
Bayesian Nonparametric Modeling for Comparison of

Single-Neuron Firing Intensities

Athanasios Kottas

Department of Applied Mathematics and Statistics, University of California,

Santa Cruz, California 95064, U.S.A. (Email: thanos@ams.ucsc.edu)

and

Sam Behseta

Department of Mathematics, California State University Fullerton,

Fullerton, California 92834, U.S.A.

SUMMARY. We propose a fully inferential model-based approach to the problem of

comparing the firing patterns of a neuron recorded under two distinct experimental

conditions. The methodology is based on non-homogeneous Poisson process models

for the firing times of each condition with flexible nonparametric mixture prior models

for the corresponding intensity functions. We demonstrate posterior inferences from

a global analysis, which may be used to compare the two conditions over the entire

experimental time window, as well as from a pointwise analysis at selected time points

to detect local deviations of firing patterns from one condition to another. We apply

our method on two neurons recorded from the primary motor cortex area of a monkey’s

brain while performing a sequence of reaching tasks.
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1. Introduction

Stochastic modeling and statistical estimation techniques for the analysis of data from

neurophysiological studies have received considerable attention in the literature. One

of the key techniques in neuroscience involves recording of electrical activity of neurons

in laboratory animals. The technique studies action potentials (spikes) generated by

the neuron and measured using an electrode inserted into the animal’s brain. The

times at which spikes occur (referred to as firing times) are recorded to provide the

neuronal data. In this context, the focus of statistical modeling approaches is on the

temporal evolution of the neuronal firing activity. Reviews of related work, for data

from either a single neuron or from multiple neurons, can be found in, e.g., Brillinger

(1992), Brown, Kass and Mitra (2004), and Kass, Ventura and Brown (2005). See also

West (1997) and Rigat, de Gunst and van Pelt (2006), and further references therein,

for Bayesian modeling approaches under different neuronal data structures.

This paper develops modeling for neuronal data arising as firing times from a single

neuron under two distinct experimental conditions. In particular, the motivating neu-

rophysiological study involves neurons recorded from the primary motor cortex area of

a Macaque monkey’s brain while performing the sequential task of reaching a series of

illuminating targets on a touch-sensitive screen (Matsuzaka, Picard and Strick, 2007).

We develop a Bayesian nonparametric modeling framework that allows full inference

for comparison of neuronal firing intensities. In particular, a key feature of the pro-

posed approach is that it enables inference for both global and local differences in the

firing intensities under the two experimental conditions. From a methodological point

of view, we seek a flexible prior model for non-homogeneous Poisson process intensities

over time. Such a model is formulated using a class of nonparametric mixtures for den-

sities supported by bounded intervals, in the process, leading to a modeling approach
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for temporal point patterns.

The outline of the paper is as follows. Section 2 provides background on the moti-

vating neurophysiological study and corresponding data as well as discussion of some of

the related literature. The methodology for modeling the evolution of neuronal firing

rates over time is presented in Section 3. Section 4 considers the inferential problem

of comparing neuronal firing intensities under two experimental conditions, using the

Bayesian nonparametric model developed in Section 3. Section 5 applies the model-

ing approach to the data discussed in Section 2. Finally, Section 6 concludes with a

summary and discussion of possible extensions.

2. Motivating Application and Literature Review

Section 2.1 provides details on the data from the neurophysiological study that moti-

vates our method for comparison of neuronal firing intensities. The stochastic frame-

work, based on Poisson processes, we utilize for modeling neuronal firing times is

discussed in Section 2.2. Section 2.3 reviews relevant existing work in order to place

our contribution within the literature.

2.1 Background on the Primary Motor Cortex Neuronal Data

The primary motor cortex area (or M1) is long known to be involved in execution

of movements by guiding muscle activities (e.g., Gazzaniga, Ivry and Mangun, 2002).

Single neuron recordings in monkeys suggested that premotor or supplementary motor

cortical regions of the brain are in charge of the planning phase of movements, while

the execution of movements are implemented through M1 (Ashe et al., 1993). This is

usually referred to as the motor hierarchy (see, e.g., Gallistel, 1980).
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To investigate this theory further, Matsuzaka et al. (2007) studied the activity

of monkeys’ M1 neurons during two conditions of a sequential pointing task. They

recorded the firing times of a single neuron while a monkey was trained to reach three

illuminated targets among the total of five targets on a touch-sensitive screen. The

target triplets were illuminated under two conditions. First, the target appearances

were in a repeating order, whereas in the second condition, the targets appeared based

on a pseudo-random sequence. (The two conditions will be referred to as repeating and

random, respectively.) The task was highly practiced so that the monkey was able to

“learn” the repeating patterns to a degree that, at times, the monkey could predict

the upcoming illuminated target prior to its appearance on the screen. Matsuzaka et

al. (2007) suggested: “M1 may be a site of storage for the internal representation of

skilled sequential movements.” This conclusion questions the role of M1 as a mere

executioner of activities in the motor hierarchy. Additionally, to quantify movement

kinematics associated with this experiment, the authors recorded the electromyography

activity of a large number of both axial and proximal arm muscles.

Behseta, Kass and Wallstrom (2005) distinguished 16 neurons whose firing activities

highly resonated with the patterns of the electromyography recordings of two distal

muscles: Extensor Carpi Radialis (ECR), a wrist muscle, and Abductor Pollicis Longus

(API), a digit or a finger muscle.

To illustrate our methodology, we consider neurons 29 and 32 from the group of

neurons studied by Behseta et al. (2005). The activities of these two neurons are worth

contemplating; the firing pattern of neuron 29 mimics the activity of the ECR muscle,

whereas neuron 32 demonstrates high concordance with the API muscle. Scientifically,

the behavior of these neurons is interesting, mainly because their activities may con-

tribute to the debate over the mimicry between motor neurons and hand muscles. In
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Figure 1, we provide a raster-plot and a Peri-Stimulus Time Histogram (PSTH) for

each neuron under both conditions. In the raster-plot, rows are trials and spike times

are shown by tickmarks. A time interval of 300 milliseconds (ms) was considered, span-

ning 200 ms prior to reaching the target (negative time) and 100 ms after reaching the

target on the screen (positive time), where 0 denotes the time of reaching the screen.

Spikes last for about 1 ms. Thus, by slicing the time interval into 10 ms bins (as in

the original study of Matsuzaka et al., 2007) and by pooling the spikes within bins,

we create the PSTH plots that provide a graphical tool to explore the overall firing

pattern of each neuron. In both conditions, 20 trials were recorded for neuron 32,

achieving a total of 52 and 102 firing times under the random and repeating condition,

respectively. For neuron 29, 21 and 32 trials were recorded under the random and

repeating mode, respectively, resulting in a total of 108 firing times for the random

condition and 224 for the repeating condition. The firing times of neuron 32 (top row

of Figure 1) behave unimodally for the first 250 ms followed by a burst of activity in

the last 50 ms; the pattern appears to be similar under both conditions. This can be

contrasted with neuron 29 (bottom row of Figure 1), which demonstrates a bimodal

firing pattern in the repeating mode, whereas its firing activity subsides substantially

under the random condition, predominantly after the reaching time 0.

A reliable statistical methodology should be able to calibrate the overall similarity

of the two firing patterns and to identify sharp differences between the two conditions.

Moreover, the methodology should allow comparison on two fronts: general global anal-

ysis, enabling the neuroscientist to decide whether the neuron should be considered for

further study; and pointwise analysis, to pinpoint differential patterns at specific time

points in the experimental time interval.
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2.2 The Probability Model for Neuronal Data

The neuronal data we consider can be represented in their most general form through

vectors {y
(`)
ij : i = 1, ..., N (`); j = 1, ..., n

(`)
i }, where y

(`)
ij is the j-th firing time in the

i-th trial under condition `, with ` = 1, 2. However, given our inferential objective of

comparison of firing intensities under the two conditions, it suffices to consider mod-

eling for the firing times aggregated over all trials. Hence, for each condition ` = 1, 2,

the data vector we work with consists of t
(`) = {t

(`)
k : k = 1, ..., K(`)}, where K(`) =

∑N(`)

i=1 n
(`)
i is the total number of firing times from all trials, and t

(`)
k is the k-th spike

time in the aggregated set of firing times for condition `. We assume, without loss of

generality, that the point pattern under each trial is observed in the unit time interval,

and thus, 0 < t
(`)
1 ≤ t

(`)
2 ≤ ... ≤ t

(`)

K(`) < 1, for ` = 1, 2. (Inference over the time interval

where the firing times are recorded can be readily obtained through transformation.)

The postulated probability model for the underlying point process of firing times,

corresponding to condition ` = 1, 2, is a non-homogeneous Poisson process (NHPP)

with intensity function λ(`)(·), a non-negative and locally integrable function (i.e.,

∫

D
λ(`)(u)du < ∞ for any bounded subset D of the positive real line). The NHPP

provides a plausible model for the aggregated firing times based on both empirical

evidence as well as theoretical results, which yield that pooled point patterns across

a large number of replicated trials follow approximately a NHPP model (see, e.g., the

related discussion in Ventura et al., 2002). Section 3.4 discusses an approach to as-

sessment of goodness-of-fit for the NHPP model. In Section 5, the model checking

approach is applied to the data from the two neurons discussed in Section 2.1.

2.3 Discussion of Related Literature

In the context of neurophysiological studies as the one discussed in Section 2.1, the
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question of main scientific interest is to explore similarities and differences of the neu-

ronal firing rates under the two experimental conditions. In this spirit, analyses of the

data of Section 2.1 have been reported in Behseta and Kass (2005) and Behseta et

al. (2005). In particular, Behseta and Kass (2005) proposed two methods (based on

Bayes factors or a modified Hotelling T 2 statistic) for hypothesis testing of equality of

firing intensity functions corresponding to the two conditions. Both methods rely on

asymptotic properties of posterior curves fitted to the histograms of firing rates, using

Bayesian adaptive regression splines (DiMatteo, Genovese and Kass, 2001). Moreover,

the literature on comparing neuronal activities of the motor cortex recordings includes

a number of articles on neuronal population coding and the comparison of firing rates

under directional movements (e.g., Georgopoulos, 1995). These articles share a com-

mon theme: to distinguish a condition (direction) in which the neuron seems to be

active the most (preferred direction).

Our modeling framework addresses the more general problem of comparing overall

patterns of neuronal activity. We develop a Bayesian nonparametric approach that

allows full inference for comparison of neuronal firing intensities, including inference

for both global and local differences in the firing intensities under the two conditions.

Hence, the approach yields a more general comparison framework than hypothesis

testing for equality of the two intensity functions (as in Behseta and Kass, 2005).

An alternative modeling framework is based on an approximation of the NHPP

likelihood for the firing times by discretizing time into small intervals so that the data

are converted into a binary sequence, with 1/0 indicating presence/absence of a spike

in each interval. This approach dates back at least to Brillinger (1988) where the

binary sequence is fitted using generalized linear model techniques. More recently,

Roca-Pardiñas et al. (2006) and Faes et al. (2008) proposed flexible regression-based

7



methods under this framework. The former paper utilizes bootstrap methods to con-

struct a generalized additive model in which factor-by-curve interactions are examined.

The latter article uses a pseudo-likelihood technique to fit a binary regression on each

condition over a basis matrix, either a cubic-spline, or a matrix of orthonormal poly-

nomials. Conditions then are distinguished as covariates with the aid of a dummy

variable. In contrast to regression-based approaches, our proposed method is based on

the actual NHPP likelihood for the point pattern of firing times over continuous time.

Moreover, it may be viewed as a practically useful alternative to classical estimation

techniques, since it has the capacity to provide full inference for the firing intensities

without resorting to asymptotic results, which may be suspect for small to moderate

firing time point patterns such as the ones studied in this paper.

3. Bayesian Nonparametric Modeling for Neuronal Firing Intensities

Here, we present the methodology for modeling the intensity of neuronal firing times.

We work with a NHPP for the firing times, and in Section 3.1 develop a nonparametric

prior model for the NHPP intensity function. Approaches for prior specification and

posterior inference are discussed in Sections 3.2 and 3.3, respectively. Section 3.4 de-

scribes an approach to assessing goodness-of-fit for the NHPP model.

3.1 The Modeling Approach

In this section, for notational simplicity, we suppress the superscript ` included in

Section 2.2 to indicate the particular condition. Hence, from a modeling perspective,

interest revolves around the NHPP intensity function λ(·). The likelihood for λ(·)
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based on the observed firing times t = {tk : k = 1, ..., K} can be expressed as

exp{−
∫ 1

0
λ(u)du}

K
∏

k=1

λ(tk). (1)

We seek a flexible prior model for the intensity function λ(·) that can provide full

inference for the neuronal firing intensity over the experimental time interval without

relying on specific parametric forms or asymptotic arguments. Hence, we argue for the

utility of a Bayesian nonparametric approach to modeling λ(·). In particular, we use a

mixture formulation for a density function directly connected with the intensity func-

tion. By casting the modeling in a density estimation framework, we can use a flexible

class of nonparametric mixture models that allows relatively easy prior specification

and posterior simulation. The approach was developed in Kottas and Sansó (2007) in

the context of spatial NHPPs. Here, to address our problem in the context of neuronal

data analysis, we formulate a model for NHPPs evolving over time.

The modeling proceeds by working with an equivalent representation for λ(t), t ∈

(0, 1), through the density function f(t) = λ(t)/γ, t ∈ (0, 1), where γ =
∫ 1

0
λ(u)du.

Because the parameter γ provides only the scale for λ(·), it is the density function f(·)

that controls the shape of the intensity function λ(·). Hence a flexible nonparametric

prior model for f(·) can capture non-standard intensity shapes, and, in conjunction

with a prior for γ, induces a semiparametric prior for λ(·).

We employ a Dirichlet process (DP) mixture of Beta densities model for f(·),

f(t; G) =

∫

be(t; ν, τ)dG(ν, τ), G ∼ DP(α, G0). (2)

Here, DP(α, G0) denotes the DP prior (Ferguson, 1973) for the random mixing distri-

bution G, with precision parameter α and centering distribution G0, and be(·; ν, τ) de-

notes the density of the Beta distribution parameterized in terms of its mean ν ∈ (0, 1)

and a scale parameter τ > 0, i.e., be(t; ν, τ) ∝ tντ−1(1 − t)τ(1−ν)−1, t ∈ (0, 1).
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Mixtures of Beta densities can approximate arbitrarily well any density defined on a

bounded interval (e.g., Diaconis and Ylvisaker, 1985), and thus, in our context, provide

a natural modeling framework for the firing intensity function. Moreover, the choice

of the Beta density addresses edge effects that could arise, say, with a normal kernel,

for point patterns with firing times close to the boundaries of the experimental time

interval; for instance, this is the case for at least one of the data sets considered in

Section 2.1 (see the lower right panel of Figure 1).

Regarding the DP parameters, we place a gamma prior distribution on α. For, G0 ≡

G0(ν, τ), we consider independent components, specifically, a uniform distribution on

(0, 1) for ν and an inverse gamma distribution for τ (with mean β/(c − 1), provided

c > 1). We assign an exponential prior distribution to the scale parameter β, and work

with fixed shape parameter c, e.g., c = 2, which yields an inverse gamma distribution

with infinite variance for the component of G0 corresponding to τ .

Combining the likelihood in (1) with the prior structure for λ(·) discussed above,

the full Bayesian model becomes

exp(−γ)γK

{

K
∏

k=1

∫

be(tk; ν, τ)dG(ν, τ)

}

p(γ)p(G | α, β)p(α)p(β), (3)

where p(G | α, β)p(α)p(β) denotes the DP prior for G and for its hyperparameters,

and p(γ) is the prior for γ. In Section 3.2, we discuss an approach to prior specification

for α, β and γ, and in Section 3.3 the posterior simulation method for model (3).

3.2 Prior Specification

Regarding parameter γ, a convenient form for its prior is given by a gamma distri-

bution; the prior parameters can be specified based on the role γ plays as the mean

of the NHPP over the observation time interval. Alternatively, and in the interest
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of obtaining an automatic prior for γ, we use the reference prior approach (see, e.g.,

Bernardo, 2005). The reference prior for γ is based on the Fisher information from

the marginal likelihood for γ, which can be obtained from (3) by integrating out all

other parameters over their (proper) priors. Specifically, the marginal likelihood for γ

is proportional to exp(−γ)γK , yielding p(γ) ∝ γ−11(γ>0) as the reference prior for γ.

Let 1/d be the mean of the exponential prior for β. Having specified c, to choose

d, we consider only the kernel (i.e., a single component) of mixture (2), for which the

variance is ν(1 − ν)/(τ + 1). A proxy for this variance is (c − 1)/{4(c − 1 + d−1)},

based on marginal prior means for ν and τ under G0. Let r (≤ 1) be a prior guess

at the range of observed firing times (r = 1 is the natural default choice). Then, we

specify d through (c − 1)/{4(c − 1 + d−1)} = (r/6)2, where (r/6)2 serves as a range-

based estimate of the variance. This simple approach requires a small amount of prior

input, and, indeed, yields a fairly noninformative specification, since it is based on the

special case of the mixture with a single component, whereas, in applications, more

components are needed to capture the intensity function shape.

Finally, prior choice for the DP precision parameter α is facilitated by the role that

α plays in controlling the number, K∗ ≤ K, of distinct components in the DP mixture

(2) (e.g., Escobar and West, 1995). For instance, for moderately large K, E(K∗ | α) ≈

α log{(α + K)/α}, which can be averaged over the prior for α to obtain E(K∗).

3.3 Posterior Simulation Method

Model (3) can be expressed in a hierarchical form by introducing mixing parameters,

θ = {(νk, τk) : k = 1, ..., K}, to break the mixture, i.e., given (νk, τk), the tk are inde-

pendent be(tk; νk, τk), and, given G, the (νk, τk) are i.i.d. from G. The full posterior

corresponding to this hierarchical version of model (3) is given by p(γ, G, θ, α, β | t) =
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p(γ | t) p(G, θ, α, β | t), where the marginal posterior p(γ | t) is a gamma distribution,

in particular, a gamma(K, 1) under the reference prior for γ.

To explore the posterior distribution p(G, θ, α, β | t), we use a combination of pos-

terior simulation methods for DP mixtures from Neal (2000) and Gelfand and Kottas

(2002). Based on a key result from Antoniak (1974),

p(G, θ, α, β | t) = p(G | θ, α, β)p(θ, α, β | t),

where the distribution of G | θ, α, β is a DP, with precision parameter α + K and

centering distribution G∗

0(ν, τ |θ, α, β) = (α + K)−1{αG0(ν, τ |β) +
∑K

k=1 δ(νk,τk)(ν, τ)}.

Moreover, p(θ, α, β | t) ∝ p(α)p(β)p(θ | α, β)
∏K

k=1 be(tk; νk, τk) is the posterior that

results after marginalizing G over its DP prior in the hierarchical model. The corre-

sponding joint prior for the mixing parameters, p(θ | α, β), can be constructed accord-

ing to a generalized Pólya urn scheme, which yields, for each k, a prior full conditional

distribution for (νk, τk) with point masses (α + K − 1)−1 at the (νm, τm), m 6= k, and

the remaining probability α(α + K − 1)−1 assigned to G0 (Blackwell and MacQueen,

1973). We obtain posterior samples from p(θ, α, β | t) using Markov chain Monte Carlo

(MCMC) algorithm 5 from Neal (2000).

Next, given posterior draws {θb, αb, βb} from p(θ, α, β | t), we can sample Gb from

p(G | θb, αb, βb) using the DP constructive definition (Sethuraman, 1994) with a trun-

cation approximation. Specifically, we take Gb =
∑L

l=1 wlbδ(ν′

lb
,τ ′

lb
), with w1b = z1b, wlb =

zlb

∏l−1
s=1(1−zsb), l = 2, ..., L−1, wLb = 1−

∑L−1
l=1 wlb =

∏L−1
s=1 (1−zsb), where the zsb are

independent draws from a Beta(1, αb+K) distribution, and, independently, the (ν ′

lb, τ
′

lb)

are independent draws from G∗

0(ν, τ | θb, αb, βb). The truncation approximation can be

made arbitrarily accurate through appropriate choice of L (Kottas, 2006). For instance,

it can be shown that E(
∑L−1

l=1 wlb | αb) = 1−{(αb +K)/(αb +K +1)}L−1, and thus one
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approach would be to choose L that makes, say, {(K +maxb αb)/(K +1+maxb αb)}
L−1

small to any desired accuracy.

Now, fb0 =
∫

be(t0; ν, τ)dGb(ν, τ) =
∑L

l=1 wlbbe(t0; ν
′

lb, τ
′

lb) is a realization from the

posterior of f(t0; G), for any time point t0 in (0, 1). Hence, if γb is a draw from p(γ | t),

γbfb0 is a posterior draw for λ(t0; γ, G) = γf(t0; G), the intensity function at t0. More-

over, the cumulative intensity function is given by Λ(t0; γ, G) =
∫ t0

0
λ(u; γ, G)du =

γ
∫ t0

0
f(u; G)du = γ

∫

Be(t0; ν, τ)dG(ν, τ), where Be(t0; ν, τ) is the cumulative distribu-

tion function at t0 of the be(·; ν, τ) density. Hence, posterior samples for Λ(t0; γ, G)

arise from γb

∑L

l=1 wlbBe(t0; ν
′

lb, τ
′

lb). Therefore, the computational technique described

above yields full posterior inference for the intensity and cumulative intensity functions

at any collection of points in the time interval (0, 1).

3.4 Model Checking

A possible approach to checking the NHPP assumption for the aggregated neuronal

firing times, under the model for the intensity function developed in Section 3.1, is

based on the “Time-Rescaling” theorem (e.g., Daley and Vere-Jones, 2003).

Assume that the point pattern t = {tk : k = 1, ..., K}, with ordered firing times

0 < t1 ≤ t2 ≤ ... ≤ tK < 1, is a realization from a NHPP with intensity function

λ(·) and cumulative intensity function Λ(t) =
∫ t

0
λ(u)du. Then, based on the Time-

Rescaling theorem, the transformed point pattern {Λ(tk) : k = 1, ..., K} is a realization

from a homogeneous Poisson process with unit rate. Hence, defining Λ(t0) ≡ Λ(0) = 0,

the rescaled times Λ(tk) − Λ(tk−1), k = 1, ..., K, are independent exponential random

variables with mean 1, and thus, the

xk = 1 − exp{−(Λ(tk) − Λ(tk−1))}, k = 1, ..., K
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are independent uniform random variables on (0, 1). Because the above transformations

are one-to-one, one can apply a graphical or formal model checking technique that

measures agreement between the xk and the uniform distribution on (0, 1) to evaluate

agreement between the firing times tk and the NHPP model. Note that the approach

involves checking of both the NHPP probability model assumption as well as of the

statistical model used for the NHPP intensity function, and thus, it can also be used

to compare the fit of different models for the NHPP intensity function. On the other

hand, it does not seem feasible to distinguish in the results the role of the NHPP

assumption from the form of the model for the NHPP intensity. However, the Time-

Rescaling theorem offers a practically useful approach to identifying strong deviations

from the NHPP model, and, in fact, as discussed in Daley and Vere-Jones (2003), is

applicable to more general point process models, where the NHPP intensity function

is replaced with the conditional intensity function for the point process.

In the context of neuronal data analysis, Brown et al. (2001) used standard tests

and quantile-quantile plots to measure agreement of the estimates for the xk with the

uniform distribution on (0, 1). For a similar illustration with our data, in Section 5 we

provide a simple graphical diagnostic of the NHPP assumption working with posterior

means for the xk, which are computed using the posterior samples for the cumulative

intensities Λ(tk) obtained as discussed in Section 3.3.

Note that under any Bayesian modeling approach, we obtain an entire posterior

distribution for the xk, which thus increases the scope for either formal or graphical

assessment of model goodness-of-fit. In particular, the Bayesian nonparametrics litera-

ture for point process modeling appears to be lacking formal model checking methods.

Current work is exploring the utility of the Time-Rescaling theorem approach in this

direction.
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4. Inference for Comparison of Neuronal Firing Intensities Under Two

Experimental Conditions

Our focus in applying the methodology of Section 3 is on comparison of firing rates

resulting from the same neuron under two distinct experimental conditions. Recall

from Section 2.2 that the data consists of t
(`) = {t

(`)
k : k = 1, ..., K(`)}, ` = 1, 2. Again,

we assume a NHPP model, with intensity function λ(`)(·), independently under each

condition ` = 1, 2. Our interest is in full inference for each λ(`)(·), and in comparison

of λ(1)(·) and λ(2)(·) over the experimental time interval (again, taken to be (0, 1)).

We employ the Bayesian nonparametric approach developed in Section 3 to model

the two intensity functions. Hence, letting for ` = 1, 2, γ(`) =
∫ 1

0
λ(`)(u)du, the prior

probability model for the firing intensities, λ(`)(t) ≡ λ(`)(t; γ(`), G(`)) = γ(`)f (`)(t; G(`)),

t ∈ (0, 1). Here, the prior model for the densities f (`)(t; G(`)) is given by the DP

mixture in (2) with independent DP priors for the mixing distributions G(1) and G(2).

Therefore, posterior realizations over (0, 1) for each of the two firing intensities result

by applying the approach described in Section 3.3 to the full model for (γ(1), f (1)(·))

and (γ(2), f (2)(·)) given the data t
(1) and t

(2), respectively.

Note that direct comparison of the intensities λ(1)(·) and λ(2)(·), using their posterior

realizations, is hindered by their different scales, captured by γ(1) and γ(2), respectively.

Our modeling framework provides a natural way to address this issue by working

instead with the densities f (1)(·) and f (2)(·). Posterior realizations for f (1)(·) and f (2)(·)

can be used in several ways to obtain inference for comparison of the respective firing

intensities λ(1)(·) and λ(2)(·). For instance, in Section 5 we illustrate with posterior

point estimates and associated uncertainty bands for the function f (1)(·) − f (2)(·) as

well as with the entire posterior p{f (1)(t0; G
(1)) − f (2)(t0; G

(2)) | t
(1), t(2)} for specific

points t0 in the experimental time interval.
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We note that the above inference includes uncertainty assessment that does not

rely on asymptotic considerations. Moreover, it can uncover both local and global

differences in the neuronal firing intensities and thus provides a more general scope for

comparison than formal testing of the hypothesis λ(1)(t) = λ(2)(t), for all t ∈ (0, 1),

which was addressed in Behseta and Kass (2005).

5. Analysis of Primary Motor Cortex Neuronal Data

We applied the model to the neuronal data described in Section 2.1 following the

approaches of Section 3.2 and 3.3 for prior specification and posterior simulation, re-

spectively. The results reported below are based on 10,000 posterior samples obtained

after a (conservative) burn-in period of 20,000 MCMC iterations with thinning every

50-th iteration to eliminate autocorrelations. For both neurons, we used the reference

prior for γ, set c = 2, and also r = 1 resulting in an exponential prior for β with

mean 8. Moreover, we used gamma priors for α that imply, for both the random and

repeating condition, an approximate prior expectation of 4 for the number of distinct

mixture components K∗.

For both neurons, we report results from global as well as pointwise analyses. Focus-

ing first on neuron 32, in the top panels of Figure 2, we construct the curves associated

with the posterior mean and 95% interval estimates for the intensity functions under

the random and the repeating condition. Both intensity functions peak up around the

same time interval before the reaching time, followed by a gradual decay, hence de-

picting a fairly unimodal firing activity. Note that there is an increase in the neuronal

firing intensity at the end of the time window that may be due to the anticipation

of the upcoming target reach. These posterior estimates provide clear indication for
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similarity of the firing patterns between the two conditions. However, accurate quan-

tification of the extent of similarity is hindered by the different scale in the intensity

function estimates, resulting from the larger number of firing times under the repeating

condition. As discussed in Section 4, our approach enables formal comparison between

the firing patterns by working on the density scale associated with the two neuronal

firing intensities. In this spirit, the lower panel of Figure 2 plots the posterior mean and

95% interval bands for the difference of density functions between the random and re-

peating conditions (with densities f (1)(·) and f (2)(·), respectively). Arguably, this plot

provides a major inferential tool to the neurophysiologist. Note that the 95% posterior

bands cover the zero difference for all but a short interval at about 100 ms prior to

reaching the screen. This difference may be taken as a sign for distinct firing patterns

in the anticipatory phase of the experiment. Even though both neurons were recorded

from the primary cortex area of the monkey’s brain, their response to the experimental

tasks is differential. Matzusaka et al. (2007) argued that “differentially active neurons

were more strongly influenced by task mode than by kinematics”. In particular, the

authors hypothesized that the distinguishable firing patterns of recorded neurons under

the two modes can be interpreted as a sign of “functional reorganization” of M1 during

the performance of highly practiced tasks.

Figure 3 contains histograms of posterior samples from the difference of density

functions between the two conditions, f (1)(t0)−f (2)(t0), at nine specified points t0 in the

experimental time interval. These results are useful when the analysis revolves around

pointwise comparison between the two conditions. Despite the overall similarity of the

two conditions, one can observe a relatively higher neuronal activity in the repeating

condition prior to the reaching time followed by a higher firing rate in the random

condition after the reaching time.
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Figures 4 and 5 provide the same inferential tools for the study of the firing activity

from neuron 29. The bottom panel of Figure 4 includes the posterior curves for the

difference between the random and the repeating mode that show a significant decrease

towards the end of the experimental window, thus capturing the burst of activity after

the reaching time in the repeating mode. Also notable is the difference during the first

50 ms of the experiment, which is more readily identified from this plot than through

the estimates for the individual firing intensities (upper panels of Figure 4). Posterior

distributions for the difference of density functions between the random and repeating

modes at 12 specified time points are shown in Figure 5. Again, these posteriors facili-

tate pointwise analysis, including depiction of increasing levels of posterior uncertainty

for time points closer to the boundaries of the experimental time interval.

To study sensitivity to the prior choice for α and β, we also applied the model

using priors for α that yield E(K∗) ≈ 10, and exponential priors for β with means

35 (corresponding to c = 2, r = 0.5), 152 (for c = 20, r = 1), and 665 (for c = 20,

r = 0.5). In all cases, inferences involving the density and intensity functions were

largely unaffected. For example, Figures 6 and 7 show results for the difference of

density functions between the random and repeating conditions for neuron 32.

Finally, we applied the approach discussed in Section 3.4 to obtain a simple graph-

ical diagnostic for the NHPP assumption under the DP mixture model for the NHPP

intensity function. For each of the four point patterns of aggregated firing times (i.e.,

for both neurons and both conditions), Figure 8 plots the empirical cumulative distri-

bution function of the posterior means for the xk = 1−exp{−(Λ(tk)−Λ(tk−1))} against

the uniform distribution function on (0, 1). The NHPP assumption seems plausible,

especially, taking into account the small to moderate sample sizes for the four sets of

neuronal firing times.
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6. Discussion

We have developed a nonparametric Bayesian modeling framework for temporal point

patterns assumed to arise from a non-homogeneous Poisson process (NHPP). The ap-

proach utilizes a flexible Dirichlet process mixture model for a density function that,

up to a scale parameter, specifies the NHPP intensity function.

Our motivating application arises from the problem of obtaining full (and exact)

inference for comparison of firing rates of a neuron recorded under two conditions. We

achieve this task by aggregating the firing times over all experimental trials, and using

the Bayesian nonparametric NHPP model for the aggregated firing times under each of

the two conditions. Since the density functions that define the neuronal firing intensities

operate on the same scale, the modeling approach enables calibration of posterior

differences between the two conditions. Moreover, our fully inferential framework casts

the problem in a more general setting than hypothesis testing. The proposed modeling

approach has direct application in a large class of neuroscience problems in which

comparative studies are performed specifically to measure the nuances in the firing

patterns between two (or more) experimental conditions. We have illustrated the

methodology with the analysis of neuronal data recorded from the primary motor

cortex area of a monkey’s brain in the course of an experiment involving a sequence of

reaching tasks with the target appearing under two distinct modes.

A practically important extension would be to elaborate the modeling for compar-

ison of neuronal firing activities recorded under more than two conditions. The crux

of the inference, which is to build the posterior around the density functions, remains

intact. Here, we would also seek an appropriate metric, such as the one arising under

Kullback-Leibler distances (e.g., Johnson et al., 2001), to calibrate pairwise dissimilar-

ity between the firing intensities for all conditions of interest.
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Moreover, current work is exploring methodological extensions that arise by incor-

poration of dependent nonparametric prior structures in the modeling for the neuronal

firing intensities. One such possibility involves dependent prior models for the mix-

ing distributions in the mixture representation for the densities associated with the

firing intensity functions. For instance, if plausible for a particular application, some

type of probability order constraint (such as stochastic ordering) can be built in the

prior model for the densities under two conditions, or for certain pairs of densities

under more than two conditions. (See, e.g., Hanson, Kottas and Branscum, 2008, and

further references therein, for nonparametric prior models for stochastic order.)

Another research direction involves model formulations that relax the NHPP as-

sumption for settings where trial-to-trial variation is of interest, and hence one would

seek a point process model for the trial-specific firing times. See, e.g., the review pa-

per by Kass et al. (2005) for references to related work. Development of Bayesian

nonparametric models in this context is of considerable methodological interest.

Finally, to our knowledge, Bayesian nonparametric methods in the context of the

regression-based framework, discussed in Section 2.3, do not exist in the literature.

Although, again, this is a different modeling paradigm than the one developed in

Sections 3 and 4, it would be of practical interest to compare Bayesian nonparametric

inference results under these two distinct modeling scenarios.
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Figure 1: Raster and PSTH plots for the firing times under neurons 32 and 29 (top

and bottom row, respectively). The left panels correspond to the random condition,

and the right panels to the repeating condition. See Section 2.1 for details.
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Figure 2: Neuron 32. The top panels include posterior mean and 95% interval estimates

for the intensity functions under the random and repeating conditions; the correspond-

ing observed firing times are plotted on the horizontal axes. The lower panel plots the

posterior mean and 95% interval band for the difference of density functions between

the random and repeating condition.
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Figure 3: Neuron 32. Posterior distributions for the difference of density functions

between the random and repeating condition at 9 time points.
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Figure 4: Neuron 29. The top panels include posterior mean and 95% interval estimates

for the intensity functions under the random and repeating conditions; the correspond-

ing observed firing times are plotted on the horizontal axes. The lower panel plots the

posterior mean and 95% interval band for the difference of density functions between

the random and repeating condition.
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Figure 5: Neuron 29. Posterior distributions for the difference of density functions

between the random and repeating condition at 12 time points.
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Figure 6: Prior sensitivity analysis for neuron 32. Posterior means (solid lines) and

95% interval bands (dashed lines) for the difference of density functions between the

random and repeating condition, under four prior choices for β (for different pairs of

c and r). Black color corresponds to the original specification with c = 2, r = 1; red

color to c = 20, r = 1; green color to c = 2, r = 0.5; and blue color to c = 20, r = 0.5.
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Figure 7: Prior sensitivity analysis for neuron 32. Posterior means (solid lines) and

95% interval bands (dashed lines) for the difference of density functions between the

random and repeating condition, under two prior choices for α. Black color indicates

results under the original specification, which corresponds to E(K∗) = 4. Red color

denotes results under the alternative prior choice that yields E(K∗) = 10.
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Figure 8: Model checking results for neurons 32 and 29. Empirical cumulative distri-

bution function plots of the posterior means for the xk = 1− exp{−(Λ(tk)−Λ(tk−1))}

against the uniform distribution function on (0, 1) (given by the red line). See Section

3.4 for details.
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