the
corresponding horizontal and vertical topological orders, we can #épplpngest path algorithm to
them just the same as in rectangle block packing, and getx/theoordinate of each
rectilinear/rectangle block accordingly.

This constraint graph can also easily tell whether the correspondingiseqair is feasible:

Lemma 6 A sequence pair is feasible if and only if its correspondeigted-vertics-grouped
constraint graph6,, andG, contain no positive circle.

The detailed proof is omitted here due to the limit of spabés [Emma is valid for the cases of
both convex and concave rectilinear block packing. For convex neetiliblock packing, it is
equivalent to the three necessary and sufficient conditions biwgh] as described in the previous
sub-section. Condition-1 is satisfied if and only if eiti@r or G, contains no self-circle.

Condition-2 and condition-3 are satisfied if and only if eitBgror G, contains no circle among
any two or more blocks.

a

[—_—
(yba aab) (ababaa) (ab ab,baba)

@) (b) ©

Fig 8 Simultaneous Compaction and Alignment

This rectilinear block packing approach is very critimathe unified rectilinear/soft block packing
system. Compared to the approach in [1], it achieves simultameoysaction and alignment, and
therefore solves the dilemma between post-alignment ofimeeti blocks and shape optimization
of soft blocks. Compared to the approach in [3], first, it deceed#se size of the problem by
reducing the total number of vertics in the constraint graphadsbé increasing the problem size
by increasing the total number of edges in the constraint gragbresin [3]. Second, and more
importantly, although [3] achieves simultaneous compaction andnadigt too, it still represents
the sub-blocks of a rectilinear block individually in the camistr graph; in contrast our approach
represents the rectilinear block as a whole by one vertexhanefore the rectilinear block can be
treated virtually as a rectangle block in the soft blpakking. This makes it very easy to integrate
rectilinear block packing with soft block packing.

V. Enhanced Soft Block Packing

1. Fundamentals of soft block packing

The soft block packing problem is to optimize packing topologyvel as the block shapes to
achieve minimum total packing area. The key issue is howttmize the block shapes for a given
topology. An attractive approach for this is proposed by [4],revliee block shapes are gradually
adjusted to reduce the overall height and overall width aligetatand monotonously for a given
topology. This strategy is illustrated by Fig 9.

A greedy algorithm is applied to perform each step of overajhheeduction and overall width
reduction based on a metric callgdck For the SP structure, the horizontal slack of a blmckn
be given as:

Slb :I(S\’th) _l(sn’vi)_l(vi’th) _W(b)

where s, andty, are the horizontal source and sink, respectively; \angl the vertex representing
block b inG;. A block whose horizontal / vertical slack is zero is caliegtitical / v-critical block.

The horizontal maximal slaci,” of a blockb can be obtained by increasing the heighb aftil it
becomes v-critical.

10

S

Fig 9 An Example of Reducing Overall Packing Height
Without Increasing Overall Packing Width

The following sufficient condition is used to meet the non-width-inereaguirement:

;Awb <sl(p,) 1)

where themaximal slack of a horizontal pathigpdefined as:

S|’(p) = min S|b'
bOp

And according to this sufficient condition (1), the horizontalrsetto-sink path to yield maximum
overall height reduction without overall width increase (denoted @leteck path) can be found as
a path with maximumsl (p,) , wherenum() denotes the number of blocks on the path.

num(p,)
Then the shape of each block on the bottleneck path will lestadj according to the following
formula:

w/h, @
z Wy /hn

b Opy,

Aw, =sl'(p,) >

The height of each block will be reduced by approximately equalatrand so does the overall
height.

The monotonous height reduction and width reduction will be carriedaleematively until no
further reduction can be made.

2.0Our algorithm

Our soft block packing follows the basic strategy presented4]. Yet we make certain
improvement and a very important enhancement as described in the following
Firstly, as we observed that among all blocks on a horizoathl| pnly those v-critical blocks are
critical to the reduction of the overall height, so we only adjus shapes of those v-critical blocks
and leave the non-v-critical blocks alone. Experiments prove thdbibg so we are able to obtain
a greater amount of height reduction in an iteration in most cases.
As the maximal slack of each v-critical block is the eaan its slack, the concept of maximal slack
is no longer needed here. Instead, as soft packing is usually undér esgect ratio constraint, we
introduce another metriieasible slacko reflect this constraint. The horizontal feasible slack of
blockb is:

sl; (b) = min(sl,, w,, (b) — w(b))

11

wherew(b) is the maximum width of the block which is imposed by the mininaspect ratio
constraintw(b)is the current width of the blodk

Accordingly we substitute formula (1) in the above for tbkofving sufficient condition of non-
width-increase:

bis v-critical

Sufficient Condition 1 ;AWb <sl, (p,) (3)
Pn

where thefeasible slack of a horizontal pathigdefined as:
sl, (p)= " sl; b)

Also accordingly we can find the bottleneck path as a path maximum s (p.) , wherenum(p)
nun(p,)
denotes the number of all v-critical blocks on the path.
Then we can adjust the shape of each v-critical block obdtikeneck according to the following
formula:
w,/h, (4)

b'is v-critical

zwb'/hn‘

b Opy

Aw, =l (p,) %

And we can carry out overall height reduction and overall widtluegon alternatively until no
further reduction can be made.

But something is missing here for both the initial algorithm tedimproved algorithm. Look at
the example in Fig 10 (Note that the sources and sinks ateedrhere). It can be observed that a
horizontal path (such ag,(d)) is not sure to intersect with a vertical path (suclfaa$, c)) on a
block. So not every horizontal source-to-sink path contains a bloakvery vertical longest path.
And therefore not every horizontal source-to-sink path is qualifiea lorizontal bottleneck path.
We will find out a condition for such qualification in the following.

If a horizontal source-to-sink pafh does not intersect with a vertical longest gatbn any block,
then there must be some edge (eegd)) onp, (e.g. €, d)) crossing some edge (e.y, €)) onp,
(e.g. b, ¢)) as shown in the example. We will show that in such case Hre only two possible
combinations how vertiosandd is located relative to vertidsandc.

Lemma 7 If a horizontal edgee{ d) crosses a vertical edgb,), thene, d can only have two
combinations of locations relative boc: (i) eis in (7) andd is in (6); (i) eis in (5) and is in (8).

Proof Firstly, neithere nord could be in region (1) or (2), otherwisg () could not have crossed
(b, ©);

Secondly, neithee nor d could be in region (9), otherwise there should not have been & edg
betweerb andc because any block in region (9) would malec] a redundant edge.

Thirdly, if eis in region (3)g is left of b andc, thend could only be in region (4), (6) or (8), for
otherwise ¢, d) could not have crossed,). But in any of the three casekis transitively right of

e through eitherb or ¢ and thereforeg, d) would have become redundant and could not have
existed. Therefore could not be in region (3); similarly d could not be in region (4);

Fourthly, ifeis in region (5), then could not be in region (6), otherwidds transitively right ofe
throughb and thereforeg d) could not have existed; similarlyéfis in region (7), thed could not

be in region (8).

12

For case (i) in lemma & is aboveb andd is belowc. As (b, c) is a v-critical edgeb’s lower
boundary must lie on the same horizontal line’'ssipper boundary. Therefoygaowe) = Y(Ruppe) =
Y(Gower) = Y(dippe), @ande andd can not have overlap in y-direction, as in the example below. (Note
thate andd is not considered as having overlap in y-directiagsifower boundary lies on the same
horizontal line agl's upper boundary). Similarly, arelandd can not have overlap in y-direction for
case (ii).

Thereby we can give a sufficient condition of a horizontal pathtersecting every vertical longest
path on a block:

Sufficient Condition 2 Every two adjacent blocks on a horizontal paiimust have overlap in y-
direction.

2
a1 & L Ofe
b (3)<(9)(9) < (4)
5) L1 (6
5 | T‘ ()(l)b()

(@ (b) (c)

Fig 10 Two Possible Combinations of Positions aidBle, d

Based on this sufficient condition, we can modify the algorittescribed above accordingly. First
we give two definitions: If there is an edgelf) in G, we say thaa is b's topological predecesspr
if a andb furthermore have overlap in y-direction, then we say thé& alsob’s geometrical
predecessor Then we make the following modifications: (1) Not only any blogkh no
topological predecessor/successor, but also any block with no geainptedecessor/successor,
could be the beginning/end of a bottleneck path. (2) For every blesicept the beginning of a
horizontal source-to-sink path, we calculatesik6s) and num(y) only based on its geometrical
predecessors, whevwgis the vertex representirgin the constraint graplsk(v) is the feasible slack
of the piece of path on the whole path from the beginning up to

VI. Searching The Solution Space by Global M oves

Based on the three necessary and sufficient conditions as describetidn B/-1, [1] defines three
kinds of stochastic moves and corresponding adaption procedure.

Rotation: randomly pick up a macro block (rectilinear or rectanéley {a; a, ... a,} and rotate it
by 90 in the clockwise direction. The sequence pair is accdydihgnged by switching unit block
a, with a1, 1 O [1, n], in T, (when changind\ from an H-partitioned orientation to a V-partitioned
orientation) or i - (when it is the other way round).

I.-mutation: randomly pick up two adjacent unit blocksdd A andb O B (A # B) in ', and
exchange them.

I _-mutation: randomly pick up two adjacent unit blocksO0 A andb O B (A # B) in I'_ and
exchange them.

These moves and adaption procedure defined by [1] are attramtigedption in the case concave
rectilinear blocks are not present, due to its quick and easytioperBherefore with the absence of

13

concave rectilinear blocks we would make our stochasticlsdnr following the same line as [1].

In [1], thel .-mutation and _-mutation are restricted to exchanging of blocks between two adjacent
blocks in eithef . or_. In our approach, we exted-mutation and _-mutation to exchanging of
blocks between two blocks in eitHer or '~ with any distance under certain restrictions.

I"~-mutation: randomly pick up two unit blocks O A andb [0 B (A # B) in ', such that no other
unit blocks belonging to the either A or B are in between. Exchaageb in I ..
I_-mutation: randomly pick up two unit blocka 00 A andb O B (A # B) in '~ such that no other
unit blocks belonging to the either A or B are in between. Exchaageb in I"_.

Like in [1], thel .-mutationl’ .-mutation may result in the violation of Condition-2 or Condition-3
defined by [1] under certain circumstances. So daemutation /I'_--mutation will be followed by

a check of feasibility of the resultant SP and an adaptidmeicdase of infeasibility. The details are
omitted here due to the limit of space.

VII. Assembly Everything Together

Because all the topological constraints and relative position caristhaive been nicely captured in
the related-vertics-grouped constraint gré&@handG,, and every rectilinear block is represented
as one vertex, just as if it was a rectangle block. Styingrout soft block packing on floorplans
with rectilinear blocks will not be any more complicated tloanthose without rectilinear blocks.
We only need to set the rectilinear blocks’ horizontal/gattfeasible slack to zero to indicate they
are hard blocks and can then perform the soft block packing as if nonesntitilock is present.

The whole algorithm uses simulated annealing mechanism to $eaih optimal topology in the
feasible solution space of sequence pairs of all theblwiks. The key operations at each step of
the simulated annealing is making a move and evaluating the resultantcgepaien

Making a move including the following steps:

(1) Select a move and make it;

(2) Check the feasibility of the resultant SP if the move,isnutation o _-mutation;
(3) Adaptthe SP if it's infeasible.

Evaluating a SP including the following steps:

(1) Construct the non-redundant constraint gr&hand G, which include all unit blocks for
this SP;

(2) Construct the corresponding sub-blocks-grouped constraint GaphdG,

(3) Perform soft block packing based 6p andG,;

(4) Calculate the cost of the packing output by (3).

VIII. Experiment Results

We have implemented the algorithm in C++(STL) with a Jaterface and tested in on a SUN
ULTRA-450 workstation. Fig 3.11(a), (b), (c) shows the packingltesd 3 randomly generated

sets of blocks. Set (a) is a packing of 10 blocks, 2 of them are rectliloe&s. Either Set (a) or (c)

is a packing of 20 blocks, 4 of them are rectilinear bloclsth® rectangle blocks are soft blocks
whose shapes are optimized during the packing process. Itnake®re than several minutes to
get such a packing for any of the three cases.

14

43350
(210, 235)
29999
201, 199)
43008
286, 168)

@) (b)

Fig 3.11 Experimental Results

IX. Concluding Remarks

In this paper, we proposes a new technique of evaluating sequend&earesents a new method
of simultaneous compaction and alignment for rectilinear blockkipgc We make a key
observation for soft block packing problem and give a enhancetlsok packing algorithm; And
most importantly, we unifies the rectilinear block packing aoff klock packing into a whole
system for the first time; Also, we give an extensiorstaichastic moves to search the solution
space more effectively.

Reference

1.M. Kang and W. W.-M Dai. Arbitrary rectilinear block packing éadson sequence pair.
Proceedings of IEEE/ACM International Conference on Computer Aided Desigh9-66, 1998.
2.K. Sakanushi, S. Nakatake, and Y. Kajitani. The multi-BSG: stticheggproach to an optimum
packing of convex-rectilinear block®roceedings of IEEE/ACM International Conference on
Computer Aided Desigp. 267-74, 1998.

3.K. Fujiyoshi and H. Murata. Arbitrary convex and concave reedr block packing using
sequence-paiProceedings of ACM International Symposium on Physical Dggidii03-11, 1999.
4.M. Kang and W. W.-M Dai. General floorplanning with L-shaped, Tpekaand soft blocks
based on bounded slicing grid structuRFoceedings of IEEE Asia and South Pacific Design
Automation Conferencep.265-70, 1997.

5.H. Murata and E. S. Kuh. Sequence-pair based placement method fooftard/placed
modules Proceedings of ACM International Symposium on Physical Degi@j67-72, 1998.

6.H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLS| modplacement based on
rectangle-packing by the sequence-pdEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systepwol.15, no.12, p. 1518-24, Dec. 1996.

