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Abstract

We develop Bayesian parametric and nonparametric hierarchical approaches to modeling
health insurance claims data. Both prediction methods produce credibility type estimators,
which use relevant information from related experience. In the parametric model, the like-
lihood arises through a mixture of a gamma distribution for the non-zero costs (severity),
with a point mass for the zero costs (propensity). In the nonparametric extension, Dirichlet
process priors are associated with the propensity parameters as well as the severity param-
eters. Posterior inference and prediction for both models is based on Markov chain Monte
Carlo posterior simulation methods. A simulation study is used to demonstrate the utility of
the nonparametric model across different settings. Moreover, we illustrate the methodology
using real data from 1994 and 1995 provided by a major medical provider from a block of
medium sized groups in the Midwest. The models were fit to the 1994 data, with their
performance assessed and compared using the 1995 data.

1 Introduction

The purpose of this paper is to introduce the practicing actuary to a flexible class of Bayesian
models called Bayesian nonparametric models. Bayesian models provide a coherent way
of incorporating prior information into the information contained in data, to produce an
updated set of probability functions describing an individual’s current uncertainty regarding
the state of nature. For the actuary, tasks where the Bayesian paradigm makes particular
sense are those involving modeling costs with an eye to predicting expected costs for the
coming year. These models could be used in premium calculations for small groups, and in
premium calculations for blocks of business in new areas, as well as to calculate experience
based refunds.

In the Bayesian framework, the model consists of the likelihood of the data given the
parameters, multiplied by probability densities for each of the parameters. The densities
on the parameters are called the “prior” probabilities as they are formulated prior to the
collection of the data. Based on Bayes theorem, posterior densities for the parameters given
the data are then available from the scaled product of the likelihood and the priors. (For a
review of Bayesian methods in general see e.g. Gelman, et al, 1998, Klugman, 1992, Scollnik,
2001, or Makov, 2001.) Thinking somewhat simplistically, Bayesian model specification
hinges on selecting scientifically appropriate prior distributions.

If (y1, y2, ..., yn) represents the data, de Finetti (1937) showed that if (y1, ..., yn) is part
of an infinitely exchangeable sequence, all coherent joint predictive distributions p(y1, ..., yn)
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must have the hierarchical form

F ∼ p(F )

(yi | F )
i.i.d.
∼ F,

(1)

where F is the limiting empirical cumulative distribution function (CDF) of the infinite
sequence (y1, y2, ...). Thus, the Bayesian model specification task becomes choosing the
scientifically appropriate prior distribution p(F ) for F . However, since F is an infinite
dimensional parameter, putting the appropriate probability distribution on the set of all
possible CDF’s is, to put it mildly, harder. Specifying distributions on function spaces is the
task of Bayesian nonparametric modeling. In this paper, we will demonstrate one possible
specification for the modeling of health care claims costs. As we will point out in the paper,
prediction is especially problematic if there is misspecification of the prior distributions.
Nonparametric methodology can be especially helpful if there is some unanticipated structure
in the distribution of the parameters.

We first describe the data set that will be used. Next, we will specify the mathematical
structure of the models in the full parametric and nonparametric settings. We provide
more detail for the nonparametric setting since the parametric formulation is more familiar.
Besides the mathematical detail, we also provide the algorithms necessary to implement
the nonparametric model in an appendix. We present a small simulation study to further
describe how the various models work. That is, we will demonstrate model performance
when the truth is known. Finally, we present results from analyses of the 1994 data using
the two model specifications, and rate them by evaluating their performance in predicting
costs in 1995.

2 The Data

The data set is from a major medical plan, covering a block of medium sized groups in Illinois
and Wisconsin for 1994 and 1995. Each policy holder was part of a group plan. In 1994 the
groups consisted of from 1 to 103 employees with a median size of 5 and an average size of
8.3. We have claims information on 8,921 policyholders from 1,075 groups. Policies were all
of the employee plus one individual (often employee plus spouse) type. Table 1 gives some
summary information about costs per day in 1994 and 1995.

Though the data are dated from a business perspective, they provide the ability to
examine these two analysis paradigms without divulging proprietary information.

Insert Table 1 about here

Costs were assigned to each policyholder on a yearly basis and not assigned by episode
of care or by medical incident. The costs were total costs, with deductible and co-payments
added back in. The total yearly costs were then divided by the number of days of exposure.
As per the policy of the company providing the data, all policies with annual claims costs
exceeding $25,000 were excluded from all analyses. Large daily costs are still possible if the
number of days of exposure were small enough that total costs did not exceed $25,000.
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Data consist of claims costs per day of exposure by policyholder. While age and gender
of policyholder were known, age and gender of the claimant were only known when the
claimant was the policyholder. We also did not know if multiple claims were made on the
policy by the same individual or different individuals covered by the policy during the year.
Knowledge and use of additional policy and claimant specific data would improve prediction.
However, such information would also make the presentation more difficult to follow with
the additional detail. We use the data available to present an expository illustration. The
methods shown may be extended to more involved data sets.

3 The Models

3.1 The Hierarchical Parametric Bayes Model

To develop the parametric model, we need to characterize the likelihood and the prior dis-
tributions of the parameters associated with the likelihood. There are two things to consider
when thinking about the form of the likelihood. Propensity, the probability a claim is made,
differs from group to group, and in our data is around 0.70. Thus, about 30% of the data
are zeros, representing no claims. We chose to deal with this by having a likelihood with a
point mass at zero with probability πi for group i. The parameter πi depends on the group
membership. Severity, the cost of a claim given that a claim is paid, is positively skewed.
We chose a gamma density for this portion of the likelihood with parameters γ and θ. In a
previous analysis of this data, Fellingham, et al (2005) indicated that “the gamma likelihood
for the severity data is not rich enough to capture the extreme variability present in this type
of data.” However, we feel that with the added richness available from the nonparametric
model, the gamma likelihood should be sufficient to model the data. Let f(y; γ, θ) denote
the density at y of the gamma distribution with shape parameter γ and scale parameter θ.
Hence,

f(y; γ, θ) =

(

1

(θ)(γ)Γ(γ)
yγ−1 exp(

−y

θ
)

)

(2)

The likelihood follows using a compound distribution argument:

I
∏

i=1

Li
∏

`=1

[πi[yi`=0] + (1 − πi)f(yi`; γi, θi)[yi`>0]], (3)

where i indexes the group number, I is the number of groups, ` indexes the observation
within a specific group, Li is the number of observations within group i, πi is the propensity
parameter for group i, θi and γi are the severity parameters for group i, and yi` is the cost per
day of exposure for each policyholder. Thus, we have a point mass probability for yi` = 0,
and a gamma likelihood for yi` > 0.

The assignment of prior distributions should be a critical part of any analysis. One of
the strengths of the full Bayesian approach is the ability the analyst has to incorporate
information from other sources. Because we had some previous experience with the data
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that might have unduly influenced our choices of prior distributions, we chose to use priors
that were only moderately informative. These priors were based on information available for
other policy types. We did not use any of the current data to make decisions about prior
distributions. Also, we performed a number of sensitivity analyses in both the parametric and
the nonparametric case and found that the results were not sensitive to prior or hyperprior
specification in either case.

For the first stage of our hierarchical prior specification, we need to choose random-
effects distributions for the propensity parameters πi and the severity parameters (γi, θi).
Conditionally on hyperparameters, we assume independent components. In particular,

πi | µπ
ind.
∼ Beta(µπ, s2

π), i = 1, ..., I

γi | β
ind.
∼ Gamma(b, β), i = 1, ..., I

θi | δ
ind.
∼ Gamma(d, δ), i = 1, ..., I.

(4)

Here, to facilitate prior specification, we work with the Beta distribution parametrized in
terms of its mean µπ and variance s2

π, i.e., with density given by

1

Be(c1, c2)
πc1−1(1 − π)c2−1, π ∈ (0, 1), (5)

where c1 = s−2
π (µ2

π − µ3
π − µπs

2
π), c2 = s−2

π (µπ − 2µ2
π + 3µ3

π − s2
π + µπs

2
π), and Be(·, ·) denotes

the Beta function, Be(r, t) =
∫ 1

0
ur−1(1 − u)t−1du, r > 0, t > 0 (Evans, et al. 2000). We fix

the hyperparameters s2
π, b and d and assign reasonably non-informative priors to µπ, β and

δ. Specifically, we take a uniform prior on (0, 1) for µπ and inverse gamma priors for β and δ
with shape parameter equal to 2 (implying infinite prior variance) and scale parameters Aβ

and Aδ, respectively. Hence, the prior density for β is given by A2
ββ−3 exp(−Aβ/β) (with an

analogous expression for the prior of δ). Further details on the choice of the values for s2
π, b,

d, Aβ and Aδ in the analysis of the simulated and real data are provided in Sections 4 and
5, respectively.

The posterior for the full parameter vector, ({(πi, γi, θi) : i = 1, ..., I}, µπ, β, δ), is then
proportional to

p(µπ)p(β)p(δ)

[

I
∏

i=1

β−b

Γ(b)
γb−1

i exp(
−γi

β
)

δ−d

Γ(d)
θd−1

i exp(
−θi

δ
)

1

Be(c1, c2)
πc1−1

i (1 − πi)
c2−1

]

[

I
∏

i=1

Li
∏

`=1

{

πi[yi`=0] + (1 − πi) (f(yi`; γi, θi))[yi`>0]

}

]

, (6)

where p(µπ), p(β) and p(δ) denote the hyperpriors discussed above.
Current methods to analyze such a model include implementation of Markov chain Monte

Carlo (MCMC) to produce samples from the posterior distributions which can then be
evaluated (Gilks, et al. (1995)). MCMC is essentially Monte Carlo integration using Markov
chains. Monte Carlo integration draws samples from the required distribution, and then
forms sample averages to approximate expectations. MCMC draws these samples by running
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a Markov chain for a long time. There are many ways of constructing these chains, but all
of them are special cases of the general framework of Metropolis, et al. (1953) and Hastings
(1970). Loosely speaking, the MCMC process draws samples from the posterior distributions
by sampling throughout the appropriate support in the correct proportions. This is done
using a Markov chain with the posterior as its stationary distribution.

More precisely, we first formulated the posterior distribution of each parameter, condi-
tional on the other parameters, and assigned an initial value to each parameter. Then a new
value was drawn from a “proposal” distribution. The ratio of the values of the complete
conditionals computed using the proposed value and the old value of the parameters was
computed and compared to a random uniform variate. If the ratio exceeded the random uni-
form, the proposed value was kept, otherwise the old value was kept. Using this method on
each parameter, and cycling through the parameters, yielded a distribution that converged
to the appropriate posterior for each parameter. For a more complete exposition of this
methodology, the interested reader should refer to Scollnik (2001) or Gilks (1995). We then
take the posterior draws for the paramaters to produce estimators such as means, quantiles,
variances, etc.

To draw new parameters, we essentially deal with the marginalized version of the model
obtained by integrating over the hyperprior distributions. Operationally, this means taking
the current values of the hyperparameters at each iteration of the MCMC and drawing values
of the (γnew, θnew, πnew) from their respective prior distributions given the current values of
the hyperparameters. Thus, draws of new parameters are dependent on the form of the
prior distributions. The consequence is that if the prior distributions are misspecified, draws
of new parameters will not mirror the actual setting. Estimating parameters present in
the current model will not be impacted as long as the prior distributions have appropriate
support and are not so steep as to overpower the data. The impact for estimating costs is
that those costs arising from groups that may be present in the future, but not being modeled
with the current data, will not be accurate if the prior specification of the distribution of
the parameters is not reflective of the ’truth’. We demonstrate the impact of this idea in
Section 5.

3.2 The Nonparametric Bayes Model

The parametric random-effects distributions chosen for the πi, γi and θi in Section 3.1 are
modeling choices that might not be appropriate for specific data sets. Moreover, since these
are distributions for latent model parameters, it is not straightforward to anticipate their
form and/or shape based on exploratory data analysis. Bayesian nonparametric methods
provide a flexible approach to handle this problem. The key idea is to use a nonparametric
prior model for the random-effects distributions that supports essentially all possible distri-
bution shapes, which at the same time can be centered around familiar parametric forms
enabling relatively simple prior specification. Then, through the prior to posterior updating,
the data are allowed to drive the shape of the posterior predictive estimates for the random-
effects distributions. And this shape can be quite different from standard parametric forms
(when these forms are not supported by the data), thus resulting in more accurate posterior
predictive inference when using the nonparametric formulation.
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Here, we utilize Dirichlet process (DP) priors, a well-studied class of nonparametric prior
models for distributions, which achieves the goals discussed above. We refer the interested
reader to Appendix A for a brief review of Dirichlet processes. For a more extensive review,
see also Dey, et al., (1998); Walker, et al., (1999); Müller and Quintana, (2004); and Hanson,
et al., (2005).

We formulate a nonparametric extension of the parametric model discussed in the pre-
vious section by replacing the hierarchical parametric priors for the random-effects distribu-
tions with hierarchical DP priors (formally, mixtures of DP priors). The DP can be defined
in terms of two parameters, a positive scalar parameter α, which can be interpreted as a
precision parameter, and a specified base (centering) parametric distribution G0.

While it would have been possible to place the DP prior on the joint random-effects
distribution associated with the triple (γi, θi, πi), we believed the forces acting on the severity
parameters could well have been different than those acting on the propensity parameters,
so we have chosen to treat these parameters separately. Thus, we have a DP prior for the
random-effects distribution, G1, associated with the πi as well as a separate (independent)
DP prior for the random-effects distribution, G2, corresponding to the (γi, θi).

Now, we have the following hierarchical version for the nonparametric model:

yi` | πi, γi, θi
ind.
∼ πi[yi`=0] + (1 − πi)f(yi`; γi, θi)[yi`>0],

` = 1, ..., Li; i = 1, ..., I

πi | G1
i.i.d.
∼ G1, i = 1, ..., I

(γi, θi) | G2
i.i.d.
∼ G2, i = 1, ..., I

G1, G2
ind.
∼ DP(α1, G10) × DP(α2, G20).

(7)

Here, α1, α2 > 0 are the precision parameters of the DP priors, and G10 and G20 are the
centering distributions. We set G10(π) = Beta(π; µπ, s

2
π), i.e., the random-effects distribution

used for the πi in the parametric version of the model. Again, we place a uniform prior
on µπ and take s2

π to be fixed. For G20 we take independent Gamma components, i.e.,
G20((γ, θ); β, δ) = Gamma(γ; b, β) × Gamma(θ; d, δ), with fixed shape parameters b and d,
and inverse gamma priors assigned to β and δ. Again, note that G20 is the random-effects
distribution for the (γi, θi) used in the earlier parametric version of the model. In all analyses
we kept α1 and α2 fixed.

In the DP(α, G0) prior, α controls how close a realization G is to G0. In the DP
mixture model in (7), the precision parameters control the distribution of the number of
distinct elements I∗

1 of the vector of {π1, . . . , πI} (controlled by α1) and I∗
2 of the vector

{(γ1, θ1), . . . , (γI, θI)} (controlled by α2), and hence, the number of distinct components of
the mixtures. The number of distinct groups is, with positive probability, smaller than I,
and, in fact, for typical choices of α1 and α2, fairly small relative to I. For instance, for
moderate to large I,

E(I∗
k | αk) ≈ αk log

(

αk + I

αk

)

, k = 1, 2, (8)

and exact expressions for the prior probabilities Pr(I∗
k = m | αk), m = 1, . . . , I, are also

available (e.g., Escobar and West, 1995). These results are useful in choosing the values of
α1 and α2 for the analysis of any particular data set using model (7).
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3.2.1 Posterior Inference

To obtain posterior inference, we work with the marginalized version of model (7), which
results by integrating G1 and G2 over their independent DP priors,

yi` | πi, γi, θi
ind.
∼ πi[yi`=0] + (1 − πi)f(yi`; γi, θi)[yi`>0],

` = 1, ..., Li; i = 1, ..., I
(π1, ..., πI) | µπ ∼ p(π1, ..., πI | µπ)

(γ1, θ1), ..., (γI , θI) | β, δ ∼ p((γ1, θ1), ..., (γI, θI) | β, δ),
β, δ, µπ ∼ p(β)p(δ)p(µπ),

(9)

where, as before, p(β), p(δ), and p(µπ) denote the hyperpriors for β, δ, and µπ. The induced
joint prior for the πi, and for the (γi, θi) can be developed using the Pólya urn characterization
of the DP (Blackwell and MacQueen, 1973). Specifically,

p(π1, ..., πI | µπ) = g10(π1; µπ, s
2
π)

I
∏

i=2

{

α1

α1 + i − 1
g10(πi; µπ, s2

π) +
1

α1 + i − 1

i−1
∑

j=1

δπj
(πi)

}

,

and p((γ1, θ1), ..., (γI, θI) | β, δ) is given by

g20((γ1, θ1); β, δ)
I

∏

i=2

{

α2

α2 + i − 1
g20((γi, θi); β, δ) +

1

α2 + i − 1

i−1
∑

j=1

δ(γj ,θj)(γi, θi)

}

,

where g10 and g20 denote respectively the densities corresponding to G10 and G20, and δa(y)
denotes a point mass for y at a (i.e., Pr(y = a) = 1 under the δa(·) distribution for y). These
expressions are key for MCMC posterior simulation, since they yield convenient forms for
the prior full conditionals for each πi and for each (γi, θi). In particular, for each i = 1, ..., I,

p(πi | {πj : j 6= i}, µπ) =
α1

α1 + I − 1
g10(πi; µπ, s2

π) +
1

α1 + I − 1

I−1
∑

j=1

δπj
(πi) (10)

and

p((γi, θi) | {(γj, θj) : j 6= i}, β, δ) =
α2

α2 + I − 1
g20((γi, θi); β, δ)

+
1

α2 + I − 1

I−1
∑

j=1

δ(γj ,θj)(γi, θi). (11)

Intuitively, the idea for posterior sampling using expressions (10) and (11), is that pro-
posal values for the parameters are drawn from either the centering distribution or from
values for previous draws of the other parameters (j 6= i). These proposal values are then
treated as in the parametric setting, and are either kept or rejected in favor of the cur-
rent value for the parameter. For specific details concerning implementation of the MCMC
algorithm in this nonparametric model, we refer the interested reader to Appendix B.
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3.2.2 Posterior Predictive Inference

We will focus on the posterior predictive distribution for a new group. Denote by ynew the
cost for a (new) policyholder within a new group. To obtain p(ynew | data), we need the
posterior predictive distributions for a new πnew and for a new pair (γnew, θnew). Let φ be
the full parameter vector corresponding to model (9), i.e., φ = {π1, ..., πI , (γ1, θ1), ..., (γI, θI),
β, δ, µπ}.

To obtain the expressions for p(πnew | data), p((γnew, θnew) | data) and p(ynew | data), we
need an expression for p(ynew, πnew, (γnew, θnew),φ | data). This results by adding ynew to the
first stage of model (7), and πnew and (γnew, θnew) to the second and third stages of model
(7), and then again marginalizing G1 and G2 over their DP priors. Specifically,

p(ynew, πnew, (γnew, θnew),φ | data) = {πnew[ynew=0] + (1 − πnew)
×f(ynew; γnew, θnew)[ynew>0]}
×p((γnew, θnew) | (γ1, θ1), ..., (γI, θI), β, δ)
×p(πnew | π1, ..., πI , µπ) × p(φ | data),

(12)

where

p(πnew | π1, ..., πI , µπ) =
α1

α1 + I
g10(πnew; µπ, s2

π) +
1

α1 + I

I
∑

i=1

δπi
(πnew) (13)

and

p((γnew, θnew) | (γ1, θ1), ..., (γI, θI), β, δ) =
α2

α2 + I
g20((γnew, θnew); β, δ) +

1

α2 + I

I
∑

i=1

δ(γi,θi)(γnew, θnew). (14)

Now, using the posterior samples for φ (resulting from the MCMC algorithm described
in Appendix B) and with appropriate integrations in expression (12), we can obtain posterior
predictive inference for πnew, (γnew, θnew), and ynew. In particular,

p(πnew | data) =

∫

p(πnew | π1, ..., πI , µπ)p(φ | data)dφ

and therefore posterior predictive draws for πnew can be obtained by drawing from (13) for
each posterior sample for π1, ..., πI , µπ. Moreover,

p((γnew, θnew) | data) =

∫

p((γnew, θnew) | (γ1, θ1), ..., (γI, θI), β, δ)p(φ | data)dφ,

can be sampled by drawing from (14) for each posterior sample for (γ1, θ1), ..., (γI, θI), β, δ.
Finally,

p(ynew | data) =
∫ ∫ ∫

{πnew[ynew=0] + (1 − πnew)f(ynew; γnew, θnew)[ynew>0]}
×p(πnew | π1, ..., πI , µπ)
×p((γnew, θnew) | (γ1, θ1), ..., (γI, θI), β, δ)
×p(φ | data) dπnew d(γnew, θnew) dφ.
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Based on this expression, posterior predictive samples for ynew can be obtained by first
drawing πnew and (γnew, θnew) (using expressions (13) and (14), respectively, for each posterior
sample for φ) and then drawing ynew from πnew[ynew=0] + (1 − πnew)f(ynew; γnew, θnew)[ynew>0].
Therefore, the posterior predictive distribution for a new group will have a point mass at 0
(driven by the posterior draws for πnew) and a continuous component (driven by the posterior
draws for (γnew, θnew)).

Expressions (13) and (14) highlight the clustering structure induced by the DP priors,
which enables flexible data-driven shapes in the posterior predictive densities p(πnew | data)
and p(γnew, θnew | data), and thus, flexible tail behavior for the continuous component of
p(ynew | data). The utility of such flexibility in the prior is illustrated in the following
sections with both the simulated and the real data.

4 The Simulation Example

We now present a small simulation study to demonstrate the utility of the nonparametric
approach. We simulated data for two cases, one drew parameters from unimodal distribu-
tions, and one drew parameters from multimodal distributions. We focus on prediction of the
response of individuals in new groups, because this is the setting where the nonparametric
model offers the most promise.

All the simulated data were produced by first generating a (γi, θi, πi) triple from the
distributions we will outline. Then data were generated using these parameters. Data were
generated for 100 groups with 30 observations in each group. The data were then analyzed
using both the parametric and nonparametric models.

In Case I (the unimodal case), the γi were drawn from a Gamma(2, 5), the θi from a
Gamma(2, 10), and the πi from a Beta(4, 5). The draws were independent, and given these
parameters, the data were drawn according to the likelihood in (3).

In Case II (the multimodal case), the γi were drawn from either a Gamma(2, 1) or a
Gamma(50, 1) with equal probability. The θi were drawn independently using the same
scenario as the γi, and the πi were drawn independently from either a Beta(20, 80) or a
Beta(80, 20) with equal probability. Again, once the parameters were drawn, the data were
produced using the likelihood in (3).

The parametric model was fit using the paradigm outlined previously. We ultimately
chose s2

π = 0.03, b = d = 1, and Aβ = Aδ = 40, although sensitivity analyses showed that
posterior distributions were virtually the same with other values of these parameters. These
same values were used for the centering distributions of the nonparametric model. Also, we
chose to use α1 = α2 = 2 to analyze simulation data. We used 50, 000 burn-in iterations for
both models. We followed the burn-in with 100, 000 posterior draws keeping every 10th draw
for the parametric model, and with 1, 000, 000 posterior draws keeping every 100th draw for
the nonparametric model.

There are two main messages to be taken from the simulation results. One is that
posterior point estimation of parameters for the groups represented in the simulated data
sets is quite similar for the two models. In Figures 1, 2, and 3, we show posterior intervals
(5th to 95th percentiles) for each group in simulation Case II. It is clear that both methods
separate the modes in the prior densities quite well for the estimated parameters.

9



The second message is that the parametric model might not replicate the modes when
predicting parameters for new groups, while the nonparametric methodology performs quite
well at this task. Figures 4 and 5 demonstrate this. In Figure 4 we see the results from
Case I, the unimodal case. The posterior predictive densities from the parametric model
follow the generated parameter histograms quite closely. The nonparametric model produces
comparable results. However, in Figure 5 it is obvious that the parametric model cannot
predict the multiple modes. The nonparametric model does quite well at this task since the
prior distributions are covered by the DP priors. This result means that unless the possibility
of multiple modes is explicitly addressed in the parametric setting (a practically impossible
task if only data are examined, since the multimodality occurs in the distributions of the
parameters), it would be unreasonable to expect the parametric model to predict efficiently.
On the other hand, the nonparametric model will automatically handle the problem with
absolutely no change in the code.

Referring back to Figures 1, 2, and 3, it is of interest that the posterior intervals are
generally wider for the parametric model. This may also be explained by examining Figure
5. Since the parametric model must span the space of the multiple modes with only a single
peak, much of the distribution is over space where no parameters occur. Thus, uncertainty
regarding the location of the parameters is overestimated. It is ironic that artificially high
certainty regarding the prior distributions of the parameters can lead to artificially high
uncertainty regarding the parameter estimates.

5 Analysis of the Claims Data

The 1994 data consisted of 8, 921 observations in 1, 075 groups. Because of work with other
policy types, we expected the γi to be smaller with the actual data than we used when we
simulated data. Thus, we used Aβ = 3 while Aδ remained relatively large at 30 in both
the parametric and nonparametric settings. For the data analysis we used α1 = α2 = 3. In
both models we used a burn-in of 50, 000 with 100, 000 posterior draws keeping every 10th.
Both models displayed convergent chains for the posterior draws of all parameter densities
(Raftery and Lewis, 1995, and Smith, 2001).

In Figure 6 we show posterior predictive densities for both the parametric and nonpara-
metric models for the γnew, θnew, and πnew. We note that the nonparametric model posterior
predictive densities showed multimodal behavior like that we demonstrated in Case II of
the simulation study. As in the simulation study, the parametric model cannot reveal this
kind of behavior. When the densities actually have this multimodality, we anticipate that
the nonparametric model will do better in predicting costs from new groups. We would,
however, expect that predicting behavior in groups already present in the data would be
quite similar for the two approaches, a likely overestimation of uncertainty in the parameter
estimates under the parametric model, as was displayed in the simulation. We also want
to emphasize that there is no way to uncover this kind of multimodality in the parameters
without using a methodology that spans this kind of behavior in the prior specifications.
There is no way to anticipate this kind of structure by examining the data.

We chose one group that had fairly large representation in both 1994 and 1995 to check
the assertion that both methods should be quite similar in predicting behavior for a group
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already present in the data. Group 69511 had 81 members in 1994 and 72 in 1995. We had
no way to determine how many members were the same in both years. We obtained the
posterior predictive distribution for this group using both models, using posterior samples
from the corresponding triple (πi, γi, θi). In Figure 7 (left panel), we show the posterior
predictive distribution for the non-zero data for both the parametric and the nonparametric
model as well as the histogram of the actual 1995 non-zero data for that group. There is little
difference in the posterior predictive distributions, and both model the 1995 data reasonably
well.

Thus, we now focus on predicting outcomes in 1995 for groups not present in the 1994
data. There were 8, 732 observations in 1995, and 522 of these came from 101 groups that
were not represented in 1994. We treated these 522 observations as if they came from one
“new” group, and estimated posterior predictive densities for this new group under both
the parametric and nonparametric models, using the approaches discussed in Section 3.1
and 3.2.2, respectively. In Figure 7 (right panel), we show the posterior predictive densities
for non-zero data from a new group using both the parametric and nonparametric models
as well as a histogram of the actual 1995 data. We can see that the posterior predictive
distributions of the two models differ, with the nonparametric model having a higher density
over the mid-range of the responses.

To further quantify the differences between the posterior predictive distributions, we
computed a posterior predictive model comparison criterion. If y0j, j = 1, . . . , J , represents
the positive observations from all new groups in 1995, we can estimate p(y0j | data) (i.e., the
conditional predictive ordinate (cpo)) at y0j using

B−1
B

∑

b=1

f(y0j; γnew,b, θnew,b), (15)

where {(γnew,b, θnew,b) : b = 1, . . . , B} is the sample from the posterior predictive distribution
for (γnew, θnew) (B = 10, 000 in our analysis). Of the J = 371 non-zero observations in 1995,
327 cpo’s were greater for the nonparametric model. These values can also be summarized
using the “cross-validation posterior predictive criterion”, which is given by

Q(Mk) = J−1

J
∑

j=1

log(p(y0j | data)) (16)

where M1 is the parametric model and M2 is the nonparametric model. For the parametric
model the value of Q was −3.20 while for the nonparametric model Q = −2.94. Thus, the
predictive ability of the nonparametric model exceeded that of the parametric model for
these data. Again, given the multimodal nature of the posterior predictive distributions for
the πnew, γnew, and θnew, we are not surprised by this outcome.

6 Discussion

Bayesian nonparametric methods provide the practitioner with a class of models that offer
real advantages when it comes to prediction. The idea of Bayesian nonparametrics is to place
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prior distributions on spaces of functions, rather than on parameters of a specific function.
This broadening of the prior space allows for priors that may have quite different properties
(e.g., multiple modes) than might be anticipated by the statistician.

In the data we examined, it is not unreasonable to believe that there might be multiple
modes. If we think of the general population as being relatively healthy, then we would
expect most groups to reflect this state. However, if there are a few individuals in some
groups with less than perfect health, we would expect to see longer tails in these groups.
Some small proportion of the groups might be extremely long in the tails. Looking at Figure
6 we can see this pattern. The lowest mode of the posterior distribution of the γi’s is generally
associated with the largest mode of the θi’s. That is, groups with γi in a range of 0.59 to
0.63 tend to be associated with θi in the range of 13 to 20. In fact, the mean of the θi’s
associated with γi’s in the range of 0.59 to 0.63 is 18.5. Also, the middle modes of the two
distributions tend to be associated (the mean of the θi’s associated with γi’s in the range of
0.65 to 0.68 is 13.6) and the highest mode of the γi’s tends to go with the smallest mode of
the θi’s. Since these distributions are parameterized to have means of γ × θ and variances
of γ × θ2, we see the means of the groups are not moving a great deal, while the variances
for the groups with a few individuals with worse health is quite a bit larger. This is the
kind of behavior we might expect from groups whose individuals are somewhat older, and
thus more susceptible to larger health care expenditures. So it may be that the need for the
nonparametric model in this case was a result of not being able to include age in the model.
The problem, of course, is that failing to measure important covariates is a common and
ongoing issue.

While this association may seem obvious in retrospect, it is not something that would
necessarily be obvious before completing the nonparametric analysis, and it would not be
uncovered at all using a conventional parametric analysis. Thus, a procedure that allows for
great flexibility in the specification of prior distributions can pay large dividends.

We believe that the Bayesian nonparametric model offers high utility to the practicing
actuary, as it allows for prediction that cannot be matched by the traditional Bayesian
approach. This added ability to predict costs with greater accuracy would be expected to
pay high dividends in the insurance industry.
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Appendix A: Dirichlet process priors and Dirichlet pro-

cess mixtures

Here, we provide a brief review of Dirichlet processes (DPs) and DP mixture models. The
main theoretical results on inference for DP mixtures can be found in the work of Antoniak
(1974); see also, e.g., Ferguson (1983), Lo (1984), Kuo (1986), and Brunner and Lo (1989)
for early work on modeling and inference using DP mixtures.

The Dirichlet process. The DP (Ferguson, 1973; 1974) is a stochastic process with
sample paths that can be interpreted as distributions G (equivalently, CDFs) on a sample
space Ω. The DP can be defined in terms of two parameters, a positive scalar param-
eter α, which can be interpreted as a precision parameter, and a specified base (center-
ing) distribution G0 on Ω. For example, when Ω = R, for any x ∈ R, G(x) has a Beta
distribution with parameters α G0(x) and α[1 − G0(x)] and, thus, E[G(x)] = G0(x) and
Var[G(x)] = G0(x)[1−G0(x)]/(α+1). Hence, for larger values of α, a realization G from the
DP is expected to be closer to the base distribution G0. We write G ∼ DP(α, G0) to denote
that a DP prior is used for the random CDF (distribution) G. In fact, DP-based modeling
typically utilizes mixtures of DPs (Antoniak, 1974), i.e., a more flexible version of the DP
prior that involves hyperpriors for α and/or the parameters ψ of G0(·) ≡ G0(·|ψ).

A practically useful definition of the DP was given by Sethuraman (1994). According to
this constructive definition, a realization G from DP(α, G0) is (almost surely) of the form

G(·) =

∞
∑

i=1

wi δϑi
(·),

where δx(·) denotes a point mass at x. Here, the ϑj are i.i.d. G0, and the weights are con-
structed through a stick-breaking procedure: w1 = z1, wi = zi

∏i−1
k=1(1−zk), i = 2, 3, . . . , with

the zk i.i.d. Beta(1, α); moreover, the sequences {zk, k = 1, 2, . . . } and {ϑj, j = 1, 2, . . . }
are independent. Hence, the DP generates, with probability one, discrete distributions that
can be represented as countable mixtures of point masses, with locations drawn indepen-
dently from G0 and weights generated according to a stick-breaking mechanism based on
i.i.d. draws from a Beta(1, α) distribution.

The DP constructive definition has motivated extensions of the DP in several directions,
including priors with more general structure (e.g., Ishwaran and James, 2001) and prior
models for dependent distributions (e.g., De Iorio et al., 2004; Gelfand, et al., 2005; Griffin
and Steel, 2006).

Dirichlet process mixture models. A natural way to increase the applicability of DP-
based modeling is by using the DP as a prior for the mixing distribution in a mixture model
with a parametric kernel distribution K(·|θ), θ ∈ Θ ⊆ Rp (with corresponding density –
probability density or probability mass function – k(·|θ)). This approach yields the class of
DP mixture models, which can be generically expressed as

F (·; G) =

∫

K(·|θ) dG(θ), G | α,ψ ∼ DP(α, G0(·|ψ)),
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with the analogous notation for the random mixture density, f(·; G) =
∫

k(·|θ) dG(θ). The
kernel can be chosen to be a (possibly multivariate) continuous distribution (thus overcoming
the almost sure discreteness of the DP).

Consider F (·; G) as the model for the stochastic mechanism corresponding to data Y =
(Y1, ..., Yn), e.g., assume Yi, given G, i.i.d. from F (·; G) with the DP prior structure for G.
Working with this generic DP mixture model, typically, involves the introduction of a vector
of latent mixing parameters, θ = (θ1, ..., θn), where θi is associated with Yi, such that the
model can be expressed in hierarchical form as follows:

Yi|θi
ind.
∼ K(·|θi), i = 1, ..., n

θi|G
i.i.d.
∼ G, i = 1, ..., n

G | α,ψ ∼ DP(α, G0(·|ψ)).

(17)

The model can be completed with priors for α and ψ. Moreover, practically important
semiparametric versions can be developed by working with kernels K(·|θ,φ) where the φ
portion of the parameter vector is modelled parametrically, e.g., φ could be a vector of
regression coefficients incorporating a regression component in the model.

The Pólya urn DP characterization (Blackwell and MacQueen, 1973) is key in the DP
mixture setting, since it results in a practically useful version of (17) where G is marginalized
over its DP prior. The resulting joint prior for the θi is given by

p(θ1, . . . , θn|α,ψ) = G0(θ1)
n

∏

i=2

{

α

α + i − 1
G0(θi) +

1

α + i − 1

i−1
∑

`=1

δθ`
(θi)

}

.

This result is central to the development of posterior simulation methods for DP mixtures
(see, e.g., the reviews in Müller and Quintana, 2004, and Hanson et al., 2005).

This class of Bayesian nonparametric models is now the most widely used, arguably, due
to the availability of several posterior simulation techniques, based, typically, on MCMC
algorithms (e.g., Escobar and West, 1995; Bush and MacEachern, 1996; MacEachern and
Müller, 1998; Neal, 2000; Ishwaran and James, 2001; Gelfand and Kottas, 2002; Jain and
Neal, 2004); see Liu (1996), MacEachern, et al. (1999), and Blei and Jordan (2006) for
alternative approaches.

Appendix B. – The MCMC Algorithm for the Nonpara-

metric Model

The joint posterior, p(π1, ..., πI , (γ1, θ1), ..., (γI, θI), β, δ, µπ | data), corresponding to model
(9) is proportional to

p(β)p(δ)p(µπ)p(π1, ..., πI | µπ)p((γ1, θ1), ..., (γI, θI) | β, δ)

{

I
∏

i=1

πLi0

i (1 − πi)
Li−Li0

}







I
∏

i=1

∏

{`:yi`>0}

f(yi`; γi, θi)







, (18)
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where Li0 = |{` : yi` = 0}|, so that |{` : yi` > 0}| = Li − Li0.
The MCMC algorithm involves Metropolis-Hastings (M-H) updates for each of the πi

and for each pair (γi, θi) using the prior full conditionals in (10) and (11) as proposal dis-
tributions. Updates are also needed for β, δ and µπ. Details on the steps of the MCMC
algorithm are provided below.

1. Updating the πi: For each i = 1, ..., I, the posterior full conditional for πi is given
by

p(πi | ..., data) ∝ p(πi | {πj : j 6= i}, µπ) × πLi0

i (1 − πi)
Li−Li0

with p(πi | {πj : j 6= i}, µπ) defined in (10). We use the following M-H update:

• Let π
(old)
i be the current state of the chain. Repeat the following update R1 times

(R1 ≥ 1).

• Draw a candidate π̃i from p(πi | {πj : j 6= i}, µπ). (using the form in equation 10)

• Set πi = π̃i with probability

q1 = min

{

1,
π̃Li0

i (1 − π̃i)
Li−Li0

π
(old)Li0

i (1 − π
(old)
i )Li−Li0

}

,

and πi = π
(old)
i with probability 1 − q1.

2. Updating the (γi, θi): For each i = 1, ..., I, the posterior full conditional for (γi, θi),

p((γi, θi) | ..., data) ∝ p((γi, θi) | {(γj, θj) : j 6= i}, β, δ)
∏

{`:yi`>0}

f(yi`; γi, θi)

where p((γi, θi) | {(γj, θj) : j 6= i}, β, δ) is given by expression (11). The M-H step proceeds
as follows:

• Let (γ
(old)
i , θ

(old)
i ) be the current state of the chain. Repeat the following update R2

times (R2 ≥ 1).

• Draw a candidate (γ̃i, θ̃i) from distribution p((γi, θi) | {(γj, θj) : j 6= i}, β, δ). (using
the form in equation 11)

• Set (γi, θi) = (γ̃i, θ̃i) with probability

q2 = min















1,

∏

{`:yi`>0}

f(yi`; γ̃i, θ̃i)

∏

{`:yi`>0}

f(yi`; γ
(old)
i , θ

(old)
i )















,

and (γi, θi) = (γ
(old)
i , θ

(old)
i ) with probability 1 − q2.
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3. Updating the hyperparameters: Once all the πi, i = 1, ..., I, are updated we obtain
I∗
1 (≤ I), the number of distinct πi, and the distinct values π∗

j , j = 1, ..., I∗
1 . Similarly, after

updating all the (γi, θi), i = 1, ..., I, we obtain a number I∗
2 (≤ I) of distinct (γi, θi) with

distinct values (γ∗
j , θ

∗
j ), j = 1, ..., I∗

2 .
Now, the posterior full conditional for β can be expressed as

p(β | ..., data) ∝ β−3 exp(−Aβ/β) ×

I∗
2

∏

j=1

Gamma(γ∗
j ; b, β).

so

p(β | ..., data) ∝ β−3 exp(−Aβ/β) ×

I∗
2

∏

j=1

β−b exp(−γ∗
j /β) ∝ β−(bI∗

2
+3) exp(−(Aβ +

∑I∗
2

j=1
γ∗

j )/β)

and we therefore recognize the posterior full conditional for β as an inverse gamma distribu-

tion with shape parameter bI∗
2 + 2 and scale parameter Aβ +

∑I∗
2

j=1 γ∗
j .

Analogously, the posterior full conditional for δ,

p(δ | ..., data) ∝ δ−3 exp(−Aδ/δ) ×

I∗
2

∏

j=1

gamma(θ∗j ; d, δ),

and we therefore obtain an inverse gamma posterior full conditional distribution for δ with

shape parameter dI∗
2 + 2 and scale parameter Aδ +

∑I∗
2

j=1 θ∗j .
Finally, the posterior full conditional for µπ is given by

p(µπ | ..., data) ∝ p(µπ) ×

I∗
1

∏

j=1

g10(π
∗
j ; µπ, s2

π)

and this does not lead to a distributional form that can be sampled directly. A M-H step
was used with a normal proposal distribution centered at the current state of the chain and
with variance tuned to achieve an appropriate acceptance rate.
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Table 1: Summary information for costs per day in dollars for 1994 and 1995.
n n Mean Std. Median Maximum Percentage

obs. groups Dev. Zero Claims

1994 8921 1075 6.79 21.01 1.11 643.02 .315
1995 8732 1129 5.18 11.63 0.88 297.30 .357
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Figure 1: Simulation case II. Posterior intervals (5-th to 95-th posterior percentile) for each
γi, i = 1, ..., 100, under the parametric (upper panel) and nonparametric (lower panel)
models. The circles denote the actual generated γi.
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Figure 2: Simulation case II. Posterior intervals (5-th to 95-th posterior percentile) for each θi,
i = 1, ..., 100, under the parametric (upper panel) and nonparametric (lower panel) models.
The circles denote the actual generated θi.
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Figure 3: Simulation case II. Posterior intervals (5-th to 95-th posterior percentile) for each
πi, i = 1, ..., 100, under the parametric (upper panel) and nonparametric (lower panel)
models. The circles denote the actual generated πi.
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Figure 4: Simulation case I — unimodal data. Posterior predictive densities for γnew (panels
(a) and (b)), for θnew (panels (c) and (d)), and for πnew (panels (e) and (f)), under the para-
metric model (left column) and the nonparametric model (right column). The histograms
plot the generated γi (panels (a) and (b)), θi (panels (c) and (d)), and πi (panels (e) and
(f)), i = 1, ..., 100.
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Figure 5: Simulation case II — multimodal data. Posterior predictive densities for γnew

(panels (a) and (b)), for θnew (panels (c) and (d)), and for πnew (panels (e) and (f)), under
the parametric model (left column) and the nonparametric model (right column). The
histograms plot the generated γi (panels (a) and (b)), θi (panels (c) and (d)), and πi (panels
(e) and (f)), i = 1, ..., 100.
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Figure 6: Posterior predictive inference for the random-effects distributions for the real data.
Panels (a) and (b) include the posterior predictive density for γnew under the parametric
and nonparametric models, respectively. (Note the different scale in these two panels.)
The posterior predictive densities for θnew and for πnew are shown in panels (c) and (d),
respectively; in all cases, the solid lines correspond to the nonparametric model and the
dashed lines to the parametric model.
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Prediction for group 69511
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Figure 7: Cross-validated posterior predictive inference for the real data. Posterior results
are based on data from year 1994 and are validated using corresponding data from year 1995
(given by the histograms in the two panels). The left panel includes posterior predictive
densities for claims under group 69511. Posterior predictive densities for claims under a new
group are plotted on the right panel. In both panels, solid and dashed lines correspond to
the nonparametric model and parametric model, respectively.
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