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ABSTRACT

To the best of our knowledge, this is the first algorithm unifying arbitrary rectilinear
block packing and soft block packing. Furthermore, this algorithm handles arbitrary
convex or concave rectilinear block packing in the most efficient way compared to
other sequence pair-based approaches. At the same time, the algorithm can handle
rectangle soft block effectively. The concept of non-redundant constraint graph together
with its algorithms play critical role in unifying the arbitrary rectilinear block packing
and soft block packing. This general block packing tool builds the foundation for
floorplanning with IP reuse. The experimental results demonstrate the efficiency and
effectiveness of this general block packing.

Keywords: floorplan, block packing, soft block, rectilinear block, sequence pair, non-
redundant constraint graph, related-vertics-grouped constraint graph, feasible slack,
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I. Introduction

Due to the rapid scaling of circuit size and increasing complexity of IC design, design reuse has
become of great interest of the design community. As the IP blocks to be reused are not often of
rectangle shapes, good packing algorithm for floorplans with arbitrary rectilinear (hard) blocks is
desired. On the other hand, as many blocks have not been detailedly designed in the early
floorplanning stage, shape flexibility is to be exploited to improve the floorplanning quality, and
good algorithm for floorplans with soft (rectangle) block is demanded. Several works have been
done in each of the two areas ([1], [2], [3] for arbitrary rectilinear block packing; [4], [5] for soft
block packing with general non-slicing structure), but no method accommodating both of the two
aspects have been proposed so far. By addressing this problem, this paper makes the following
major contributions: (1) It proposes a new technique for evaluating sequence pair; (2) It re-designs
the rectilinear block packing algorithm and soft block packing algorithm and unifies them together,
based on some existing techniques and more importantly, several new observations of the
rectilinear/soft block packing properties; (3) It extends the existing stochastic moves to be more
globally.
The following of this paper is organized as follows: Section II briefly introduces the sequence pair
structure. Section III describes in details the new method of evaluating SP. Section IV and section V
describe the rectilinear block packing and soft block packing algorithms, respectively. Section VI
describes the extended stochastic moves. Section VII presents the experimental results and section
IX gives some concluding remarks.

II. Sequence Pair (SP) Structure

A sequence pair for a set of n rectangle blocks is a pair of permutations of the n block names [6].
For example, (d b a e f c, a b c d e f) is a sequence pair of the block set {a, b, c, d, e, f}.
The topological constraint between every pair of blocks x, y is defined as follows:
H-constraint: (.. x .. y .. , .. x .. y ..) ⇒  x is left of y
V-constraint: (.. y .. x .. , .. x .. y ..) ⇒  x is below y
Given a sequence pair, a compacted packing of the blocks can be obtained by using the directed
acyclic H/V-constraint graphs Gh / Gv which are constructed faithfully to the H/V-constraint
described above. That is to say, for every pair of blocks x, y, if x is left of y, we add an edge (x, y) to
Gh; if x is below y, we add an edge (x, y) to Gv. Moreover, there is a source sh / sv connected to each
leftmost / lowest block and a sink th / tv connected to each rightmost / upmost block in Gh / Gv. Fig 1
shows an example. The weight of the each vertex in Gh / Gv is the width / height of the
corresponding block. The X/Y-coordinate of each block can be determined by the length of the
longest path from the source sh / sv to the corresponding vertex in Gh / Gv.

                                                          (a) Gh                                                       (b) Gv

                                                   Fig 1 Constraint Graphs of Sequence Pair
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III. Non-redundant Constraint Graph

Sequence Pair defines a “left/right” or “below/above” relation between every pair of blocks. So the
union of the complete horizontal constraint graph Gh and the complete vertical constraint graph Gv

has C(n, 2) = n(n-1)/2 edges. A quick glance at the graphs in Fig 1 shows that some edges (e.g. (a,
f) in Gh, (a, d) in Gv) are redundant. In general, a horizontal edge between two vertics vi and vj doe
not need to be present if there is another path from vi and vj passing one or more other vertics. And
we define such edge as redundant edge. Specifically, if there is an edge from vi to vk and from vk to
vj, then the left/right constraint between vi and vj is implicitly endured by the transition. So the edge
(vi, vj) can be removed without changing any constraint defined by the SP. A constraint graph with
all redundant edges removed is called a non-redundant constraint graph.
As the time of calculating the longest path for each block is linear to the number of edges in the
graph, removing those redundant edges will result in a significant reduction of time in evaluating a
SP. Next we will show how to build such non-redundant constraint graph Gh

* and Gv
* from a given

SP in the time linear to the total number of edges in Gh
* and Gv

*.
Given a SP (Γ+, Γ−), we will build Gh

* and Gv
* simultaneously by finding all the immediate left-

predecessors and below-predecessors for each block. As we know, if block a is left of or below
block b, a precedes b in Γ−. Therefore, for each block b, we only need to consider the blocks
preceding b in Γ−. And naturally we should process all the blocks in the order given by Γ−. Without
loss of generality, we assume that Γ− = (a1 a2 … an). Then the algorithm goes as follows:
First we see how to get a pair of redundancy-reduced constraint graph Gh

′ and Gv
′ which are

equivalent to Gh and Gv in terms of the topological constraints they define.

(1) a1 has no predecessor in Gh
′ or Gv

′;
(2) Suppose we are done for all ak (k<i). Then for ai:
i. let j = i −1;
ii.  compare Γ+ (ai) (the index of block ai in Γ+) and Γ+ (aj) to decide whether aj is left of or below
ai, and add an edge (aj, ai) to Gh

′ or Gv
′ accordingly. Suppose aj is left of / below ai. Then we check

whether aj has any predecessor in current Gv
′ / Gh

′. If not, stops; otherwise, we pick up its below-
predecessor / left-predecessor with the highest index in Γ−, ak. Let j = k, goto ii again.

                                                                 Fig 2 Algorithm RRCG

Lemma 1 The constraint graph Gh
′ and Gv

′ output by algorithm RRCG is equivalent to the SP
which it is built from in terms of topological constraints.

Proof As Gh
′ and Gv

′ are subsets of Gh and Gv, respectively, Gh
′ and Gv

′ do not alter any topological
constraint defined by the corresponding SP. If we can prove that Gh

′ and Gv
′ do not reduce any

topological constraint defined by the corresponding SP either, the proof is obviously done. For the
latter, we only need to show that for any block ai, it’s reachable from any of the blocks preceding it
in Γ− in either Gh

′ or Gv
′, which means the topological relation between any pair of blocks is given

by Gh
′ and Gv

′.
Without loss of generality, we assume that ai−1 is left of aI, as shown in Fig 3(a). All blocks
preceding ai in Γ− are either in region I or in region II of the constraint graph. As all blocks in
region I can reach ai−1 in Gh

′, they can also reach ai in Gh
′ through the edge (ai−1, ai). Let us consider

blocks in region II. If ai−1 has no predecessor in Gv
′, then region II contains no block, we are done.

Otherwise, let ak be the predessor of ai−1 in Gv
′ with largest index in Γ−. ak is either left of or below

ai.
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(i) ak is left of ai : As shown in Fig 3(b), there is an edge (ak, ai) in Gh
′ according to the

algorithm RRCG. All blocks in region II(a) can reach ak in Gh
′, so they can also reach ai in

Gh
′ through the edge (ak, ai). Region II(b) must contain no block, otherwise ak can not be

the predessor of ai−1 in Gv
′ with largest index in Γ−. We are left with Region II(c). The

problem is reduced to a smaller size than that in Fig 3(a).
(ii)  ak is below ai : As shown in Fig 3(c), there is an edge (ak, ai) in Gv

′ according to the
algorithm RRCG. Again, region II(b) contains no block. All blocks in region II(c) can reach
ak in Gv

′, so they can also reach ai through the edge (ak, ai). Now for region II(a). If ak has
no predecessor in Gh

′, then region II(a) contains no block, we are done. Otherwise, let aj be
the predecessor of ak in Gh

′ with largest index in Γ−, as shown in Fig 3(d). Again, aj is either
left of or below ai. For the former case, we are left with region II(a)-1; for the latter case
case, we are left with region II(a)-2. In both case the problem is reduced to a smaller size
than that in Fig 3(c).

Therefore by deduction we can prove that any block preceding block ai in Γ− can reach it either by a
horizontal path in Gh

′ or by a vertical path in Gv
′.

�

                                                       (a)                                              (b)

                                                        (c)                                               (d)

Fig 3 Illustration of Proof for Lemma 1 (A solid line represents a horizontal
edge and a dashed line represents a vertical edge)

By the algorithm RRCG, we can obtain a pair of graphs Gh
′ and Gv

′ equivalent to but smaller than
Gh and Gv. But it may still contain some redundant edges in the case shown in Fig 4. Block f is left
of block h; block c is f’s rightmost below-predecessor in Gv

′ and c is below h; b is c’s upmost left-
predecessor in Gh

′. As b may be left of f, in which case b can reach h through the path from b to f
and the the edge (f, h), so edge (b, h) may be a redundant edge.
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                                                  Fig 4 Illustration of Selecting Predecessors

To avoid adding an edge (b, h) in Gh
′ in such case, we modify the algorithm RRCG and get the non-

redundant constraint graph Gh
* and Gv

* as follows:

(1) a1 has no predecessor in Gh
* or Gv

*;
(2) Suppose we are done for all ak (k<i). For ai:
i. let j = i −1, last_dir = no_def, last_blk = no_def;
ii.  compare Γ+ (ai) and Γ+ (aj) to decide whether aj is left of or below ai, add an edge (aj, ai) to
Gh

* or Gv
*, and record the direction of this iteration as ‘h’ or ‘v’ accordingly. If the direction of last

iteration is not ‘no_def’ and is different from the direction of this iteration, then modify the
reference-block to be the aj of last iteration. Suppose aj is left of/below ai. Then we check whether
aj has any predecessor in current Gv

*/ Gh
* which is not below/left-of the reference-block (if the

reference-block is no_def, we just ignore this requirement). If not, stops; otherwise, we pick up the
one among them with the highest index in Γ−, ak. Let j = k, goto ii again.

                                                                Fig 5 Algorithm NRCG

Lemma2 The constraint graph Gh
* and Gv

* output by algorithm NRCG is equivalent to the SP
which it is built from in terms of topological constraints.

This is easy to prove following the line of thought in the proof of Lemma 1. The details are omitted
here due to the limit of space.

Lemma3 Algorithm NRCG does not produce any redundant edge in either Gh
* or Gv

*.

Proof Take the example in Fig 4. Suppose ai = h, aj = c now and block a is block c’s left-
predecessor in Gh

* which is not left-of (i.e. is below) block f with the largest index in Γ−. Suppose
no redundant edge has been produced so far, then the edge (a, h) is not redundant either, in either of
the two cases:
(i) a is left of h. If edge (a, h) is redundant in Gh

*, there must be another block g such that the
path from a to g and the path from g to h already exist in Gh

*. As the reference block f is the last
block before changing direction again, all blocks visited after f (up till c) are below h. So block g
can not be any of them; g is not f either, for a is below f. So g must have higher index in Γ− than f,
and be either right of or above f. g can not be right f, otherwise (f, h) is redundant. g can not be
above f either, otherwise g is above a the same as f. So block g can not exist, and edge (a, h) is not
redundant.
(ii)  a is below h. If edge (a, h) is redundant in Gv

*, there must be another block g such that the
path from a to g and the path from g to h already exist in Gv

*. g is not c, for c is right of a. So g
must have higher index in Γ− than c, and be either right of or above c. g can not be above c,
otherwise (c, h) is redundant. g can not be right of c either, otherwise g is right of a the same as c.
So block g can not exist, and edge (a, h) is not redundant.
�

hf

a
b

c
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Lemma 4 Algorithm NRCG output Gh
* and Gv

* in time linear to (|Eh
*| + |Ev

*|).

Proof The main operations in this algorithm are comparisons of two blocks’ indics in Γ+ to decide
their topological relation. Each comparison belongs to either of the two classes: (1) It leads to an
edge to be added to Gh

* or Gv
*; (2) It is used in selecting a proper left/below-predecessor of a block

to continue the process, but does not yield an edge in Gh
* or Gv

*. The total number of comparisons
in the 1st class is obviously the total number of edges in Gh

* and Gv
*. It can be proved that the total

number of comparisons in the 2nd class is no more than the total number of edges in Gh
* and Gv

*, for
there is an injection from the set of comparisons in the 2nd class to the set of edges in Gh

* and Gv
*.

The detailed proof is omitted here due to the limit of space.
�

Apart from reducing the evaluation time remarkably, the main significance of this approach lies in
that it makes it very convenient for building the related-vertics-grouped constraint graph in the
following rectilinear block packing algorithm and finding a bottleneck path in the following soft
block packing algorithm (both of which are critical steps in the corresponding algorithms) and
therefore serves as the basis of the whole unified rectilinear/soft block packing algorithm.
For convenience we will refer to the non-redundant constraint graphs Gh

* and Gv
* as Gh and Gv in

the following sections.

IV. Efficient Arbitrary Rectilinear Block (Convex & Concave) Packing

1. Fundamentals of rectilinear block packing

Up to the present the rectilinear block packing problem is dealt with mostly by partitioning each
rectilinear block A into a set of rectangle sub-blocks, representing them individually, and packing
the mixture of these rectangle sub-blocks and original rectangle blocks by some existing rectangle
packing algorithms. Fig 6(a) and Fig 6(b) give examples of horizontal partitioning and vertical
partitioning, respectively. A representation of a rectilinear packing by SP is therefore a pair of
permutations of all the unit block (rectangle sub-block or original rectangle block) names.

                                                         (a)                                   (b)

                                             Fig 6 H/V-partition of A Rectilinear Block

Certain measures need to be taken to guarantee the relative positions of sub-blocks of a same
rectilinear block so that this rectilinear block can keep its original shape after the packing process (a
SP satisfying this need is called a feasible SP). A most notable measure is to apply the three
necessary sufficient conditions of the feasibility of SP, as proposed in [1].
Condition-1: For any H-partitioned / V-partitioned block A, the permutation pair of A equals the H-
Pair / V-Pair of A.
Condition-2: Any two unit blocks ai, aj ∈  A are not interrupted by a unit block c ∉  A.
Condition-3: Any two pairs of unit blocks ai, aj ∈  A and bp, bq ∈  B, A ≠ B, (ai, aj) separates (bp, bq)
in the first or second sequence.

a1

a2

a3

a3
a4 a5

a2
a1
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Where the unit block relations “interrupt” and “separate” are defined as:
•  Given three unit blocks ai, aj ∈  A and c ∉  A, if c is between ai and aj in both sequences, e.g. (ai c
aj, ai c aj), we call c interrupts ai and aj.
•  Given two pairs of unit blocks ai, aj ∈  A and bp, bq ∈  B, A ≠ B, if in the 1st/2nd sequence: ai .. aj ..
bp .. bq or bp .. bq .. ai .. aj, we (ai, aj) and (bp, bq) as separates of each other in the 1st/2nd sequence.

2. Packing rectilinear blocks based on a related-vertics-grouped constraint graph

In SP-based rectilinear block packing, as SP only defines the topological constraints among all the
unit blocks (including both original rectangle blocks and rectangle sub-blocks of rectilinear blocks),
the constraint graph built from SP doesn’t contain information about how the sub-blocks of a same
rectilinear block should be placed relative to each other. Therefore the packing obtained from such
constraint graph needs a post-process alignment to adjust the positions of the unit blocks such that
the relative positions of each rectilinear block’s sub-blocks conform to its initial shape and the
topological constraints among all unit blocks are preserved. Such separate compaction and
alignment makes it difficult for shape optimization of floorplans containing rectilinear blocks. In
the following we will show how to bypass this difficulty by a new method of rectilinear packing,
where we construct a pair of smaller sized non-redundant constraint graphs Gh

′ and Gv
′ from the

original non-redundant constraint graphs Gh and Gv, and calculate the position of each
rectangle/rectilinear block based on this Gh

′ and Gv
′. Gh

′ and Gv
′ not only give the topological

constraints among all the unit blocks, but also implies the relative positions of the sub-blocks of a
same rectilinear block.

We get Gh
′ and Gv

′ by grouping all vertics in Gh and Gv representing sub-blocks of a same rectilinear
block together and representing the whole rectilinear block by a single vertex in Gh

′ and Gv
′.

Therefore we call them related-vertics-grouped constraint graphs. The edges in Gh
′ will be obtained

in the following way:

For each edge (vp, vq) in Gh,
(i) If both vp and vq represent original rectangle blocks a and b,  we add an edge (a, b) in Gh

′ and
the weight remains the same;
(ii)  If vp represents a sub-block ai of rectilinear block A, vq represents an original rectangle block
b, we add an edge (A, b) in Gh

′ if it’s not present in Gh
′ yet, and the weight is dx(ai)+w(ai);

otherwise, we update the weight of the existing edge with max(old_weight, dx(ai)+w(ai)). Where
dx(ai) is the horizontal distance from the bottom-left corner of ai to the bottom-left corner of the
bounding box of A under current orientation of A, w(ai) is the width of ai;
(iii)  If vp represents represents an original rectangle block b, vq represents a sub-block ai of
rectilinear block A, we add an edge (b, A) in Gh

′ if it’s not present in Gh
′ yet, and the weight is

w(b)−dx(ai); otherwise, we update the weight of the existing edge with max(old_weight,
w(b)−dx(ai));
(iv) If vp represents a sub-block ai of rectilinear block A, vq represents a sub-block bj of another
rectilinear block B, we add an edge (A, B) in Gh

′ if it’s not present in Gh
′ yet, and the weight is

dx(ai)+w(ai)−dx(bj); otherwise, we update the weight of the existing edge with max(old_weight,
dx(ai)+w(ai)−dx(bj));
(v) If vp and vq represent two sub-blocks ai and aj of a same rectilinear block A, we add an edge
(A, A) in Gh

′ if if it’s not present in Gh
′ yet and the weight dx(ai)+w(ai)−dx(aj) is not zero.

Then, we add an edge from the horizontal sh source to every block in Gh
′ and the weight is zero.

This is not significant in rectangle block packing, but it’s indispensable here. It is to prevent the
coordinate of any block from being negative. Look at the example show in Fig 7. As b is left of a2,



8

b is left of A in Gh
′. Therefore b’s x-coordinate is calculated before A. As b’s x-coordinate is zero

and A’s relative position to b is negative, A’s x-coordinate is going to be negative without an edge
(sh, A) in Gh

′ with weight zero.

                               Fig 7 Illustration of Why Edges Connected to Source is Needed

The edges in Gv
′ can be obtained similarly.

After Gh
′ and Gv

′ are drawn, we derive corresponding horizontal and vertical topological orders
from them, and then we can get the location of each block (either rectangle or rectilinear) by
applying the longest path algorithm to Gh

′ and Gv
′ in such orders.

Lemma 5 The algorithm described above can achieve simultaneous compaction and alignment for
rectilinear block packing.

Proof As we treat each rectilinear block as a whole, obviously the relative positions among sub-
blocks of a same rectilinear block have been taken care of. Now let’s prove that Gh

′ and Gv
′ have

preserved the topological constraints contained in Gh and Gv. There must be no doubt about
operation (i). Operations (ii), (iii) and (iv) are illustrated in Fig 8 (a), (b) and (c), respectively. In (a),
there is an edge (a1, b) in Gh, which means b must be right of a1. Therefore the bottom-left corner of
b must be right of the bottom-left corner of a1 by the amount of at least w(a1). This is equivalent to
the constraint that the bottom-left corner of b must be right of the bottom-left corner of the
rectilinear block A by the amount of at least dx(a1)+w(a1), for the bottom-left corner of every sub-
block ai to the bottom-left corner of the whole rectilinear block is always a constant dx(ai). In (b),
there is an edge (b, a2) in Gh, which means a2 must be right of b. Therefore the bottom-left corner of
a2 must be right of the bottom-left corner of b by the amount of at least w(b). This is equivalent to
the constraint that the bottom-left corner of the rectilinear block A must be “right of” the bottom-left
corner of block b by the amount of at least w(b)−dx(a2) for the reason as stated for Fig 8(a). Note
that this value may be negative, which means rectilinear block A can be left of block b by the
amount of at most | w(b)−dx(a2)|. Combining the two facts together, we can easily defer the formula
in (iv). And case (v) is similar to (iv). The operation in (v) is useful only for checking the feasibility
of the corresponding SP. If the SP is feasible, no edge is added in (v), otherwise, a positive self-
circle is added indicating the infeasibility of the SP.
And once we have this pair of related-vertics-grouped constraint graph Gh

′ and Gv
′, and the

corresponding horizontal and vertical topological orders, we can apply the longest path algorithm to
them just the same as in rectangle block packing, and get the x/y-coordinate of each
rectilinear/rectangle block accordingly.
�

This constraint graph can also easily tell whether the corresponding sequence pair is feasible:

Lemma 6 A sequence pair is feasible if and only if its corresponding related-vertics-grouped
constraint graphs Gh

′ and Gv
′ contain no positive circle.

a1

a2
b

a1

a2b
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The detailed proof is omitted here due to the limit of space. This lemma is valid for the cases of
both convex and concave rectilinear block packing. For convex rectilinear block packing, it is
equivalent to the three necessary and sufficient conditions given by [1] as described in the previous
sub-section. Condition-1 is satisfied if and only if either Gh

′ or Gv
′ contains no self-circle.

Condition-2 and condition-3 are satisfied if and only if either Gh
′ or Gv

′ contains no circle among
any two or more blocks.

                                                  (a)                            (b)                               (c)

                                            Fig 8 Simultaneous Compaction and Alignment

This rectilinear block packing approach is very critical to the unified rectilinear/soft block packing
system. Compared to the approach in [1], it achieves simultaneous compaction and alignment, and
therefore solves the dilemma between post-alignment of rectilinear blocks and shape optimization
of soft blocks. Compared to the approach in [3], first, it decreases the size of the problem by
reducing the total number of vertics in the constraint graph instead of increasing the problem size
by increasing the total number of edges in the constraint graph as done in [3]. Second, and more
importantly, although [3] achieves simultaneous compaction and alignment too, it still represents
the sub-blocks of a rectilinear block individually in the constraint graph; in contrast our approach
represents the rectilinear block as a whole by one vertex and therefore the rectilinear block can be
treated virtually as a rectangle block in the soft block packing. This makes it very easy to integrate
rectilinear block packing with soft block packing.

V. Enhanced Soft Block Packing

1. Fundamentals of soft block packing

The soft block packing problem is to optimize packing topology as well as the block shapes to
achieve minimum total packing area. The key issue is how to optimize the block shapes for a given
topology. An attractive approach for this is proposed by [4], where the block shapes are gradually
adjusted to reduce the overall height and overall width alternatively and monotonously for a given
topology. This strategy is illustrated by Fig 9.
A greedy algorithm is applied to perform each step of overall height reduction and overall width
reduction based on a metric called slack. For the SP structure, the horizontal slack of a block b can
be given as:
                                             )(),(),(),( bwtvlvsltslsl hiihhhb −−−=

where sh and th are the horizontal source and sink, respectively; and vi is the vertex representing
block b in Gh. A block whose horizontal / vertical slack is zero is called h-critical / v-critical block.
The horizontal maximal slack slb′ of a block b can be obtained by increasing the height of b until it
becomes v-critical.

a1

a2

b2
b1

b

a1

a2
a1

a2

b

(a1 b a2, a1 a2 b) (a1 b a2, b a1 a2) (a1 b1 a2 b2, b1 a1 b2 a2)
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Fig 9 An Example of Reducing Overall Packing Height
Without Increasing Overall Packing Width

The following sufficient condition is used to meet the non-width-increase requirement:

                                                               ∑
∈

∆
hpb

bw ≤ )(’ hpsl                                                                (1)

where the maximal slack of a horizontal path p is defined as:

                                                               )(’ psl = 
pb∈

min
’

bsl

And according to this sufficient condition (1), the horizontal source-to-sink path to yield maximum
overall height reduction without overall width increase (denoted as bottleneck path) can be found as
a path with maximum 

)(

)(’

h

h

pnum

psl , where num(ph) denotes the number of blocks on the path.

Then the shape of each block on the bottleneck path will be adjusted according to the following
formula:
                                                             

∑
∈

×=∆

hpb
bb

bb
hb hw

hw
pslw

’

’’

’ )(
                                                          (2)

The height of each block will be reduced by approximately equal amount and so does the overall
height.
The monotonous height reduction and width reduction will be carried out alternatively until no
further reduction can be made.

2. Our algorithm

Our soft block packing follows the basic strategy presented in [4]. Yet we make certain
improvement and a very important enhancement as described in the following.
Firstly, as we observed that among all blocks on a horizontal path, only those v-critical blocks are
critical to the reduction of the overall height, so we only adjust the shapes of those v-critical blocks
and leave the non-v-critical blocks alone. Experiments prove that by doing so we are able to obtain
a greater amount of height reduction in an iteration in most cases.
As the maximal slack of each v-critical block is the same as its slack, the concept of maximal slack
is no longer needed here. Instead, as soft packing is usually under certain aspect ratio constraint, we
introduce another metric feasible slack to reflect this constraint. The horizontal feasible slack of a
block b is:
                                                       ))()(,min()( bwbwslbsl mbf −=

th

∆h

sv

tv
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where wm(b) is the maximum width of the block which is imposed by the minimum aspect ratio
constraint; w(b) is the current width of the block b.
Accordingly we substitute formula (1) in the above for the following sufficient condition of non-
width-increase:

Sufficient Condition 1                         ∑
∈

∆
critical- vis b

hpb
bw ≤ )( hf psl                                                           (3)

where the feasible slack of a horizontal path p is defined as:

                                                            )( psl f = critical- vis b

min
pb∈

)(bsl f

Also accordingly we can find the bottleneck path as a path with maximum 
)(

)(

h

hf

pnum

psl , where num(ph)

denotes the number of all v-critical blocks on the path.
Then we can adjust the shape of each v-critical block on the bottleneck according to the following
formula:
                                                             

∑
∈

×=∆
critical- vis ’

’

’’

)(
b

pb
bb

bb
hfb

h

hw

hw
pslw

                                                      (4)

And we can carry out overall height reduction and overall width reduction alternatively until no
further reduction can be made.

But something is missing here for both the initial algorithm and the improved algorithm. Look at
the example in Fig 10 (Note that the sources and sinks are omitted here). It can be observed that a
horizontal path (such as (e, d)) is not sure to intersect with a vertical path (such as (a, b, c)) on a
block. So not every horizontal source-to-sink path contains a block on every vertical longest path.
And therefore not every horizontal source-to-sink path is qualified as a horizontal bottleneck path.
We will find out a condition for such qualification in the following.
If a horizontal source-to-sink path ph does not intersect with a vertical longest path pv on any block,
then there must be some edge (e.g. (e, d)) on ph (e.g. (e, d)) crossing some edge (e.g. (b, c)) on pv

(e.g. (b, c)) as shown in the example. We will show that in such case there are only two possible
combinations how vertics e and d is located relative to vertics b and c.

Lemma 7 If a horizontal edge (e, d) crosses a vertical edge (b, c), then e, d can only have two
combinations of locations relative to b, c: (i) e is in (7) and d is in (6); (ii) e is in (5) and d is in (8).

Proof Firstly, neither e nor d could be in region (1) or (2), otherwise (e, d) could not have crossed
(b, c);
Secondly, neither e nor d could be in region (9), otherwise there should not have been an edge
between b and c because any block in region (9) would make (b, c) a redundant edge.
Thirdly, if e is in region (3), e is left of b and c, then d could only be in region (4), (6) or (8), for
otherwise (e, d) could not have crossed (b, c). But in any of the three cases, d is transitively right of
e through either b or c and therefore (e, d) would have become redundant and could not have
existed. Therefore e could not be in region (3); similarly d could not be in region (4);
Fourthly, if e is in region (5), then d could not be in region (6), otherwise d is transitively right of e
through b and therefore (e, d) could not have existed; similarly if e is in region (7), then d could not
be in region (8).
�
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For case (i) in lemma 7, e is above b and d is below c. As (b, c) is a v-critical edge, b’s lower
boundary must lie on the same horizontal line as c’s upper boundary. Therefore y(elower) ≥ y(bupper) =
y(clower) ≥ y(dupper), and e and d can not have overlap in y-direction, as in the example below. (Note
that e and d is not considered as having overlap in y-direction if e’s lower boundary lies on the same
horizontal line as d’s upper boundary). Similarly, and e and d can not have overlap in y-direction for
case (ii).
Thereby we can give a sufficient condition of a horizontal path ph intersecting every vertical longest
path on a block:

Sufficient Condition 2 Every two adjacent blocks on a horizontal path ph must have overlap in y-
direction.

                                                   (a)                              (b)                             (c)

                                    Fig 10 Two Possible Combinations of Positions of Block e, d

Based on this sufficient condition, we can modify the algorithm described above accordingly. First
we give two definitions: If there is an edge (a, b) in Gh, we say that a is b’s topological predecessor;
if a and b furthermore have overlap in y-direction, then we say that a is also b’s geometrical
predecessor. Then we make the following modifications: (1) Not only any block with no
topological predecessor/successor, but also any block with no geometrical predecessor/successor,
could be the beginning/end of a bottleneck path. (2) For every block b except the beginning of a
horizontal source-to-sink path, we calculate its slf(vi) and num(vi) only based on its geometrical
predecessors, where vi is the vertex representing b in the constraint graph, slf(vi) is the feasible slack
of the piece of path on the whole path from the beginning up to vi.

VI. Searching The Solution Space by Global Moves

Based on the three necessary and sufficient conditions as described in section IV-1, [1] defines three
kinds of stochastic moves and corresponding adaption procedure.

Rotation: randomly pick up a macro block (rectilinear or rectangle) A = {a1 a2 … am} and rotate it
by 90 in the clockwise direction. The sequence pair is accordingly changed by switching unit block
ai with am+1-i, i ∈  [1, n], in Γ+ (when changing A from an H-partitioned orientation to a V-partitioned
orientation) or in Γ− (when it is the other way round).
Γ+-mutation: randomly pick up two adjacent unit blocks a ∈  A and b ∈  B (A ≠ B) in Γ+ and
exchange them.
Γ−-mutation: randomly pick up two adjacent unit blocks a ∈  A and b ∈  B (A ≠ B) in Γ− and
exchange them.

These moves and adaption procedure defined by [1] are attractive for adoption in the case concave
rectilinear blocks are not present, due to its quick and easy operation. Therefore with the absence of
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concave rectilinear blocks we would make our stochastic search by following the same line as [1].
In [1], the Γ+-mutation and Γ−-mutation are restricted to exchanging of blocks between two adjacent
blocks in either Γ+ or Γ−. In our approach, we extend Γ+-mutation and Γ−-mutation to exchanging of
blocks between two blocks in either Γ+ or Γ− with any distance under certain restrictions.

Γ+-mutation: randomly pick up two unit blocks a ∈  A and b ∈  B (A ≠ B) in Γ+ such that no other
unit blocks belonging to the either A or B are in between. Exchange a and b in Γ+.
Γ−-mutation: randomly pick up two unit blocks a ∈  A and b ∈  B (A ≠ B) in Γ− such that no other
unit blocks belonging to the either A or B are in between. Exchange a and b in Γ−.

Like in [1], the Γ+-mutation/Γ−-mutation may result in the violation of Condition-2 or Condition-3
defined by [1] under certain circumstances. So each Γ+-mutation / Γ−-mutation will be followed by
a check of feasibility of the resultant SP and an adaption in the case of infeasibility. The details are
omitted here due to the limit of space.

VII. Assembly Everything Together

Because all the topological constraints and relative position constraints have been nicely captured in
the related-vertics-grouped constraint graph Gh

′ and Gv
′, and every rectilinear block is represented

as one vertex, just as if it was a rectangle block. So carrying out soft block packing on floorplans
with rectilinear blocks will not be any more complicated than on those without rectilinear blocks.
We only need to set the rectilinear blocks’ horizontal/vertical feasible slack to zero to indicate they
are hard blocks and can then perform the soft block packing as if no rectilinear block is present.
The whole algorithm uses simulated annealing mechanism to search for an optimal topology in the
feasible solution space of sequence pairs of all the unit blocks. The key operations at each step of
the simulated annealing is making a move and evaluating the resultant sequence pair.

Making a move including the following steps:
(1) Select a move and make it;
(2) Check the feasibility of the resultant SP if the move is Γ+-mutation or Γ−-mutation;
(3) Adapt the SP if it’s infeasible.

Evaluating a SP including the following steps:
(1) Construct the non-redundant constraint graph Gh and Gv which include all unit blocks for
this SP;
(2) Construct the corresponding sub-blocks-grouped constraint graph Gh

′ and Gv
′;

(3) Perform soft block packing based on Gh
′ and Gv;

(4) Calculate the cost of the packing output by (3).

VIII. Experiment Results

We have implemented the algorithm in C++(STL) with a Java interface and tested in on a SUN
ULTRA-450 workstation. Fig 3.11(a), (b), (c) shows the packing results of 3 randomly generated
sets of blocks. Set (a) is a packing of 10 blocks, 2 of them are rectilinear blocks. Either Set (a) or (c)
is a packing of 20 blocks, 4 of them are rectilinear blocks. All the rectangle blocks are soft blocks
whose shapes are optimized during the packing process. It takes no more than several minutes to
get such a packing for any of the three cases.
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                                                 (a)                               (b)                                  (c)

                                                          Fig 3.11 Experimental Results

IX. Concluding Remarks

In this paper, we proposes a new technique of evaluating sequence pair; We presents a new method
of simultaneous compaction and alignment for rectilinear block packing; We make a key
observation for soft block packing problem and give a enhanced soft block packing algorithm; And
most importantly, we unifies the rectilinear block packing and soft block packing into a whole
system for the first time; Also, we give an extension of stochastic moves to search the solution
space more effectively.
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