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Abstract

DNA microarray experiments generating thousands of gene expression measurements are being used to
gather information from tissue and cell samples about gene expression differences that will be useful in
diagnosing disease. We have developed a new method to analyze this kind of data using support vector
machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of
the data for mis-labeled or questionable tissue results. We demonstrate the method in detail on samples
consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists
of expression experiment results for 97,802 cDNAs for each tissue. As a result of computational analysis, a
tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the
removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify
and analyze a subset of genes from the ovarian dataset whose expression is highly differentiated between
the types of tissues. To show robustness of the SVM method, two previously published datasets from other
types of tissues or cells are analyzed. The results are comparable to those previously obtained. We show
that other machine learning methods perform comparably to the SVM on many of those datasets as well.
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1 Introduction

Microarray expression experiments allow the recording of expression levels of thousands of
genes simultaneously. These experiments primarily consist of either monitoring each gene
multiple times under many conditions [26, 6, 9, 31, 22], or alternately evaluating each gene in
a single environment but in different types of tissues, especially cancerous tissues [10, 1, 13, 21,
33, 30, 24, 32]. Those of the first type have allowed for identification of functionally related
genes due to common expression patterns [5, 11, 31, 22|, while the latter experiments have
shown promise in classifying tissue types (diagnosis) and in the identification of genes whose
expressions are good diagnostic indicators [13, 1]. In order to extract information from gene
expression measurements, different methods have been employed to analyze this data including
support vector machines [5, 20] clustering methods [11, 26, 1, 21, 2, 15], self-organizing maps
[27, 13], and a weighted correlation method [13].

Support vector machines (SVMs), a supervised machine learning technique, have been shown
to perform well in multiple areas of biological analysis including evaluating microarray expres-
sion data [5], detecting remote protein homologies [17], recognizing translation initiation sites
[34], and breast cancer diagnosis and prognosis [19]. We have also recently become aware of two
other current efforts that use SVMs in analyzing expression data [20] and (Jaakkola, personal
communication). SVMs have demonstrated the ability to not only correctly separate entities
into appropriate classes, but also in identifying instances whose established classification is not
supported by the data. Expression datasets contain measurements for thousands of genes which
proves problematic for many traditional methods. SVMs, though, are well suited to working
with high dimensional data such as this.

Here a systematic and principled method is introduced that analyzes microarray expression
data from thousands of genes tested in multiple tissue or cell samples. The primary goal is
the proper classification of new samples. We do this by training the SVM on samples classified
by experts, then testing the SVM on samples it has not seen before. We demonstrate how
SVMs can not only classify new samples, but can also help in the identification of those which
have been wrongly classified by experts. Our method is demonstrated in detail on data from
experiments involving 31 ovarian cancer, normal ovarian and other normal tissues. We are able
to identify one tissue sample as mis-labeled, and another as an outlier, which is shown in the
section 4 and illustrated in Figure 1. Though perfect classification is finally achieved in one
instance, this performance is not consistently shown in multiple tests and therefore, cannot be
considered too significant.

We also experimented with the method used in Golub et al.[13] to focus the analysis on a
smaller subset of genes that appear to be the best diagnostic indicators. This amounts to a
kind of dimensionality reduction on the dataset. If one can identify particular genes that are
diagnostic for the classification one is trying to make, e.g. the presence of cancer, then there
is also hope that some of these genes may be found to be of value in further investigations
of the disease and in future therapies. Here we find that this dimensionality reduction does
not significantly improve classification performance. It does reveal some genes that may be
of interest for ovarian cancer. However, further work needs to be done to identify the most
effective feature selection/dimensionality reduction methods for this kind of data.

To test the generality of the approach, we also tested it on the leukemia data from Golub et
al.[13] (72 patient samples) and the colon tumor data from Alon et al.[1] (62 tissue samples).
Our results are comparable to those obtained in these papers. Since no special effort was made
to tune the method to these other datasets, this increases our confidence that our approach



will have broad applications in analyzing data of this type.

It is difficult to show that one diagnostic method is significantly better than another with
small data sets such as those we have examined. We have conducted a full hold-one-out cross-
validation (jackknife) evaluation of the classification performance of the methods we tested.
These include both SVM methods and variants of the perceptron algorithm. No single classi-
fication technique has proven to be significantly superior to all others in the experiments we
have done. Indeed, the different kernels we tried performed nearly equally well and variants
of the perceptron algorithm are shown to perform comparably to the SVM on all tests. It is
unfortunate that typical diagnostic gene expression datasets today involve only a few tissue
samples. As datasets increase in size and complexity, we predict that our method will continue
to demonstrate excellent performance, superior to that of simpler methods, but this is currently
only speculation.

2 Microarray expression experiments

In recent years, several methods have been developed for performing gene expression exper-
iments. In general, thousands of distinct DNA probes are attached to a microarray whose
surface is typically made of coated glass or a type of membrane. Probes can be PCR products
or oligonucleotides whose sequences correspond to target genes (or ESTs) of the genome being
studied. RNA is extracted from the sample tissues or cells, reverse transcribed into labeled
cDNA, which is then allowed to hybridize with the probes on the microarray. The cDNA corre-
sponds to transcripts produced by genes in the samples, and the amount of a particular cDNA
sequence present will be in proportion to the level of expression of its corresponding gene. The
microarray is washed to remove non-specific hybridization, and the level of hybridization for
each probe is calculated. From these measurements, an expression level for genes corresponding
to the probes is derived. This level may represent a ratio between the expression of the gene
under some control condition as compared to the test condition. This is repeated for each tissue
or cell sample.

Certain experimental conditions can affect the accuracy of the expression measurements.
There are problems inherent to PCR amplification that can result in probes that do not match
the intended sequence or in differential amplification of cDNA. Cross-hybridization of repetitive
sequences and non-specific hybridization to non-DNA features present on the array can lead
to false-positive or false-negative signals. Lastly, tissue samples as opposed to cell samples
introduce the possibility that expression levels being measured are due to the composition of
the tissue rather than the expression of a particular gene in each cell.

For more in depth discussions of these techniques, see Lockhart et al.[18] which describes
Affymetrix oligonucleotide arrays and Schummer et al.[24] which analyzes membrane arrays
made from ¢cDNA clones.

3 Support vector machine method

Previous methods used in the analysis of similar datasets start with a procedure to extract the
most relevant features. Most learning techniques do not perform well on datasets where the
number of features is large compared to the number of examples. SVMs are believed to be an
exception. We are able to begin with tests using the full dataset, and systematically reduce the
number of features selecting those we believe to be the most relevant. In this way, we can show



whether an improvement is made using smaller sets, thus indicating whether these contain the
most meaningful genes.

To understand our method, a familiarity with SVMs is required, and a brief introduction
follows. We explain below how we rank the features, and present an outline of how we use the
SVM to perform classification and error detection.

3.1 Support Vector Machines

Support vector machines (SVMs) [8] are a relatively new type of learning algorithm, originally
introduced by Vapnik and co-workers [4, 29] and successively extended by a number of other
researchers. Their remarkably robust performance with respect to sparse and noisy data is
making them the system of choice in a number of applications, from text categorization to
bioinformatics.

When used for classification, they separate a given set of binary labeled training data with
a hyper-plane that is maximally distant from them (known as ’the maximal margin hyper-
plane’). For cases in which no linear separation is possible, they can work in combination
with the technique of 'kernels’, that automatically realizes a non-linear mapping to a feature
space. The hyper-plane found by the SVM in feature space corresponds to a non-linear decision
boundary in the input space.

Let the input points be realizations of the random variable X =(Xj, ..., X,,), and let x) =
(x1,...,27) be the 4" input point. Let the input points be labeled by the random variable
Y ={-1,+1}.

Let ¢: I CR" — F C RY be a mapping from the input space I C R" to a feature space F'.
Let us assume that we have a sample S of m labeled data points: S = {(x',y'), ..., (x™, y™)}.
The SVM learning algorithm finds a hyper-plane (w, b) such that the quantity

7y =miny'{(w,$(x")) — b} (1)

is maximized, where (, ) denotes an inner product, the vector w has the same dimensionality as
F, b is a real number, and 7 is called the margin. The quantity ({(w, ¢(x?)) — b) corresponds to
the distance between the point x’ and the decision boundary. When multiplied by the label 37,
it gives a positive value for all correct classifications and a negative value for the incorrect ones.
The minimum of this quantity over all the data is positive if the data is linearly separable, and
is called the margin. Given a new data point x to classify, a label is assigned according to its
relationship to the decision boundary, and the corresponding decision function is

f(x) = sign ({(w, ¢(x)) — b) (2)
It is easy to prove [8] that, for the maximal margin hyper-plane,
W= aiy'e(x) (3)
i=1

where «; are positive real numbers that maximize
D= D ciogy'y ($(X'), 6(x)) (4)
i=1 ij=1

subject to

> oyt =0,0; > 0. (5)

i=1



The decision function can equivalently be expressed as

£(x) — sign (i 0upi(B(x), 6 (x)) b) . (©)

i=1

From this equation it is possible to see that the o; associated with the training point x’ expresses
the strength with which that point is embedded in the final decision function. A remarkable
property of this alternative representation is that often only a subset of the points will be
associated with non-zero «;. These points are called support vectors and are the points that lie
closest to the separating hyper-plane. The sparseness of the v vector has several computational
and learning theoretic consequences.

Notice that for a test point (x,y) the quantity y (X7, auyi(d(x"), ¢ (x)) — b) is negative if
the prediction of the machine is wrong, and a large negative value would indicate that the
point (x,y) is regarded by the algorithm as ’different’ from the training data. The matrix
Kij = (¢(x"),¢(x7)) is called the kernel matriz and will be particularly important in the exten-
sions of the algorithm that will be discussed later. In the case when the data are not linearly
separable, one can use more general functions, K;; = K (x',x7), that provide non-linear decision
boundaries. Two classical choices are polynomial kernels K (x!,x7) = ((x’,x’) + 1)¢ and Gaus-
xi_xJ
sian kernels K (x',x7) = ¢ = o | ., where d and o are kernel parameters. In our experiments,
we use K (x',x7) = ((x',x7) +1).

In the presence of noise, the standard maximum margin algorithm described above can be
subject to over-fitting, and more sophisticated techniques are necessary. This problem arises
because the maximum margin algorithm always finds a perfectly consistent hypothesis and does
not tolerate training error. Sometimes, however, it is necessary to trade some training accuracy
for better predictive power. The need for tolerating training error has led to the development of
the soft-margin and the margin-distribution classifiers [7]. One of these techniques [25] replaces
the kernel matrix in the training phase as follows:

K+ K+ )1, (7)

while still using the standard kernel function in the decision phase (6). We call A the diagonal
factor. By tuning A, one can control the training error, and it is possible to prove that the risk
of misclassifying unseen points can be decreased with a suitable choice of A [25].

If instead of controlling the overall training error one wants to control the trade-off between
false positives and false negatives, it is possible to modify K as follows:

K+ K+ D, (8)

where D is a diagonal matrix whose entries are either d* or d—, in locations corresponding
to positive and negative examples. It is possible to prove that this technique is equivalent to
controlling the size of the «; in a way that depends on the size of the class, introducing a bias
for larger «; in the class with smaller d. This in turn corresponds to an asymmetric margin; i.e.,
the class with smaller d will be kept further away from the decision boundary [5]. In the case of
imbalanced data sets, choosing d* = n% and d- = n% provides a heuristic way to automatically
adjust the relative importance of the two classes, based on their respective cardinalities.

The experiments presented in this paper were performed using a freely available implementa-
tion of the SVM classifier which can be obtained at http://www.cs.columbia.edu/~bgrundy /svm.!

TWe use default values set in the software except for the diagonal factor, which varies, the convergence threshold, which we set
to 107, and using the “noconstraint” option.



This implementation is based on that described in [17] and differs slightly from the above ex-
planation in that it does not include a bias term, b, forcing all decision boundaries to contain
the origin in feature space.

3.2 Feature Selection

Our feature selection criterion is essentially that used in Golub et al.[13]. We start with a
dataset S consisting of m expression vectors x' = (z%,..,2%),1 < i < m, where m is the number
of tissue or cell samples and n is the number of genes measured. Each sample is labeled from
Y = {41, -1} (e.g. cancer vs. normal). For each gene x;, we calculate the the mean s (resp.
p1;) and standard deviation o] (resp. o; ) using only the tissues labeled +1 (resp. -1). We
want to find genes that will help discriminate between the two classes, therefore we calculate a
score?

=y
P (9)
o; +0;
which gives the highest score to those genes whose expression levels differ most on average in
the two classes while also favoring those with small deviations in scores in the respective classes.
We differ slightly from Golub et al. in our use of these scores. They calculate separately scores
for genes whose expression level is greater on average in class 1 than in class 2, and similarly for
those greater in class 2. In creating a set of optimal discriminating features, they then select
an equal number from each set. We simply take the genes with the top F'(x;) score regardless
of the class in which z; is expressed more.

F(z;) =

3.3 Complete SVM method

The complete SVM method can be described as follows: we begin by choosing a kernel, starting
with the simple dot-product kernel, and tune the diagonal factor to achieve the best performance
on hold-one-out cross-validation tests using the full dataset. The SVM tuning procedure is then
repeated with a specified number of the top-ranked features. In these cases, for each individual
hold-one-out test, the features are ranked based on (9) using the scores from only the known
samples, some number of the top features are extracted, and then these are used to train the
SVM and classify the unknown sample. Examples which have been consistently misclassified
in all tests are identified. These examples can then be investigated by a biologist, and if it is
determined that the original label is incorrect, a correction is made, and the process is repeated.
Alternatively, an example may be deemed an outlier that is very different from the rest, and is
therefore removed.

It should be noted that it is very important that when feature selection is performed, the
sample being tested must not be included in this process. Each individual hold-one-out test
requires a new ranking of features using only those samples that are to be used for train-
ing. Inclusion of the test sample when doing feature selection can cause a leak of information
which invalidates the independence assumptions required to reasonably evaluate the methods
performance. For this problem in particular, a lot of information can be leaked in this way. 3

In the SVM tests reported here, the kernel used in all cases is simply the dot-product of

2This score is closely related to the Fisher criterion score for the jt* feature, F(j) = (u;r — u;)2/((o;r)2 + (o;)2) [3].
3Thanks to Tomaso Poggio for pointing this out to us.



the two input vectors.* A more complex kernel is not required, which we attribute to the

small number of examples. As increasingly complex datasets become available providing more
examples, higher-order kernels may become necessary [20].

4 Ovarian data results

The microarray hybridization experiments were performed using 97,802 DNA probes or clones
attached to membranes. Expression levels were measured for 31 tissue samples which are either
cancerous ovarian tissue, normal ovarian tissue, or normal non-ovarian tissue. For the purpose
of these experiments, the two types of normal tissue are considered together as a single class.
The expression values for each of the clones were normalized such that the distribution over
the samples had a zero mean and unit variance.

Hold-one-out cross-validation experiments are performed. The SVM is trained using data
from all but one of the tissue samples. The sample not used in training is then assigned a class
by the SVM. A single SVM experiment consists of a series of hold-one-out experiments, each
sample being held out and tested exactly once.

Initially, experiments were done using all expression scores for each tissue. Diagonal factor
settings of 0, 2, 5, and 10 were tested. Then clones were ranked in the manner described
previously, and datasets consisting of the top 25, 50, 100, 500, and 1000 features were created.
Experiments using similar diagonal factors as above were performed using these smaller feature
sets. Table 1 displays the results from these experiments. The best classification is done using
the top 50 features with a diagonal factor of 2, 5 or 10. The optimal score achieved using all
features, though, is not significantly worse than those achieved by the smaller data sets.

An analysis of the misclassified examples revealed that one normal ovarian tissue sample,
N039, was misclassified in all instances. In addition, the margin of misclassification (distance
from decision boundary) was relatively large, meaning the SVM strongly believed it to be a
cancerous ovarian tissue. Figure 1 shows the margins for classifications performed using the
top 50 features and a diagonal factor of two. The margin in this case is the discriminant value
calculated by the SVM which has been trained using the other 30 samples. For our experiments,
for each tissue sample x with known label y, this discriminant is

30

y(Q_ aigi((x',x) + 1) (10)

i=1

A positive value indicates a correct classification, while a negative value indicates a misclassifi-
cation. When the origin of this tissue was researched, it was realized that a miscommunication
had caused the incorrect labeling of this tissue, and that it should have been labeled cancerous.

With a corrected label, the above experiments were run again, but disappointingly, classi-
fication results did not improve significantly. A similar analysis as above identified a second
tissue, called HWBC3, as being consistently misclassified by a large margin in these new tests.
It was also strongly misclassified in the original tests, as can be seen in Figure 1. This tissue is a
non-ovarian normal tissue, and the only tissue of its type. Therefore, it is reasonable to believe
that training the SVM on tissues with no relation might give spurious results when testing this
tissue. Therefore, we removed this tissue and repeated the experiments with the remaining 30

4We experimented with polynomial and radial basis kernels on the ovarian data, and found that on data containing the mis-
labeled point, they performed worse than the linear kernel, but on the correctly labeled data, performance is similar to the linear
kernel.



Kernel DF | Feature | FP FN TP TN
dot-product 0 25 5 4 10 12
dot-product 2 25 5 2 12 12
dot-product 5 25 4 2 12 13
dot-product 10 25 4 2 12 13
dot-product 0 50 4 2 12 13
dot-product 2 50 3 2 12 14
dot-product 5 50 3 2 12 14
dot-product 10 50 3 2 12 14
dot-product 0 100 4 3 11 13
dot-product 2 100 5 3 11 12
dot-product 5 100 5 3 11 12
dot-product 10 100 5 3 11 12
dot-product 0 500 5 3 11 12
dot-product 2 500 4 3 11 13
dot-product 5 500 4 3 11 13
dot-product 10 500 4 3 11 13
dot-product 0 1000 7 3 11 10
dot-product 2 1000 5 3 11 12
dot-product 5 1000 5 3 11 12
dot-product 10 1000 5 3 11 12
dot-product 0 97802 17 0 14 0
dot-product 2 97802 9 2 12 8
dot-product 5 97802 7 3 11 10
dot-product 10 97802 5 3 11 12

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues classified correctly (TN).
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Figure 1: SVM classification margins for ovarian tissues. When classifying, the SVM calculates a margin
which is the distance of an example from the decision boundary it has learned. In this graph, the margin for
each tissue sample calculated using (10) is shown. A positive value indicates a correct classification, and a
negative value indicates an incorrect classification. The most negative point corresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.



Kernel DF | Features | FP FN TP TN
dot-product 0 25 1 3 12 14
dot-product 2 25 0 4 11 15
dot-product 5 25 0 4 11 15
dot-product 10 25 0 4 11 15
dot-product 0 50 0 3 12 15
dot-product 2 50 0 4 11 15
dot-product 5 50 0 4 11 15
dot-product 10 50 0 4 11 15
dot-product 0 100 1 4 11 14
dot-product 2 100 0 4 11 15
dot-product 5 100 0 4 11 15
dot-product 10 100 0 4 11 15
dot-product 0 500 3 3 12 12
dot-product 2 500 2 3 12 13
dot-product 5 500 1 3 12 14
dot-product 10 500 1 3 12 14
dot-product 0 1000 3 3 12 12
dot-product 2 1000 2 3 12 13
dot-product 5 1000 2 3 12 13
dot-product 10 1000 2 3 12 13
dot-product 0 97802 0 0 15 15
dot-product 2 97802 4 3 12 11
dot-product 5 97802 4 3 12 11
dot-product 10 97802 4 3 12 11

Table 2: Error rates for ovarian cancer tissue experiments after classification of N039 as tumor
and removal of HWBC3.

For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
three lists the number of features (clones) in the dataset. Reported are the number of normal tissues misclassified
(FP), tumor tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues classified
correctly (TN).

tissue samples. Table 2 shows the results from these experiments. Perfect classification was
achieved using all features and a diagonal factor of (0. No other setting, though, is able to
make fewer than 3 mistakes, and therefore we cannot place much confidence in the one perfect
experiment.

5 Opvarian feature analysis

After ranking the features using the procedure described above on all of the 31 samples, we
attempted to sequence the top-ranked 10 clones. Using these 10 clones, we were able to achieve
perfect classification in hold-one-out experiments, thus we felt that these clones may be signif-
icant in the identification of cancerous tissue. As stated above, this classification performance
is overly optimistic due to the information leaked during feature selection. The fact that per-
formance using just these 10 features is good merely serves to support the possibility that they
are meaningful clones.

As Table 3 shows, three of the clones did not yield a readable sequence. Two of these clones
could not be amplified and one represents more than one gene, in which case the sequencing
reaction fails. We did not attempt to re-sequence these clones. Of the remaining seven clones,
five represent expressed genes and two constituted repetitive sequences. Repetitive sequences
occur naturally at 3’ ends of messenger RNAs, some being as long as 1000 bp, some being



as short as 10. Another source for repeats is the chromosomal DNA, which is a by-product
of the mRNA preparation that can be reduced but hardly ever avoided. Since these two
clones show a stronger signal than that in the normal tissues, the RNA prepared from tumor
tissue must therefore contain more repetitive sequences. We can only speculate that genomic
rearrangements in the tumor cells result in short chromosomal DNA fragments that can easily
contaminate the mRNA preparation.

Out of the five clones that match to expressed genes, two were homologous to ESTs and three
matched to known genes. For these 5 sequences, information is thus available that might tell us
whether the gene is cancer-related (either a known or assumed tumor gene, or presence in cDNA
libraries from tumor tissues in the case of ESTs). The cancer-relatedness of a feature helps us
assess the quality of the clone ranking. Both EST-matching clones have homologies to EST's
that overwhelmingly come from tumor libraries. Likewise, one of the three clones with homology
to known genes matches to ferritin H (GenBank accession number 1.20941), a known cancer
gene [28]. Another clone matches to LYVE-1 (GenBank accession number NM_006691.1) a
lymphatic gene which is more highly expressed in the tumors due to the lymphocytes infiltrating
the tumors. The third known gene is poly(rC)-binding protein 2 (PCBP2, GenBank accession
number NM_005016). This gene is under-expressed in the tumors. In summary, three of the five
clones with homology to expressed genes are cancer-related and one is related to the presence
of white blood cells in the tumor.

In order to evaluate this finding in the context of the accuracy of the clone scoring, we
compared the identities of the top 1000 ranking clones to the bottom 1000. Since we did not
have the means to sequence such as large number of clones, we had to content ourselves with
the sequences generated in earlier random sequencing experiments (55 among the top 1000
and 28 among the bottom 1000). Table 4 shows that the top ranked clones are enriched for
clones that did not yield a readable sequence (bad sequences), as well as for repeats and for
tumor genes (such as ferritin H, CDC2 [GenBank accession number D88357] and the SET
translocation gene [GenBank accession number NM_003011.1]). The number of tumor-related
ESTs did not increase. Interestingly, the level of Immunoglobulin genes remains essentially the
same. These genes are uniquely expressed by tumor-infiltrating white blood cells and one would
have expected a higher showing in the top 1000. Another interesting finding is that the genes
of the metabolism (mitochondrial genes and ribosomal proteins) which are commonly found to
show elevated expression in tumors, and which here, if at all, tend to be found in the bottom
1000. Thus, the scoring enriches the tumor-related genes but also the non-specific sequences.
From a tumor biologist’s point of view, the accumulation of tumor-related genes at the top is
a very useful feature when it comes to screening for novel cancer genes.

The above analysis seems to suggest that the feature selection method is able to identify
clones that are cancer-related, and rank them highly. In addition, though, some clones seemed
to obtain a high ranking while not having a meaningful biological explanation, and some known
tumor genes are not ranked as high as would be expected. Given this and the inability of this
feature selection method to significantly improve classification performance, additional effort is
needed to develop ways of identifying meaningful features in these types of datasets.

6 Other data results

To demonstrate that our method can perform well in general compared to other methods used
to analyze expression datasets, we performed similar experiments using previously published
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Seq ID Way of action

repeat ALU

ferritin H ferritin is used in trials
as marker for ovarian cancer

EST 1 matches to ESTs form tumor libraries

bad PCR

repeat LINE1

bad sequence

bad PCR

LYVE-1 expressed on the lymph vessel wall

PCBP2 required for translation of poliovirus
RNA: binds and stabilizes mRNA of
erythropoietin, hepatitis A and C
virus, and tyrosine hydroxylase

EST 2 matches to ESTs form tumor libraries

Table 3: Sequence homologies of the top 10 scoring clones These sequences were considered the 10
top-ranked clones using the feature selection method described above.

Gene Top | % | Bottom | % | Ratio
total sequences 55 28

bad sequences 10 18 2 7 +
repeats 6 11 0 0 +
tumor genes 7 13 1 4 +
ESTs 9 16 5 18
tumor-related ESTs 7 13 4 14
metabolism genes 7 13 7 25 -
novel sequence 0 0 2 7 -
Immunoglobulin 4 7 3 11

other known genes 5 9 5 18

Table 4: Comparison of top and bottom ranked clones. A total of 55 of the top 1000 ranked clones and
28 of the bottom 1000 ranked clones were sequenced. Each is categorized into one of nine groups. The number
of sequences in each category from the top and bottom rankings is listed, along with the percentage of the total
sequenced that category contains. The last column shows whether the category is more prevalent in either the
top (+) 1000 or bottom (-) 1000 ranked clones.

11



datasets. The first dataset involves expression experiments on samples taken from patients with
human acute leukemia. Initial analysis was performed by Golub et al. [13], and the dataset
can be obtained at http://waldo.wi.mit.edu/MPR/cancer_class.html. The second dataset is
comprised of expression data measuring levels of expression of genes in human tumor and
normal colon tissues. Alon et al.[1] originally analyzed this data, and it is available at their
website, http://www.molbio.princeton.edu/colondata.

6.1 AML/ALL dataset

Bone marrow or peripheral blood samples were taken from 72 patients with either acute myeloid
leukemia (AML) or acute lymphoblastic leukemia (ALL). Following the experimental setup of
the original authors, the data is split into a training set consisting of 38 bone marrow samples
of which 27 are ALL and 11 are AML, and a test set consisting of 24 bone marrow and 10
peripheral blood samples, 20 ALL and 14 AML. The dataset provided contained expression
levels for 7129 human genes produced by Affymetrix high-density oligonucleotide microarrays.
The scores in the dataset represent the intensity of gene expression after being re-scaled to
make overall intensities for each chip equivalent. Following the methods in Golub et al.[13],
we normalize these scores for each gene by subtracting the mean and dividing by the standard
deviation of the expression values for that gene.

Golub et al. report accuracy of classification on the training set using a weighted voting
scheme® and also clustering using self-organizing maps (SOMs). Hold-one-out cross validation
tests using the weighted voting scheme correctly classify all samples for which a prediction is
made, 36 of the 38 samples, while declining to predict on the remaining two. A two-cluster
SOM produced one cluster with 24 ALL and 1 AML sample, and the second with 10 AML and
3 ALL samples.

We also did a full hold-one-out cross-validation measurement of the accuracy of our method
on the training set alone. The SVM method was able to correctly classify all samples of the
training set with a diagonal factor of two. Retesting subsets with only the top-ranked 25, 250,
500, and 1000 features, it was also able to correctly classify all training samples correctly using
a diagonal factor of two in all cases.

We then tried to classify samples in the test set using a classifier that had been trained only
on the examples in the training set. Multiple dataset sizes and diagonal factor settings perform
optimally on the training set, and testing each combination produced results ranging between
classifying 30 to 32 of the 34 samples correctly. Golub et al. use a predictor trained using
their weighted voting scheme on the training samples, and classify correctly on all samples for
which a prediction is made, 29 of the 34, declining to predict for the other five. The SVM
predicted incorrectly on five samples in at least one of its tests, and of these five, none were
given predictions by Golub et al.. Two samples, patients 54 and 66, were misclassified in all
cases.

Information is provided as to whether the ALL samples were of B-cell lineage or T-cell
lineage. Using all 47 ALL samples from both the training and test sets, the SVM achieves
perfect classification using the 250 and 500 top-ranked features with multiple diagonal factor
settings on hold-one-out cross-validation tests. Using the full dataset, the SVM misclassified
only a single tissue when using a zero diagonal factor. Golub et al. use SOMs to create 4

5The weighted voting scheme uses a group of 50 genes selected and described in the subsection “Feature Selection” where each
gene predicts a class for each sample. These predictions are combined with each being weighted by “the degree of that gene’s
correlation with the class distinction”, which is the F(g) score defined above. If this combination exceeds a threshold in favor of
one class over the other, a prediction is made.
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clusters using all examples in the training set, including the AML samples. The first cluster
contains 10 AML samples, the second contains 8 T-lineage ALL samples and 1 B-lineage ALL
sample, the third contains 5 B-lineage ALL samples, and the last one contains 13 B-lineage
ALL samples and a single AML sample.

Lastly, results of chemotherapy treatments for 15 AML patients is available. Treatment was
considered successful if the patient went into remission for 46 to 84 months, otherwise it was
considered a failure. Golub et al. report that they were unable to achieve accurate results
using their weighted voting scheme. On hold-one-out cross-validation tests, the SVM was able
to classify 10 of the 15 patients using the top 5 or 10 ranked features and a diagonal factor
of two, thus performing slightly better than chance. One misclassified sample, patient 37, was
consistently misclassified using multiple settings, and by a relatively large margin.

6.2 Colon tumor dataset

Using Affymetrix oligonucleotide arrays, expression levels for 40 tumor and 22 normal colon
tissues were measured for 6500 human genes. Of these genes, the 2000 with the highest mini-
mal intensity across the tissues were selected for classification purposes, and these were made
publicly available. The scores in the dataset represent a gene intensity derived in a process
described in Alon et al.[1]. The data was not processed further before performing classifica-
tion. Alon et al. use a clustering method to create clusters of tissues. In their experiments,
one cluster consisted of 35 tumor and 3 normal tissues, and the other 19 normal and 5 tumor
tissues.

Using the SVM method with full hold-one-out cross-validation on the dataset of 62 tissues,
we were able to correctly classify correctly all but six of the tissues using all 2000 features and
a diagonal factor of two. Using only the top 1000 genes produced similar results at the same
diagonal factor. The six misclassified in each of the optimal runs were exactly the same and
consisted of three tumor tissues (T30, T33, T36) and three normal tissues (N8, N34, N36).
T30, T33, and T36 are among the 5 tumor tissues that were clustered with the majority of
the normal tissues by Alon et al., and N8 and N32 were similarly in the cluster containing the
majority of the tumor tissues.

Figure 2 plots the margins for the tissues based on the experiments using all of the data
with a diagonal factor of two. This is analogous to Figure 1 above, which helped identify the
mis-labeled tissue in the ovarian dataset. As we can see in Figure 2, none of the six misclassified
tissues were borderline cases according to the SVM.

Alon et al. define a muscle index based on the average intensity of ESTs that are homologous
to 17 smooth muscle genes. They explain that “normal tissue samples include a mixture of tissue
types, while the tumor samples are biased to epithelial tissue of the carcinoma”. Therefore, it is
expected that tumor tissues should have lower expression levels for these 17 ESTs and a smaller
muscle index. In general, this proved to be true. Interestingly, though, all tumor tissues had
a muscle index less than or equal to 0.3 except for T30, T33, and T36, and all normal tissues
had an index of greater than or equal to 0.3 except N8, N34, and N36.

Without the assistance of the biologists who conducted these experiments, we cannot explore
whether it is possible that one or more of these samples were bad or mis-labeled. Simply
removing all six samples from the data and re-testing still produced classification errors. Two
of the samples, N36 and T36, are especially interesting because their names indicate that they
originated from the same patient, yet both are consistently misclassified by the SVM. Also,
N36 has a muscle index or 0.1 and T36 has a muscle index of 0.7 which is counter-intuitive.

13



12

08 |
06

H
oa] N M m

-06

Size of Margin

-0.8

0 10 20 30 40 50 60
Tissue Samples

Figure 2: SVM classification margins, colon tissues. When classifying, the SVM calculates the margin
which is the distance of an example from the separating hyper-plane it has learned. In this graph, the margin
for each tissue sample is shown. A positive value indicates a correct classification, and a negative value indicates
an incorrect classification. The incorrect classifications correspond to (from left to right) N8, T30, T33, N34,
N36, and T36.

7 Comparison to perceptron-like classification algorithms

As discussed in the introduction, we do not claim that we can prove that the SVM method
is better than other classification techniques on this type of dataset. The second family of
algorithms we tested are generalizations of the Perceptron algorithm [23]. This simple algorithm
works in an on-line way, running through the data and updating a weight vector each time it
makes a mistake. The new weight vector is

Wt+1 — Wt + ytxt (11)

and again the resulting decision rule is linear®, the classification is given by sign({w*, x)).
However, this algorithm requires modification when there is no perfect linear decision rule.
Helmbold and Warmuth [16] provided such a modification, for which they derived performance
guarantees. The modification simply amounts to taking a linear combination of the decision
rules used at each iteration of the algorithm. The final decision rule is sign(}",(w*, x)). Freund
and Schapire [12] demonstrated that kernels other than the simple inner product can also be
applied effectively to this algorithm, achieving performance comparable to the best SVM on a
benchmark test of Hand-Written Digits.

As in the case of SVMs, the use of a more complex kernel did not improve performance for
these problems and so we report only results for an inner product kernel. We also tested an
algorithm known as the p-norm perceptron [14], using the same averaging procedure’. The-
oretical results suggest that these algorithms perform well when good sparse hypotheses are
available.

Our results for the modified perceptron are comparable to those for the SVM and the scores
achieved for each dataset are given in Table 5.

Although it is not suggested by the theory, we observed that this algorithm achieves improved
performance by running through the data several times; this was also observed by Freund and

6We did not use a bias in these experiments.
"It is an open question whether kernels can be applied to such algorithms.
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SVM | SVM
Dataset Features | FP | FN FP FN

Ovarian(original) 97802 46 | 4.8 5 3
Ovarian(modified) 97802 44 | 34 0 0
AML/ALL train 7129 0.6 | 2.8 0 0
AML treatment 7129 4.8 | 3.5 3 2
Colon 2000 3.8 | 3.7 3 3

Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data
as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset
used and the second is number of features in the dataset. For the ovarian and colon datasets, the number
of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the
AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients
misclassified (FN) is reported. For the AML treatment dataset, the number of unsuccessfully treated patients
misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two
columns report the best score obtained by the SVM on that dataset.

Schapire[12]. The p-norm perceptron did not perform as well as the theory might suggest and
we only report results for the standard perceptron.

8 Conclusion

We have presented a method to analyze microarray expression data for genes from several tissue
or cell types using support vector machines. While our results indicate that SVMs are able
to classify tissue and cell types based on this data, we show that other methods such as the
ones based on the perceptron algorithm are able to perform similarly. The datasets currently
available contain relatively few examples and thus do not allow one method to demonstrate
superiority. The SVM performs well using a simple kernel, and we believe that as more complex
datasets become available, the use of more complex kernels will become necessary and will
allow the SVM to continue its good performance. As an added feature of our SVM method,
we demonstrate that it can be used to identify mis-labeled data.

Microarray expression experiments have great potential for use as part of standard diagnosis
tests performed in the medical community. We have shown along with others that expression
data can be used in the identification of the presence of a disease and the determination of its
cell lineage. In addition, there is a hope that predictions of the success or failure of a particular
treatment may be possible, but so far, results from these types of experiments are inconclusive.
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