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1 IntrodutionMiroarray expression experiments allow the reording of expression levels of thousands ofgenes simultaneously. These experiments primarily onsist of either monitoring eah genemultiple times under many onditions [26, 6, 9, 31, 22℄, or alternately evaluating eah gene ina single environment but in di�erent types of tissues, espeially anerous tissues [10, 1, 13, 21,33, 30, 24, 32℄. Those of the �rst type have allowed for identi�ation of funtionally relatedgenes due to ommon expression patterns [5, 11, 31, 22℄, while the latter experiments haveshown promise in lassifying tissue types (diagnosis) and in the identi�ation of genes whoseexpressions are good diagnosti indiators [13, 1℄. In order to extrat information from geneexpression measurements, di�erent methods have been employed to analyze this data inludingsupport vetor mahines [5, 20℄ lustering methods [11, 26, 1, 21, 2, 15℄, self-organizing maps[27, 13℄, and a weighted orrelation method [13℄.Support vetor mahines (SVMs), a supervised mahine learning tehnique, have been shownto perform well in multiple areas of biologial analysis inluding evaluating miroarray expres-sion data [5℄, deteting remote protein homologies [17℄, reognizing translation initiation sites[34℄, and breast aner diagnosis and prognosis [19℄. We have also reently beome aware of twoother urrent e�orts that use SVMs in analyzing expression data [20℄ and (Jaakkola, personalommuniation). SVMs have demonstrated the ability to not only orretly separate entitiesinto appropriate lasses, but also in identifying instanes whose established lassi�ation is notsupported by the data. Expression datasets ontain measurements for thousands of genes whihproves problemati for many traditional methods. SVMs, though, are well suited to workingwith high dimensional data suh as this.Here a systemati and prinipled method is introdued that analyzes miroarray expressiondata from thousands of genes tested in multiple tissue or ell samples. The primary goal isthe proper lassi�ation of new samples. We do this by training the SVM on samples lassi�edby experts, then testing the SVM on samples it has not seen before. We demonstrate howSVMs an not only lassify new samples, but an also help in the identi�ation of those whihhave been wrongly lassi�ed by experts. Our method is demonstrated in detail on data fromexperiments involving 31 ovarian aner, normal ovarian and other normal tissues. We are ableto identify one tissue sample as mis-labeled, and another as an outlier, whih is shown in thesetion 4 and illustrated in Figure 1. Though perfet lassi�ation is �nally ahieved in oneinstane, this performane is not onsistently shown in multiple tests and therefore, annot beonsidered too signi�ant.We also experimented with the method used in Golub et al.[13℄ to fous the analysis on asmaller subset of genes that appear to be the best diagnosti indiators. This amounts to akind of dimensionality redution on the dataset. If one an identify partiular genes that arediagnosti for the lassi�ation one is trying to make, e.g. the presene of aner, then thereis also hope that some of these genes may be found to be of value in further investigationsof the disease and in future therapies. Here we �nd that this dimensionality redution doesnot signi�antly improve lassi�ation performane. It does reveal some genes that may beof interest for ovarian aner. However, further work needs to be done to identify the moste�etive feature seletion/dimensionality redution methods for this kind of data.To test the generality of the approah, we also tested it on the leukemia data from Golub etal.[13℄ (72 patient samples) and the olon tumor data from Alon et al.[1℄ (62 tissue samples).Our results are omparable to those obtained in these papers. Sine no speial e�ort was madeto tune the method to these other datasets, this inreases our on�dene that our approah2



will have broad appliations in analyzing data of this type.It is diÆult to show that one diagnosti method is signi�antly better than another withsmall data sets suh as those we have examined. We have onduted a full hold-one-out ross-validation (jakknife) evaluation of the lassi�ation performane of the methods we tested.These inlude both SVM methods and variants of the pereptron algorithm. No single lassi-�ation tehnique has proven to be signi�antly superior to all others in the experiments wehave done. Indeed, the di�erent kernels we tried performed nearly equally well and variantsof the pereptron algorithm are shown to perform omparably to the SVM on all tests. It isunfortunate that typial diagnosti gene expression datasets today involve only a few tissuesamples. As datasets inrease in size and omplexity, we predit that our method will ontinueto demonstrate exellent performane, superior to that of simpler methods, but this is urrentlyonly speulation.2 Miroarray expression experimentsIn reent years, several methods have been developed for performing gene expression exper-iments. In general, thousands of distint DNA probes are attahed to a miroarray whosesurfae is typially made of oated glass or a type of membrane. Probes an be PCR produtsor oligonuleotides whose sequenes orrespond to target genes (or ESTs) of the genome beingstudied. RNA is extrated from the sample tissues or ells, reverse transribed into labeledDNA, whih is then allowed to hybridize with the probes on the miroarray. The DNA orre-sponds to transripts produed by genes in the samples, and the amount of a partiular DNAsequene present will be in proportion to the level of expression of its orresponding gene. Themiroarray is washed to remove non-spei� hybridization, and the level of hybridization foreah probe is alulated. From these measurements, an expression level for genes orrespondingto the probes is derived. This level may represent a ratio between the expression of the geneunder some ontrol ondition as ompared to the test ondition. This is repeated for eah tissueor ell sample.Certain experimental onditions an a�et the auray of the expression measurements.There are problems inherent to PCR ampli�ation that an result in probes that do not maththe intended sequene or in di�erential ampli�ation of DNA. Cross-hybridization of repetitivesequenes and non-spei� hybridization to non-DNA features present on the array an leadto false-positive or false-negative signals. Lastly, tissue samples as opposed to ell samplesintrodue the possibility that expression levels being measured are due to the omposition ofthe tissue rather than the expression of a partiular gene in eah ell.For more in depth disussions of these tehniques, see Lokhart et al.[18℄ whih desribesA�ymetrix oligonuleotide arrays and Shummer et al.[24℄ whih analyzes membrane arraysmade from DNA lones.3 Support vetor mahine methodPrevious methods used in the analysis of similar datasets start with a proedure to extrat themost relevant features. Most learning tehniques do not perform well on datasets where thenumber of features is large ompared to the number of examples. SVMs are believed to be anexeption. We are able to begin with tests using the full dataset, and systematially redue thenumber of features seleting those we believe to be the most relevant. In this way, we an show3



whether an improvement is made using smaller sets, thus indiating whether these ontain themost meaningful genes.To understand our method, a familiarity with SVMs is required, and a brief introdutionfollows. We explain below how we rank the features, and present an outline of how we use theSVM to perform lassi�ation and error detetion.3.1 Support Vetor MahinesSupport vetor mahines (SVMs) [8℄ are a relatively new type of learning algorithm, originallyintrodued by Vapnik and o-workers [4, 29℄ and suessively extended by a number of otherresearhers. Their remarkably robust performane with respet to sparse and noisy data ismaking them the system of hoie in a number of appliations, from text ategorization tobioinformatis.When used for lassi�ation, they separate a given set of binary labeled training data witha hyper-plane that is maximally distant from them (known as 'the maximal margin hyper-plane'). For ases in whih no linear separation is possible, they an work in ombinationwith the tehnique of 'kernels', that automatially realizes a non-linear mapping to a featurespae. The hyper-plane found by the SVM in feature spae orresponds to a non-linear deisionboundary in the input spae.Let the input points be realizations of the random variable X =(X1; :::; Xn), and let xj =(xj1; :::; xjn) be the jth input point. Let the input points be labeled by the random variableY = f�1;+1g.Let �: I � <n ! F � <N be a mapping from the input spae I � <n to a feature spae F .Let us assume that we have a sample S of m labeled data points: S = f(x1; y1); :::; (xm; ym)g.The SVM learning algorithm �nds a hyper-plane (w; b) suh that the quantity = mini yifhw; �(xi)i � bg (1)is maximized, where h; i denotes an inner produt, the vetor w has the same dimensionality asF , b is a real number, and  is alled the margin. The quantity (hw; �(xi)i� b) orresponds tothe distane between the point xi and the deision boundary. When multiplied by the label yi,it gives a positive value for all orret lassi�ations and a negative value for the inorret ones.The minimum of this quantity over all the data is positive if the data is linearly separable, andis alled the margin. Given a new data point x to lassify, a label is assigned aording to itsrelationship to the deision boundary, and the orresponding deision funtion isf(x) = sign (hw; �(x)i � b) (2)It is easy to prove [8℄ that, for the maximal margin hyper-plane,w = mXi=1 �iyi�(xi) (3)where �i are positive real numbers that maximizemXi=1 �i � mXij=1�i�jyiyjh�(xi); �(xj)i (4)subjet to mXi=1 �iyi = 0; �i > 0: (5)4



The deision funtion an equivalently be expressed asf(x) = sign mXi=1 �iyih�(xi); � (x)i � b! : (6)From this equation it is possible to see that the �i assoiated with the training point xi expressesthe strength with whih that point is embedded in the �nal deision funtion. A remarkableproperty of this alternative representation is that often only a subset of the points will beassoiated with non-zero �i. These points are alled support vetors and are the points that lielosest to the separating hyper-plane. The sparseness of the � vetor has several omputationaland learning theoreti onsequenes.Notie that for a test point (x; y) the quantity y (Pmi=1 �iyih�(xi); � (x)i � b) is negative ifthe predition of the mahine is wrong, and a large negative value would indiate that thepoint (x; y) is regarded by the algorithm as 'di�erent' from the training data. The matrixKij = h�(xi);�(xj)i is alled the kernel matrix and will be partiularly important in the exten-sions of the algorithm that will be disussed later. In the ase when the data are not linearlyseparable, one an use more general funtions, Kij = K(xi;xj), that provide non-linear deisionboundaries. Two lassial hoies are polynomial kernels K(xi;xj) = (hxi;xji+1)d and Gaus-sian kernels K(xi;xj) = e�kxi�xjk�2 , where d and � are kernel parameters. In our experiments,we use K(xi;xj) = (hxi;xji+ 1).In the presene of noise, the standard maximum margin algorithm desribed above an besubjet to over-�tting, and more sophistiated tehniques are neessary. This problem arisesbeause the maximum margin algorithm always �nds a perfetly onsistent hypothesis and doesnot tolerate training error. Sometimes, however, it is neessary to trade some training aurayfor better preditive power. The need for tolerating training error has led to the development ofthe soft-margin and the margin-distribution lassi�ers [7℄. One of these tehniques [25℄ replaesthe kernel matrix in the training phase as follows:K  K + �1; (7)while still using the standard kernel funtion in the deision phase (6). We all � the diagonalfator. By tuning �, one an ontrol the training error, and it is possible to prove that the riskof mislassifying unseen points an be dereased with a suitable hoie of � [25℄.If instead of ontrolling the overall training error one wants to ontrol the trade-o� betweenfalse positives and false negatives, it is possible to modify K as follows:K  K + �D; (8)where D is a diagonal matrix whose entries are either d+ or d�, in loations orrespondingto positive and negative examples. It is possible to prove that this tehnique is equivalent toontrolling the size of the �i in a way that depends on the size of the lass, introduing a biasfor larger �i in the lass with smaller d. This in turn orresponds to an asymmetri margin; i.e.,the lass with smaller d will be kept further away from the deision boundary [5℄. In the ase ofimbalaned data sets, hoosing d+ = 1n+ and d� = 1n� provides a heuristi way to automatiallyadjust the relative importane of the two lasses, based on their respetive ardinalities.The experiments presented in this paper were performed using a freely available implementa-tion of the SVM lassi�er whih an be obtained at http://www.s.olumbia.edu/~bgrundy/svm.11We use default values set in the software exept for the diagonal fator, whih varies, the onvergene threshold, whih we setto 10�11 , and using the \noonstraint" option. 5



This implementation is based on that desribed in [17℄ and di�ers slightly from the above ex-planation in that it does not inlude a bias term, b, foring all deision boundaries to ontainthe origin in feature spae.3.2 Feature SeletionOur feature seletion riterion is essentially that used in Golub et al.[13℄. We start with adataset S onsisting of m expression vetors xi = (xi1; ::; xin); 1 � i � m, where m is the numberof tissue or ell samples and n is the number of genes measured. Eah sample is labeled fromY = f+1;�1g (e.g. aner vs. normal). For eah gene xj, we alulate the the mean �+j (resp.��j ) and standard deviation �+i (resp. ��i ) using only the tissues labeled +1 (resp. -1). Wewant to �nd genes that will help disriminate between the two lasses, therefore we alulate asore2 F (xj) = ������+j � ��j�+J + ��j ����� (9)whih gives the highest sore to those genes whose expression levels di�er most on average inthe two lasses while also favoring those with small deviations in sores in the respetive lasses.We di�er slightly from Golub et al. in our use of these sores. They alulate separately soresfor genes whose expression level is greater on average in lass 1 than in lass 2, and similarly forthose greater in lass 2. In reating a set of optimal disriminating features, they then seletan equal number from eah set. We simply take the genes with the top F (xj) sore regardlessof the lass in whih xj is expressed more.3.3 Complete SVM methodThe omplete SVM method an be desribed as follows: we begin by hoosing a kernel, startingwith the simple dot-produt kernel, and tune the diagonal fator to ahieve the best performaneon hold-one-out ross-validation tests using the full dataset. The SVM tuning proedure is thenrepeated with a spei�ed number of the top-ranked features. In these ases, for eah individualhold-one-out test, the features are ranked based on (9) using the sores from only the knownsamples, some number of the top features are extrated, and then these are used to train theSVM and lassify the unknown sample. Examples whih have been onsistently mislassi�edin all tests are identi�ed. These examples an then be investigated by a biologist, and if it isdetermined that the original label is inorret, a orretion is made, and the proess is repeated.Alternatively, an example may be deemed an outlier that is very di�erent from the rest, and istherefore removed.It should be noted that it is very important that when feature seletion is performed, thesample being tested must not be inluded in this proess. Eah individual hold-one-out testrequires a new ranking of features using only those samples that are to be used for train-ing. Inlusion of the test sample when doing feature seletion an ause a leak of informationwhih invalidates the independene assumptions required to reasonably evaluate the methodsperformane. For this problem in partiular, a lot of information an be leaked in this way. 3In the SVM tests reported here, the kernel used in all ases is simply the dot-produt of2This sore is losely related to the Fisher riterion sore for the jth feature, F (j) = (�+j � ��j )2=((�+j )2 + (��j )2) [3℄.3Thanks to Tomaso Poggio for pointing this out to us.
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the two input vetors.4 A more omplex kernel is not required, whih we attribute to thesmall number of examples. As inreasingly omplex datasets beome available providing moreexamples, higher-order kernels may beome neessary [20℄.4 Ovarian data resultsThe miroarray hybridization experiments were performed using 97,802 DNA probes or lonesattahed to membranes. Expression levels were measured for 31 tissue samples whih are eitheranerous ovarian tissue, normal ovarian tissue, or normal non-ovarian tissue. For the purposeof these experiments, the two types of normal tissue are onsidered together as a single lass.The expression values for eah of the lones were normalized suh that the distribution overthe samples had a zero mean and unit variane.Hold-one-out ross-validation experiments are performed. The SVM is trained using datafrom all but one of the tissue samples. The sample not used in training is then assigned a lassby the SVM. A single SVM experiment onsists of a series of hold-one-out experiments, eahsample being held out and tested exatly one.Initially, experiments were done using all expression sores for eah tissue. Diagonal fatorsettings of 0, 2, 5, and 10 were tested. Then lones were ranked in the manner desribedpreviously, and datasets onsisting of the top 25, 50, 100, 500, and 1000 features were reated.Experiments using similar diagonal fators as above were performed using these smaller featuresets. Table 1 displays the results from these experiments. The best lassi�ation is done usingthe top 50 features with a diagonal fator of 2, 5 or 10. The optimal sore ahieved using allfeatures, though, is not signi�antly worse than those ahieved by the smaller data sets.An analysis of the mislassi�ed examples revealed that one normal ovarian tissue sample,N039, was mislassi�ed in all instanes. In addition, the margin of mislassi�ation (distanefrom deision boundary) was relatively large, meaning the SVM strongly believed it to be aanerous ovarian tissue. Figure 1 shows the margins for lassi�ations performed using thetop 50 features and a diagonal fator of two. The margin in this ase is the disriminant valuealulated by the SVM whih has been trained using the other 30 samples. For our experiments,for eah tissue sample x with known label y, this disriminant isy( 30Xi=1�iyi(hxi;xi+ 1) (10)A positive value indiates a orret lassi�ation, while a negative value indiates a mislassi�-ation. When the origin of this tissue was researhed, it was realized that a misommuniationhad aused the inorret labeling of this tissue, and that it should have been labeled anerous.With a orreted label, the above experiments were run again, but disappointingly, lassi-�ation results did not improve signi�antly. A similar analysis as above identi�ed a seondtissue, alled HWBC3, as being onsistently mislassi�ed by a large margin in these new tests.It was also strongly mislassi�ed in the original tests, as an be seen in Figure 1. This tissue is anon-ovarian normal tissue, and the only tissue of its type. Therefore, it is reasonable to believethat training the SVM on tissues with no relation might give spurious results when testing thistissue. Therefore, we removed this tissue and repeated the experiments with the remaining 304We experimented with polynomial and radial basis kernels on the ovarian data, and found that on data ontaining the mis-labeled point, they performed worse than the linear kernel, but on the orretly labeled data, performane is similar to the linearkernel. 7



Kernel DF Feature FP FN TP TNdot-produt 0 25 5 4 10 12dot-produt 2 25 5 2 12 12dot-produt 5 25 4 2 12 13dot-produt 10 25 4 2 12 13dot-produt 0 50 4 2 12 13dot-produt 2 50 3 2 12 14dot-produt 5 50 3 2 12 14dot-produt 10 50 3 2 12 14dot-produt 0 100 4 3 11 13dot-produt 2 100 5 3 11 12dot-produt 5 100 5 3 11 12dot-produt 10 100 5 3 11 12dot-produt 0 500 5 3 11 12dot-produt 2 500 4 3 11 13dot-produt 5 500 4 3 11 13dot-produt 10 500 4 3 11 13dot-produt 0 1000 7 3 11 10dot-produt 2 1000 5 3 11 12dot-produt 5 1000 5 3 11 12dot-produt 10 1000 5 3 11 12dot-produt 0 97802 17 0 14 0dot-produt 2 97802 9 2 12 8dot-produt 5 97802 7 3 11 10dot-produt 10 97802 5 3 11 12Table 1: Error rates for ovarian aner tissue experiments.For eah setting of the SVM onsisting of a kernel and diagonal fator (DF), eah tissue was lassi�ed. Column2 is the number of features (lones) used. Reported are the number of normal tissues mislassi�ed (FP), tumortissues mislassi�ed (FN), tumor tissues lassi�ed orretly (TP), and normal tissues lassi�ed orretly (TN).
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Kernel DF Features FP FN TP TNdot-produt 0 25 1 3 12 14dot-produt 2 25 0 4 11 15dot-produt 5 25 0 4 11 15dot-produt 10 25 0 4 11 15dot-produt 0 50 0 3 12 15dot-produt 2 50 0 4 11 15dot-produt 5 50 0 4 11 15dot-produt 10 50 0 4 11 15dot-produt 0 100 1 4 11 14dot-produt 2 100 0 4 11 15dot-produt 5 100 0 4 11 15dot-produt 10 100 0 4 11 15dot-produt 0 500 3 3 12 12dot-produt 2 500 2 3 12 13dot-produt 5 500 1 3 12 14dot-produt 10 500 1 3 12 14dot-produt 0 1000 3 3 12 12dot-produt 2 1000 2 3 12 13dot-produt 5 1000 2 3 12 13dot-produt 10 1000 2 3 12 13dot-produt 0 97802 0 0 15 15dot-produt 2 97802 4 3 12 11dot-produt 5 97802 4 3 12 11dot-produt 10 97802 4 3 12 11Table 2: Error rates for ovarian aner tissue experiments after lassi�ation of N039 as tumorand removal of HWBC3.For eah setting of the SVM onsisting of a kernel and diagonal fator (DF), eah tissue was lassi�ed. Columnthree lists the number of features (lones) in the dataset. Reported are the number of normal tissues mislassi�ed(FP), tumor tissues mislassi�ed (FN), tumor tissues lassi�ed orretly (TP), and normal tissues lassi�edorretly (TN).tissue samples. Table 2 shows the results from these experiments. Perfet lassi�ation wasahieved using all features and a diagonal fator of 0. No other setting, though, is able tomake fewer than 3 mistakes, and therefore we annot plae muh on�dene in the one perfetexperiment.5 Ovarian feature analysisAfter ranking the features using the proedure desribed above on all of the 31 samples, weattempted to sequene the top-ranked 10 lones. Using these 10 lones, we were able to ahieveperfet lassi�ation in hold-one-out experiments, thus we felt that these lones may be signif-iant in the identi�ation of anerous tissue. As stated above, this lassi�ation performaneis overly optimisti due to the information leaked during feature seletion. The fat that per-formane using just these 10 features is good merely serves to support the possibility that theyare meaningful lones.As Table 3 shows, three of the lones did not yield a readable sequene. Two of these lonesould not be ampli�ed and one represents more than one gene, in whih ase the sequeningreation fails. We did not attempt to re-sequene these lones. Of the remaining seven lones,�ve represent expressed genes and two onstituted repetitive sequenes. Repetitive sequenesour naturally at 3' ends of messenger RNAs, some being as long as 1000 bp, some being9



as short as 10. Another soure for repeats is the hromosomal DNA, whih is a by-produtof the mRNA preparation that an be redued but hardly ever avoided. Sine these twolones show a stronger signal than that in the normal tissues, the RNA prepared from tumortissue must therefore ontain more repetitive sequenes. We an only speulate that genomirearrangements in the tumor ells result in short hromosomal DNA fragments that an easilyontaminate the mRNA preparation.Out of the �ve lones that math to expressed genes, two were homologous to ESTs and threemathed to known genes. For these 5 sequenes, information is thus available that might tell uswhether the gene is aner-related (either a known or assumed tumor gene, or presene in DNAlibraries from tumor tissues in the ase of ESTs). The aner-relatedness of a feature helps usassess the quality of the lone ranking. Both EST-mathing lones have homologies to ESTsthat overwhelmingly ome from tumor libraries. Likewise, one of the three lones with homologyto known genes mathes to ferritin H (GenBank aession number L20941), a known anergene [28℄. Another lone mathes to LYVE-1 (GenBank aession number NM 006691.1) alymphati gene whih is more highly expressed in the tumors due to the lymphoytes in�ltratingthe tumors. The third known gene is poly(rC)-binding protein 2 (PCBP2, GenBank aessionnumber NM 005016). This gene is under-expressed in the tumors. In summary, three of the �velones with homology to expressed genes are aner-related and one is related to the preseneof white blood ells in the tumor.In order to evaluate this �nding in the ontext of the auray of the lone soring, weompared the identities of the top 1000 ranking lones to the bottom 1000. Sine we did nothave the means to sequene suh as large number of lones, we had to ontent ourselves withthe sequenes generated in earlier random sequening experiments (55 among the top 1000and 28 among the bottom 1000). Table 4 shows that the top ranked lones are enrihed forlones that did not yield a readable sequene (bad sequenes), as well as for repeats and fortumor genes (suh as ferritin H, CDC2 [GenBank aession number D88357℄ and the SETtransloation gene [GenBank aession number NM 003011.1℄). The number of tumor-relatedESTs did not inrease. Interestingly, the level of Immunoglobulin genes remains essentially thesame. These genes are uniquely expressed by tumor-in�ltrating white blood ells and one wouldhave expeted a higher showing in the top 1000. Another interesting �nding is that the genesof the metabolism (mitohondrial genes and ribosomal proteins) whih are ommonly found toshow elevated expression in tumors, and whih here, if at all, tend to be found in the bottom1000. Thus, the soring enrihes the tumor-related genes but also the non-spei� sequenes.From a tumor biologist's point of view, the aumulation of tumor-related genes at the top isa very useful feature when it omes to sreening for novel aner genes.The above analysis seems to suggest that the feature seletion method is able to identifylones that are aner-related, and rank them highly. In addition, though, some lones seemedto obtain a high ranking while not having a meaningful biologial explanation, and some knowntumor genes are not ranked as high as would be expeted. Given this and the inability of thisfeature seletion method to signi�antly improve lassi�ation performane, additional e�ort isneeded to develop ways of identifying meaningful features in these types of datasets.6 Other data resultsTo demonstrate that our method an perform well in general ompared to other methods usedto analyze expression datasets, we performed similar experiments using previously published10



Seq ID Way of ationrepeat ALUferritin H ferritin is used in trialsas marker for ovarian anerEST 1 mathes to ESTs form tumor librariesbad PCRrepeat LINE1bad sequenebad PCRLYVE-1 expressed on the lymph vessel wallPCBP2 required for translation of poliovirusRNA: binds and stabilizes mRNA oferythropoietin, hepatitis A and Cvirus, and tyrosine hydroxylaseEST 2 mathes to ESTs form tumor librariesTable 3: Sequene homologies of the top 10 soring lones These sequenes were onsidered the 10top-ranked lones using the feature seletion method desribed above.
Gene Top % Bottom % Ratiototal sequenes 55 28bad sequenes 10 18 2 7 +repeats 6 11 0 0 +tumor genes 7 13 1 4 +ESTs 9 16 5 18tumor-related ESTs 7 13 4 14metabolism genes 7 13 7 25 -novel sequene 0 0 2 7 -Immunoglobulin 4 7 3 11other known genes 5 9 5 18Table 4: Comparison of top and bottom ranked lones. A total of 55 of the top 1000 ranked lones and28 of the bottom 1000 ranked lones were sequened. Eah is ategorized into one of nine groups. The numberof sequenes in eah ategory from the top and bottom rankings is listed, along with the perentage of the totalsequened that ategory ontains. The last olumn shows whether the ategory is more prevalent in either thetop (+) 1000 or bottom (-) 1000 ranked lones.
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datasets. The �rst dataset involves expression experiments on samples taken from patients withhuman aute leukemia. Initial analysis was performed by Golub et al. [13℄, and the datasetan be obtained at http://waldo.wi.mit.edu/MPR/aner lass.html. The seond dataset isomprised of expression data measuring levels of expression of genes in human tumor andnormal olon tissues. Alon et al.[1℄ originally analyzed this data, and it is available at theirwebsite, http://www.molbio.prineton.edu/olondata.6.1 AML/ALL datasetBone marrow or peripheral blood samples were taken from 72 patients with either aute myeloidleukemia (AML) or aute lymphoblasti leukemia (ALL). Following the experimental setup ofthe original authors, the data is split into a training set onsisting of 38 bone marrow samplesof whih 27 are ALL and 11 are AML, and a test set onsisting of 24 bone marrow and 10peripheral blood samples, 20 ALL and 14 AML. The dataset provided ontained expressionlevels for 7129 human genes produed by A�ymetrix high-density oligonuleotide miroarrays.The sores in the dataset represent the intensity of gene expression after being re-saled tomake overall intensities for eah hip equivalent. Following the methods in Golub et al.[13℄,we normalize these sores for eah gene by subtrating the mean and dividing by the standarddeviation of the expression values for that gene.Golub et al. report auray of lassi�ation on the training set using a weighted votingsheme5 and also lustering using self-organizing maps (SOMs). Hold-one-out ross validationtests using the weighted voting sheme orretly lassify all samples for whih a predition ismade, 36 of the 38 samples, while delining to predit on the remaining two. A two-lusterSOM produed one luster with 24 ALL and 1 AML sample, and the seond with 10 AML and3 ALL samples.We also did a full hold-one-out ross-validation measurement of the auray of our methodon the training set alone. The SVM method was able to orretly lassify all samples of thetraining set with a diagonal fator of two. Retesting subsets with only the top-ranked 25, 250,500, and 1000 features, it was also able to orretly lassify all training samples orretly usinga diagonal fator of two in all ases.We then tried to lassify samples in the test set using a lassi�er that had been trained onlyon the examples in the training set. Multiple dataset sizes and diagonal fator settings performoptimally on the training set, and testing eah ombination produed results ranging betweenlassifying 30 to 32 of the 34 samples orretly. Golub et al. use a preditor trained usingtheir weighted voting sheme on the training samples, and lassify orretly on all samples forwhih a predition is made, 29 of the 34, delining to predit for the other �ve. The SVMpredited inorretly on �ve samples in at least one of its tests, and of these �ve, none weregiven preditions by Golub et al.. Two samples, patients 54 and 66, were mislassi�ed in allases.Information is provided as to whether the ALL samples were of B-ell lineage or T-elllineage. Using all 47 ALL samples from both the training and test sets, the SVM ahievesperfet lassi�ation using the 250 and 500 top-ranked features with multiple diagonal fatorsettings on hold-one-out ross-validation tests. Using the full dataset, the SVM mislassi�edonly a single tissue when using a zero diagonal fator. Golub et al. use SOMs to reate 45The weighted voting sheme uses a group of 50 genes seleted and desribed in the subsetion \Feature Seletion" where eahgene predits a lass for eah sample. These preditions are ombined with eah being weighted by "the degree of that gene'sorrelation with the lass distintion", whih is the F (g) sore de�ned above. If this ombination exeeds a threshold in favor ofone lass over the other, a predition is made. 12



lusters using all examples in the training set, inluding the AML samples. The �rst lusterontains 10 AML samples, the seond ontains 8 T-lineage ALL samples and 1 B-lineage ALLsample, the third ontains 5 B-lineage ALL samples, and the last one ontains 13 B-lineageALL samples and a single AML sample.Lastly, results of hemotherapy treatments for 15 AML patients is available. Treatment wasonsidered suessful if the patient went into remission for 46 to 84 months, otherwise it wasonsidered a failure. Golub et al. report that they were unable to ahieve aurate resultsusing their weighted voting sheme. On hold-one-out ross-validation tests, the SVM was ableto lassify 10 of the 15 patients using the top 5 or 10 ranked features and a diagonal fatorof two, thus performing slightly better than hane. One mislassi�ed sample, patient 37, wasonsistently mislassi�ed using multiple settings, and by a relatively large margin.6.2 Colon tumor datasetUsing A�ymetrix oligonuleotide arrays, expression levels for 40 tumor and 22 normal olontissues were measured for 6500 human genes. Of these genes, the 2000 with the highest mini-mal intensity aross the tissues were seleted for lassi�ation purposes, and these were madepublily available. The sores in the dataset represent a gene intensity derived in a proessdesribed in Alon et al.[1℄. The data was not proessed further before performing lassi�a-tion. Alon et al. use a lustering method to reate lusters of tissues. In their experiments,one luster onsisted of 35 tumor and 3 normal tissues, and the other 19 normal and 5 tumortissues.Using the SVM method with full hold-one-out ross-validation on the dataset of 62 tissues,we were able to orretly lassify orretly all but six of the tissues using all 2000 features anda diagonal fator of two. Using only the top 1000 genes produed similar results at the samediagonal fator. The six mislassi�ed in eah of the optimal runs were exatly the same andonsisted of three tumor tissues (T30, T33, T36) and three normal tissues (N8, N34, N36).T30, T33, and T36 are among the 5 tumor tissues that were lustered with the majority ofthe normal tissues by Alon et al., and N8 and N32 were similarly in the luster ontaining themajority of the tumor tissues.Figure 2 plots the margins for the tissues based on the experiments using all of the datawith a diagonal fator of two. This is analogous to Figure 1 above, whih helped identify themis-labeled tissue in the ovarian dataset. As we an see in Figure 2, none of the six mislassi�edtissues were borderline ases aording to the SVM.Alon et al. de�ne a musle index based on the average intensity of ESTs that are homologousto 17 smooth musle genes. They explain that \normal tissue samples inlude a mixture of tissuetypes, while the tumor samples are biased to epithelial tissue of the arinoma". Therefore, it isexpeted that tumor tissues should have lower expression levels for these 17 ESTs and a smallermusle index. In general, this proved to be true. Interestingly, though, all tumor tissues hada musle index less than or equal to 0.3 exept for T30, T33, and T36, and all normal tissueshad an index of greater than or equal to 0.3 exept N8, N34, and N36.Without the assistane of the biologists who onduted these experiments, we annot explorewhether it is possible that one or more of these samples were bad or mis-labeled. Simplyremoving all six samples from the data and re-testing still produed lassi�ation errors. Twoof the samples, N36 and T36, are espeially interesting beause their names indiate that theyoriginated from the same patient, yet both are onsistently mislassi�ed by the SVM. Also,N36 has a musle index or 0.1 and T36 has a musle index of 0.7 whih is ounter-intuitive.13
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Tissue SamplesFigure 2: SVM lassi�ation margins, olon tissues. When lassifying, the SVM alulates the marginwhih is the distane of an example from the separating hyper-plane it has learned. In this graph, the marginfor eah tissue sample is shown. A positive value indiates a orret lassi�ation, and a negative value indiatesan inorret lassi�ation. The inorret lassi�ations orrespond to (from left to right) N8, T30, T33, N34,N36, and T36.7 Comparison to pereptron-like lassi�ation algorithmsAs disussed in the introdution, we do not laim that we an prove that the SVM methodis better than other lassi�ation tehniques on this type of dataset. The seond family ofalgorithms we tested are generalizations of the Pereptron algorithm [23℄. This simple algorithmworks in an on-line way, running through the data and updating a weight vetor eah time itmakes a mistake. The new weight vetor iswt+1 = wt + ytxt (11)and again the resulting deision rule is linear6, the lassi�ation is given by sign(hwt;xi).However, this algorithm requires modi�ation when there is no perfet linear deision rule.Helmbold and Warmuth [16℄ provided suh a modi�ation, for whih they derived performaneguarantees. The modi�ation simply amounts to taking a linear ombination of the deisionrules used at eah iteration of the algorithm. The �nal deision rule is sign(Pthwt;xi). Freundand Shapire [12℄ demonstrated that kernels other than the simple inner produt an also beapplied e�etively to this algorithm, ahieving performane omparable to the best SVM on abenhmark test of Hand-Written Digits.As in the ase of SVMs, the use of a more omplex kernel did not improve performane forthese problems and so we report only results for an inner produt kernel. We also tested analgorithm known as the p-norm pereptron [14℄, using the same averaging proedure7. The-oretial results suggest that these algorithms perform well when good sparse hypotheses areavailable.Our results for the modi�ed pereptron are omparable to those for the SVM and the soresahieved for eah dataset are given in Table 5.Although it is not suggested by the theory, we observed that this algorithm ahieves improvedperformane by running through the data several times; this was also observed by Freund and6We did not use a bias in these experiments.7It is an open question whether kernels an be applied to suh algorithms.14



SVM SVMDataset Features FP FN FP FNOvarian(original) 97802 4.6 4.8 5 3Ovarian(modi�ed) 97802 4.4 3.4 0 0AML/ALL train 7129 0.6 2.8 0 0AML treatment 7129 4.8 3.5 3 2Colon 2000 3.8 3.7 3 3Table 5: Results for the pereptron on all data sets. The results are averaged over 5 shu�ings of the dataas this algorithm is sensitive to the order in whih it reeives the data points. The �rst olumn is the datasetused and the seond is number of features in the dataset. For the ovarian and olon datasets, the numberof normal tissues mislassi�ed (FP) and the number of tumor tissues mislassi�ed (FN) is reported. For theAML/ALL training dataset, the number of AML samples mislassi�ed (FP) and the number of ALL patientsmislassi�ed (FN) is reported. For the AML treatment dataset, the number of unsuessfully treated patientsmislassi�ed (FP) and the number of suessfully treated patients mislassi�ed (FN) is reported. The last twoolumns report the best sore obtained by the SVM on that dataset.Shapire[12℄. The p-norm pereptron did not perform as well as the theory might suggest andwe only report results for the standard pereptron.8 ConlusionWe have presented a method to analyze miroarray expression data for genes from several tissueor ell types using support vetor mahines. While our results indiate that SVMs are ableto lassify tissue and ell types based on this data, we show that other methods suh as theones based on the pereptron algorithm are able to perform similarly. The datasets urrentlyavailable ontain relatively few examples and thus do not allow one method to demonstratesuperiority. The SVM performs well using a simple kernel, and we believe that as more omplexdatasets beome available, the use of more omplex kernels will beome neessary and willallow the SVM to ontinue its good performane. As an added feature of our SVM method,we demonstrate that it an be used to identify mis-labeled data.Miroarray expression experiments have great potential for use as part of standard diagnosistests performed in the medial ommunity. We have shown along with others that expressiondata an be used in the identi�ation of the presene of a disease and the determination of itsell lineage. In addition, there is a hope that preditions of the suess or failure of a partiulartreatment may be possible, but so far, results from these types of experiments are inonlusive.9 AknowledgmentsWe have used the SVM software written by Bill Grundy and thank him for his assistane with the softwareand also for his omments on a earlier draft. We are partiularly grateful to Tomaso Poggio for pointing outa aw in our earlier experiments. We thank Manuel Ares for suggesting we look at the Alon et al. data,and Dik Karp for putting us in ontat with eah other to study the ovarian aner data. Finally, we aregrateful to Al Globus, Computer Sienes Corporation at NASA Ames Researh Center, for providing some ofthe omputational resoures required to perform our experiments.
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