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Abstract

We consider the problem of fitting a statistical model to thirty years of sea surface
temperature records collected over a large portion of the Northern Atlantic. The obser-
vations were collected sparsely in space and time with different levels of accuracy. The
purpose of the model is to produce an atlas of oceanic properties, including climato-
logical mean fields, estimates of historical trends and a spatio-temporal reconstruction
of the anomalies, i.e., the transient deviations from the climatological mean. These
products are of interest to climate change and climate variability research, numerical
modeling and remote sensing analyzes. Our model improves upon the current tools
used by oceanographers in that it constructs instantaneous temperature fields prior to
averaging them into the climatology, thus giving equal weight to all years in the time
frame, regardless of the temporal distribution of data. It also accounts for non-isotropic
and non-stationary space and time dependencies, owing to its use of discrete process
convolutions. Particular attention is given to the handling of massive data sets such
as the one under study. This is achieved by considering compact support kernels that
allow an efficient parallelization of the Markov chain Monte Carlo method used in the
estimation of the model parameters. Resulting monthly climatologies are compared
with those of the World Ocean Atlas 2001, version 2. Different water masses appear
better separated in our climatology, and a close link emerges between the kernels’ shape
and the dominating patterns of ocean currents. The subpolar and the temperate North
Atlantic display opposite trends, with the former mainly cooling over the years and
the latter mainly warming, especially in the Gulf Stream region. Long-term changes in
annual cycles are also detected. As in any hierarchical Bayesian model, parameter es-
timates come with credibility intervals, which are useful to compare results with other
approaches and detect areas where sampling campaigns are needed the most.
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1 Introduction

The World Ocean has long been sampled by scientific and military cruises, voluntary ob-
serving ships, fixed observatories and buoys. Initially, databases constructed thereof had one
major purpose: to depict the mean (i.e., climatological) state of the ocean, so as to under-
stand the properties, distribution and circulation of water masses, and to identify forcing
mechanisms. Today, climatological atlases remain a basic tool for this end, but many new
uses have emerged, including remote sensor calibration and the spin up, forcing, relaxation
and validation of numerical models. As climate change and climate variability research de-
veloped, another focal point became the variability around the mean (i.e., the anomalies),
on various spatial and temporal scales. Detecting long-term changes in ocean properties,
especially temperature, became a subject of intense research (Kushnir, 1994; Casey and
Cornillon, 2001; Gouretski and Koltermann, 2007).

Objective analysis (OA) is the most used method to produce ocean climatologies. Boyer
et al. (2005) summarize OA as a calculation of mean fields at each grid square, based on a
weighted difference between the means at all grid squares within a given radius of influence
around a grid point and a first-guess field at the same grid square. For the first-guess
field, earlier climatologies or gridded averages of raw data are used. The weighting kernel
is problematic to define, because it depends on the covariance structure of the property,
which is unknown. Usually, isotropy and stationarity are assumed, along surfaces of either
constant depth (Reynolds et al., 2002; Boyer et al., 2005) or constant density (Lozier et al.,
1995; Gouretski and Janke, 1999). Via exploratory data analysis, the decorrelation length is
calculated and the kernel’s shape is fixed accordingly. The number of OA passes varies among
applications, and post hoc smoothing is often needed to eliminate bull’s eyes. In the final
product, uncertainty about the kernel’s shape, the first-guess field and the adequate number
of passes is not included. Further, isotropy and stationarity assumptions generally do not
hold for ocean properties. Extensions and alternatives to OA include Empirical Orthogonal
Functions analyzes (Holbrook and Bindoff, 2000), variational analyzes (Brasseur et al., 1996)
and anisotropic loess smoothers (Ridgway et al., 2002), which mitigate some but not all of
these issues.

In the last 15 years, several methods were developed to estimate parameters in non-
stationary anisotropic models, most of which considering Gaussian processes. The idea of
producing a non-linear transformation of space to achieve isotropy was popularized in the
early 1990s, following the work of Sampson and Guttorp (1992). This approach was originally
developed using cross-validation and then extended to include likelihood-based methods
(Damian et al., 2001; Schmidt and O’Hagan, 2003). Another approach used multivariate
normal models to estimate general covariance matrices (Brown et al., 1995), and a third built
globally anisotropic processes from convolutions of locally isotropic ones. This was done by
considering processes with either spatially varying covariance parameters (Fuentes, 2002) or
spatially varying convolving kernels (Higdon et al., 1999). A related technique created large
classes of non-stationary covariance functions using convolutions (Paciorek and Schervish,
2006).

Sophisticated statistical methods are increasingly applied to massive data sets obtained
e.g. from satellite images. Explicit computations of covariance matrices, which correspond



to Gaussian processes observed at millions of locations, are usually avoided, since decompos-
ing and even storing them may be impossible. Spectral representations or multiresolution
methods are preferred, but as they require the data to be on regular grids, data aggregation
or statistical imputation of missing values must be considered. Recent examples are Nychka
et al. (2002), Tzeng et al. (2005), Fuentes (2007), Johannesson et al. (2007) and Paciorek
(2007). Atmospheric scientists have developed a body of literature on covariance structures
for Gaussian random fields; the focus is mostly on the properties of classes of correlation
functions and the methods to compute them on very large regular grids, with little emphasis
on estimation procedures. A good review of the approaches traditionally used in atmospheric
data assimilation problems is presented in Xun (2005), and a seminal paper in the area is
Gaspari and Cohn (1999).

In this paper we consider the problem of creating climatological, anomaly and long-term
linear trend fields of sea surface temperature (SST) in the North Atlantic (14-66°N, 0—
100°W). Among other features, this part of the World Ocean combines regions with abundant
and scarce sampling, includes eastern and western boundary current systems, and presents
strong spatial and temporal variability at the sea surface. It thus provides an adequate
testbed for global scale projects, encompassing many ocean properties.

The goals of our application are the following: a) The climatology must be smooth and
realistic, when compared to other existing products, namely the 1/4° World Ocean Atlas
2001, version 2 (WOA; Boyer et al., 2005), which is presently the standard climatological
product from the National Oceanographic Data Center (NODC); b) anomaly fields must
capture medium- to large-scale features and average zero everywhere; c) the trend field must
be smooth; d) all fields must be accompanied by measures of uncertainty; e) the method
must be easily extended to a larger data set and/or geographical domain.

For our approach, we use data from the NODC World Ocean Database 2005 (WODO05,
Boyer et al., 2006), collected with four types of instruments between 1961 and 1990. Screen-
ing was performed using quality control criteria similar to those of WODO05, resulting in
1,150,097 valid observations. In the tradition of products used for data based descriptions of
the climate, our model is purely empirical and of general purpose. It is based on the repre-
sentation of a Gaussian process as the convolution of a process with a kernel, as proposed in
Higdon (2002). If white noise is used in the convolution, then the covariance of the resulting
process is fully determined by the kernel. A discrete approximation of the convolution inte-
gral is obtained by sampling the convolved process on a grid. This is the motivating idea to
model a random process for any point s in space S, say 6(s), as

0(s) =) K[s —j,w(s)l¥(d) (1)

jeJ

where J is a grid in S with n; points spaced r; units apart. K|[-,w] is a normalized anisotropic
kernel that depends on a vector of parameters w, and ¢(j) is a random field with a simple
correlation structure. The depence of w on the location of the kernel allows for non-stationary
correlation structures. We term processes like the one in Equation (1), discrete process
convolutions (DPCs). When the dimension of J is small, DPCs provide an effective way
of reducing the computational burden required for inference, since only n; locations need
to be considered. Additionally, no imputations or aggregations need to be performed on



irregularly located data.

This paper is organized as follows. Section 2 provides the most important aspects of our
notation. Section 3 describes DPCs into greater depth, focusing especially on the anisotropic
kernel. Section 4 presents our hierarchical Bayesian model, and shows how it is used to
produce climatological, anomaly and trend fields of North Atlantic SST, for the period 1961-
1990. In Section 5 we specify how the model is fitted, and in Section 6 we present and discuss
the most important results. Finally, in Section 7, we return to the subjects introduced here
and consider future modeling endeavors.

2 Conventions and notation

Model parameters and derived quantities are written with lower case and upper case greek
letters, respectively. Vectors are in boldface and their elements can be singled with subscripts,
e.g. A1. The superscripts ! and * denote inverse and transpose. S is a 2D space and J is a
regular grid in .S, with n; points spaced r; units apart. Points in S and J are respectively
denoted by s = (x5,ys) and j = (x;,y;). Variance parameters are designated with 72. All
other parameters have time as subscript and spatial location in parentheses e.g., (7). In
some cases, the time component is decomposed into month m and year y. If the parameter
does not change over the years, only the month subscript is used.

3 Discrete Process Convolutions

To model processes that vary smoothly over S, we define a grid J and assign a latent process
to each point j € J. As stated in Equation (1), DPC modeling consists of equating the
process of interest, at location s, to a normalized weighted sum of the latent processes. An
error term may or may not appear in the equation. The weight assigned to each process
depends on s, and its unnormalized value, which we denote with an asterisk, is in our
approach provided by the kernel

; .o [ (=s=J4l%)" iflls—gls<1
K'[s—3j ,w]:{ 0 otherwise.

where w € R* and
ls —Jjlls = \/((xs —25), (Y —¥3)) B (2 — 25), (ys — 93))" (2)
The inverse of the symmetric and positive definite matrix ¥ = ¥ (w) € R**? is given by

y1— U, + U, cos 2wy Wy sin 2wy T 1 1 1 1 i
N WUy sin 2wy Uy —Uycos2wy /) 2 |-

- g2 T 20 e T
2 \w;  wi wy  wj

Conditions for the positive definiteness of 3 will be given further below. In Section 5 we
describe the computational advantages derived from using a kernel with compact support.
Here, we focus on the kernel’s flexibility for DPC modeling; see Figure 1 for an example.



If we provide w; € (1.5,5), the kernel’s shape ranges from triangular- to Gaussian-like
(Figure 1b). Values outside this range yield jagged convolution surfaces, which are of no
interest to us. If we set wy = ws, then ¥y = 0; 3 becomes space-invariant and proportional
to the 2 x 2 identity matrix, and the distance between s and 7 becomes proportional to
the Euclidean distance. Thus, we obtain an isotropic kernel (termed “Bézier kernel” by
Brenning, 2001). To explore anisotropic modeling, we let wy = 0 for a moment. By equating
expression (2) to 1, we obtain

(xj - 333)2 (yj - ys)2 _
W3 W%

L, (3)

which defines an ellipse centered at s. Thus, if 0 < wy < w3, wo and w3 define the sizes of the
ellipse’s semiminor and semimajor axes, respectively. If we now let w4 vary in the interval
(—m/2,7/2), the ellipse becomes inclined; the angle between wy and the x-axis corresponds to
wy. Hence, points of J at the same Euclidean distance to s may have substantially different
contributions to the DPC. For example, in Figure 1a, the DPC for a parameter located at s
would result from averaging the latent processes at § and j' only.

Small or oblong kernels, centered at some points in S, may have no points of J inside
their support. This produces an invalid DPC because the weights amount to zero. We
avoid this possibility by ensuring that, for every s, at least its nearest neighbor in J falls
within the support. Since we are using a regular grid, the maximum Euclidean distance
between these two points is r;/ V2, as depicted in Figure la. Hence, a sufficient condition
to obtain a valid DPC is that wy > r;/ v/2. On the other hand, we may consider that the
behavior of the parameter of interest, for any location in S, can be reasonably described by a
weighted average of at most the 4 nearest neighboring processes located in J (this approach
also brings computational benefits, discussed in Section 5). Since the minimum Euclidean
distance between s and its fifth nearest neighbor in J is r;, we ensure that this point never
belongs to the kernel’s support if w3 < r;. In summary, we let 7;/v/2 < wy < w3 < r;. This
guarantees the positive definiteness of 3.

4 Model

The hierarchical model presented here has two spatial levels: local and regional, respectively
defined in S and J (Figure 2). The temporal resolution is one month. At the local level, we
describe an observation of SST collected with instrument ¢ = 1,...,4 (see Table 1), in month
m, year y and location s, say i, ,(s), as a sum of true SST, 6,,,(s), and measurement
error with variance 72, thus

Timy(8) ~ N (Omy(8),77) -

Given the absence of repeated measurements in the data sets, we use the accuracy reports
of Boyer et al. (2006) to fix the error variances of measurements made with high resolution
conductivity, temperature and depth (CTD) instruments, expendable bathythermographs
(XBT), and mechanical bathythermographs (MBT). Assigning an error variance to ocean
station data (OSD) is more difficult, because this data set comprises measurements made
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Figure 1: The convolution kernel for s = (—6,60) and w(s) = (1.5,2v/2,4,7/4). a) Top view. The
kernel’s contours are depicted by the solid lines. The dashed (dotted) circle delimits the largest
(smallest) possible support for any kernel centered at s. The bullets are points of .J, and the dashed-
dotted circle delimits the area where the DPC weights involving 7 may be non-zero. b) Side view
(solid line), latitude=60. Kernel shapes for w; equal to 0.01 (dotted line), 5 (dashed line), and 20
(dotted-dashed line) are also shown.

Figure 2: The domain S (gray area) and the grid J (bullets; 7, = 4°). The line and open
circles denote a transect and three “case study” points.



Data set name no. obs. TZ-Z

0SD 261,172  6.25 x 102
CTD 29,879  6.25 x 1076
XBT 419263 2.5 x 1073

MBT 439,783  2.025 x 107!

Table 1: NODC data sets and observational variances. See text for acronyms.

with a variety of instruments (viz. self-closing sample bottles and calibrated thermometers
on cables, lowered from stationary ships). Based on a survey of the general accuracy of these
instruments, we set the observational standard error for OSD equal to 0.25.

Under the formulation above, the climatological SST for month m and location s, denoted

Em(8), is
1990

=n(s) = 55 O ()

y=1961

and the anomaly for month m, year y and location s, denoted A,, ,(s), is

A y(8) = Omy(s) — En(s).

To model 8 using a DPC we use the following regional scale parameters: «, which describes
the average annual SST; the vector B; € R*, which captures the annual cycle and transient
deviations thereof; and 7, which accounts for possible long-term changes in SST. We also
characterize the resulting error by means of a DPC of the regional parameter ¢. This yields

Oman(8) ~ N (D2 Ks = 3, A8)] (ald) + Buld)w] +n(3)(t - 180)).

> Kls—j.w(s)]exp (0(4))) @)

In this expression, ¢ = m + 12(y — 1961) denotes time in months since December 1960 and

wy = |sin | - J,cos | —o | ,sin 5 | G .

For future reference, the standard deviation of monthly 6,,,(s) will be denoted as ®(s). We
let the four dimensional kernel vectors A and €2 change across space, according to

Als) = 3, Kls = G ulw(d),

Qs) =) Kls—j,ulp(j).

to account for location-dependent anisotropy in the mean and variance of SST. In these
expressions, the vector w is fixed at (2,7;,7r,0). The parameters in 8 follow independent
random walks,

,Bt ~ N (Bt—la Wt) (5)
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Parameter Description var. param.

Om.,y(S) True SST -

T2 SST measurement variance (fixed) -
K(J) Kernel shape for mean SST -
a(g) Annual mean SST 72
Bi(7) Seasonal cycle Tgl
n(Jg) Long-term linear trend 72
o(7) SST variance 7'%
v(j) Discount factor for the cycle -
p(7) Kernel shape for SST variance -
Table 2: Model parameters.
Quantity Description Derived from
Em(s) Monthly climatological SST Om,y(s)
Apy(s)  Monthly SST anomaly O,y (8)
A(s) Kernel shape for mean SST k()
Q(s) Kernel shape for SST variability p(7)
d(s) Standard deviation of monthly SST  o(7), p(J)

Table 3: Derived quantities.

with the discount factor v(j) applied to the diagonal evolution variance matrix W (West
and Harrison, 1997, Chapter 2). To provide some spatial coherence in the variability of a,
we use a Gaussian Markov random field (MRF). Thus,

a(j) ~ N <a(N(j)) +a(S(F)) + a(E(F)) + «(W(H)) 2> _

4 ' Ta

Here, N(7) denotes the point in J immediately to the north of j, and so forth. We couple B,
7 and o to analogous MRF structures. Tables 2 and 3 contain a list and short description
of all the model’s parameters and derived quantities, respectively.

5 Model implementation and assessment

For 72, 75 and 7, we use inverse Gamma(1,0.01) prior distributions, as they provide little
prior information. To ensure the trend field is smooth, 7',? receives a narrower, but still
vague, inverse Gamma(2,0.002) prior. We use a Uniform (0.9, 1) prior for v, as this support
covers the factor’s natural range of variability. The parameters x; and k4 receive Uniform
priors with support (1.5,5) and (—7/2,7/2), respectively; the joint prior for xy and k3 is
proportional to I, , 5 . <y, <, » Where I is the indicator variable. We assign analogous priors
to p.

We explore the posterior joint distribution of all the parameters by Markov chain Monte
Carlo (MCMC; see, e.g., Gamerman and Lopes, 2006). Closed form full conditional dis-
tributions for the Gibbs sampler are provided in the Appendix. We sample from the joint



distribution of (B4, ..., Bs6) using a forward filtering, backward sampling algorithm (West
and Harrison, 1997, Chap. 15) applied to the conditional multivariate dynamic linear models
with observation equation obtained from (4) and evolution equation obtained from (5). We
update the samples of k, p, ¥ and o with Metropolis-Hastings steps, using truncated normals
as jumping distributions and setting their variances upon a pilot run of 3000 iterations.

The model described above was defined with a moderate degree of complexity in terms of
spatial and temporal relationships among parameters, while allowing for smooth variations of
expectations across all dimensions. Our use of a kernel with compact support is essential to
obtain substantial simplifications in discrete process convolutions: all summations involving
J are reduced to summations of at most 4 terms, since the kernel weight (K') is non-zero
for at most 4 points in J. More importantly, when updating any parameter associated
with 7, only the observations within the circle centered at 5 and radius r; can have direct
influence on the likelihood (Figure 1a). Thus, in the MCMC method we can make efficient
use of a parallel computing architecture. We divide S into a number of overlapping regions,
partition J accordingly, and let a different computing process sample only the parameters
within its region of S and J. Because regions are not independent, each process must have
updated information about parameters in adjacent regions. A scheme of the procedure for
the simplest network possible (2 processes) is presented in Figure 3 and Table 4. The results
presented in this paper are obtained using 13 processes, so that each works with two columns
of J.

For convergence diagnostics, we use the methods developed by Heidelberger and Welch
(1983), Gelman and Rubin (1992), Geweke (1992), Raftery and Lewis (1992a,b) and Brooks
and Gelman (1998), which are available in the package Bayesian Output Analysis Program
(BOA) (Smith, 2005) within R (R Development Core Team, 2005). With BOA we define the
length of the burn-in stage (1200 iterations), thin the chain (1/3), check stationarity and set
the adequate sample size (6000 iterations from the thinned chain) to achieve the precision
required in the estimation of 95% posterior intervals. To check that the initial conditions
are irrelevant to the posterior distributions, we compare two runs where one starts with a
warm ocean (a(jg) = 30, for all 5), low discount factors and high variance parameters, while
the other starts with a cooler ocean («a(g) = 15) and average discount factors and variances.
Both start with no seasonality or trends.

Finally, we assess lack of fit of the data with respect to the posterior predictive distribution
by searching for noticeable instrument dependent, spatial or temporal patterns in Bayesian
p-values (Gelman et al., 2004, Chap. 6)

Pimy(8) = Pr (a5 ,(8) > Timy(s)|©).
rep

In this expression, xz,m,y(s) is a replicated datum, simulated from the posterior predictive
distribution, x;m,(s) is an actual SST measurement, and @ denotes the collection of all
parameters in the model.

6 Results

Figure 4 compares North Atlantic climatologies produced with our method and WOA. In
terms of the means for January and July (Figures 4a through d), the two products display
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Step  Process 1 Process 2

1 Sample parameters in columns 1-12 of J  Sample parameters in columns 14-25 of J

2 Receive samples of parameters from col- Send samples of parameters from column
umn 14 of J 14 of J

3 Sample parameters in column 13 of J Sample parameters in column 26 of .J

4 Send samples of parameters from column Receive samples of parameters from col-
13 of J umn 13 of J

5 Sample parameters in the area 100° — Sample parameters in the area 48° — 0°W
48°W of S of S

6 Send samples of parameters in the area Receive samples of parameters in 52° —
52° — 48°W of § 48°W of S

Table 4: MCMC cyclical procedure for the setting displayed in Figure 3.

1 2 12 13 14 15 25 26
& 7 © * - ° 1
3
2 8 4 o o o ° ° ° .
kS|
s 16 ° ° ° 3
T T T T T T T
-100 -96 -56 -52 -48 -44 -4 0
longitude

Figure 3: In this example, S is divided into two regions that overlap between 52°W and
43°W. Empty (filled) points of J are updated by computing process 1 (2). The columns of
J are numbered over S to describe the MCMC algorithm (Table 4).

the same large scale patterns, but our presents more sinuous contours, especially in the
northwest Atlantic. Along the transect drawn in Figure 2, other differences become clear
(Figure 4e): our climatology presents sharper SST gradients between water masses separated
by land, viz. the Florida peninsula and Nova Scotia (which cause the gaps around 30°N and
45°N), and differentiates regions with constant temperature (e.g., 37-40°N, 41-43°N) from
others with sharp gradients (e.g., 40-41°N). Throughout the study area, WOA generally
presents smoother gradients and less defined plateaus. With respect to the seasonal cycle,
the three points in the transect show distinctive cases (Figure 4f): while in s3 there is a
fairly good agreement between the two products, s; and s, present marked disparities. In
sy the WOA cycle is systematically cooler than ours, while in s; the opposite occurs, but
uncertainty allows for compatibility of results in some months.

The inclusion of a long-term linear trend in the model reveals a bipolar pattern, with
the midlatitudes mostly warming and the subpolar regions mostly cooling (Figure 5a). The
extremes of these trends are found in the Northwest: between 1961 and 1990, SST warmed

10
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Figure 4: SST climatologies. a) January mean for the North Atlantic, results from our model.
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up to 2.6°C off the US coast and cooled up to -5°C in the Labrador Sea. The difference in
uncertainty, however, is large, mostly because of poorer sampling in the subpoles. Thus, the
nuclei of cooling north and east of Newfoundland have (—7.0,—3.3)°C and (—4.5,—-3.4)°C
as 95% posterior intervals for the overall temperature change, respectively. The water mass
off the mouth of Chesapeake Bay has (2.4,2.8)°C as 95% posterior interval for the trend.

In 2° x 2° squares centered at s;, so and s3, the proportion of the total data collected
after 1975 (the midpoint of the time frame analysed) was respectively 26%, 34% and 43%.
In light of this information and the trends presented in Figure 5a, we may attribute the
results in Figure 4d to sampling error. In other words, we postulate that undersampling
during the cold (warm) period in the vicinity of s; (82) may have introduced a warm (cold)
bias on WOA. Greater equilibrium in the temporal distribution of data around s3 justifies
the proximity between the two climatologies.

As stated in Section 4, B describes the annual cycle and non-linear trends. In the
neighborhood of ss, seasonality is strong and ; dominates the signal (Figures 4f and 5b).
Over time, all components experience wide fluctuations, owing to the low discount factor that
affects the random walk. This feature is common to the whole basin (see below), and thus it
is not surprising that transient anomalies display spatial patterns different from long-term
trends. Figure 5c, for example, provides a snapshot of mean SST anomalies in July 1979.
Overall, the North Atlantic is close to its climatological state, but the Gulf Stream and the
North Atlantic Current carry water warmer than average, while their sides rest cooler than
average. Returning to Figure 5b, the component 3; stands out for presenting a trend, which
dampens the amplitude of the 12 months harmonics, making winters warmer and summers
cooler. When combined with the positive linear trend (Figure 5a), this intensifies winter
warming and weakens summer SST change, as Figure 5d shows.

The posterior distributions of k and p are alike, and thus Figure 6a shows information
relative to the former, only. With 20 random draws of x from the stationary MCMC, we
construct 20 ellipses for each point j € J, by equating K*[s — j,k(j)] = 0.5. We use
these ellipses to investigate the orientation and size of the convolution kernel for monthly
SST mean, as well as the uncertainty related to the kernel’s shape, which is revealed by
the lack of superposition of the ellipses. Underneath the ellipses, we depict the posterior
mean eccentricity of the kernels associated with A, defined as e = /1 — AZ/A2. As the
plot reveals, large circular kernels are more common in the mid-Atlantic than elsewhere.
Elongated kernels generally coincide with coastal zones, but also occur in the open ocean.
Land areas hold the few small kernels that exist. As expected, uncertainty about the kernel’s
shape is more pronounced on land and along the margins of the study area.

In Figure 6b we draw annual mean sea surface currents data from Mariano Global Surface
Velocity Analysis (MGSVA; Mariano and Brown, 1992; Mariano et al., 1995). To facilitate
the identification of strong and weak currents, we depict the mean speed underneath the vec-
tors. The resemblance between the shaded plot obtained and that of Figure 6a is noteworthy:
eccentric kernels generally occur in regions with strong currents, viz. the North Equatorial
Current (NEC), the Florida Current, (FC), the Gulf Stream (GS), the North Atlantic Current
(NAC), and the Canary Current (CC); in contrast, the center of the North Atlantic Gyre
(NAG), where currents are weak, is dominated by large isotropic kernels. The North Atlantic
Subpolar Gyre (NASG) and enveloping currents, viz. the Labrador Current (LC), the East
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Figure 6: a) Mean eccentricity of the kernels associated with A(s) (shaded map), and 20 real-
izations of the kernel at every point of J. b) Direction (vectors drawn at points of J) and speed
(vector length and shaded map) of annual mean surface currents, according to MGSVA (Mariano
and Brown, 1992; Mariano et al., 1995). See text for acronyms. c) Posterior mean of v(j). d)
Posterior mean of ®(s).
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Parameter Post. mean 95% posterior interval

Ta 3.782 (3.154,4.501)

3, 1.070 (0.804,1.401)

Tha 0.735 (0.528,1.000)

T35 0.347 (0.236,0.498)

T3 0.197 (0.127,0.289)
nz 2.58x107°  (2.15 x 1075,3.09 x 107°)
Ty 0.529 (0.440, 0.633)

Table 5: Posterior means and 95% intervals for the variance parameters.

Greenland Current (EGC) and the West Greenland Current (WGC), are also discernible,
and so is the North Atlantic Drift Current (NADC). Furthermore, the kernels’ semimajor
axes are often parallel to the direction of flow. This seems a sensible result, since points in
the same streamline should have weaker SST differences than points in different streamlines.
We find the same features in p, which reinforces the link between SST variability and the
dominating patterns of currents.

Recall that ¥ =~ 1 indicates that 8; is close to constant in time, and v = 0.9 indicates
large variability in B; between consecutive times. Although we provided the same prior
distribution to all v(j), we expected coastal zones and regions with strong currents to present
lower discount factors, due to their richer temporal dynamics. To some extent, the posterior
distribution of v substantiates our expectation (Figure 6¢). With a larger data set, we believe
the spatial heterogeneity would be more pronounced.

The posterior mean of ®(s) clearly displays the mark of the Gulf Stream and, to a
lesser extent, other strong currents (Figure 6d). Much of the variability in these regions
is lost to error because, even with anisotropic kernels, the surfaces produced for 6,,,(s)
from parameters located on a 4° grid cannot resolve sharp meanders and eddies. Moreover,
upwelling events and other transient features cannot be described adequately with a temporal
resolution of one month. These losses of information are common, when constructing basin
scale climatologies, because the heterogenous spatio-temporal distribution of data only allows
finer resolutions up to a point, as our experiments with 3° and 2° grids proved.

Unlike the prior distributions of the MRF variance parameters, where most are identical,
the posteriors display clear differences (Table 5), implying the model was able to learn from
the data. The harmonics of the seasonal cycle present two noticeable features: the 12-months
cycle is more spatially variable than the 6-months, and the sine component is more spatially
variable than its cosine counterpart.

Figure 7 displays the spatial distribution of the 704 posterior p-values that fall outside the
range (0.005,0.995). Clusters occur mainly in regions with strong currents (cf. Figure 6b)
and moderate sampling, which we do not find surprising given the coarseness of the model,
as discussed above. One way of coping with this shortcoming would be to provide different
spatial and temporal resolutions to the model, according to location. On the other hand,
this low proportion of extreme p-values (0.06%) does not indicate severe lack of fit, and the
fact that several of them belong to the same cruise suggests that errors may have occurred in
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Figure 7: Spatial distribution of posterior predictive p-values smaller (greater) than 0.005 (0.995),
in light (dark) gray.

data collection. We conclude that increasing the sampling effort around the North Atlantic
Gyre would assist in determining the quality of fit and allowing a multiresolution model.
Plots of extreme p-values for different seasons, decades and instruments do not indicate any
other localized lack of fit.
Owing to their massive size, samples of 6(s) and (§;(j) cannot be stored for convergence
analysis. For the remaining parameters, our choices of burn-in, length of the chain and thin-
ning seem acceptable. More than 95% of the parameters pass at least three out of four BOA
tests. Detailed tables and trace plots are provided in http://www.ams.ucsc.edu/“bruno/climatology/.

7 Final remarks

Climatologies are valuable data-based products for the ocean scientific community, since they
summarize what is known from the observational record. In order to produce smooth gridded
maps, and because some regions and periods have been poorly sampled, an underlying model
is required to distribute information across space and time in a simple, seamless way. In
this paper we introduce such a model for North Atlantic SST. Its construction allows a
straightforward application to the World Ocean, other layers and properties, in the same
manner as WOA, i.e., with each layer and property being analysed separately. Apart from
the climatology, the model also produces fields of transient anomalies and long-term trends,
which are of interest for climate variability research and can be compared to other methods
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(e.g., Levitus et al., 1994; Grey et al., 2000; Casey and Cornillon, 2001; Polyakov et al.,
2005).

Several aspects differ between the objective analysis of WOA and our method. In contrast
with WOA, which aggregates data without considering the year of observation, our approach
constructs “instantaneous” fields prior to averaging them into monthly climatologies, sim-
ilarly to Higdon (1998). In this manner, it incorporates our knowledge that temperature
fluctuates over time, and mitigates biasing towards years with more data or distorting sea-
sonal harmonics. Post hoc corrections and smoothing of the annual cycle, as performed
in WOA, are not needed. Due to land barriers and the flow of water masses with differ-
ent properties, non-stationarity and location dependent anisotropy are other features that
should be accounted for when constructing a SST climatology (Ridgway et al., 2002). Our
use of Gaussian processes located on a grid, convolved by a kernel whose shape evolves across
space, addresses this issue in line with Higdon (1998) and Higdon et al. (1999), while WOA
employs one set of isotropic kernels worldwide. Despite the increased computational burden
associated with the estimation of these parameters, the close link found between the ker-
nels’ shape and climatological sea surface currents is a captivating result. The climatological
gradients presented along a transect indicate a better distinction of water masses, both ad-
joining and separated by land. Under a MCMC setting for posterior sampling, the number
of iterations in the procedure becomes subject to convergence analyses. On the other hand,
the initial conditions become of no importance, as our experiment with two cold and warm
initial fields demonstrated. These features differ from WOA, where the number of iterations
(3) is decided beforehand and the initial field appears relevant to the final product.

Apart from including the parameters that control the kernels’ shape in the model (k and
p), we follow other suggestions made by Higdon (1998) to improve spatiotemporal models
for ocean temperature, viz.: specifying some point processes as MRFs, with simple neighbor
dependencies on the grid («, §, n and ¢); using a kernel with compact support; and carefully
designing the MCMC algorithm, to reduce computation time. This latter feature proves
invaluable for coping with such a large data set: with each parallel process working on a 8°
longitudinal strip of the North Atlantic, the MCMC algorithm was able to run in just 3 days
(22,200 iterations). So long as each process does not work with a wider strip, increasing the
domain should have no noticeable impact on the duration of the run. To ensure the kernels
vary smoothly over space, we also allow the parameters to evolve with location, according
to isotropic DPCs. Unlike Higdon et al. (1999), however, we do not use any hyperparameter
to model these kernels, to accelerate convergence of the others in the MCMC. The Bayesian
framework in which this model is cast allows us to assign estimates of uncertainty to all
quantities. Owing to this feature, comparing the model’s results to other climatologies such
as WOA, the output of numerical models, or fields derived from remote sensing, becomes
straightforward.

The North Atlantic sea surface presents strong dynamics on various temporal scales.
Hence, our model benefits from the inclusion of sinusoidal components, linear trends and
discount factors as parameters, which are novelties relative to previous approaches, focused
on the deep ocean (Higdon, 1998) or smaller regions (Lemos and Sansé, 2006; Sahu and
Challenor, 2007). The diversity of results in this basin demonstrate the potential for ap-
plication of the model to wider domains, several depths and more comprehensive data sets,
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including other ocean properties. The joint modeling of temperature and salinity, however,
requires a careful consideration of the variation of density with depth, to avoid producing
unrealistic, unstable water columns (Boyer et al., 2005). Salinity and nutrient climatologies
are also impaired by the serious shortage of data, and a more elaborate model, including for
example the equations of flow, may be required to fill in gaps. Such approach would part
it from traditional climatological analyses, where fluid dynamics are not used, and make it
more similar to ocean data assimilation models.
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9 Appendix - Full conditional distributions

. (emiy(3)|“~) ~ N (Dygdy, Dy)
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