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ABSTRACT

In this paper we present an efficient algorithm for determining the optimal spac-
ing needed to eliminate cross-talk induced noise violations and cross-talk induced
delay violations on nets with nonnegligible interconnect resistance. Since cross-talk
violations cannot be accurately detected until very late in the routing process, we
base our formulation on the topological representation of the detailed Manhattan
routing in order to be able to easily identify and quantify uncommitted routing
resources available to a net very late in the routing process. Our experimental re-
sults demonstrate that the performance of our algorithm is best characterized as
O(nlog(n)) in the number of spacing variables.

Keywords: cross talk, constrained routing, Lagrange relaxation, wire spacing,
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1 Introduction

One of the fundamental advantages of digital systems are their ability to reject noise
through self restoring logic, that is, the output signal from a logic stage is closer to the
ideal logic levels than the input signal. This is the main reason why the vast majority of
electronic computing systems are digital, and not analog.

Integrated circuit technology created a way to inexpensively mass produce very reliable
and sophisticated digital electronic systems. Integrated circuit technology also brought with
it the ability to make continuous and predictable incremental improvements in component
density, speed and power consumption. This is accomplished by following a set of scaling
rules which systematically reduces feature sizes and power supply levels while giving a high
level of assurance that the shrunken devices will still operate correctly. Further density
improvements are created through the use of novel gate designs, such as precharged logic.
These techniques to improve density, speed, and power consumption also systematically
reduce the noise rejection ability of the integrated circuit technology while simultaneously
aggravating the mechanisms responsible for cross-talk induced noise and cross-talk induced
delay.

There has been substantial progress in the analysis of cross-talk induced noise and delay
in resistive VLSI interconnections [1, 2]. This allows us to efficiently and accurately identify
nets, in a detailed routing, which have cross-talk problems.

There has been some progress in the area of cross-talk noise management on nets with
negligible interconnect resistance (see for example [3, 4, 5, 6, 7, 8]). However, as we know,
assuming that nets have negligible interconnect resistance is no longer a valid assumption
in the era of deep submicron VLSI design. As depicted in Fig. 1, we see that when a noise
signal has been induced on a victim net, a larger noise signal is seen at a victim net’s sink pin
when the “point of injection” is moved closer to the sink pin and away from the victim net’s
source pin. This is due to resistive shielding effects. Specifically, as the point of injection
moves farther from the source pin, the increased resistance makes it more difficult for the
source gate to “absorb” the injected noise pulse. From this we see that the victim net’s
interconnect resistance plays an important role in the magnitude of the cross-talk noise
signals seen at its sink pins, and therefor must be accounted for in any cross-talk noise
management strategy.

There has been very little progress for cross-talk induced noise and delay management
on nets with nonnegligible interconnect resistance for use in an area routing (“over the cell”
routing) environment. Since it is this environment that characterizes todays state of the art
VLSI chip designs, we are left in a position where we can identify the cross-talk problems,
but then lack the means to effectively correct them.

One of the main reasons for this imbalance is that in order to optimally redistribute
uncommitted routing resources to eliminate the cross-talk problems we need a practical
solution to the problem of solving a sequence of fairly large non-linear mathematical pro-
grams. Compounding the problem is the fact that we need a detailed knowledge of the
interaction between adjacent nets in order to accurately detect the cross-talk problems. Be-
cause of this it is very difficult to predict cross-talk problems until very late in the routing
process. Using a traditional Manhattan router, we find that it is very difficult to correct
the cross-talk problems this late in the routing process primarily because of the inflexible
form used to represent the underlying routing.
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Figure 1: Noise pulse produced when the “point of injection” is (a) close
to the victim net’s source and far from its sink, and (b) far from the
victim net’s source and close to its sink.

In [9], the optimal spacing for cross-talk noise management in resistive routing was
formulated as a nonlinear programming problem that was solved in O(n3?) time, where n
is the size of the victim net. However, the formulation did not include cross-talk induced
delay, and its solution has a fairly high computational complexity which makes it impractical
for use on large nets.

In this paper we will present an efficient algorithm for determining the optimal spacing
which, when sufficient uncommitted routing resources are available, will eliminate cross-
talk violation on a given net of a detailed Manhattan routing taking into account the
effects of the victim net’s interconnect resistance on cross-talk noise. This algorithm will be
formulated to eliminate both cross-talk induced noise violation as well as cross-talk induced
delay violations and can be used in an area routing environment. In order to more easily
identify and quantify the uncommitted routing resources available to a net after a detailed
Manhattan routing has been constructed, our formulation will be based on the topological
representation of the Manhattan routing. Finally, we will demonstrate that the performance
of our algorithm can best be characterized as O(n log(n)) in the number of spacing variables.

2 Topological Routing and Cross-Talk Management

The main problem in managing cross-talk noise with traditional Manhattan routers
is that their underlying representation does not allow for a fine enough, or rich enough
set of tools with which to measure and manipulate a detailed routing in order to solve
a problem as complex and subtle as the cross-talk problem. To avoid this shortcoming
we base our approach on the more powerful and flexible topological representation of a
Manhattan routing. In particular, each layer of a detailed Manhattan routing can be



3. Estimating Cross-talk Induced Noise and Delay 3

broken into two components: a topological routing, and a set of branch widths and spacings.
Looking at the routing in this form has several key advantages; First, we can easily identify
and quantify uncommitted routing resources; Second, concentrating and committing these
routing resources can be easily accomplished since this only requires changing the values of
the spacing variables, which can be made at virtually no cost; Third, all the information
needed to make accurate cross-talk noise estimates can still be easily extracted from the
topological routing [10], since it is the routing topology which determines which nets are
capacitively coupled.

Using these ideas, and given a design rule correct Manhattan routing, our approach to
cross-talk management is as follows:

1. From a detailed analysis of the Manhattan routing, construct a list of nets with
cross-talk induced noise and delay violations.

2. For each layer of the Manhattan routing, extract its topological routing.

3. In the topological domain, determine a set of spacing values which eliminate the
cross-talk violations identified in step 1.

4. Construct an improved Manhattan routing from the topological routing and the

new spacing values.

Our approach to cross-talk management can be based on an existing, topological routing
system, called SURF [11]. SURF has a rich set of topological routing tools which can be used
to easily and efficiently manipulate and measure a topological routing. Once a satisfactory
solution has been obtained in the topological domain, SURF can quickly construct the
improved detailed Manhattan routing [12].

Ideally, we would like to simultaneously determine the set of spacings for all nets with
cross-talk violations. Unfortunately, given the enormous number of nets on todays chip
designs, this is clearly an impractical approach. Because of this, we propose a greedy ap-
proach. Specifically, we order the nets with cross-talk violations according to the “severity”
of their violations. Then a set of spacing values for each net in the list, beginning with the
net with the most severe violation, is determined. In order that we have adequate routing
resources available to those nets at the end of the list, we need to determine each net’s set of
spacings such that they eliminate any cross-talk violations while using a minimum amount
of routing resources. From this we see that the heart of our new cross-talk management
strategy is an optimization problem which is the determination of a victim nets optimal
wire spacing under cross-talk constraints. For brevity we will refer to this as “The Optimal
Spacing Problem” (OSP).

3 Estimating Cross-talk Induced Noise and Delay

In this paper we represent a net’s routing as a tree where all of the information describing
a wire segment (including its interaction with adjacent nets) connecting a node, n, and its
parent is associated with the node n. That is, all information is stored in the down stream
node for the segment.

To estimate the peak cross-talk noise seen at any node of a victim net, we use the Devgan
cross-talk noise estimate [13]. The main strengths of Devgan’s estimate are its ability to
include coupling capacitance, victim net interconnect resistance, and aggressor net rise time
in a closed form expression that can be used to quickly and easily analyze networks with
complex topologies. This estimate can be computed as

)

i€N meCP(in) jeAdj(i
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where V), is the maximum cross-talk noise voltage induced on node n by all nets adjacent to
the victim net. N is the set of all victim net nodes. C'P(i,n) is the set of victim net nodes
that are common to the path from the root node to node 4, and the path from the root
node to node n. R, is the resistance connecting node m to node Par(m), and Par(m) is
the parent node of node m. Adj(i) is the set of adjacent nets that are coupled into node i of
the victim net. Cicj is the coupling capacitance between the adjacent net 7 and the segment
connecting node i to node Par(7). Uj is the slope of the voltage source driving adjacent net
j.

Since a victim net is only sensitive to cross-talk noise during a subinterval of the clock

cycle, we have include the factor d)l‘; € {0,1} to accommodate this behavior. Specifically,
1%
ij
victim net is sensitive to cross-talk noise; ¢¥ is one when we can not guarantee that the
the adjacent net will be quiet when the victim net is sensitive to cross-talk noise.

for an adjacent net, j, ¢ is zero when we know that the adjacent net is quiet when the

To estimate the maximum delay from the source to any node of the victim net, we use
the Elmore delay estimate [14]. This estimate can be computed as

Dn<d > RuCI+Ci+ D ¢5Ci] (2)

i€N meCP(i,n) JEAL;(4)

where C}' is the capacitance associated with the area covered by the wire segment connecting
node i to Par(i), and Cf is the capacitance associated with any sink pin connected to node
i.

The cross-talk induced delay is accounted for by the terms ¢5 Cj;. Since the effective
coupling capacitance between the victim net and an adjacent net, j, is dependent on the
signal transitions occurring on both nets, we have included the factor qﬁg € {0,1,2} to
accommodate this behavior. Specifically, when we know that the victim net and the adjacent
net make simultaneous transitions in the same direction, gzﬁg is zero; when we know that
the adjacent net will be quiet during all victim net transitions, d)g is one; when we can
not grantee either of these two cases, then we assume that the victim and the adjacent net

make simultaneous transitions in opposite directions, which can be accounted for by setting
5 to two.
To account for the effects of the victim net’s driver resistance, Rg, on both cross-talk
induced noise and cross-talk induced delay, we define R,,t = Rg, C2,,; = 0, C}or = 0,
and Adj(root) = (). Additionally, it should be noted that we have chosen to use the more
conservative form of the Elmore delay which lumps all the capacitance associated with a
wire segment at the far end of the segment. This has be done strictly in the interest of
clarity and brevity. All the techniques presented in this paper can easily be extended to

the use of the less conservative m model representation of a wire segment.

4 Formulating the Optimal Spacing Problem

We associate with each node of the victim net’s routing tree a spacing variable S;. This
spacing, as shown in Fig 2, represents the minimum distance allowed between the wire
segment, connecting node i to Par(i), and any adjacent wire segments. For the purpose
of computational convenience we have also included the required minimum spacing, S,,in,
between adjacent wire segments as part of S;. From this we see that
Lj; . »

Ci < Cf ?J YV j e Adj(i) (3)

1] —
2
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Figure 2: Wire spacing model.

where L;; is the estimated length of the adjacency between adjacent net j and the wire
segment connecting node ¢ to node Par(i), and Cf is a proportionality constant determined
from the technology. Substituting (3) into (1), and (2) we have

Vn S Z Z Rm Z d)VOT Z]U (4)

iEN meCP(i;n)  jeAd)(i)

D, <Y Y RuCr+CH+ D qswcT ] (5)

1€N meCP(i,n) JEAdj(1)

The routing resources consumed by the extra spacing allocated to a net can be measured
as

A=>"2L,(8, — Spmin) (6)

nenN

where L, is the estimated length of the wire segment connecting node n to Par(n).
Using (4), (5), and (6) we can formulate the OSP problem as the following constrained
minimization problem:

m§1n{ Z L, S,} (7)

neN
subject to
Sy > Smin VNEN (8)
f(S)<B (9)
Vo < M, V n € Pins(N) (10)
D, <Q., V n € Pins(N) (11)

where S is a vector of all spacing variables. (8) are lower bounds imposed by the technology.
(9) are routing resource constraints, or the “upper bounds” imposed by the routing topology.
(10) are the cross-talk noise constraints. (11) are the delay constraints. Pins(N) is the
subset of victim net nodes connected to sink pins. M,, is the noise margin for node n of the
victim net. @, is the maximum allowable delay from the source of the victim net to node
n of the net.

In general, the upper bound on each S,, is dependent on other spacing variables. In
order to accommodate this behavior, the upper bound on each S, is written, in (9), as a
vector valued function, f, of all the spacing variables. In general, B is a vector of positive
constants and the function f is a linear function with positive coefficients, as we will see
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in section 5. The exact form of f is determined by the routing topology and the value of
the coefficients are determined from the state of the routing just prior to the optimization
process.

After solving this optimization problem we can use (12) to determine the amount of
extra routing resources, in the form of extra spacing, to commit to each side of every wire
segment in the victim net.

S¢ =8, — Smin VneEN (12)

n

5 Formulating the Upper Bound Constraints

The key advantage to working with a topological routing is the ability to identify,
quantify, and concentrate the uncommitted routing resources available to a net once the
design has been routed. In essence the topological representation of a routing gives us the
ability to easily “look through” a net’s immediately adjacent routing and take advantage of
routing resources that would otherwise be very difficult to utilize in a traditional Manhattan
routing representation. Specifically, in a topological routing we can take advantage of
Maley’s routability theorem [15] to determine the set of upper bound constraints represented
by (9). Maley’s routability theorem states, in part, that a net’s topological routing is
routable if, and only if, the flow does not exceed the capacity of each cut the net encounters
(crosses or intersects). A cut is defined as the shortest straight line between two features that
are visible to each other. A feature is any object through which a branch of the topological
routing cannot be routed, excluding other branches. Fig.3 illustrates a cut between two
terminals of a topological routing. Note that a terminal can represent a pin, a via contact,
branch point, or a pad.

The capacity of a cut, capacity(c), as illustrated in Fig. 3, is a measure of the amount of
routing resources available across the cut. The flow of a cut, flow(c), is a measure of the
amount of routing resources needed to route all the branches that need to cross the cut, as
illustrated in Fig. 3. The flow must include the width of each branch, as well as the spacing
needed to separate each pair of adjacent branches, and any spacing needed to separate the
branches from the two features which define the end points of the cut, as well as any space
needed to accommodate the geometry of the terminals.

From these definitions we see that (9) can be written as

flow(c) < capacity(c) VY eceC (13)

where C is the set of all cuts that the victim net encounters.

Since the cuts that impose the tightest bounds on S are most likely going to be the
shortest cuts that the net encounters, and the shortest cuts, in turn, have a low probability
of involving more than one branch of the net, we see that the vast majority of the upper
bound constraints will be in the form of fixed budget constraints.

Sn < Snfbudget (14)

Further, since only a small number of cuts will involve more than one spacing variable, we
can, without sacrificing too much of the OSP’s feasible region, significantly simplify the
solution of the OSP by restricting these linear constraint equations to a set of fixed budget
constraints. In particular, if we have an upper bound constraint of the form

S1 4+ S < Seut (15)
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Figure 3: The flow and capacity of a cut between two terminals of a
topological routing.

then we can convert this to the following set of fixed budget constraints

Scut

S1 < 1 budget = 5 (16)

So < 8o budget = S;m (17)
Using these ideas, we see that (9) can be reduced to

Sn < Sn—budget YN EN (18)

6 Solving the Optimal Spacing Problem

Because (10) and (11) are nonlinear functions of S, the OSP forms a nonlinear program-
ming problem. However, (10) and (11) are convex over the region defined by S,, > Sy,in, and
thus the OSP forms a convex programming problem which can be solved using Lagrange
relaxation [16, 17]. Specifically, we associate with each sink pin, p, a pair of Lagrange mul-
tipliers, A, and -y,, which are used to relax that pin’s noise and delay constraints, giving us
the following Lagrange subproblem (LSP):

min{ Z Ly, Sn + Z Ap(vp - Mp) + Z ’Yp(Dp - Qp)} (19)
S nen pEPins(N) pEPins(N)
subject to
Sn > Spin VneN (20)
S, < Snfbudget VneN (21)

Using the subgradient optimization technique outline in Fig4 we can solve the Lagrange
dual problem (LDP) giving us an optimal set of spacings which also solve the OSP. To solve
the LSP, we take advantage of the fact that (19) is separable in S and can be written as

min{ Y g,(S,)} (22)
S qeEN
where
_ K2q
9q(Sq) = K14Sq + — + K3 (23)

Sy
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1. Ay < 0V pe Pins(N)
2. 7, < 0V pe Pins(N)

3.1+ 1

4. Repeat

D. Solve LSP

6. Ap < max(0,\, + 0;(V, — Mp)) V p € Pins(N)
7. ¥p < maz(0,v, + 0;(D, — Qp)) ¥V p € Pins(N)
8. Update 6; such that lim; ,,,60; =0

and Z§:1 0j — oo
9. 1 1+1
10. Until AX, and A+, < error bounds V p € Pins(N)

Figure 4: Subgradient optimization algorithm for solving the Lagrange
dual problem.

From the Kuhn-Tucker optimality conditions [18] we find that the LSP can be solved as

Sq = min(squudgeta max(sminu \/ KQq/Klq)) (24)

where
Ky, = L, (25)

To determine Ky, we collect all terms of (19) which contain 1/S,. This gives us

(a)

pEPins(N) meCP(q,p) JEAdi(q

+ > m Y BRn Y ¢gCfLy (26)

pEPins(N) meCP(q,p) jEAdj(q)

Rearranging the order of summation we have

Ky = Y. BRm > XN Y ¢3,CiLgU;
meAns(q) pEDesPins(m)  je€Adj(q)
LD SRR I DR DR il a2 (27)

meAns(q) pEDesPins(m)  jE€Adj(q)

where Ans(q) is the set of nodes which contains ¢ and all of its ancestors. DesPins(m) is
the set of m’s descendant nodes that contain sink pins and the node m if it contains a sink
pin. This can be written as

Kog =Ry Y ¢g;CiLeiUj+ R) > ¢5iCiLy; (28)
JEAdj(q) JEAdj(q)

where R;/ and RqD are the “weighted up stream resistances” [19] seen from node g and are
computed as

R = > AjR; (29)
j€Ans(g)
RP = > IR, (30)

jEAnSs(q)
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where the “weighting factors”, A; and I';, associated with node j are computed as

A= Y, (31)

pEDesPins(j)

Li= >  w (32)

peDesPins(j)

From (31) and (32) we see that the set of weighting factors can be computed in one
bottom up traversal of the routing tree. From (29) and (30) we see that the weighted
up stream resistances can be computed in a single top down traversal of the routing tree.
Further, once the weighted up stream resistances for a node have been computed we can
immediately compute the node’s spacing using (28), (25), and (24). From these three
observations we have the following:

Theorem 1: The LSP can be solved in O(q) time, where q is the number of wire segments
in the routing tree.

From lines 6 and 7 of Fig.4, we see that each iteration of the solution of the LDP must
compute a new set of Lagrange multipliers. This can be accomplished by two traversals of
the routing tree. One bottom up traversal to compute the down stream current and down
stream capacitance seen by each node, and one top down traversal to compute the noise
and delay seen at each sink pin. From these observations, Theorem 1, and the fact that the
number of sink pins is bounded above by the number of segments in the net, we have the
following:

Theorem 2: Fach iteration in the solution of the LDP requires O(q) time.

Finally, we note that we can easily determine if there are no feasible solutions to the
OSP by checking to see if (10) and (11) can be satisfied when all spacing variables are set
to the maximum spacing allowed by (18). If they cannot be satisfied then we do not have
enough uncommitted routing resources available to the net in order to eliminate all of the
net’s cross-talk violations.

7 Experimental Results

To evaluate the performance of our optimal spacing algorithm we have tested it on a large
set of randomly generated nets. Our results have been generated on a Sun Enterprise 450
(300 M Hz Ultra SPARC-II CPU) with 1 GB of memory. The nets were generated based on
the following technology parameters: The minimum spacing between wires is 0.33 ym; The
wire resistivity is 0.291 Q/um; The capacitive coupling between adjacent wires separated
by the minimum wire spacing is 0.745 f F//um; The area capacitance is 0.745 f F'/um; The
supply voltage is 1.5V . The rise times of the adjacent nets were randomly selected between
20pS and 500 pS; The source gates output resistance is 100 €2; The budget for each spacing
variable, S;, is randomly selected between 0.385 um and 3.08 um. The noise and delay
margins, M,, and @Q,, for each sink pin were randomly selected from the range of feasible
noise and delay margins for that sink pin. The lower bounds on the feasible ranges for each
sink pin are determined by computing the noise and delay seen at each pin assuming that
the maximum allowed spacing is used around each of the net’s wire segments. Similarly,
the upper bound on the feasible ranges for each sink pin can be determined by assuming
that the minimum spacing is used around each segment.
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For each of the randomly generated nets, we determined the CPU time needed by our
algorithm, coded in C++, to find an optimal set of spacings for the net. These results are
shown in Fig.5. From these results we found that the computational complexity of our
algorithm can best be described as O(nlog(n)), as indicated by the line in Fig. 5.

140

120

100

CPU time (sec)
[o)] (o]
o o

N
o

N
o

o%

Number of wire segments

Figure 5: CPU time to compute optimal spacing.

8 Conclusion

In this paper we have presented an efficient algorithm for determining the optimal spac-
ing needed to eliminate cross-talk induced noise violations and cross-talk induced delay
violations on nets with nonnegligible interconnect resistance. To estimate the cross-talk
induced noise and the cross-talk induced delay we have used the Devgan noise estimate
and the Elmore delay estimate, respectively. We have used the topological routing repre-
sentation of the detailed Manhattan routing to allow us to easily identify and quantify the
uncommitted routing resources which are available to a net late in the routing process. Us-
ing these estimates and routing resource constraints we formulate a nonlinear programming
problem whose solution is the optimal set of spacings that will eliminate the nets cross-
talk violations. We solve this nonlinear programming problem using Lagrange relaxation.
Our experimental results demonstrate that the performance of our Lagrange relaxation
algorithm is best characterized as O(nlog(n)) in the number of spacing variables.
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