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tDNA mi
roarray experiments generating thousands of gene expression measurements are being used togather information from tissue and 
ell samples about gene expression di�eren
es that will be useful indiagnosing disease. We have developed a new method to analyze this kind of data using support ve
torma
hines (SVMs). This analysis 
onsists of both 
lassi�
ation of the tissue samples, and an exploration ofthe data for mis-labeled or questionable tissue results. We demonstrate the method in detail on samples
onsisting of ovarian 
an
er tissues, normal ovarian tissues, and other normal tissues. The dataset 
onsistsof expression experiment results for 97,802 
DNAs for ea
h tissue. As a result of 
omputational analysis, atissue sample is dis
overed and 
on�rmed to be wrongly labeled. Upon 
orre
tion of this mistake and theremoval of an outlier, perfe
t 
lassi�
ation of tissues is a
hieved, but not with high 
on�den
e. We identifyand analyze a subset of genes from the ovarian dataset whose expression is highly di�erentiated betweenthe types of tissues. To show robustness of the SVM method, two previously published datasets from othertypes of tissues or 
ells are analyzed. The results are 
omparable to those previously obtained. We showthat other ma
hine learning methods perform 
omparably to the SVM on many of those datasets as well.Keywords: Support ve
tor ma
hines, mi
roarray expression data, ovarian 
an
er
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1 Introdu
tionMi
roarray expression experiments allow the re
ording of expression levels of thousands ofgenes simultaneously. These experiments primarily 
onsist of either monitoring ea
h genemultiple times under many 
onditions [26, 6, 9, 31, 22℄, or alternately evaluating ea
h gene ina single environment but in di�erent types of tissues, espe
ially 
an
erous tissues [10, 1, 13, 21,33, 30, 24, 32℄. Those of the �rst type have allowed for identi�
ation of fun
tionally relatedgenes due to 
ommon expression patterns [5, 11, 31, 22℄, while the latter experiments haveshown promise in 
lassifying tissue types (diagnosis) and in the identi�
ation of genes whoseexpressions are good diagnosti
 indi
ators [13, 1℄. In order to extra
t information from geneexpression measurements, di�erent methods have been employed to analyze this data in
ludingsupport ve
tor ma
hines [5, 20℄ 
lustering methods [11, 26, 1, 21, 2, 15℄, self-organizing maps[27, 13℄, and a weighted 
orrelation method [13℄.Support ve
tor ma
hines (SVMs), a supervised ma
hine learning te
hnique, have been shownto perform well in multiple areas of biologi
al analysis in
luding evaluating mi
roarray expres-sion data [5℄, dete
ting remote protein homologies [17℄, re
ognizing translation initiation sites[34℄, and breast 
an
er diagnosis and prognosis [19℄. We have also re
ently be
ome aware of twoother 
urrent e�orts that use SVMs in analyzing expression data [20℄ and (Jaakkola, personal
ommuni
ation). SVMs have demonstrated the ability to not only 
orre
tly separate entitiesinto appropriate 
lasses, but also in identifying instan
es whose established 
lassi�
ation is notsupported by the data. Expression datasets 
ontain measurements for thousands of genes whi
hproves problemati
 for many traditional methods. SVMs, though, are well suited to workingwith high dimensional data su
h as this.Here a systemati
 and prin
ipled method is introdu
ed that analyzes mi
roarray expressiondata from thousands of genes tested in multiple tissue or 
ell samples. The primary goal isthe proper 
lassi�
ation of new samples. We do this by training the SVM on samples 
lassi�edby experts, then testing the SVM on samples it has not seen before. We demonstrate howSVMs 
an not only 
lassify new samples, but 
an also help in the identi�
ation of those whi
hhave been wrongly 
lassi�ed by experts. Our method is demonstrated in detail on data fromexperiments involving 31 ovarian 
an
er, normal ovarian and other normal tissues. We are ableto identify one tissue sample as mis-labeled, and another as an outlier, whi
h is shown in these
tion 4 and illustrated in Figure 1. Though perfe
t 
lassi�
ation is �nally a
hieved in oneinstan
e, this performan
e is not 
onsistently shown in multiple tests and therefore, 
annot be
onsidered too signi�
ant.We also experimented with the method used in Golub et al.[13℄ to fo
us the analysis on asmaller subset of genes that appear to be the best diagnosti
 indi
ators. This amounts to akind of dimensionality redu
tion on the dataset. If one 
an identify parti
ular genes that arediagnosti
 for the 
lassi�
ation one is trying to make, e.g. the presen
e of 
an
er, then thereis also hope that some of these genes may be found to be of value in further investigationsof the disease and in future therapies. Here we �nd that this dimensionality redu
tion doesnot signi�
antly improve 
lassi�
ation performan
e. It does reveal some genes that may beof interest for ovarian 
an
er. However, further work needs to be done to identify the moste�e
tive feature sele
tion/dimensionality redu
tion methods for this kind of data.To test the generality of the approa
h, we also tested it on the leukemia data from Golub etal.[13℄ (72 patient samples) and the 
olon tumor data from Alon et al.[1℄ (62 tissue samples).Our results are 
omparable to those obtained in these papers. Sin
e no spe
ial e�ort was madeto tune the method to these other datasets, this in
reases our 
on�den
e that our approa
h2



will have broad appli
ations in analyzing data of this type.It is diÆ
ult to show that one diagnosti
 method is signi�
antly better than another withsmall data sets su
h as those we have examined. We have 
ondu
ted a full hold-one-out 
ross-validation (ja
kknife) evaluation of the 
lassi�
ation performan
e of the methods we tested.These in
lude both SVM methods and variants of the per
eptron algorithm. No single 
lassi-�
ation te
hnique has proven to be signi�
antly superior to all others in the experiments wehave done. Indeed, the di�erent kernels we tried performed nearly equally well and variantsof the per
eptron algorithm are shown to perform 
omparably to the SVM on all tests. It isunfortunate that typi
al diagnosti
 gene expression datasets today involve only a few tissuesamples. As datasets in
rease in size and 
omplexity, we predi
t that our method will 
ontinueto demonstrate ex
ellent performan
e, superior to that of simpler methods, but this is 
urrentlyonly spe
ulation.2 Mi
roarray expression experimentsIn re
ent years, several methods have been developed for performing gene expression exper-iments. In general, thousands of distin
t DNA probes are atta
hed to a mi
roarray whosesurfa
e is typi
ally made of 
oated glass or a type of membrane. Probes 
an be PCR produ
tsor oligonu
leotides whose sequen
es 
orrespond to target genes (or ESTs) of the genome beingstudied. RNA is extra
ted from the sample tissues or 
ells, reverse trans
ribed into labeled
DNA, whi
h is then allowed to hybridize with the probes on the mi
roarray. The 
DNA 
orre-sponds to trans
ripts produ
ed by genes in the samples, and the amount of a parti
ular 
DNAsequen
e present will be in proportion to the level of expression of its 
orresponding gene. Themi
roarray is washed to remove non-spe
i�
 hybridization, and the level of hybridization forea
h probe is 
al
ulated. From these measurements, an expression level for genes 
orrespondingto the probes is derived. This level may represent a ratio between the expression of the geneunder some 
ontrol 
ondition as 
ompared to the test 
ondition. This is repeated for ea
h tissueor 
ell sample.Certain experimental 
onditions 
an a�e
t the a

ura
y of the expression measurements.There are problems inherent to PCR ampli�
ation that 
an result in probes that do not mat
hthe intended sequen
e or in di�erential ampli�
ation of 
DNA. Cross-hybridization of repetitivesequen
es and non-spe
i�
 hybridization to non-DNA features present on the array 
an leadto false-positive or false-negative signals. Lastly, tissue samples as opposed to 
ell samplesintrodu
e the possibility that expression levels being measured are due to the 
omposition ofthe tissue rather than the expression of a parti
ular gene in ea
h 
ell.For more in depth dis
ussions of these te
hniques, see Lo
khart et al.[18℄ whi
h des
ribesA�ymetrix oligonu
leotide arrays and S
hummer et al.[24℄ whi
h analyzes membrane arraysmade from 
DNA 
lones.3 Support ve
tor ma
hine methodPrevious methods used in the analysis of similar datasets start with a pro
edure to extra
t themost relevant features. Most learning te
hniques do not perform well on datasets where thenumber of features is large 
ompared to the number of examples. SVMs are believed to be anex
eption. We are able to begin with tests using the full dataset, and systemati
ally redu
e thenumber of features sele
ting those we believe to be the most relevant. In this way, we 
an show3



whether an improvement is made using smaller sets, thus indi
ating whether these 
ontain themost meaningful genes.To understand our method, a familiarity with SVMs is required, and a brief introdu
tionfollows. We explain below how we rank the features, and present an outline of how we use theSVM to perform 
lassi�
ation and error dete
tion.3.1 Support Ve
tor Ma
hinesSupport ve
tor ma
hines (SVMs) [8℄ are a relatively new type of learning algorithm, originallyintrodu
ed by Vapnik and 
o-workers [4, 29℄ and su

essively extended by a number of otherresear
hers. Their remarkably robust performan
e with respe
t to sparse and noisy data ismaking them the system of 
hoi
e in a number of appli
ations, from text 
ategorization tobioinformati
s.When used for 
lassi�
ation, they separate a given set of binary labeled training data witha hyper-plane that is maximally distant from them (known as 'the maximal margin hyper-plane'). For 
ases in whi
h no linear separation is possible, they 
an work in 
ombinationwith the te
hnique of 'kernels', that automati
ally realizes a non-linear mapping to a featurespa
e. The hyper-plane found by the SVM in feature spa
e 
orresponds to a non-linear de
isionboundary in the input spa
e.Let the input points be realizations of the random variable X =(X1; :::; Xn), and let xj =(xj1; :::; xjn) be the jth input point. Let the input points be labeled by the random variableY = f�1;+1g.Let �: I � <n ! F � <N be a mapping from the input spa
e I � <n to a feature spa
e F .Let us assume that we have a sample S of m labeled data points: S = f(x1; y1); :::; (xm; ym)g.The SVM learning algorithm �nds a hyper-plane (w; b) su
h that the quantity
 = mini yifhw; �(xi)i � bg (1)is maximized, where h; i denotes an inner produ
t, the ve
tor w has the same dimensionality asF , b is a real number, and 
 is 
alled the margin. The quantity (hw; �(xi)i� b) 
orresponds tothe distan
e between the point xi and the de
ision boundary. When multiplied by the label yi,it gives a positive value for all 
orre
t 
lassi�
ations and a negative value for the in
orre
t ones.The minimum of this quantity over all the data is positive if the data is linearly separable, andis 
alled the margin. Given a new data point x to 
lassify, a label is assigned a

ording to itsrelationship to the de
ision boundary, and the 
orresponding de
ision fun
tion isf(x) = sign (hw; �(x)i � b) (2)It is easy to prove [8℄ that, for the maximal margin hyper-plane,w = mXi=1 �iyi�(xi) (3)where �i are positive real numbers that maximizemXi=1 �i � mXij=1�i�jyiyjh�(xi); �(xj)i (4)subje
t to mXi=1 �iyi = 0; �i > 0: (5)4



The de
ision fun
tion 
an equivalently be expressed asf(x) = sign mXi=1 �iyih�(xi); � (x)i � b! : (6)From this equation it is possible to see that the �i asso
iated with the training point xi expressesthe strength with whi
h that point is embedded in the �nal de
ision fun
tion. A remarkableproperty of this alternative representation is that often only a subset of the points will beasso
iated with non-zero �i. These points are 
alled support ve
tors and are the points that lie
losest to the separating hyper-plane. The sparseness of the � ve
tor has several 
omputationaland learning theoreti
 
onsequen
es.Noti
e that for a test point (x; y) the quantity y (Pmi=1 �iyih�(xi); � (x)i � b) is negative ifthe predi
tion of the ma
hine is wrong, and a large negative value would indi
ate that thepoint (x; y) is regarded by the algorithm as 'di�erent' from the training data. The matrixKij = h�(xi);�(xj)i is 
alled the kernel matrix and will be parti
ularly important in the exten-sions of the algorithm that will be dis
ussed later. In the 
ase when the data are not linearlyseparable, one 
an use more general fun
tions, Kij = K(xi;xj), that provide non-linear de
isionboundaries. Two 
lassi
al 
hoi
es are polynomial kernels K(xi;xj) = (hxi;xji+1)d and Gaus-sian kernels K(xi;xj) = e�kxi�xjk�2 , where d and � are kernel parameters. In our experiments,we use K(xi;xj) = (hxi;xji+ 1).In the presen
e of noise, the standard maximum margin algorithm des
ribed above 
an besubje
t to over-�tting, and more sophisti
ated te
hniques are ne
essary. This problem arisesbe
ause the maximum margin algorithm always �nds a perfe
tly 
onsistent hypothesis and doesnot tolerate training error. Sometimes, however, it is ne
essary to trade some training a

ura
yfor better predi
tive power. The need for tolerating training error has led to the development ofthe soft-margin and the margin-distribution 
lassi�ers [7℄. One of these te
hniques [25℄ repla
esthe kernel matrix in the training phase as follows:K  K + �1; (7)while still using the standard kernel fun
tion in the de
ision phase (6). We 
all � the diagonalfa
tor. By tuning �, one 
an 
ontrol the training error, and it is possible to prove that the riskof mis
lassifying unseen points 
an be de
reased with a suitable 
hoi
e of � [25℄.If instead of 
ontrolling the overall training error one wants to 
ontrol the trade-o� betweenfalse positives and false negatives, it is possible to modify K as follows:K  K + �D; (8)where D is a diagonal matrix whose entries are either d+ or d�, in lo
ations 
orrespondingto positive and negative examples. It is possible to prove that this te
hnique is equivalent to
ontrolling the size of the �i in a way that depends on the size of the 
lass, introdu
ing a biasfor larger �i in the 
lass with smaller d. This in turn 
orresponds to an asymmetri
 margin; i.e.,the 
lass with smaller d will be kept further away from the de
ision boundary [5℄. In the 
ase ofimbalan
ed data sets, 
hoosing d+ = 1n+ and d� = 1n� provides a heuristi
 way to automati
allyadjust the relative importan
e of the two 
lasses, based on their respe
tive 
ardinalities.The experiments presented in this paper were performed using a freely available implementa-tion of the SVM 
lassi�er whi
h 
an be obtained at http://www.
s.
olumbia.edu/~bgrundy/svm.11We use default values set in the software ex
ept for the diagonal fa
tor, whi
h varies, the 
onvergen
e threshold, whi
h we setto 10�11 , and using the \no
onstraint" option. 5



This implementation is based on that des
ribed in [17℄ and di�ers slightly from the above ex-planation in that it does not in
lude a bias term, b, for
ing all de
ision boundaries to 
ontainthe origin in feature spa
e.3.2 Feature Sele
tionOur feature sele
tion 
riterion is essentially that used in Golub et al.[13℄. We start with adataset S 
onsisting of m expression ve
tors xi = (xi1; ::; xin); 1 � i � m, where m is the numberof tissue or 
ell samples and n is the number of genes measured. Ea
h sample is labeled fromY = f+1;�1g (e.g. 
an
er vs. normal). For ea
h gene xj, we 
al
ulate the the mean �+j (resp.��j ) and standard deviation �+i (resp. ��i ) using only the tissues labeled +1 (resp. -1). Wewant to �nd genes that will help dis
riminate between the two 
lasses, therefore we 
al
ulate as
ore2 F (xj) = ������+j � ��j�+J + ��j ����� (9)whi
h gives the highest s
ore to those genes whose expression levels di�er most on average inthe two 
lasses while also favoring those with small deviations in s
ores in the respe
tive 
lasses.We di�er slightly from Golub et al. in our use of these s
ores. They 
al
ulate separately s
oresfor genes whose expression level is greater on average in 
lass 1 than in 
lass 2, and similarly forthose greater in 
lass 2. In 
reating a set of optimal dis
riminating features, they then sele
tan equal number from ea
h set. We simply take the genes with the top F (xj) s
ore regardlessof the 
lass in whi
h xj is expressed more.3.3 Complete SVM methodThe 
omplete SVM method 
an be des
ribed as follows: we begin by 
hoosing a kernel, startingwith the simple dot-produ
t kernel, and tune the diagonal fa
tor to a
hieve the best performan
eon hold-one-out 
ross-validation tests using the full dataset. The SVM tuning pro
edure is thenrepeated with a spe
i�ed number of the top-ranked features. In these 
ases, for ea
h individualhold-one-out test, the features are ranked based on (9) using the s
ores from only the knownsamples, some number of the top features are extra
ted, and then these are used to train theSVM and 
lassify the unknown sample. Examples whi
h have been 
onsistently mis
lassi�edin all tests are identi�ed. These examples 
an then be investigated by a biologist, and if it isdetermined that the original label is in
orre
t, a 
orre
tion is made, and the pro
ess is repeated.Alternatively, an example may be deemed an outlier that is very di�erent from the rest, and istherefore removed.It should be noted that it is very important that when feature sele
tion is performed, thesample being tested must not be in
luded in this pro
ess. Ea
h individual hold-one-out testrequires a new ranking of features using only those samples that are to be used for train-ing. In
lusion of the test sample when doing feature sele
tion 
an 
ause a leak of informationwhi
h invalidates the independen
e assumptions required to reasonably evaluate the methodsperforman
e. For this problem in parti
ular, a lot of information 
an be leaked in this way. 3In the SVM tests reported here, the kernel used in all 
ases is simply the dot-produ
t of2This s
ore is 
losely related to the Fisher 
riterion s
ore for the jth feature, F (j) = (�+j � ��j )2=((�+j )2 + (��j )2) [3℄.3Thanks to Tomaso Poggio for pointing this out to us.
6



the two input ve
tors.4 A more 
omplex kernel is not required, whi
h we attribute to thesmall number of examples. As in
reasingly 
omplex datasets be
ome available providing moreexamples, higher-order kernels may be
ome ne
essary [20℄.4 Ovarian data resultsThe mi
roarray hybridization experiments were performed using 97,802 DNA probes or 
lonesatta
hed to membranes. Expression levels were measured for 31 tissue samples whi
h are either
an
erous ovarian tissue, normal ovarian tissue, or normal non-ovarian tissue. For the purposeof these experiments, the two types of normal tissue are 
onsidered together as a single 
lass.The expression values for ea
h of the 
lones were normalized su
h that the distribution overthe samples had a zero mean and unit varian
e.Hold-one-out 
ross-validation experiments are performed. The SVM is trained using datafrom all but one of the tissue samples. The sample not used in training is then assigned a 
lassby the SVM. A single SVM experiment 
onsists of a series of hold-one-out experiments, ea
hsample being held out and tested exa
tly on
e.Initially, experiments were done using all expression s
ores for ea
h tissue. Diagonal fa
torsettings of 0, 2, 5, and 10 were tested. Then 
lones were ranked in the manner des
ribedpreviously, and datasets 
onsisting of the top 25, 50, 100, 500, and 1000 features were 
reated.Experiments using similar diagonal fa
tors as above were performed using these smaller featuresets. Table 1 displays the results from these experiments. The best 
lassi�
ation is done usingthe top 50 features with a diagonal fa
tor of 2, 5 or 10. The optimal s
ore a
hieved using allfeatures, though, is not signi�
antly worse than those a
hieved by the smaller data sets.An analysis of the mis
lassi�ed examples revealed that one normal ovarian tissue sample,N039, was mis
lassi�ed in all instan
es. In addition, the margin of mis
lassi�
ation (distan
efrom de
ision boundary) was relatively large, meaning the SVM strongly believed it to be a
an
erous ovarian tissue. Figure 1 shows the margins for 
lassi�
ations performed using thetop 50 features and a diagonal fa
tor of two. The margin in this 
ase is the dis
riminant value
al
ulated by the SVM whi
h has been trained using the other 30 samples. For our experiments,for ea
h tissue sample x with known label y, this dis
riminant isy( 30Xi=1�iyi(hxi;xi+ 1) (10)A positive value indi
ates a 
orre
t 
lassi�
ation, while a negative value indi
ates a mis
lassi�-
ation. When the origin of this tissue was resear
hed, it was realized that a mis
ommuni
ationhad 
aused the in
orre
t labeling of this tissue, and that it should have been labeled 
an
erous.With a 
orre
ted label, the above experiments were run again, but disappointingly, 
lassi-�
ation results did not improve signi�
antly. A similar analysis as above identi�ed a se
ondtissue, 
alled HWBC3, as being 
onsistently mis
lassi�ed by a large margin in these new tests.It was also strongly mis
lassi�ed in the original tests, as 
an be seen in Figure 1. This tissue is anon-ovarian normal tissue, and the only tissue of its type. Therefore, it is reasonable to believethat training the SVM on tissues with no relation might give spurious results when testing thistissue. Therefore, we removed this tissue and repeated the experiments with the remaining 304We experimented with polynomial and radial basis kernels on the ovarian data, and found that on data 
ontaining the mis-labeled point, they performed worse than the linear kernel, but on the 
orre
tly labeled data, performan
e is similar to the linearkernel. 7



Kernel DF Feature FP FN TP TNdot-produ
t 0 25 5 4 10 12dot-produ
t 2 25 5 2 12 12dot-produ
t 5 25 4 2 12 13dot-produ
t 10 25 4 2 12 13dot-produ
t 0 50 4 2 12 13dot-produ
t 2 50 3 2 12 14dot-produ
t 5 50 3 2 12 14dot-produ
t 10 50 3 2 12 14dot-produ
t 0 100 4 3 11 13dot-produ
t 2 100 5 3 11 12dot-produ
t 5 100 5 3 11 12dot-produ
t 10 100 5 3 11 12dot-produ
t 0 500 5 3 11 12dot-produ
t 2 500 4 3 11 13dot-produ
t 5 500 4 3 11 13dot-produ
t 10 500 4 3 11 13dot-produ
t 0 1000 7 3 11 10dot-produ
t 2 1000 5 3 11 12dot-produ
t 5 1000 5 3 11 12dot-produ
t 10 1000 5 3 11 12dot-produ
t 0 97802 17 0 14 0dot-produ
t 2 97802 9 2 12 8dot-produ
t 5 97802 7 3 11 10dot-produ
t 10 97802 5 3 11 12Table 1: Error rates for ovarian 
an
er tissue experiments.For ea
h setting of the SVM 
onsisting of a kernel and diagonal fa
tor (DF), ea
h tissue was 
lassi�ed. Column2 is the number of features (
lones) used. Reported are the number of normal tissues mis
lassi�ed (FP), tumortissues mis
lassi�ed (FN), tumor tissues 
lassi�ed 
orre
tly (TP), and normal tissues 
lassi�ed 
orre
tly (TN).
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ation margins for ovarian tissues. When 
lassifying, the SVM 
al
ulates a marginwhi
h is the distan
e of an example from the de
ision boundary it has learned. In this graph, the margin forea
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al
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ation, and anegative value indi
ates an in
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ation. The most negative point 
orresponds to tissue N039. These
ond most negative point 
orresponds to tissue HWBC3.8



Kernel DF Features FP FN TP TNdot-produ
t 0 25 1 3 12 14dot-produ
t 2 25 0 4 11 15dot-produ
t 5 25 0 4 11 15dot-produ
t 10 25 0 4 11 15dot-produ
t 0 50 0 3 12 15dot-produ
t 2 50 0 4 11 15dot-produ
t 5 50 0 4 11 15dot-produ
t 10 50 0 4 11 15dot-produ
t 0 100 1 4 11 14dot-produ
t 2 100 0 4 11 15dot-produ
t 5 100 0 4 11 15dot-produ
t 10 100 0 4 11 15dot-produ
t 0 500 3 3 12 12dot-produ
t 2 500 2 3 12 13dot-produ
t 5 500 1 3 12 14dot-produ
t 10 500 1 3 12 14dot-produ
t 0 1000 3 3 12 12dot-produ
t 2 1000 2 3 12 13dot-produ
t 5 1000 2 3 12 13dot-produ
t 10 1000 2 3 12 13dot-produ
t 0 97802 0 0 15 15dot-produ
t 2 97802 4 3 12 11dot-produ
t 5 97802 4 3 12 11dot-produ
t 10 97802 4 3 12 11Table 2: Error rates for ovarian 
an
er tissue experiments after 
lassi�
ation of N039 as tumorand removal of HWBC3.For ea
h setting of the SVM 
onsisting of a kernel and diagonal fa
tor (DF), ea
h tissue was 
lassi�ed. Columnthree lists the number of features (
lones) in the dataset. Reported are the number of normal tissues mis
lassi�ed(FP), tumor tissues mis
lassi�ed (FN), tumor tissues 
lassi�ed 
orre
tly (TP), and normal tissues 
lassi�ed
orre
tly (TN).tissue samples. Table 2 shows the results from these experiments. Perfe
t 
lassi�
ation wasa
hieved using all features and a diagonal fa
tor of 0. No other setting, though, is able tomake fewer than 3 mistakes, and therefore we 
annot pla
e mu
h 
on�den
e in the one perfe
texperiment.5 Ovarian feature analysisAfter ranking the features using the pro
edure des
ribed above on all of the 31 samples, weattempted to sequen
e the top-ranked 10 
lones. Using these 10 
lones, we were able to a
hieveperfe
t 
lassi�
ation in hold-one-out experiments, thus we felt that these 
lones may be signif-i
ant in the identi�
ation of 
an
erous tissue. As stated above, this 
lassi�
ation performan
eis overly optimisti
 due to the information leaked during feature sele
tion. The fa
t that per-forman
e using just these 10 features is good merely serves to support the possibility that theyare meaningful 
lones.As Table 3 shows, three of the 
lones did not yield a readable sequen
e. Two of these 
lones
ould not be ampli�ed and one represents more than one gene, in whi
h 
ase the sequen
ingrea
tion fails. We did not attempt to re-sequen
e these 
lones. Of the remaining seven 
lones,�ve represent expressed genes and two 
onstituted repetitive sequen
es. Repetitive sequen
eso

ur naturally at 3' ends of messenger RNAs, some being as long as 1000 bp, some being9



as short as 10. Another sour
e for repeats is the 
hromosomal DNA, whi
h is a by-produ
tof the mRNA preparation that 
an be redu
ed but hardly ever avoided. Sin
e these two
lones show a stronger signal than that in the normal tissues, the RNA prepared from tumortissue must therefore 
ontain more repetitive sequen
es. We 
an only spe
ulate that genomi
rearrangements in the tumor 
ells result in short 
hromosomal DNA fragments that 
an easily
ontaminate the mRNA preparation.Out of the �ve 
lones that mat
h to expressed genes, two were homologous to ESTs and threemat
hed to known genes. For these 5 sequen
es, information is thus available that might tell uswhether the gene is 
an
er-related (either a known or assumed tumor gene, or presen
e in 
DNAlibraries from tumor tissues in the 
ase of ESTs). The 
an
er-relatedness of a feature helps usassess the quality of the 
lone ranking. Both EST-mat
hing 
lones have homologies to ESTsthat overwhelmingly 
ome from tumor libraries. Likewise, one of the three 
lones with homologyto known genes mat
hes to ferritin H (GenBank a

ession number L20941), a known 
an
ergene [28℄. Another 
lone mat
hes to LYVE-1 (GenBank a

ession number NM 006691.1) alymphati
 gene whi
h is more highly expressed in the tumors due to the lympho
ytes in�ltratingthe tumors. The third known gene is poly(rC)-binding protein 2 (PCBP2, GenBank a

essionnumber NM 005016). This gene is under-expressed in the tumors. In summary, three of the �ve
lones with homology to expressed genes are 
an
er-related and one is related to the presen
eof white blood 
ells in the tumor.In order to evaluate this �nding in the 
ontext of the a

ura
y of the 
lone s
oring, we
ompared the identities of the top 1000 ranking 
lones to the bottom 1000. Sin
e we did nothave the means to sequen
e su
h as large number of 
lones, we had to 
ontent ourselves withthe sequen
es generated in earlier random sequen
ing experiments (55 among the top 1000and 28 among the bottom 1000). Table 4 shows that the top ranked 
lones are enri
hed for
lones that did not yield a readable sequen
e (bad sequen
es), as well as for repeats and fortumor genes (su
h as ferritin H, CDC2 [GenBank a

ession number D88357℄ and the SETtranslo
ation gene [GenBank a

ession number NM 003011.1℄). The number of tumor-relatedESTs did not in
rease. Interestingly, the level of Immunoglobulin genes remains essentially thesame. These genes are uniquely expressed by tumor-in�ltrating white blood 
ells and one wouldhave expe
ted a higher showing in the top 1000. Another interesting �nding is that the genesof the metabolism (mito
hondrial genes and ribosomal proteins) whi
h are 
ommonly found toshow elevated expression in tumors, and whi
h here, if at all, tend to be found in the bottom1000. Thus, the s
oring enri
hes the tumor-related genes but also the non-spe
i�
 sequen
es.From a tumor biologist's point of view, the a

umulation of tumor-related genes at the top isa very useful feature when it 
omes to s
reening for novel 
an
er genes.The above analysis seems to suggest that the feature sele
tion method is able to identify
lones that are 
an
er-related, and rank them highly. In addition, though, some 
lones seemedto obtain a high ranking while not having a meaningful biologi
al explanation, and some knowntumor genes are not ranked as high as would be expe
ted. Given this and the inability of thisfeature sele
tion method to signi�
antly improve 
lassi�
ation performan
e, additional e�ort isneeded to develop ways of identifying meaningful features in these types of datasets.6 Other data resultsTo demonstrate that our method 
an perform well in general 
ompared to other methods usedto analyze expression datasets, we performed similar experiments using previously published10



Seq ID Way of a
tionrepeat ALUferritin H ferritin is used in trialsas marker for ovarian 
an
erEST 1 mat
hes to ESTs form tumor librariesbad PCRrepeat LINE1bad sequen
ebad PCRLYVE-1 expressed on the lymph vessel wallPCBP2 required for translation of poliovirusRNA: binds and stabilizes mRNA oferythropoietin, hepatitis A and Cvirus, and tyrosine hydroxylaseEST 2 mat
hes to ESTs form tumor librariesTable 3: Sequen
e homologies of the top 10 s
oring 
lones These sequen
es were 
onsidered the 10top-ranked 
lones using the feature sele
tion method des
ribed above.
Gene Top % Bottom % Ratiototal sequen
es 55 28bad sequen
es 10 18 2 7 +repeats 6 11 0 0 +tumor genes 7 13 1 4 +ESTs 9 16 5 18tumor-related ESTs 7 13 4 14metabolism genes 7 13 7 25 -novel sequen
e 0 0 2 7 -Immunoglobulin 4 7 3 11other known genes 5 9 5 18Table 4: Comparison of top and bottom ranked 
lones. A total of 55 of the top 1000 ranked 
lones and28 of the bottom 1000 ranked 
lones were sequen
ed. Ea
h is 
ategorized into one of nine groups. The numberof sequen
es in ea
h 
ategory from the top and bottom rankings is listed, along with the per
entage of the totalsequen
ed that 
ategory 
ontains. The last 
olumn shows whether the 
ategory is more prevalent in either thetop (+) 1000 or bottom (-) 1000 ranked 
lones.

11



datasets. The �rst dataset involves expression experiments on samples taken from patients withhuman a
ute leukemia. Initial analysis was performed by Golub et al. [13℄, and the dataset
an be obtained at http://waldo.wi.mit.edu/MPR/
an
er 
lass.html. The se
ond dataset is
omprised of expression data measuring levels of expression of genes in human tumor andnormal 
olon tissues. Alon et al.[1℄ originally analyzed this data, and it is available at theirwebsite, http://www.molbio.prin
eton.edu/
olondata.6.1 AML/ALL datasetBone marrow or peripheral blood samples were taken from 72 patients with either a
ute myeloidleukemia (AML) or a
ute lymphoblasti
 leukemia (ALL). Following the experimental setup ofthe original authors, the data is split into a training set 
onsisting of 38 bone marrow samplesof whi
h 27 are ALL and 11 are AML, and a test set 
onsisting of 24 bone marrow and 10peripheral blood samples, 20 ALL and 14 AML. The dataset provided 
ontained expressionlevels for 7129 human genes produ
ed by A�ymetrix high-density oligonu
leotide mi
roarrays.The s
ores in the dataset represent the intensity of gene expression after being re-s
aled tomake overall intensities for ea
h 
hip equivalent. Following the methods in Golub et al.[13℄,we normalize these s
ores for ea
h gene by subtra
ting the mean and dividing by the standarddeviation of the expression values for that gene.Golub et al. report a

ura
y of 
lassi�
ation on the training set using a weighted votings
heme5 and also 
lustering using self-organizing maps (SOMs). Hold-one-out 
ross validationtests using the weighted voting s
heme 
orre
tly 
lassify all samples for whi
h a predi
tion ismade, 36 of the 38 samples, while de
lining to predi
t on the remaining two. A two-
lusterSOM produ
ed one 
luster with 24 ALL and 1 AML sample, and the se
ond with 10 AML and3 ALL samples.We also did a full hold-one-out 
ross-validation measurement of the a

ura
y of our methodon the training set alone. The SVM method was able to 
orre
tly 
lassify all samples of thetraining set with a diagonal fa
tor of two. Retesting subsets with only the top-ranked 25, 250,500, and 1000 features, it was also able to 
orre
tly 
lassify all training samples 
orre
tly usinga diagonal fa
tor of two in all 
ases.We then tried to 
lassify samples in the test set using a 
lassi�er that had been trained onlyon the examples in the training set. Multiple dataset sizes and diagonal fa
tor settings performoptimally on the training set, and testing ea
h 
ombination produ
ed results ranging between
lassifying 30 to 32 of the 34 samples 
orre
tly. Golub et al. use a predi
tor trained usingtheir weighted voting s
heme on the training samples, and 
lassify 
orre
tly on all samples forwhi
h a predi
tion is made, 29 of the 34, de
lining to predi
t for the other �ve. The SVMpredi
ted in
orre
tly on �ve samples in at least one of its tests, and of these �ve, none weregiven predi
tions by Golub et al.. Two samples, patients 54 and 66, were mis
lassi�ed in all
ases.Information is provided as to whether the ALL samples were of B-
ell lineage or T-
elllineage. Using all 47 ALL samples from both the training and test sets, the SVM a
hievesperfe
t 
lassi�
ation using the 250 and 500 top-ranked features with multiple diagonal fa
torsettings on hold-one-out 
ross-validation tests. Using the full dataset, the SVM mis
lassi�edonly a single tissue when using a zero diagonal fa
tor. Golub et al. use SOMs to 
reate 45The weighted voting s
heme uses a group of 50 genes sele
ted and des
ribed in the subse
tion \Feature Sele
tion" where ea
hgene predi
ts a 
lass for ea
h sample. These predi
tions are 
ombined with ea
h being weighted by "the degree of that gene's
orrelation with the 
lass distin
tion", whi
h is the F (g) s
ore de�ned above. If this 
ombination ex
eeds a threshold in favor ofone 
lass over the other, a predi
tion is made. 12




lusters using all examples in the training set, in
luding the AML samples. The �rst 
luster
ontains 10 AML samples, the se
ond 
ontains 8 T-lineage ALL samples and 1 B-lineage ALLsample, the third 
ontains 5 B-lineage ALL samples, and the last one 
ontains 13 B-lineageALL samples and a single AML sample.Lastly, results of 
hemotherapy treatments for 15 AML patients is available. Treatment was
onsidered su

essful if the patient went into remission for 46 to 84 months, otherwise it was
onsidered a failure. Golub et al. report that they were unable to a
hieve a

urate resultsusing their weighted voting s
heme. On hold-one-out 
ross-validation tests, the SVM was ableto 
lassify 10 of the 15 patients using the top 5 or 10 ranked features and a diagonal fa
torof two, thus performing slightly better than 
han
e. One mis
lassi�ed sample, patient 37, was
onsistently mis
lassi�ed using multiple settings, and by a relatively large margin.6.2 Colon tumor datasetUsing A�ymetrix oligonu
leotide arrays, expression levels for 40 tumor and 22 normal 
olontissues were measured for 6500 human genes. Of these genes, the 2000 with the highest mini-mal intensity a
ross the tissues were sele
ted for 
lassi�
ation purposes, and these were madepubli
ly available. The s
ores in the dataset represent a gene intensity derived in a pro
essdes
ribed in Alon et al.[1℄. The data was not pro
essed further before performing 
lassi�
a-tion. Alon et al. use a 
lustering method to 
reate 
lusters of tissues. In their experiments,one 
luster 
onsisted of 35 tumor and 3 normal tissues, and the other 19 normal and 5 tumortissues.Using the SVM method with full hold-one-out 
ross-validation on the dataset of 62 tissues,we were able to 
orre
tly 
lassify 
orre
tly all but six of the tissues using all 2000 features anda diagonal fa
tor of two. Using only the top 1000 genes produ
ed similar results at the samediagonal fa
tor. The six mis
lassi�ed in ea
h of the optimal runs were exa
tly the same and
onsisted of three tumor tissues (T30, T33, T36) and three normal tissues (N8, N34, N36).T30, T33, and T36 are among the 5 tumor tissues that were 
lustered with the majority ofthe normal tissues by Alon et al., and N8 and N32 were similarly in the 
luster 
ontaining themajority of the tumor tissues.Figure 2 plots the margins for the tissues based on the experiments using all of the datawith a diagonal fa
tor of two. This is analogous to Figure 1 above, whi
h helped identify themis-labeled tissue in the ovarian dataset. As we 
an see in Figure 2, none of the six mis
lassi�edtissues were borderline 
ases a

ording to the SVM.Alon et al. de�ne a mus
le index based on the average intensity of ESTs that are homologousto 17 smooth mus
le genes. They explain that \normal tissue samples in
lude a mixture of tissuetypes, while the tumor samples are biased to epithelial tissue of the 
ar
inoma". Therefore, it isexpe
ted that tumor tissues should have lower expression levels for these 17 ESTs and a smallermus
le index. In general, this proved to be true. Interestingly, though, all tumor tissues hada mus
le index less than or equal to 0.3 ex
ept for T30, T33, and T36, and all normal tissueshad an index of greater than or equal to 0.3 ex
ept N8, N34, and N36.Without the assistan
e of the biologists who 
ondu
ted these experiments, we 
annot explorewhether it is possible that one or more of these samples were bad or mis-labeled. Simplyremoving all six samples from the data and re-testing still produ
ed 
lassi�
ation errors. Twoof the samples, N36 and T36, are espe
ially interesting be
ause their names indi
ate that theyoriginated from the same patient, yet both are 
onsistently mis
lassi�ed by the SVM. Also,N36 has a mus
le index or 0.1 and T36 has a mus
le index of 0.7 whi
h is 
ounter-intuitive.13
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lassi�
ation margins, 
olon tissues. When 
lassifying, the SVM 
al
ulates the marginwhi
h is the distan
e of an example from the separating hyper-plane it has learned. In this graph, the marginfor ea
h tissue sample is shown. A positive value indi
ates a 
orre
t 
lassi�
ation, and a negative value indi
atesan in
orre
t 
lassi�
ation. The in
orre
t 
lassi�
ations 
orrespond to (from left to right) N8, T30, T33, N34,N36, and T36.7 Comparison to per
eptron-like 
lassi�
ation algorithmsAs dis
ussed in the introdu
tion, we do not 
laim that we 
an prove that the SVM methodis better than other 
lassi�
ation te
hniques on this type of dataset. The se
ond family ofalgorithms we tested are generalizations of the Per
eptron algorithm [23℄. This simple algorithmworks in an on-line way, running through the data and updating a weight ve
tor ea
h time itmakes a mistake. The new weight ve
tor iswt+1 = wt + ytxt (11)and again the resulting de
ision rule is linear6, the 
lassi�
ation is given by sign(hwt;xi).However, this algorithm requires modi�
ation when there is no perfe
t linear de
ision rule.Helmbold and Warmuth [16℄ provided su
h a modi�
ation, for whi
h they derived performan
eguarantees. The modi�
ation simply amounts to taking a linear 
ombination of the de
isionrules used at ea
h iteration of the algorithm. The �nal de
ision rule is sign(Pthwt;xi). Freundand S
hapire [12℄ demonstrated that kernels other than the simple inner produ
t 
an also beapplied e�e
tively to this algorithm, a
hieving performan
e 
omparable to the best SVM on aben
hmark test of Hand-Written Digits.As in the 
ase of SVMs, the use of a more 
omplex kernel did not improve performan
e forthese problems and so we report only results for an inner produ
t kernel. We also tested analgorithm known as the p-norm per
eptron [14℄, using the same averaging pro
edure7. The-oreti
al results suggest that these algorithms perform well when good sparse hypotheses areavailable.Our results for the modi�ed per
eptron are 
omparable to those for the SVM and the s
oresa
hieved for ea
h dataset are given in Table 5.Although it is not suggested by the theory, we observed that this algorithm a
hieves improvedperforman
e by running through the data several times; this was also observed by Freund and6We did not use a bias in these experiments.7It is an open question whether kernels 
an be applied to su
h algorithms.14



SVM SVMDataset Features FP FN FP FNOvarian(original) 97802 4.6 4.8 5 3Ovarian(modi�ed) 97802 4.4 3.4 0 0AML/ALL train 7129 0.6 2.8 0 0AML treatment 7129 4.8 3.5 3 2Colon 2000 3.8 3.7 3 3Table 5: Results for the per
eptron on all data sets. The results are averaged over 5 shu�ings of the dataas this algorithm is sensitive to the order in whi
h it re
eives the data points. The �rst 
olumn is the datasetused and the se
ond is number of features in the dataset. For the ovarian and 
olon datasets, the numberof normal tissues mis
lassi�ed (FP) and the number of tumor tissues mis
lassi�ed (FN) is reported. For theAML/ALL training dataset, the number of AML samples mis
lassi�ed (FP) and the number of ALL patientsmis
lassi�ed (FN) is reported. For the AML treatment dataset, the number of unsu

essfully treated patientsmis
lassi�ed (FP) and the number of su

essfully treated patients mis
lassi�ed (FN) is reported. The last two
olumns report the best s
ore obtained by the SVM on that dataset.S
hapire[12℄. The p-norm per
eptron did not perform as well as the theory might suggest andwe only report results for the standard per
eptron.8 Con
lusionWe have presented a method to analyze mi
roarray expression data for genes from several tissueor 
ell types using support ve
tor ma
hines. While our results indi
ate that SVMs are ableto 
lassify tissue and 
ell types based on this data, we show that other methods su
h as theones based on the per
eptron algorithm are able to perform similarly. The datasets 
urrentlyavailable 
ontain relatively few examples and thus do not allow one method to demonstratesuperiority. The SVM performs well using a simple kernel, and we believe that as more 
omplexdatasets be
ome available, the use of more 
omplex kernels will be
ome ne
essary and willallow the SVM to 
ontinue its good performan
e. As an added feature of our SVM method,we demonstrate that it 
an be used to identify mis-labeled data.Mi
roarray expression experiments have great potential for use as part of standard diagnosistests performed in the medi
al 
ommunity. We have shown along with others that expressiondata 
an be used in the identi�
ation of the presen
e of a disease and the determination of its
ell lineage. In addition, there is a hope that predi
tions of the su

ess or failure of a parti
ulartreatment may be possible, but so far, results from these types of experiments are in
on
lusive.9 A
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