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abstra
tIn this paper we present an eÆ
ient algorithm for determining the optimal spa
-ing needed to eliminate 
ross-talk indu
ed noise violations and 
ross-talk indu
eddelay violations on nets with nonnegligible inter
onne
t resistan
e. Sin
e 
ross-talkviolations 
annot be a

urately dete
ted until very late in the routing pro
ess, webase our formulation on the topologi
al representation of the detailed Manhattanrouting in order to be able to easily identify and quantify un
ommitted routingresour
es available to a net very late in the routing pro
ess. Our experimental re-sults demonstrate that the performan
e of our algorithm is best 
hara
terized asO(n log(n)) in the number of spa
ing variables.Keywords: 
ross talk, 
onstrained routing, Lagrange relaxation, wire spa
ing,noise margin, topologi
al routing



1. Introdu
tion 11 Introdu
tionOne of the fundamental advantages of digital systems are their ability to reje
t noisethrough self restoring logi
, that is, the output signal from a logi
 stage is 
loser to theideal logi
 levels than the input signal. This is the main reason why the vast majority ofele
troni
 
omputing systems are digital, and not analog.Integrated 
ir
uit te
hnology 
reated a way to inexpensively mass produ
e very reliableand sophisti
ated digital ele
troni
 systems. Integrated 
ir
uit te
hnology also brought withit the ability to make 
ontinuous and predi
table in
remental improvements in 
omponentdensity, speed and power 
onsumption. This is a

omplished by following a set of s
alingrules whi
h systemati
ally redu
es feature sizes and power supply levels while giving a highlevel of assuran
e that the shrunken devi
es will still operate 
orre
tly. Further densityimprovements are 
reated through the use of novel gate designs, su
h as pre
harged logi
.These te
hniques to improve density, speed, and power 
onsumption also systemati
allyredu
e the noise reje
tion ability of the integrated 
ir
uit te
hnology while simultaneouslyaggravating the me
hanisms responsible for 
ross-talk indu
ed noise and 
ross-talk indu
eddelay.There has been substantial progress in the analysis of 
ross-talk indu
ed noise and delayin resistive VLSI inter
onne
tions [1, 2℄. This allows us to eÆ
iently and a

urately identifynets, in a detailed routing, whi
h have 
ross-talk problems.There has been some progress in the area of 
ross-talk noise management on nets withnegligible inter
onne
t resistan
e (see for example [3, 4, 5, 6, 7, 8℄). However, as we know,assuming that nets have negligible inter
onne
t resistan
e is no longer a valid assumptionin the era of deep submi
ron VLSI design. As depi
ted in Fig. 1, we see that when a noisesignal has been indu
ed on a vi
tim net, a larger noise signal is seen at a vi
tim net's sink pinwhen the \point of inje
tion" is moved 
loser to the sink pin and away from the vi
tim net'ssour
e pin. This is due to resistive shielding e�e
ts. Spe
i�
ally, as the point of inje
tionmoves farther from the sour
e pin, the in
reased resistan
e makes it more diÆ
ult for thesour
e gate to \absorb" the inje
ted noise pulse. From this we see that the vi
tim net'sinter
onne
t resistan
e plays an important role in the magnitude of the 
ross-talk noisesignals seen at its sink pins, and therefor must be a

ounted for in any 
ross-talk noisemanagement strategy.There has been very little progress for 
ross-talk indu
ed noise and delay managementon nets with nonnegligible inter
onne
t resistan
e for use in an area routing (\over the 
ell"routing) environment. Sin
e it is this environment that 
hara
terizes todays state of the artVLSI 
hip designs, we are left in a position where we 
an identify the 
ross-talk problems,but then la
k the means to e�e
tively 
orre
t them.One of the main reasons for this imbalan
e is that in order to optimally redistributeun
ommitted routing resour
es to eliminate the 
ross-talk problems we need a pra
ti
alsolution to the problem of solving a sequen
e of fairly large non-linear mathemati
al pro-grams. Compounding the problem is the fa
t that we need a detailed knowledge of theintera
tion between adja
ent nets in order to a

urately dete
t the 
ross-talk problems. Be-
ause of this it is very diÆ
ult to predi
t 
ross-talk problems until very late in the routingpro
ess. Using a traditional Manhattan router, we �nd that it is very diÆ
ult to 
orre
tthe 
ross-talk problems this late in the routing pro
ess primarily be
ause of the in
exibleform used to represent the underlying routing.



2 2. Topologi
al Routing and Cross-Talk Management
(a)
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Figure 1: Noise pulse produ
ed when the \point of inje
tion" is (a) 
loseto the vi
tim net's sour
e and far from its sink, and (b) far from thevi
tim net's sour
e and 
lose to its sink.In [9℄, the optimal spa
ing for 
ross-talk noise management in resistive routing wasformulated as a nonlinear programming problem that was solved in O(n3:3) time, where nis the size of the vi
tim net. However, the formulation did not in
lude 
ross-talk indu
eddelay, and its solution has a fairly high 
omputational 
omplexity whi
h makes it impra
ti
alfor use on large nets.In this paper we will present an eÆ
ient algorithm for determining the optimal spa
ingwhi
h, when suÆ
ient un
ommitted routing resour
es are available, will eliminate 
ross-talk violation on a given net of a detailed Manhattan routing taking into a

ount thee�e
ts of the vi
tim net's inter
onne
t resistan
e on 
ross-talk noise. This algorithm will beformulated to eliminate both 
ross-talk indu
ed noise violation as well as 
ross-talk indu
eddelay violations and 
an be used in an area routing environment. In order to more easilyidentify and quantify the un
ommitted routing resour
es available to a net after a detailedManhattan routing has been 
onstru
ted, our formulation will be based on the topologi
alrepresentation of the Manhattan routing. Finally, we will demonstrate that the performan
eof our algorithm 
an best be 
hara
terized as O(n log(n)) in the number of spa
ing variables.2 Topologi
al Routing and Cross-Talk ManagementThe main problem in managing 
ross-talk noise with traditional Manhattan routersis that their underlying representation does not allow for a �ne enough, or ri
h enoughset of tools with whi
h to measure and manipulate a detailed routing in order to solvea problem as 
omplex and subtle as the 
ross-talk problem. To avoid this short
omingwe base our approa
h on the more powerful and 
exible topologi
al representation of aManhattan routing. In parti
ular, ea
h layer of a detailed Manhattan routing 
an be



3. Estimating Cross-talk Indu
ed Noise and Delay 3broken into two 
omponents: a topologi
al routing, and a set of bran
h widths and spa
ings.Looking at the routing in this form has several key advantages; First, we 
an easily identifyand quantify un
ommitted routing resour
es; Se
ond, 
on
entrating and 
ommitting theserouting resour
es 
an be easily a

omplished sin
e this only requires 
hanging the values ofthe spa
ing variables, whi
h 
an be made at virtually no 
ost; Third, all the informationneeded to make a

urate 
ross-talk noise estimates 
an still be easily extra
ted from thetopologi
al routing [10℄, sin
e it is the routing topology whi
h determines whi
h nets are
apa
itively 
oupled.Using these ideas, and given a design rule 
orre
t Manhattan routing, our approa
h to
ross-talk management is as follows:1. From a detailed analysis of the Manhattan routing, 
onstru
t a list of nets with
ross-talk indu
ed noise and delay violations.2. For ea
h layer of the Manhattan routing, extra
t its topologi
al routing.3. In the topologi
al domain, determine a set of spa
ing values whi
h eliminate the
ross-talk violations identi�ed in step 1.4. Constru
t an improved Manhattan routing from the topologi
al routing and thenew spa
ing values.Our approa
h to 
ross-talk management 
an be based on an existing, topologi
al routingsystem, 
alled SURF [11℄. SURF has a ri
h set of topologi
al routing tools whi
h 
an be usedto easily and eÆ
iently manipulate and measure a topologi
al routing. On
e a satisfa
torysolution has been obtained in the topologi
al domain, SURF 
an qui
kly 
onstru
t theimproved detailed Manhattan routing [12℄.Ideally, we would like to simultaneously determine the set of spa
ings for all nets with
ross-talk violations. Unfortunately, given the enormous number of nets on todays 
hipdesigns, this is 
learly an impra
ti
al approa
h. Be
ause of this, we propose a greedy ap-proa
h. Spe
i�
ally, we order the nets with 
ross-talk violations a

ording to the \severity"of their violations. Then a set of spa
ing values for ea
h net in the list, beginning with thenet with the most severe violation, is determined. In order that we have adequate routingresour
es available to those nets at the end of the list, we need to determine ea
h net's set ofspa
ings su
h that they eliminate any 
ross-talk violations while using a minimum amountof routing resour
es. From this we see that the heart of our new 
ross-talk managementstrategy is an optimization problem whi
h is the determination of a vi
tim nets optimalwire spa
ing under 
ross-talk 
onstraints. For brevity we will refer to this as \The OptimalSpa
ing Problem" (OSP).3 Estimating Cross-talk Indu
ed Noise and DelayIn this paper we represent a net's routing as a tree where all of the information des
ribinga wire segment (in
luding its intera
tion with adja
ent nets) 
onne
ting a node, n, and itsparent is asso
iated with the node n. That is, all information is stored in the down streamnode for the segment.To estimate the peak 
ross-talk noise seen at any node of a vi
tim net, we use the Devgan
ross-talk noise estimate [13℄. The main strengths of Devgan's estimate are its ability toin
lude 
oupling 
apa
itan
e, vi
tim net inter
onne
t resistan
e, and aggressor net rise timein a 
losed form expression that 
an be used to qui
kly and easily analyze networks with
omplex topologies. This estimate 
an be 
omputed asVn �Xi2N Xm2CP (i;n)Rm Xj2Adj(i)�VijC
ij _Uj (1)



4 4. Formulating the Optimal Spa
ing Problemwhere Vn is the maximum 
ross-talk noise voltage indu
ed on node n by all nets adja
ent tothe vi
tim net. N is the set of all vi
tim net nodes. CP (i; n) is the set of vi
tim net nodesthat are 
ommon to the path from the root node to node i, and the path from the rootnode to node n. Rm is the resistan
e 
onne
ting node m to node Par(m), and Par(m) isthe parent node of node m. Adj(i) is the set of adja
ent nets that are 
oupled into node i ofthe vi
tim net. C
ij is the 
oupling 
apa
itan
e between the adja
ent net j and the segment
onne
ting node i to node Par(i). _Uj is the slope of the voltage sour
e driving adja
ent netj. Sin
e a vi
tim net is only sensitive to 
ross-talk noise during a subinterval of the 
lo
k
y
le, we have in
lude the fa
tor �Vij 2 f0; 1g to a

ommodate this behavior. Spe
i�
ally,for an adja
ent net, j, �Vij is zero when we know that the adja
ent net is quiet when thevi
tim net is sensitive to 
ross-talk noise; �Vij is one when we 
an not guarantee that thethe adja
ent net will be quiet when the vi
tim net is sensitive to 
ross-talk noise.To estimate the maximum delay from the sour
e to any node of the vi
tim net, we usethe Elmore delay estimate [14℄. This estimate 
an be 
omputed asDn �Xi2N Xm2CP (i;n)Rm[Cai + Csi + Xj2Adj(i)�DijC
ij℄ (2)where Cai is the 
apa
itan
e asso
iated with the area 
overed by the wire segment 
onne
tingnode i to Par(i), and Csi is the 
apa
itan
e asso
iated with any sink pin 
onne
ted to nodei. The 
ross-talk indu
ed delay is a

ounted for by the terms �DijC
ij. Sin
e the e�e
tive
oupling 
apa
itan
e between the vi
tim net and an adja
ent net, j, is dependent on thesignal transitions o

urring on both nets, we have in
luded the fa
tor �Dij 2 f0; 1; 2g toa

ommodate this behavior. Spe
i�
ally, when we know that the vi
tim net and the adja
entnet make simultaneous transitions in the same dire
tion, �Dij is zero; when we know thatthe adja
ent net will be quiet during all vi
tim net transitions, �Dij is one; when we 
annot grantee either of these two 
ases, then we assume that the vi
tim and the adja
ent netmake simultaneous transitions in opposite dire
tions, whi
h 
an be a

ounted for by setting�Dij to two.To a

ount for the e�e
ts of the vi
tim net's driver resistan
e, RS , on both 
ross-talkindu
ed noise and 
ross-talk indu
ed delay, we de�ne Rroot = RS , Caroot = 0, Csroot = 0,and Adj(root) = ;. Additionally, it should be noted that we have 
hosen to use the more
onservative form of the Elmore delay whi
h lumps all the 
apa
itan
e asso
iated with awire segment at the far end of the segment. This has be done stri
tly in the interest of
larity and brevity. All the te
hniques presented in this paper 
an easily be extended tothe use of the less 
onservative � model representation of a wire segment.4 Formulating the Optimal Spa
ing ProblemWe asso
iate with ea
h node of the vi
tim net's routing tree a spa
ing variable Si. Thisspa
ing, as shown in Fig 2, represents the minimum distan
e allowed between the wiresegment, 
onne
ting node i to Par(i), and any adja
ent wire segments. For the purposeof 
omputational 
onvenien
e we have also in
luded the required minimum spa
ing, Smin,between adja
ent wire segments as part of Si. From this we see thatC
ij � C
T LijSi 8 j 2 Adj(i) (3)
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Figure 2: Wire spa
ing model.where Lij is the estimated length of the adja
en
y between adja
ent net j and the wiresegment 
onne
ting node i to node Par(i), and C
T is a proportionality 
onstant determinedfrom the te
hnology. Substituting (3) into (1), and (2) we haveVn �Xi2N Xm2CP (i;n)Rm Xj2Adj(i)�VijC
T LijSi _Uj (4)Dn �Xi2N Xm2CP (i;n)Rm[Cai + Csi + Xj2Adj(i)�DijC
T LijSi ℄ (5)The routing resour
es 
onsumed by the extra spa
ing allo
ated to a net 
an be measuredas A = Xn2N 2Ln(Sn � Smin) (6)where Ln is the estimated length of the wire segment 
onne
ting node n to Par(n).Using (4), (5), and (6) we 
an formulate the OSP problem as the following 
onstrainedminimization problem: minS fXn2N Ln Sng (7)subje
t to Sn � Smin 8 n 2 N (8)f(S) � B (9)Vn �Mn 8 n 2 Pins(N) (10)Dn � Qn 8 n 2 Pins(N) (11)where S is a ve
tor of all spa
ing variables. (8) are lower bounds imposed by the te
hnology.(9) are routing resour
e 
onstraints, or the \upper bounds" imposed by the routing topology.(10) are the 
ross-talk noise 
onstraints. (11) are the delay 
onstraints. Pins(N) is thesubset of vi
tim net nodes 
onne
ted to sink pins. Mn is the noise margin for node n of thevi
tim net. Qn is the maximum allowable delay from the sour
e of the vi
tim net to noden of the net.In general, the upper bound on ea
h Sn is dependent on other spa
ing variables. Inorder to a

ommodate this behavior, the upper bound on ea
h Sn is written, in (9), as ave
tor valued fun
tion, f , of all the spa
ing variables. In general, B is a ve
tor of positive
onstants and the fun
tion f is a linear fun
tion with positive 
oeÆ
ients, as we will see



6 5. Formulating the Upper Bound Constraintsin se
tion 5. The exa
t form of f is determined by the routing topology and the value ofthe 
oeÆ
ients are determined from the state of the routing just prior to the optimizationpro
ess.After solving this optimization problem we 
an use (12) to determine the amount ofextra routing resour
es, in the form of extra spa
ing, to 
ommit to ea
h side of every wiresegment in the vi
tim net. Sen = Sn � Smin 8 n 2 N (12)5 Formulating the Upper Bound ConstraintsThe key advantage to working with a topologi
al routing is the ability to identify,quantify, and 
on
entrate the un
ommitted routing resour
es available to a net on
e thedesign has been routed. In essen
e the topologi
al representation of a routing gives us theability to easily \look through" a net's immediately adja
ent routing and take advantage ofrouting resour
es that would otherwise be very diÆ
ult to utilize in a traditional Manhattanrouting representation. Spe
i�
ally, in a topologi
al routing we 
an take advantage ofMaley's routability theorem [15℄ to determine the set of upper bound 
onstraints representedby (9). Maley's routability theorem states, in part, that a net's topologi
al routing isroutable if, and only if, the 
ow does not ex
eed the 
apa
ity of ea
h 
ut the net en
ounters(
rosses or interse
ts). A 
ut is de�ned as the shortest straight line between two features thatare visible to ea
h other. A feature is any obje
t through whi
h a bran
h of the topologi
alrouting 
annot be routed, ex
luding other bran
hes. Fig. 3 illustrates a 
ut between twoterminals of a topologi
al routing. Note that a terminal 
an represent a pin, a via 
onta
t,bran
h point, or a pad.The 
apa
ity of a 
ut, 
apa
ity(
), as illustrated in Fig. 3, is a measure of the amount ofrouting resour
es available a
ross the 
ut. The 
ow of a 
ut, flow(
), is a measure of theamount of routing resour
es needed to route all the bran
hes that need to 
ross the 
ut, asillustrated in Fig. 3. The 
ow must in
lude the width of ea
h bran
h, as well as the spa
ingneeded to separate ea
h pair of adja
ent bran
hes, and any spa
ing needed to separate thebran
hes from the two features whi
h de�ne the end points of the 
ut, as well as any spa
eneeded to a

ommodate the geometry of the terminals.From these de�nitions we see that (9) 
an be written asflow(
) � 
apa
ity(
) 8 
 2 C (13)where C is the set of all 
uts that the vi
tim net en
ounters.Sin
e the 
uts that impose the tightest bounds on S are most likely going to be theshortest 
uts that the net en
ounters, and the shortest 
uts, in turn, have a low probabilityof involving more than one bran
h of the net, we see that the vast majority of the upperbound 
onstraints will be in the form of �xed budget 
onstraints.Sn � Sn�budget (14)Further, sin
e only a small number of 
uts will involve more than one spa
ing variable, we
an, without sa
ri�
ing too mu
h of the OSP's feasible region, signi�
antly simplify thesolution of the OSP by restri
ting these linear 
onstraint equations to a set of �xed budget
onstraints. In parti
ular, if we have an upper bound 
onstraint of the formS1 + S2 � S
ut (15)
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ing Problem 7
CUT

FLOW

CAPACITY

Figure 3: The 
ow and 
apa
ity of a 
ut between two terminals of atopologi
al routing.then we 
an 
onvert this to the following set of �xed budget 
onstraintsS1 � S1�budget = S
ut2 (16)S2 � S2�budget = S
ut2 (17)Using these ideas, we see that (9) 
an be redu
ed toSn � Sn�budget 8 n 2 N (18)6 Solving the Optimal Spa
ing ProblemBe
ause (10) and (11) are nonlinear fun
tions of Sn, the OSP forms a nonlinear program-ming problem. However, (10) and (11) are 
onvex over the region de�ned by Sn � Smin, andthus the OSP forms a 
onvex programming problem whi
h 
an be solved using Lagrangerelaxation [16, 17℄. Spe
i�
ally, we asso
iate with ea
h sink pin, p, a pair of Lagrange mul-tipliers, �p and 
p, whi
h are used to relax that pin's noise and delay 
onstraints, giving usthe following Lagrange subproblem (LSP):minS fXn2N Ln Sn + Xp2Pins(N)�p(Vp �Mp) + Xp2Pins(N) 
p(Dp �Qp)g (19)subje
t to Sn � Smin 8 n 2 N (20)Sn � Sn�budget 8 n 2 N (21)Using the subgradient optimization te
hnique outline in Fig 4 we 
an solve the Lagrangedual problem (LDP) giving us an optimal set of spa
ings whi
h also solve the OSP. To solvethe LSP, we take advantage of the fa
t that (19) is separable in S and 
an be written asminS fXq2N gq(Sq)g (22)where gq(Sq) = K1qSq + K2qSq +K3q (23)



8 6. Solving the Optimal Spa
ing Problem1. �p  0 8 p 2 Pins(N)2. 
p  0 8 p 2 Pins(N)3. i 14. Repeat5. Solve LSP6. �p  max(0; �p + �i(Vp �Mp)) 8 p 2 Pins(N)7. 
p  max(0; 
p + �i(Dp �Qp)) 8 p 2 Pins(N)8. Update �i su
h that limi!1 �i = 0and Pij=1 �j !19. i i+ 110. Until ��p and �
p � error bounds 8 p 2 Pins(N)Figure 4: Subgradient optimization algorithm for solving the Lagrangedual problem.From the Kuhn-Tu
ker optimality 
onditions [18℄ we �nd that the LSP 
an be solved asSq = min(Sq�budget;max(Smin;qK2q=K1q)) (24)where K1q = Lq (25)To determine K2q we 
olle
t all terms of (19) whi
h 
ontain 1=Sq. This gives usK2q = Xp2Pins(N)�p Xm2CP (q;p)Rm Xj2Adj(q)�VqjC
TLqj _Uj+ Xp2Pins(N) 
p Xm2CP (q;p)Rm Xj2Adj(q)�DqjC
TLqj (26)Rearranging the order of summation we haveK2q = Xm2Ans(q)Rm Xp2DesP ins(m)�p Xj2Adj(q)�VqjC
TLqj _Uj+ Xm2Ans(q)Rm Xp2DesP ins(m) 
p Xj2Adj(q)�DqjC
TLqj (27)where Ans(q) is the set of nodes whi
h 
ontains q and all of its an
estors. DesP ins(m) isthe set of m's des
endant nodes that 
ontain sink pins and the node m if it 
ontains a sinkpin. This 
an be written asK2q = RVq Xj2Adj(q)�VqjC
TLqj _Uj +RDq Xj2Adj(q)�DqjC
TLqj (28)where RVq and RDq are the \weighted up stream resistan
es" [19℄ seen from node q and are
omputed as RVq = Xj2Ans(q)�jRj (29)RDq = Xj2Ans(q)�jRj (30)



7. Experimental Results 9where the \weighting fa
tors", �j and �j, asso
iated with node j are 
omputed as�j = Xp2DesP ins(j)�p (31)�j = Xp2DesP ins(j)
p (32)From (31) and (32) we see that the set of weighting fa
tors 
an be 
omputed in onebottom up traversal of the routing tree. From (29) and (30) we see that the weightedup stream resistan
es 
an be 
omputed in a single top down traversal of the routing tree.Further, on
e the weighted up stream resistan
es for a node have been 
omputed we 
animmediately 
ompute the node's spa
ing using (28), (25), and (24). From these threeobservations we have the following:Theorem 1: The LSP 
an be solved in O(q) time, where q is the number of wire segmentsin the routing tree.From lines 6 and 7 of Fig. 4, we see that ea
h iteration of the solution of the LDP must
ompute a new set of Lagrange multipliers. This 
an be a

omplished by two traversals ofthe routing tree. One bottom up traversal to 
ompute the down stream 
urrent and downstream 
apa
itan
e seen by ea
h node, and one top down traversal to 
ompute the noiseand delay seen at ea
h sink pin. From these observations, Theorem1, and the fa
t that thenumber of sink pins is bounded above by the number of segments in the net, we have thefollowing:Theorem 2: Ea
h iteration in the solution of the LDP requires O(q) time.Finally, we note that we 
an easily determine if there are no feasible solutions to theOSP by 
he
king to see if (10) and (11) 
an be satis�ed when all spa
ing variables are setto the maximum spa
ing allowed by (18). If they 
annot be satis�ed then we do not haveenough un
ommitted routing resour
es available to the net in order to eliminate all of thenet's 
ross-talk violations.7 Experimental ResultsTo evaluate the performan
e of our optimal spa
ing algorithm we have tested it on a largeset of randomly generated nets. Our results have been generated on a Sun Enterprise 450(300MHz Ultra SPARC-II CPU) with 1GB of memory. The nets were generated based onthe following te
hnology parameters: The minimum spa
ing between wires is 0:33�m; Thewire resistivity is 0:291
=�m; The 
apa
itive 
oupling between adja
ent wires separatedby the minimum wire spa
ing is 0:745 fF=�m; The area 
apa
itan
e is 0:745 fF=�m; Thesupply voltage is 1:5V . The rise times of the adja
ent nets were randomly sele
ted between20 pS and 500 pS; The sour
e gates output resistan
e is 100
; The budget for ea
h spa
ingvariable, Si, is randomly sele
ted between 0:385�m and 3:08�m. The noise and delaymargins, Mn and Qn, for ea
h sink pin were randomly sele
ted from the range of feasiblenoise and delay margins for that sink pin. The lower bounds on the feasible ranges for ea
hsink pin are determined by 
omputing the noise and delay seen at ea
h pin assuming thatthe maximum allowed spa
ing is used around ea
h of the net's wire segments. Similarly,the upper bound on the feasible ranges for ea
h sink pin 
an be determined by assumingthat the minimum spa
ing is used around ea
h segment.



10 8. Con
lusionFor ea
h of the randomly generated nets, we determined the CPU time needed by ouralgorithm, 
oded in C++, to �nd an optimal set of spa
ings for the net. These results areshown in Fig. 5. From these results we found that the 
omputational 
omplexity of ouralgorithm 
an best be des
ribed as O(n log(n)), as indi
ated by the line in Fig. 5.
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Figure 5: CPU time to 
ompute optimal spa
ing.8 Con
lusionIn this paper we have presented an eÆ
ient algorithm for determining the optimal spa
-ing needed to eliminate 
ross-talk indu
ed noise violations and 
ross-talk indu
ed delayviolations on nets with nonnegligible inter
onne
t resistan
e. To estimate the 
ross-talkindu
ed noise and the 
ross-talk indu
ed delay we have used the Devgan noise estimateand the Elmore delay estimate, respe
tively. We have used the topologi
al routing repre-sentation of the detailed Manhattan routing to allow us to easily identify and quantify theun
ommitted routing resour
es whi
h are available to a net late in the routing pro
ess. Us-ing these estimates and routing resour
e 
onstraints we formulate a nonlinear programmingproblem whose solution is the optimal set of spa
ings that will eliminate the nets 
ross-talk violations. We solve this nonlinear programming problem using Lagrange relaxation.Our experimental results demonstrate that the performan
e of our Lagrange relaxationalgorithm is best 
hara
terized as O(n log(n)) in the number of spa
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