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Abstract. Oscillations in the environment result in substantial alterations to population

dynamics as evidenced by time series of abundance and recruitment. Depending on

the reference timescale, these oscillations are referred to as regime shifts. Regime

shifts may occur on very short time scales and are often undetected for several years.

Consequently, tools that allow the estimation of regime-specific population dynamic

parameters may be of great value. Using a hidden Markov model to describe the

unobserved regime state, we develop methods to infer regime-specific parameters for

a commonly used model of density dependent recruitment in addition to identifying

the unobserved regime state. We apply the method to recruitment data for Japanese

sardine.

Key words: density dependence; hidden Markov model; Japanese sardine; regime shift;

stock-recruitment.

INTRODUCTION

One of the fundamental relationships in ecology is the production of offspring as

a function of the number of mature individuals. A common way of writing this rela-

tionship is R(S) = aSf(S), where R is the number of offspring, S is the number of

mature individuals, a is the maximum per capita reproduction (i.e., which occurs in the

absence of density dependent factors) and f(S) is a function characterizing the density
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dependence of reproduction or juvenile survival. Common measures for S include total

egg production, biomass of spawning individuals, or counts of mature indiivudals. In

general, we expect that f(S) is close to one when S is small and that f(S) approaches

zero as S becomes very large.

A variety of ecological factors are subsumed into the parameters of the reproduc-

tive relationship. Both top-down (roughly, predation) and bottom-up (roughly, food)

factors affect the production of individuals and it is possible to develop a framework in

which these factors are integrated (e.g., Munch et. al. 2005a). However, these biotic

factors also depend upon the abiotic environment, so that physical variables are also

components in the parameters of the reproductive relationship. Kjesbu et. al. (1998)

found a tight correlation between fecundity and both temperature and prey availability.

Rates of somatic growth are strongly influenced by temperature and prey availability

(Elliot 1994) and combined these effects lead to environmentally induced fluctuations

in density dependence (Jacobson and MacCall 1995, Sugimoto et. al. 2001).

Importantly, it is possible for ecosystems to exist in more than one state and that

sometimes very rapid changes may occur between the different states of the ecosystem

(e.g., Scheffer et. al. 2001, Scheffer and Carpenter 2003, Folke et. al. 2004). Environ-

mental regimes are typically thought of as ecological states that persist over prolonged

periods of time. However, precisely how long a state must persist to be considered a

regime depends on the context. Regime shifts may require only a few years or several
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centuries (Scheffer et. al. 2001) depending upon the reference time scale (e.g., ecolog-

ical vs geological/evolutionary). In what follows, we refer to different environmental

states as regimes, the transition between one state and another as a regime shift, and

the productivity of a population in a particular regime as a recruitment regime.

Because our ability to observe the state of ecosystems is imperfect at best, we may

not be able to recognize a shift in the state immediately or even directly. However,

organisms – through the fundamental process of reproduction with environmental state

built into the reproductive parameters – may provide a signal.

For instance, in steelhead trout (Oncorhynchus mykiss), juvenile survival varies

with environmental state (Welch et. al. 2000) and decadal scale variations in several

recruitment time series correspond with shifts in physical variables (e.g., McFarlane

et. al. 2000, Daskalov 2003). Moreover, production of sablefish, sardine, English

sole, Pacific cod, North Sea plaice, and several salmonids all show pronounced decadal

scale fluctuations (McFarlane et. al. 2000, MacCall 2002, Kell and Bromley 2004).

Hare and Mantua (2000) review a large number of physical and biological time series

and suggest that regime shifts may be more easily recognizable in recruitment indices

than in the environmental variables themselves. For example, although the physical

data do not unambiguously point to a regime shift in 1986, one is clearly visible in

aggregated recruitment patterns of some Pacific groundfishes (Meuter et al. 2007).

Similar observations led Tian et al. (2004) to suggest the use of saury as a bioindicator
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of regime shifts. We operationalize this idea by constructing a statistical framework

in which we infer the regime state and production functions from observed patterns in

recruitment.

The simplest case is one in which the environment may exist in two states that are

described by a Markov process. Such a case was investigated by Slatkin (1978), who

determined those characteristics of environmental fluctuation (via a first order Markov

process) and population growth that allow the existence of a stationary distribution of

population sizes, concluding that such stationary distributions can exist only when the

correlation time of the environmental changes and the response time of the population

are comparable. Nisbet and Bence (1989) developed a model for the productivity of

giant kelp (Macrosystis spp.) in which there are Markovian transitions between two

environments. In one environment they assumed recruitment is simply impossible, and

in the other environment recruitment is possible, but still stochastic depending upon

a variety of possible other states. Our work extends their model to the case where

there are two environmental states in which reproduction is possible: one in which

reproduction is on average low and one in which reproduction is on average high. In

both regimes, reproductive success is density dependent, though the way in which

density influences reproduction may differ in each state.

If there is considerable variance around the average reproduction under a given

regime and one cannot measure the state of the environment directly, then the prob-
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lem becomes that of making inference about the state of the environment and the

characteristics of reproduction simultaneously. Here, we propose a new method for fit-

ting regime-specific models for density dependent juvenile survival and simultaneously

estimating the regime state. Since the underlying process determining the state of the

environment is hidden, we use a Hidden Markov model as the basis of our statistical

framework. Hidden Markov Models (HMMs) have played a key role in the revolution

in bioinformatics (e.g., Liu et. al. 1999), and are just now becoming used in ecology.

Tucker and Anand (2004) argue for the general utility of HMMs in ecology and review

their use in a restoration context. Scott (2002) provides a review on Bayesian methods

for HMMs. The modeling approach that we adopt here is alternatively referred to as

a HMM, Markov-dependent mixture model or Markov switching regression model.

We assume that there are two environmental regimes characterized by distinct pro-

ductivities (Wada and Jacobson 1998, Hare and Mantua 2000) and that the process

governing the regime state is a two-state Markov chain. We employ a Bayesian ap-

proach to infer the parameters of the Markov process and regime-specific production

functions. This approach allows incorporation of prior information regarding both the

regime shifts and the regime-specific density dependence models, and yields full and

exact inference for the model parameters.

In the next section, we introduce the methodology, which involves a Markov model

for the state of the environment and a Ricker model (Ricker 1954) for aSf(S). We
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describe how the modeling framework can be used to estimate the long-term and short-

term recruitment distributions. To facilitate use of this approach in situations where

the existence of multiple regimes is uncertain, we develop estimates of posterior prob-

abilities corresponding to the one and two-regime models. Details of these calculations

are defered, for sake of readability, to Appendices A–C. We then illustrate the method-

ology with data for Japanese sardine. We conclude with a discussion of our results and

comparison of the approach with previous ones.

METHODS

The modeling approach

If the regime states for each year were known, the problem would be straightforward;

we could divide the data into regime-specific subsets and fit separate recruitment mod-

els to each using standard statistical tools. However, the regime state may be difficult to

identify, may shift over a short period of time and may not be adequately characterized

for several years following a shift. As a consequence, we require a method that allows

us to make inferences regarding the regime state as well as the regime-specific model

parameters. Our modeling approach combines a Markov model for unobserved envi-

ronmental regimes with regime-specific recruitment likelihoods. Within each regime,

we assume that recruitment follows a Ricker model with multiplicative log-normal er-

rors. Inference for the model involves assigning priors to the transition probabilities
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and recruitment parameters and updating these based on the observed time series. In

the next few paragraphs we present a more formal description of the model and then

apply it to data for Japanese sardine.

The regime state in year t (denoted by rt) takes on one of two values (here, 1 or 2)

with some probability that depends on the regime state in year t − 1. That is,

Pr(rt = i | rt−1 = j) = qij, i, j = 1, 2 (1)

where the qij are the probabilities of transitions into regime i from regime j. In the

Bayesian context, these transition probabilities themselves require a prior probability

model. We use independent Beta distributions for the probabilities of remaining in

each regime, i.e., for the qjj, j = 1, 2.

For each regime-specific model of juvenile survival, we use the standard Ricker

model (Ricker 1954). More general specifications are also feasible as discussed at the

end of this section. Specifically, the number of surviving juveniles, hereafter referred

to as recruitment (R), is given by

Rj(S) = ajS exp(−bjS), j = 1, 2 (2)

where S is the total egg prodcution or initial number of individuals in a cohort and the

subscript indicates parameters for recruitment under regime j. We assume that errors

around the recruitment relationship in Eq. 2 are multiplicative and log-normal. To

facilitate model fitting, we consider the transformed variable, y = log(R/S), resulting
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in the log-transformed, re-parameterized recruitment model,

y = αj − βjS, j = 1, 2 (3)

where αj = log aj and βj = bj. The errors around the transformed recruitment function

in Eq. 3 are additive normal with mean zero and variance Vj. Note that both the

recruitment parameters, αj and βj, as well as the variance parameter Vj depend on the

regime state j = 1, 2.

To simplify notation, we gather the regime-specific model parameters into a vector

θ = (θ1, θ2) with θj = (αj, βj), j = 1, 2, the regime-specific error variances (on the

log-scale) into V = (V1, V2), and the transition probabilities into a vector Q. Moreover,

we denote the regime-specific recruitment functions by F (S; θj) = αj − βjS, j = 1, 2.

The fully specified model is thus given by

yt | rt = j, θ, V
ind
∼ N(yt | F (St; θj), Vj), t = 1, ..., T

{r1, ..., rT} | Q ∼
∏T

t=2 Pr(rt | rt−1, Q)

Q, θ, V ∼ p(Q)p(θ)p(V ).

(4)

Here, p(Q), p(θ) and p(V ) are the prior densities for Q, θ and V , T is the final year

in which recruitment was observed, and N(y | F (S; θj), Vj) denotes a normal density

for y with mean F (S; θj) and variance Vj. The transition probabilities Pr(rt | rt−1, Q)

are given in Eq. 1. Since the regime designation is abritrary, we set r1 = 1 without

loss of generality.

As mentioned above, the prior for Q is built from independent Beta distributions
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for the qjj, j = 1, 2. We take independent inverse gamma priors for the Vj, j = 1, 2.

The prior for θ is defined through independent normal distributions for the αj and the

βj, j = 1, 2. The choice of the prior parameters is discussed in the “Data Example”

section below; the “Results” section addresses sensitivity of posterior inference to the

prior specification.

Under this model formulation, Gibbs sampling (e.g., Robert and Casella 2004) is

possible for all model parameters. Given the regime states, sampling the regime-specific

parameters (αj, βj, Vj) requires only standard techniques for Bayesian regression prob-

lems (see, e.g., Gelman et al. 2004). Given the regime-specific parameters and adjacent

regime states, sampling the regimes for each year involves only Bernoulli trials. Infor-

mally, the model fitting algorithm proceeds iteratively as follows.

1. Initialize by specifying starting values for parameters θ, V and Q, and by as-

signing a regime state to each year.

2. Given the regime assignments, subdivide the data into regime-specific subsets

and sample regime-specific parameter sets given this partition of the data. (This

step updates parameters θ and V .)

3. Given the regime-specific parameters and regime states for each adjacent year,

sample regime designations. (This step updates each regime state rt, t = 2, ..., T .)

4. Given the regime states for all years, sample the transition probabilities. (This
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step updates parameters q11 and q22 that define Q.)

5. Repeat steps 2-4 many times.

Appendix A provides formal details on Gibbs sampling from the posterior of the

model in Eq. 4. In the next section, we discuss how the posterior samples can be used

for various types of inference that are of interest under our modeling framework.

Note that the standard Ricker model for the regime-specific recruitment relation-

ships strikes a good balance between inferential flexibility and model parsimony for

the Japanese sardine data considered in this paper. In general, we might seek more

flexible specifications for the recruitment functions (e.g., the three-parameter Shepherd

(1982) and Murray (2002) models) and/or the regime-specific distributions (e.g., heav-

ier tailed or skewed distributions replacing the normals in Eq. 4). In principle, such

model elaborations can be readily incorporated in the hierarchical modeling framework

of Eq. 4. Moreover, semiparametric modeling can be proposed utilizing nonparametric

priors for the regime-specific density dependence functions as in Munch et. al. (2005b).

The methodology related with this latter extension will be reported elsewhere.

Posterior predicitive inference

There are a number of useful inferential quantities that emerge from the proposed

modeling framework. First, estimates of the regime history, Pr(rt = 1|data), can be

obtained directly from the posterior samples for the regime states for each year. This
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posterior probability allows us, for instance, to determine how confident we are of the

regime state for any year in the observed series.

We also obtain estimates of the long-run (stationary) distribution of recruitment,

p(y | S, Q, θ, V ). Although not applicable to any particular year, this distribution

indicates the average probability of observing a given level of recuitment over a long

period of time and may be useful in establishing sustainable harvest strategies.

Perhaps more useful in the short term is a prediction of next year’s recruitment

level, yT+1, given the observed time series and next year’s cohort size, ST+1. This type

of predictive inference can be obtained through the posterior forecast density, p(yT+1 |

ST+1, data), which takes into account the sequential dependence of the regime states

when forecasting recruitment. When sequential dependence is high, this approach

will provide recruitment predictions that are considerably more precise than would be

possible with a single-regime model. When sequential dependence is less strong, the

recruitment density is a mixture of log-normal distributions which allows the reasonable

possibility that recruitment is bimodal.

Details on how these posterior predictive distributions are estimated are provided

in Appendix B. Illustrations based on the Japanese sardine data are given in Figures

3 and 4.

Model comparison

The method we have proposed is intended explicitly for modeling recruitment when
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there are multiple environmental regimes. However, in some situations it may be

unclear whether there are distinct environmental regimes or whether there is a single,

perhaps continuously varying, environmental state. Consequently, we need an approach

to compare the proposed two-regime model in Eq. 4 to a model with only one regime.

Under the single-regime model, we have yt | θ′, V ′ independent N(yt | F (St; θ
′), V ′),

t = 1, ..., T , with θ′ = (α′, β ′) and the recruitment function given by F (S; θ′) = α′−β ′S.

We denote the single-regime and two-regime models by M1 and M2, respectively.

Although several approaches have been proposed for formal Bayesian model com-

parison, here we simply compare model performance using estimates for posterior prob-

abilities, Pr(M1 | data) and Pr(M2 | data), associated with models M1 and M2. Impor-

tantly, these model probabilities are equivalent to posterior estimates for the number

of regimes in a more general model that treats the number of regimes as random (with

possible values 1 and 2). This method is customarily used in the context of Bayesian

modeling with HMMs to estimate the number of hidden states (see, e.g., Scott, 2002,

and further references therein). It therefore provides a natural approach to the model

selection problem, since, in general, it can be extended to handle any finite number of

regimes.

These posterior model probabilities are estimated using the posterior samples from

the two models (as detailed in Appendix C). The approach requires specification of prior

probabilities associated with the two models. As discussed in the “Results” section,
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the application of the proposed methodology to the Japanese sardine data has revealed

strong support for the two-regime model even under very small prior probabilities for

this model.

DATA EXAMPLE

We consider application of the methodology to the analysis of recruitment data for

Japanese sardine, previously studied by Wada and Jacobson (1998). Egg production

estimates (S) were calculated from annual ichthyoplankton surveys (eggs/yr). The

recruitment indices (R) are catch per unit effort data (tonnes per hour of search time)

from a winter purse seine fishery and we assume, as did Wada and Jacobson, that

these index abundance of age-0 recruits in December. We used data from 1977-1995

(reported in Wada and Jacobson 1998, Table 1, see our Figure 1 1).

Given the previously established regime shifts in Pacific species, we expect to be able

to identify distinct regime-specific differences in survival to age 1. This is also consistent

with previous analyses of the Japanese sardine data (see, e.g., the discussion in Wada

and Jacobson, 1998). However, to our knowledge, this recruitment time series has not

been studied within a modeling framework that simultaneously estimates probabilities

of regime switching and parameters for the regime-specific recruitment relationships.

We fit the model in Eq 4. to these data, using a fairly noninformative prior specifi-

cation for the transition probabilities and the regime-specific recruitment parameters.

In particular, we used uniform priors for the qjj, j = 1, 2, and identical independent
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normal priors for each regime with mean log(4) for αj, 0 for βj, and large prior variance

(equal to 10) for each of these parameters.

The error variances Vj were assigned more informative priors, specifically, (indepen-

dent) inverse gamma distributions with prior expectation 0.5 and coefficient of variation

(CV) 0.7, for j = 1, 2. The implications of this prior choice are reflected in the prior

long-run density (Figure 3, top panel), which is estimated as discussed in Appendix B.

In the interest of model comparison, we also consider a single-regime Ricker model

for these data. In this case, the normal priors for α′ and β ′ were identical to those

under the two-regime model. To allow for the greater variability in recruitment that

must occur under a single-regime model, the error variance V ′ was given an inverse

gamma prior with expectation 1 and CV 0.58. We obtained similar results using the

same prior for V ′ that was used in the two-regime model.

RESULTS

We ran the Gibbs sampler described in Appendix A for 40000 iterations. We

assessed convergence empirically using the Gelman-Rubin diagnostic (e.g., Gelman et

al. 2004), which is based on between- and within-chain variances for each parameter,

resulting from a number of parallel chains corresponding to different starting values for

the Gibbs sampler. Although convergence was obtained within the first 500 samples, we

used a conservative burn-in period of 10000 iterations. Autocorrelation within chains

dropped below 0.05 in less than 30 samples for all parameters. Thus the 30000 samples
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we retained represent approximately 1000 independent draws from the posterior.

The two-regime model fits the Japanese sardine data quite well. The posterior

estimate of the long-run density (see Eq. 5 in Appendix B) shows clearly separated,

recruitment regimes (Figure 3, bottom panel), and the inferred regime states (Figure 4,

bottom panel) agree fairly well with the previously described environmental regimes.

Moreover, the two-regime model significantly outperformed a single-regime model.

Based on estimated posterior model probabilities (see Appendix C for details), the

data strongly support the existence of distinct recruitment regimes under practically

any choice of prior probability, Pr(M2), for the two-regime model. For instance, the

estimates for Pr(M2 | data) were 0.936, 0.955, 0.977, and 0.991 under respective prior

probabilities Pr(M2) = 0.1, 0.2, 0.5, and 0.9. Even under the extreme choice Pr(M2) =

0.01, we obtain an estimated posterior probability of 0.825 for the two-regime model.

Thus, our results strongly support Wada and Jacobson’s (1998) previous assertion

that there are two recruitment regimes for Japanese sardines. Moreover, our regime

estimates qualitatively agree with their division of the time series into a favorable

regime from 1971-1987 and unfavorable regime from 1988-1995.

Posterior distributions for the model parameters (Figure 2) indicate substantial

learning for most of the parameters; see also Table 1 as well as the prior and poste-

rior estimates for the long-run density (Figure 3). The posterior distributions for the

transition probabilities indicate some serial dependence in regime state (that is, both
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q11 and q22 have most of their posterior probability mass at values greater than 0.5),

though somewhat less than expected for regimes exhibiting decadal scale oscillations.

Interestingly, there is a somewhat greater tendancy to remain in the low recruitment

regime (e.g., E(q22 | data) = 0.67 and E(q11 | data) = 0.58). The posteriors for both

of the density-dependence parameters were different across regimes. The maximum re-

production rate α was substantially lower and the effect of density β was substantially

greater in the low recruitment regime. The posteriors for the error variances were also

different in the two regimes, for instance, the posterior mean variability under the low

recruitment regime was nearly twice of that in the high recruitment regime.

We conducted several sensitivity runs to evaluate the dependence of the results on

the prior specification. Given the well documented decadal scale oscillations in many

Pacific recruitment series, we might reasonably have asserted that the qjj should be

centered in their prior around, say, 0.9 resulting in one regime shift per decade, on

average. We found that such more informative prior specifications for the qjj made

no qualitative difference to our results. The only quantitative differences were that

the posterior regime classifications were less ambiguous for the most poorly classified

years, i.e., years 1978, 1979, 1982, and 1992 (see Figure 4, bottom panel). Increasing

the (already significant) prior uncertainty in the regression parameters αj and βj by

a factor of 5 did not change the results. Finally, we found that increasing the prior

uncertainty in the error variances Vj results in overdispersed, bimodal posteriors for
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the αj and βj. This is a manifestation of the label switching issue that can arise

in fitting mixture models (see the related discussion in Appendix A). Reducing the

prior uncertainty for the Vj did not alter the results. Thus, under an inverse gamma

specification for the prior, a CV of about 0.7 is as diffuse as possible while allowing

clear identification of the recruitment regimes. Hence, in general, the error variances

are the parameters that require the most careful prior elicitation in order to apply the

two-regime model.

Interestingly, there were three years (1979, 1982, and 1992) in which the regime state

differed from expectation based on prior analyses of environmental variables (Tian et

al. 2004, Hare and Mantua 2000). These years were also among the most poorly

classified. Analyses with alternative regresssion functions (Beverton-Holt or Shepherd)

did not change this result indicating that the poor classification is not likely to stem

from the assumed form for density dependence. Instead, we suspect that these years

are poorly classified because they indicate exceptional recruitment for the expected

regime. Removing the data for these years did not substantially alter inference for any

of the regime-specific parameters, but did increase the probability of remaining in each

regime (for instance, with data from years 1982 and 1992 removed, E(q22 | data) = 0.83

and E(q11 | data) = 0.75).

DISCUSSION

There are many attempts (on the order of hundreds) to incorporate environmental
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variables into density dependence models for juvenile survival (e.g., Cushing 1982,

Drinkwater and Myers 1987). In ideal situations, (e.g., Koster et al. 2001) a model

incorporating physiologically relevant environmental variables can be constructed from

a series of stage-specific observations. More typically, however, the approach used

is to multiply a Ricker model by some additional function of the environment (e.g.,

Madenjian et al. 2005, Majormaki 2004, Kuikka et al. 1999).

Recent efforts indicate that aggregate variables such as the NAO index or PDO

index are better predictors of ecological processes than more mechanistically inter-

pretable variables such as temperature. Hallett et al. (2004) suggest that this result is

driven by the complexity of the interactions between weather and ecology; because the

specific environmental mechanisms that are most important in any year may vary, ag-

gregate variables such as the NAO do a better job in coarse-grained analyses. Cianelli

et al (2004, 2005) develop models for the survival of pre-recruitment stages of walleye

pollock in the Gulf of Alaska using variations of generalized additive models (GAMs) to

account for environmental factors. Their best model is a threshold GAM; in a partic-

ular region of the environmental variable space, log-survival is the sum of functions of

population density and environmental variables (the standard multiplicative approach

in a nonparametric context), but when a linear combination of the environmental vari-

ables exceeds a threshold a different set of nonparametric functions are applied to

density and the environmental variables.
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In a vein similar to our work, Peterman and colleagues (Peterman et al. 2000,

2003, Holt and Peterman 2004) have developed approaches in which environmental

variables are incorporated implicitly. Peterman et al. (2000) model the parameter

a in R(S) = aSf(S) as a random walk, with a(t + 1) = a(t) + W (t), where W (t)

represents a random component due to the environment. They use a Kalman filter

for estimation. Peterman et al. (2003) apply this method to a number of Bristol Bay

sockeye salmon stocks; Holt and Peterman (2004) apply a similar model to time varying

age-at-maturity of sockeye salmon. Brodziak et al. (2001) use a single productivity

function aSf(S) but allow the errors about the stock recruitment relationship to be

correlated.

Thus, most of the existing approaches modify a to represent explicit or implicit

environmental fluctuations in density independent factors. However, given that regime

changes are characterized by substantial changes in the prey and predator fields, which

may affect the intensity of competition for resources, it is plausible that the nature of

density dependence changes as well. Our method allows both the density dependent

and density independent terms to vary across each of the regime states.

This greater flexibility is not without costs, however. The model contains substan-

tially more parameters and requires that we know something about reasonable ranges

for the error variances a priori. We expect that the primary value of this approach

will be in situations when there are good prior extrinsic reasons to suspect that two
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regimes are present. Obviously, the model will tend to find two “regimes” whenever

the data are substantially overdispersed or aggregated into clumps of high and low

values. However, in this case the mixture framework used here may better reflect the

complexity of the data than the unimodal densities commonly used to model recruit-

ment residuals. Determining just how well-separated two recruitment regimes need to

be for the model to identify them is an important area for future investigation.

Although many correlations between recruitment and the environment have been

demonstrated, these are rarely used in management (Myers 1998). There are two good

reasons for this. The first is that environmental correlations are notoriously unreliable;

the vast majority have failed to stand the test of time (Myers 1998). However, even

when environmental variables are reliable determinants of recruitment, in order to use

them to make predictions of future recruitment success, we must be able to forecast

each of the relevant environmental variables. With the approach described here, the

information necessary to forecast future regime states is estimated as part of the model.

This can be used to forecast future recruitments conditional on the most recent regime

estimates (Figure 4, top panel). These recruitment forecasts may be different than the

long-run probability of recruitment, particularly when there is strong serial dependence

in the regime states.

When environmental regimes persist long enough, it is possible to consider regime-

specific management practices (MacCall 2002). If, on the other hand, the regime state
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oscillates with high frequency, the predicted recruitment distribution will be multi-

modal leading to multimodal estimates of management reference points. In our analy-

sis of the Japanese sardine, the posterior expectations for the probability or remaining

in each regime are not very high indicating an average residence time of 2-3 years (4-6

years if outliers were removed) and the conditional recruitment predictions are strongly

bimodal. Recognizing this multimodality may be helpful in establishing precautionary

targets under fluctuating environmental regimes.

Our broad objective here is to introduce another tool for modeling the productivity

of populations when it seems that the relationship is regularly changing. To be sure,

a wide variety of approaches can be brought to bear on the same problem. Here we

have shown how Bayesian regression approaches, coupled with Hidden Markov Models

for unknown or poorly observed environmental states, provide a powerful tool to study

the productivity of populations under changing environmental regimes.
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APPENDIX A. Computational approach to sampling the posterior

Here, we describe the details of the algorithm used to obtain samples from the posterior

of the model in Eq. 4.

Let data = {(yt, St) : t = 1, ..., T} be the set of observations and denote by

p(θ, V , Q, r | data) the posterior for all parameters, including the regime states r =

(r2, ..., rT ). Sampling from this posterior was accomplished with standard posterior

simulation methods for HMMs (see, e.g., Scott 2002 and references therein). In par-

ticular, as discussed briefly in the “Methods” section, we used Gibbs sampling cycling

over posterior full conditional distributions as detailed below.

For each t = 2, ..., T − 1, the full conditional posterior probability that the regime

is in state 1 in year t, i.e., Pr(rt = 1 | θ, Q, V , r−t, data), is given by

N(yt | F (St; θ1), V1)Pr(rt = 1 | rt−1, Q)Pr(rt+1 | rt = 1, Q)
2∑

j=1

N(yt | F (St; θj), Vj)Pr(rt = j | rt−1, Q)Pr(rt+1 | rt = j, Q)

where r−t indicates the set of regime states with rt removed. The corresponding

posterior probability for rT is

Pr(rT = 1 | θ, Q, V , rT−1, data) =
N(yT | F (ST ; θ1), V1)Pr(rT = 1 | rT−1, Q)
2∑

j=1

N(yT | F (ST ; θj), Vj)Pr(rT = j | rT−1, Q)

.

The full conditionals for the transition probabilities are given by Beta distributions

with parameters determined by the corresponding priors, and the number nkl of tran-

sitions into state l from state k based on the current sample of regime states r. We
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denote by vj and wj the parameters of the Beta priors for each qjj, j = 1, 2. Then,

the posterior full conditional for q11 is given by a Beta distribution with parameters

n11 + v1 and n12 + w1. Analogously, the posterior full conditional for q22 is a Beta

distribution with parameters n22 + v2 and n21 + w2.

The full conditionals for the error variances are given by inverse gamma distribu-

tions with parameters determined by the priors and regime-specific residual sum-of-

squares. Denote by AVj
the shape parameter and by BVj

the scale parameter of the

inverse gamma prior for the error variance Vj (we use the parameterization of the in-

verse gamma that yields prior mean BVj
/(AVj

− 1), provided AVj
> 1). Then, for each

j = 1, 2, the posterior full conditional for Vj is an inverse gamma distribution with

scale parameter BVj
+ 0.5

∑
{t:rt=j}{yt−F (St; θj)}

2 and shape parameter AVj
+ 0.5Tj,

where Tj is the total number of years t for which rt = j.

The full conditionals for the regime-specific regression parameters are bivariate

normal. Let Aαj
, Aβj

and Bαj
, Bβj

be the means and variances, respectively, of the

normal prior distributions for the αj and βj. Then, for each j = 1, 2, the posterior full

conditional for (αj, βj) is given, up to the normalizing constant, by

p(αj)p(βj)
∏

{t:rt=j}

N(yt | αj − βjSt, Vj),

where p(αj) and p(βj) are the prior densities for αj and βj, respectively. Note that

the product above can be written in the form of a Tj-dimensional normal distri-

bution for yj = {yt : rt = j} with mean vector Sj(αj, βj)
T and covariance ma-
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trix VjI. Here, superscript T denotes transpose operations, I is the Tj × Tj iden-

tity matrix, and Sj is the Tj × 2 matrix with all first column elements equal to

1 and second column given by the Tj-dimensional vector {−St : rt = j}. Hence,

using standard Bayesian updating calculations for normal linear regression models,

the posterior full conditional for (αj, βj) can be shown to be bivariate normal with

covariance matrix Σα,β = (diag(B−1
αj

, B−1
βj

) + V −1
j ST

j Sj)
−1 and mean vector µα,β =

Σα,β((Aαj
B−1

αj
, Aβj

B−1
βj

)T + V −1
j ST

j yj).

We note that the model structure is, in principle, unidentifiable. Since the regime

designation is arbitrary, for any data set there are two equally probable solutions cor-

responding to swapping the regime labels. That is, under one solution, some set of

observations are assigned to group 1, the remainder to group 2 and parameters for

each group are determined appropriately. The other equally reasonable solution is to

swap group assignments for all members of each group and update parameter distri-

butions accordingly. Thus, for sufficiently close regime-specific parameter sets, the

algorithm will switch regime assignments for all (or nearly all) observations between

each jump resulting in bimodal posteriors for the parameters and equiprobable group

assignment. The regime-specific regression parameters for the sardine data were suffi-

ciently well separated that label switching was not a problem under the carefully chosen,

but arguably reasonable, prior for the regime-specific error variances (discussed in the

“Results” section). In other cases, the label switching problem may be dealt with by
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incorporating additional structure into the priors for the regression parameters or by

incorporating an additional acceptance criterion into the Gibbs sampler that preserves

regime identity. For instance, one possibility would be to restrict one regime to have

higher recruitment at some specified stock size; alternatively, the priors for the αj can

be constrained to support a monotonicity restriction with larger values corresponding

to the high regime.

APPENDIX B. Posterior predictive inference

We describe here how posterior inference can be obtained for the hidden regime states

and the long-run recruitment distribution. We also show how the posterior predictive

distribution for the next year’s recruitment is obtained.

The Gibbs sampler developed in Appendix A yields B posterior samples {rt,b : b =

1, ..., B} for each regime state rt (as well as for all other parameters of the model in

Eq. 4). These samples were tallied to estimate, for each year, the posterior probability

of being in regime 1, Pr(rt = 1|data). For instance, B−1
∑B

b=1 I(rt,b=1) is a natural

estimate for Pr(rt = 1|data), where I(rt,b=1) is equal to 1 if rt,b = 1 and is equal to

0 otherwise. Figure 4 (bottom panel) shows these estimates for the Japanese sardine

recruitment data.

The long-run marginal density of recruitment, y, for any particular initial cohort
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size, S, can also be obtained from the posterior samples. This density is given by

p(y | S, Q, θ, V ) = πN(y | F (S; θ1), V1) + (1 − π)N(y | F (S; θ2), V2), (5)

where π is the stationary (long-run) probability of regime 1, which is defined through

the transition probabilities in Q, specifically, π = (1 − q22)/(2 − q11 − q22). Hence,

for each pair of values (S, y) over an appropriate grid, the posterior long-run density

p(y | S, Q, θ, V ) is estimated by averaging the expression on the right hand side of

Eq. 5 over the posterior samples for θ, V and π, the latter emerging directly from the

posterior samples for Q.

Note that the long-run density provides also a useful means of studying prior-to-

posterior learning. In particular, the implications of the prior choice for parameters Q,

θ and V can be studied working with the corresponding long-run density. The prior

long-run density can be estimated using, again, the expression in Eq. 5, which is now

averaged over the prior distributions (or samples from the prior distributions) for θ,

V and π, where the prior distribution for π is induced by the prior for Q. Figure 3

plots prior and posterior estimates for the long-run density of recruitment for Japanese

sardines.

Perhaps more useful than the long-run recruitment density is the posterior forecast

density of the next year’s recruitment, yT+1, for a given cohort size, ST+1. We denote

this posterior forecast density by p(yT+1 | ST+1, data). This is distinct from the long-

run density of recruitment in that it explicitly takes into account the dependence of
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next year’s regime state, rT+1, on the regime state in year T . The posterior forecast

density is defined by averaging over the posterior p(θ, V , Q, r | data) the following

conditional density,

p(yT+1 | ST+1, rT , θ, V , Q) =

2∑

j=1

Pr(rT+1 = j|rT , Q)N(yT+1 | F (ST+1; θj), Vj).

It can thus be readily estimated using the samples from p(θ, V , Q, r | data). An

illustration, based on the sardine data, is given in the top panel of Figure 4.

APPENDIX C. Estimation of posterior model probabilities

Here, we discuss computing for the posterior probabilities corresponding to the Ricker

model and the two-regime model. As discussed in the “Model comparison” section,

the approach is to consider the general model that incorporates uncertainty regarding

the number of regimes, which is therefore now a random variable (denoted here by k)

with possible values 1 and 2. Hence, k = 1 corresponds to the single-regime Ricker

model (model M1) and k = 2 to the two-component switching regression model in Eq.

4 (model M2). We develop an estimate for Pr(M2 | data) ≡ Pr(k = 2 | data) (where

Pr(k = 1 | data) = 1 − Pr(k = 2 | data)).

Let φ1 = (α′, β ′, V ′) and φ2 = (θ, V , Q) denote the parameters of the Ricker and

two-regime models, respectively. Assume that the joint prior is built from independent

components for φ1, φ2 and k, the latter requiring Pr(M2) ≡ Pr(k = 2) (with Pr(k =

1) = 1 − Pr(k = 2)). Then, given k, φ1 and φ2 are conditionally independent in
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their posterior distribution. Hence, p(φ1, φ2 | data) can be obtained using two parallel

Gibbs samplers, the one described in Appendix A for model M2, and a standard Gibbs

sampler for normal linear regression for model M1. Moreover, Pr(k = 2 | data) =

∫
Pr(k = 2 | φ1, φ2, data)p(φ1, φ2 | data)dφ1dφ2, where

Pr(k = 2 | φ1, φ2, data) =
p(data | φ2, k = 2)Pr(k = 2)

p(data | φ1, k = 1)Pr(k = 1) + p(data | φ2, k = 2)Pr(k = 2)
.

Here, p(data | φ`, k = `) is the likelihood under model M`, ` = 1, 2. Therefore,

the estimate for Pr(k = 2 | data) can be obtained by Monte Carlo integration of its

expression using the posterior samples for φ1 and φ2.

The estimate requires evaluation of the model likelihoods p(data | φ`, k = `),

` = 1, 2, for each posterior sample. The likelihood under model M1 is easy to compute

directly. However, the two-regime model likelihood is given by

p(data | φ2, k = 2) =
∑

N(y1 | α1 − β1S1, V1)
T∏

t=2

Pr(rt | rt−1)N(yt | αrt
− βrt

St, Vrt
)

where the sum is over all possible configurations of the vector r = (r2, ..., rT ). Direct

evaluation of this likelihood requires O(2T−1) steps and is thus too expensive even for

moderate T . The numbers of steps is reduced to O(4(T − 1)) using the likelihood

recursion, a standard computational method for HMMs (see, e.g., Scott, 2002). For

t = 1, ..., T , let dt be the vector that collects the data up to time point t (and thus

data = dT ). Moreover, for t = 2, ..., T , and j = 1, 2, define the “forward” variable

Lt(j) = p(dt, rt = j | φ2), that is, the joint likelihood contribution of dt and event
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{rt = j} (with (r2, ..., rt−1) marginalized). Note that the likelihood contribution from

dt is Lt(1) + Lt(2), and thus p(data | φ2, k = 2) = LT (1) + LT (2). Because we set

r1 = 1, we have L1(1) = N(y1 | α1 − β1S1, V1) and L1(2) = 0. The likelihood recursion

yields {Lt(j) : j = 1, 2} from {Lt−1(j) : j = 1, 2}. In particular, for t = 2, ..., T and

j = 1, 2, it can be shown that Lt(j) = N(yt | αj − βjSt, Vj){qj1Lt−1(1) + qj2Lt−1(2)}.

Therefore, this approach provides an efficient method of computing the two-regime

model likelihood.
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Table 1: Posterior summaries for the parameters of the two-regime model applied to

the Japanese sardine data.

Posterior summary α1 β1 α2 β2 V1 V2 q11 q22

Mean −2.565 0.292 −4.124 0.735 0.378 0.656 0.580 0.673

SD 0.364 0.197 0.463 0.162 0.240 0.332 0.170 0.156

2.5th percentile −3.427 0.084 −4.926 0.519 0.146 0.267 0.240 0.344

Median −2.570 0.266 −4.167 0.742 0.311 0.572 0.587 0.683

97.5th percentile −1.706 0.498 −3.054 0.972 1.033 1.544 0.892 0.937
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Table 2: Posterior summaries for the parameters of a Ricker model fitted to the

Japanese sardine data.

Posterior summary α′ β ′ V ′

Mean −3.414 0.502 2.184

SD 0.488 0.153 0.637

2.5th percentile −4.350 0.203 1.259

Median −3.424 0.503 2.078

97.5th percentile −2.429 0.807 3.703
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FIGURE LEGENDS

Figure 1: Plot of the Japanese sardines data on their original scale. The numbers

indicate year for the observed data with lines connecting consecutive years.

Figure 2: Posteriors for model parameters under the two-regime model in Eq. 4 (de-

noted by the solid lines). The dashed line in each panel indicates the corresponding

prior density.

Figure 3: The top panel shows the prior long-run density and the bottom panel plots the

corresponding posterior long-run density (see Appendix B). The data are also included

in the bottom panel (numbers indicate year with dashed lines connecting consecutive

years). In both panels, the tone indicates the long-run density value with black being

zero and lighter tone corresponding to higher density.

Figure 4: The top panel plots the posterior forecast density for next year’s recruit-

ment as a function of initial population size, including also the data (numbers indicate

year with dashed lines connecting consecutive years). The tone indicates the value

of the posterior forecast density with black being zero and lighter tone corresponding

to higher density. The bottom panel shows posterior estimates (denoted by the black

bars) for the probability of being in the high recruitment regime for each year.
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