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ABSTRACT

This series of papers investigates the early stages of planet formation by modeling the evolution of the gas
and solid content of protostellar disks from the early T Tauri phase until complete dispersal of the gas. In this
first paper, I present a new set of simplified equations modeling the growth and migration of various species of
grains in a gaseous protostellar disk evolving as a result ofthe combined effects of viscous accretion and photo-
evaporation from the central star. Using the assumption that the grain size distribution function always maintains
a power-law structure approximating the average outcome ofthe exact coagulation/shattering equation, the model
focuses on the calculation of the growth rate of the largest grains only. The coupled evolution equations for
the maximum grain size, the surface density of the gas and thesurface density of solids are then presented and
solved self-consistently using a standard 1+1 dimensionalformalism. I show that the global evolution of solids
is controlled by a leaky reservoir of small grains at large radii, and propose an empirically derived evolution
equation for the total mass of solids, which can be used to estimate the total heavy element retention efficiency
in the planet formation paradigm. Consistency with observation of the total mass of solids in the Minimum Solar
Nebula augmented with the mass of the Oort cloud sets strong upper limit on the initial grain size distribution, as
well as on the turbulent parameterαt. Detailed comparisons with SED observations are presentedin a following
paper.

Subject headings:accretion disks – methods: numerical – solar system: formation

1. INTRODUCTION

1.1. Theoretical and observational motivations

More than two hundred extrasolar planets have now been
detected, revealing surprising diversity. Doppler surveys have
provided a large database of masses, orbital radii and eccentric-
ities, which show notably few (and a few notable) systematics,
as for example the relationship between stellar metallicity and
the number of detected planets (Fischer & Valenti, 2005). Tran-
sit detections are now also beginning to show a large diversity
in the internal structure of planets with otherwise very similar
properties (Guillotet al., 2006).

Fast-forwarding back a few Gyr, one can rightfully expect to
find the origin of exo-planetary diversity in the equivalentdiver-
sity of protostellar disks. And evidence has indeed been found
to support this idea. The observed fraction of stars showing
excess at near-IR (Haischet al. 2001, Hartmannet al. 2005,
Sicilia-Aguilar et al. 2006) and/or mid-IR wavelengths (Ma-
majek et al. 2004) steadily decreases from nearly 100% for
stars within the youngest clusters, to zero for stars withinclus-
ters older than about 20 Myr. This correlation has long been
interpreted as clear evidence for disk dispersal within a typical
timescale of about 10Myr, but is now beginning to gather addi-
tional interest as evidence for a large variation in the diskdis-
persal rates amongst similar type stars within the same cluster.
This dispersion could be related to variations in the initial disk
conditions and/or to the characteristics of the host star (Hueso &
Guillot, 2005). Other possible tracers of disk structure and/or
evolution (such as the crystallinity fraction and grain growth)
also reveal significant diversity: for instance, co-eval stars of
similar types show evidence for very different crystallinity frac-
tions (Meeuset al. 2003 for T Tauri stars, Apaiet al. 2005 for
brown dwarves).

Can the origin of this dynamical and structural diversity in-
deed be traced back to the initial conditions of the disk? Quali-
tatively speaking, can it explain why some systems form planets
while others don’t? Quantitatively speaking, is there a link be-
tween the initial angular momentum and mass of the disk and
the characteristics of the emerging planetary system?

Meanwhile, stringent upper bounds on the total amount
of heavy elements typically remaining as planetary building
blocks have been deduced from the very low metallicity dis-
persion measured amongst similar type stars within the same
cluster by Wildenet al. (2002). This result is puzzling in the
light of the contrastingly large range of observed disk survival
timescales: how can widely different dynamics lead to similar
retention efficiencies.

A necessary step towards answering these questions is the de-
velopment of a comprehensive numerical model capable of fol-
lowing the formation and evolution of planetary systems from
their earliest stages to the present day, including all of the phys-
ical processes currently understood to play a role in the evolu-
tion of the gas and solids.

The standard core-accretion model of planet formation be-
gins with the condensation of heavy elements into small grains,
followed by their stochastic collisional growth into successively
larger aggregates until they reach a typical mass (either col-
lectively or individually) where mutually induced gravitational
forces begin to influence their motions. The small planetes-
imals then continue growing by accreting each other (together
with some of the disk gas), until a critical point is reached where
runaway gas accretion may eventually begin. This first plane-
tary formation phase ends with the dispersal of the disk gas,
possibly by photo-evaporation, although gravitational interac-
tions between the various bodies continue taking place result-
ing in close encounters (sometimes collisions) with dynamical
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rearrangement of the system (including ejection, shattering, co-
agulation).

In this paper I present a numerical model for the first stage of
this process, in which a protostellar disk and all of its contents
(both in gaseous and in solid form) are evolved simultaneously
until complete dispersal of the gas. The next stages of evolu-
tion from this point onward are best treated with an N-body
code, for which the results presented here could be used as ini-
tial conditions.

Recent data obtained with the Spitzer Space Telescope has
provided valuable information on the evolution of grains inpro-
tostellar disks, which can be used to both construct and testthe
desired planet formation model. Since the near- and mid-IR
ranges of the observed spectral energy distributions (SEDs) are
essentially due to reprocessing of the stellar radiation bysmall
dust grains, the key to modeling planet formation in the con-
text of evolving disks is to better understand the relationship
between the observable SEDs and the physics which couple the
gas and dust dynamics under the gravitational and radiativein-
fluence of a central star. This is done in Paper II (Alexander &
Garaud, 2007).

1.2. General methodology

This work presents a new versatile numerical tool to study
the evolution of both gas and solids in protostellar disks, from
classical T Tauri disks to transition disks and finally to forming
planetary systems (embedded perhaps in a debris disk). The
model developed takes into account the following physical phe-
nomena: (i) axisymmetric 1+1D gas dynamics around the cen-
tral star, (ii) photo-evaporation by the central star, (iii) continu-
ous grain size distribution maintained by growth and fragmen-
tation, (iv) grain sublimation and condensation, (v) multiple
grain species (iron, silicates, ices), (vi) gas-grain coupling in-
cluding turbulent dust suspension, turbulent diffusion and drift
and (vii) gravitational interaction between forming embryos (in
a statistical sense).

While the general goal of modeling the early disk evolution
has been pursued by many others before, this particular model
is the first to include all of the physics listed above in a single,
well-tested, fast and practical algorithm. Other physicalphe-
nomena such as photo-evaporation by nearby stars, truncation
of the disk by stellar fly-by, or planetary migration are easyto
implement, but not discussed here. In order to place the model
in context, it is useful to summarize briefly existing work onthe
subject. A more thorough discussion of the results in the light
of previous work can be found in §6.

Axisymmetric gas dynamics in a viscously dominated ac-
cretion disk has been thoroughly analyzed by Lynden-Bell &
Pringle (1974). In subsequent work, particular attention was
given to studying the disk structure and evolution in the light
of SED observations (see Hartmannet al. 1998 for example).
Photo-evaporation of the gas by UV photons (either ambient
and/or emerging from central star) is now thought to play a
major role in the dispersal of the disk gas. This was studied
in detail by Hollenbachet al. (1994), and later proposed by
Clarke, Gendrin & Sotomayor (2001) as a possible model pro-
viding the characteristic “two-timescale” evolution (namely a
long lifetime with a rapid dispersal time) required by the low
relative abundance of transition disks (see the reviews by Hol-
lenbach & Gorti 2005, and Dullemondet al. 2007).

Meanwhile, the study of the evolution ofsolidsin protostel-
lar disks also has a long history, where the particular emphasis

has in the vast majority of cases been to model the formation
of our own solar system. The early works of Whipple (1972)
and Weidenschilling (1977) laid the foundation for studying the
motion of small solid bodies in the early solar nebula. Voelket
al. (1980) developed a theory for the dynamical coupling of
solid particles with turbulent eddies, which enabled many fur-
ther studies of the collisional growth of dust grains into plan-
etesimals (Weidenschilling, 1984 and subsequent papers, Wei-
denschilling & Cuzzi 1993, Stepinski & Valageas 1997, Suttner
& Yorke 2001, Dullemond & Dominik, 2005). Finally, steady
progress in the interpretation of various cosmochemistry data
has prompted the need for a better understanding of the evo-
lution of the various chemical species present in the disk, in
particular water. In addition to their own work, Ciesla & Cuzzi
(2006) present an excellent review of recent advances in the
field.

Combining the evolution of solids with the evolution of the
gas with the aim of bridging the gap between SED interpreta-
tions and our own solar system formation is naturally the next
step in this scientific exploration process. The work of Sut-
tner & Yorke (2001) pioneered the concept when looking at
grain growth and migration in the very early stages of the disk
formation (first few 104 yr). Alexander & Armitage (2007)
(AA07 hereafter) were recently the first to combine state-of-
the-art photo-evaporation models with grain migration to gain
a better understanding of the nature of some forming transi-
tion disks. The proposed model draws from many of the fun-
damental ideas of these previous studies; in particular, itcan
be thought of as a generalization of the AA07 model which
includes the effects of grain growth, sublimation and condensa-
tion.

Theoretical studies of dust growth typically require the so-
lution of a collisional equation at every spatial position of the
disk. Amongst some of the difficulties encountered one could
mention the determination of the particle structure, the sticking
efficiency, the shattering threshold and the size distribution of
the fragments, and not least the relative velocities of the parti-
cles before collision. Indeed, while the motion of particles in a
laminar disk is fairly easy to compute, matters are complicated
when dynamical coupling between grains and turbulent eddies
is taken into account. Tiny grains are well-coupled with the
gas though frictional drag, while larger “boulders” only feel the
eddies as a random stochastic forcing. The intrinsic dispersion
and the relative velocities of the particles can be modeled statis-
tically provided one assumes the gas eddies follow a turbulent
Kolmogorov cascade from the macro-scale to the dissipation
scale. This idea was originally proposed by Voelket al. (1980)
and more recently reviewed by various authors, notably Wei-
denschilling (1984). Yorke & Suttner (2001) and Dullemond
& Dominik (2005) used these velocity prescriptions to evaluate
the rate of growth of particles in protostellar disks by solving
the full coagulation equation. Their results show that the colli-
sional growth of particles in the inner regions of the disk istoo
fast, unless shattering is taken into account. It is therefore vital
to include it in evolutionary models of disks as well.

However, solving for the complete coagulation/shattering
equation for every particle size, at every timestep and for every
position in the disk is computationally prohibitive. Statistical
surveys of the typical outcome of the disk evolution for a wide
range of stellar parameters and initial conditions cannot be done
in this fashion.

The novel part of this work concerns the modeling of the evo-
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lution of the grain size distribution function under collisional
coagulation and shattering. The underlying assumption of the
model proposed is that collisions between dust grains are fre-
quent enough for a quasi-steady coagulation/shattering balance
to be achieved in such a way as to maintain a power-law parti-
cle size distribution function with index−3.5 as in the ISM, but
with varying upper size cutoffsmax. With this assumption, the
study of the evolution of solids in the disk can be reduced to
a small set of one-dimensional partial differential equations for
the maximum particle sizesmax(r, t), the total surface density of
gasΣ(r,t), as well as the total surface density of solids and va-
por for each species considered (Σi

p(r, t) andΣi
v(r, t), wherei is

the index referencing the species). Herer is the radial distance
from the central star andt is time. This idea is to be considered
as an alternative approach to the work of Ciesla & Cuzzi (2006)
for instance, who equivalently model the evolution of gas and
solids in the disk over the course of several Myr, simplifying
the collision/shattering balance by considering only four“size”
bins (vapor, grains, rapidly drifting “migrators” and finally very
large planetesimals).

1.3. Outline of the paper

The derivation of the model is presented in complete detail
in §2 (the result-minded reader may prefer to jump straight to
§3 and §4). The standard gas dynamics equations together with
the photo-evaporation model used are well-known, and summa-
rized for completeness in §2.1 and §2.2. The basic assumptions
for the particle size distribution model considered as the ba-
sis for this paper are presented in §2.3. The stochastic motion
of solids in the nebula resulting from frictional coupling with
turbulent eddies and from mutual gravitational encounter have
been studied by many others before. Key results from these
works are presented in §2.4, and later used in §2.5 and §2.6
to derive new equations for the growth of grains into planetes-
imals, as well as the evolution of the total surface density of
particles. Finally, §2.7 summarizes the very simple sublima-
tion/condensation model used here.

A general overview of the typical inputs and outputs of the
numerical model are given in §3 and §4 respectively. In orderto
gain a better understanding of the numerical results, §5 presents
existing and new analytical work characterizing the globalfea-
tures of the model (gas dynamics in §5.1, grain growth in §5.2,
evolution of solids in §5.3, §5.4 and §5.5). In particular, aplau-
sible new semi-analytical evolution equation for the totalmass
of solids in the disk is presented in §5.3.2, which depends only
on the initial conditions of the disk. Finally, the model andre-
sults are discussed in §6. Although this paper focuses primarily
on presenting the methods used (while paper II discusses the
observable properties of the modeled disks), I give some esti-
mates for the heavy-element retention efficiency of disks asa
function of the model parameters, and show how one could rec-
oncile the high diversity of observed disk properties with the
low dispersion in metallicities for star within the same cluster
(Wildenet al. 2002). Conclusions are summarized in §7.

2. MODEL SETUP

2.1. Evolution of the gas disk

In all that follows, I assume that the gas disk evolves inde-
pendently of the solids. Note that this is only true as long asthe
surface density of the gas is much larger than the surface den-
sity of solids; when the metallicityZ(r, t) = Σp/Σ approaches
or exceeds unity, solids begin to influence the evolution of the

gas through angular momentum exchange and possible gravita-
tional instabilities. Barring these cases, the standard evolution
equation forΣ(r,t) is

∂Σ

∂t
+

1
r

∂

∂r
(ruΣ) = −Σ̇w , (1)

whereu is the typical radial velocity of the gas required by con-
servation of angular momentum in the accretion disk,

u = −
3

r1/2Σ

∂

∂r

(

r1/2νtΣ

)

, (2)

andΣ̇w (where the dot from here on always denotes differentia-
tion with respect to the timet) is the gas photo-evaporation rate
modeled following the parametrization of AA07 (see Appendix
A).

The gas turbulent diffusivityνt is modeled using the standard
α -model

νt = αtch= αt
√

γΩKh2 , (3)

wherec is the local sound speed andγ is the adiabatic index of
the gas. Note that there is a degeneracy between models with
constantαt and one particular temperature profile, and models
with non-constantαt and another temperature profile yielding
the same value ofνt. This degeneracy combined with the crude
α−parametrization of turbulent transport used justifies the se-
lection of a very simple temperature profile:

Tm(r) = Trq
AU , (4)

where rAU is the distance to the central star in astronomical
units. The scaleheight of the disk then varies as

h(r) = hr(q+3)/2
AU . (5)

In what follows, I adopt the same disk model as that used by
AA07:

q = −1/2 ,

hAU = 0.0333 . (6)

Note that AA07 defineq as the power index ofh(r) instead
of the power index ofTm(r) used here; the apparently differ-
ent values do correctly represent the same model. Although
the numerical algorithm I have developed can be used with any
input for q andhAU , this particular value ofq is preferred as
it greatly simplifies the analytical interpretation of the numeri-
cal results; indeed, in this caseνt scales linearly with radius, a
feature which turns out to be particularly useful.

2.2. Evolution of vapor species

Chemical species in vapor form are evolved separately using
the following standard advection-diffusion equation for acon-
taminant in a fluid of densityΣ moving with velocityu:

∂Σ
i
v

∂t
+

1
r

∂

∂r
(ruΣ

i
v) =

1
r

∂

∂r

[

rνtΣ
∂

∂r

(

Σ
i
v

Σ

)]

, (7)

where it was implicitly assumed that the diffusivities of each
chemical species are equal to the gas viscosity, andu is given
by equation (2). Sublimation and condensation are assumed to
be instantaneous on the timescales considered and are calcu-
lated as a separate numerical step (see §2.7).

2.3. Particle size distribution function

Collisional encounters between solid particles can resultin
their coagulation or mutual shattering, the latter sometimes fol-
lowed by the re-accretion of material onto the largest remaining
fragments. However complex the mechanisms considered are,
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the size distribution function of the particles is naturally ex-
pected to relax to a quasi-steady equilibrium power-law within
a few collision times. Theoretical arguments on the steady-state
nature of the collisional cascade imply that the power-law in-
dex depends on the relationship between the relative velocities
of the objects and their material strengths (O’Brien & Green-
berg, 2003). Such power-laws are observed in the ISM (with
index -3.5, Mathis, Rumpl & Nordsieck, 1977), for Kuiper-belt
objects (with varying index depending on the size range) and
for asteroid-belt objects. This model is constructed by assum-
ing that encounters are frequent enough to maintain a quasi-
steady equilibrium, which results in a power-law size distribu-
tion (with fixed index -3.5) for all particles of size less than
smax:

dn
ds

=
nmax

smax

(

s
smax

)−3.5

for s∈ [smin,smax] ,

dn
ds

= 0 otherwise (8)

where I allow the normalizing densitynmax, and the maximum
particle sizesmax to vary both with radius and with time. The
minimum particle sizesmin is fixed, although its value does
not influence the dynamical evolution of the disk as long as
smax ≫ smin (since most of the solid mass is contained in the
largest grains). Note the value ofsmin influences the SED since
the smallest grains contribute the most to the total emitting sur-
face area.

If the particles are spherical with uniform solid densityρs
then the total density of solids is

ρp =
∫ smax

smin

dn
ds

m(s)ds= 2nmaxmmax (9)

providedsmin ≪ smax, wherem(s) is the mass of particles of size
s, andmmax is the mass of particles of sizesmax namely

mmax =
4π

3
ρss

3
max . (10)

This power-law size distribution function implies that 50%
of the total mass is contained in particles of sizes ∈
[0.25smax,smax].

The total surface density of particles is

Σp(r, t) =
∑

i

Σ
i
p(r, t) . (11)

All condensed heavy elements present at a particular radiusr
are assumed to be fully mixed, or in other words, each particle
has a mixed chemical composition that can vary depending on
its radial position within the disk. Within this assumption, nmax
can be related to thetotal density of solids only, and within the
particle disk (near the disk midplane), is directly relatedto the
total surface density of particles via the equation

nmax =
Σp

2mmax

√
2πhp

(12)

(assumingρp has a Gaussian profile across the disk with scale-
heighthp). Note that the particle scaleheighthp depends on the
mechanism exciting the intrinsic particle dispersion, which can
be frictional coupling with turbulent eddies or mutual gravita-
tional interactions. It is naturally independent of the particle
species considered. Explicit expressions forhp in these two
limits are given below.

2.4. Particle motion

Motion of particles within the disk can be induced by various
possible forces: Brownian motion, motion induced by frictional
drag with the gas and motion induced by interactions with the
gravitational potential of the central star or that of otherlarge
planetesimals. The dominant term depends on the particle size.

Since the only particles considered here have sizesmax,
Brownian motion is typically negligible. In a turbulent neb-
ula, particles of various sizes couple via gas drag to the tur-
bulent eddies and can acquire significant velocities when their
typical stopping time is comparable with the eddy turnover
time. Larger particles are only weakly coupled with the gas
but undergo significant gravitational interactions with each
other which constantly excite their eccentricities and inclina-
tions. These mechanisms can be thought of as various kinds
of stochastic forcing. Finally, non-stochastic forces arise from
the gravitational potential of the central star, and when com-
bined with gas drag, can cause particles to sediment towards
the mid-plane of the disk as well as spiral inward (occasionally
outward).

These regimes are now described in more detail.

2.4.1. Turbulence-induced dynamics

In this section, I summarize existing results on the statistical
properties of the dust dynamics resulting from their frictional
coupling with turbulent eddies, and apply them to the problem
at hand.

1. Frictional drag. Particles are coupled to the gas through
frictional drag. The amplitude of the drag force is statistically
proportional to the relative velocity between the particleand the
gas, with a proportionality constant that depends on whether the
particle size is smaller or larger than the mean-free-path of the
gas moleculesλmfp (Whipple, 1972).

If the particle is much smaller thanλmfp (Epstein regime),
drag forces originate from random collisions with the gas
molecules, and the typical timescale within which the particle
will stop relative to the gas is

τ (s) =
sρs

ρc
. (13)

If the particle size is much larger thanλmfp (Stokes regime)
then the gas drag is principally caused by the turbulent wakein-
duced by the particles as it passes through the gas. In this case,
the particle stopping time is

τ (s) =
sρs

ρCDσ
, (14)

whereσ is the typical velocity of the particle with respect to the
gas, and the constantCD ≃ 0.165 (see Whipple 1972, Garaud,
Barriere-Fouchet & Lin 2004).

In what follows, it is useful to defineSt(s) as the ratio of the
local stopping time to the local orbital timeτd = 2π/ΩK (Wei-
denschilling, 1977), also called the Stokes number:

St(s) =
τ (s)
τd

. (15)

Note that the Stokes number is equally as often defined as
ΩKτ (s) by other authors (Dullemond & Dominik 2005 for in-
stance).

2. Relative velocities of particles.As first estimated by Voelket
al. (1980) and summarized by Dullemond & Dominik (2005)
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(see also Weidenschilling 1984), particles of various sizes can
acquire significant relative velocities through their frictional
coupling with turbulent eddies. This effect depends on the
relative values of the eddy turnover time and of the particle
stopping time. For Kolmogorov turbulence with large-scale
eddy velocityve ≃

√
αtc and large-scale turnover time compa-

rable with the dynamical timescaleτd, the Reynolds number
Re= veτ

2
d/ν determines the eddy turnover time at the dissipa-

tion scale asτν = τdRe−1/2. Then, for two particles of respective
stopping timesτ (s) andτ (s′)

∆v(s,s′) =

[

(τ (s) − τ (s′))2

τd(τ (s) + τ (s′))

]1/2

ve if τ (s′), τ (s) ≤ τν , (16)

∆v(s,s′) = ve if τ (s′) ≤ τd ≤ τ (s) ,

∆v(s,s′) =

[

τd

τd + τ (s)
+

τd

τd + τ (s′)

]1/2

ve if τd ≤ τ (s′), τ (s) ,

∆v(s,s′) =
3

τ (s) + τ (s′)

[

max(τ (s), τ (s′))3

τd

]1/2

ve otherwise.

Note that in the first limit I have set
√

lnRe/2 = 1 for sim-
plicity, which is underestimating the true collisional velocity
by a factor of no more than about 4. This factor will be com-
pensated for later (see §2.5). Also note that the expressionfor
the relative velocities in (17) has been corrected from thatof
Weidenschilling (1984) or Dullemond & Dominik (2005) to
account for an error pointed out by Ormel & Cuzzi (2007).

3. Particle diffusion and effective Schmidt number.The stan-
dard parametrization for the stochastic motion of particles of
single sizes coupled by gas drag to turbulent eddies is through
the introduction of a turbulent diffusive mass fluxft(s) in the
particle continuity equation, typically

ft(s) = −ρDp(s)∇
(

ρp(s)
ρ

)

, (17)

where theturbulent diffusivity Dp(s) is related toνt through the
size-dependent Schmidt number

Dp(s) =
νt

Sc(s)
. (18)

The smallest particles are fully coupled with the gas so that
Sc(s) ≃ 1 if τ (s) ≫ τd. The standard parametrization for the
Schmidt number in the case of large particles has long been
Sc(s) ≃ St(s) (see for instance Dubrulle, Morfill & Sterzik,
1995), so thatSc(s) can be crudely approximated asSc(s) =
1 + St(s). Recent numerical and analytical work have shed
doubts on this formula in favor ofSc(s) ∝ St2(s) for large par-
ticles (Carballido, Fromang & Papaloizou 2006) and have also
questioned the validity of equation (17) in favor of a different
formalism involving the equilibrium solution a Fokker-Plank
equation. Since these very recent studies have not yet been fully
completed (in particular, they only consider particle diffusion in
thez-direction and do not propose an alternative formalism for
the radial diffusion of particles in the disk), I continue for the
moment to adopt the standard parametrization of the Schmidt
numberSc(s) = 1+ St(s).

For a fluid containing a size distribution of particles, the local
diffusive mass flux of particles is obtained by integratingft(s)
across all sizes, yielding

ft = −Dpρ∇
(

ρp

ρ

)

, (19)

with Dp = νt/Sceff and the effective Schmidt numberSceff being

Sceff =

√
Stmax

arctan(
√

Stmax)
. (20)

Note thatSceff is of order unity whenStmax → 0, as expected,
while Sceff ≃ 2

√
Stmax/π if Stmax→∞. This is quite different

from the single particle size case, where the Schmidt number
scales linearly with particle size instead of with

√
smax in the

decoupled limit. This reflects the fact that smaller particles
remain well-coupled with the gas even when particles of size
smax are fully decoupled.

4. Dust disk scaleheight.Following the work of Dubrulle,
Morfill & Sterzik (1995), the dust disk scaleheighthp can be es-
timated by seeking stationary solutions of the settling/diffusion
equation

∂ρp

∂t
−

1
3

∂

∂z

(

zΩ2
Kτ (smax)ρp

)

=
∂

∂z

[

ρDp
∂

∂z

(

ρp

ρ

)]

, (21)

where the factor of 1/3 arises from the mass-weighted integral
of the settling velocities over the dust-size distributionfunction.
Integrating this equation with height above the disk and assum-
ing steady-state yields

hp = h

(

1+
2π

3
StmaxSceff

αt
√

γ

)−1/2

, (22)

whereh is the gas scaleheight.

2.4.2. Gravitationally-induced motions

As described by Kokubo & Ida (2002), the typical velocity
dispersion of a swarm of planetesimals (which is also equal to
their typical relative velocities) can be deduced from the bal-
ance between gravitational excitation by the largest bodies, and
damping by gas drag. The typical timescale for the excitation
of the dispersionσ(s) of planetesimals of sizesby protoplanets
of sizesmax is given by equation (9) of Kokubo & Ida (2002)

Tex =
4r2b < i2(s) >1/2 σ(s)3

G2m2
maxlnΛ

, (23)

where lnΛ is the Coulomb logarithm, typically of the order of
a few (here, I set lnΛ = 3). The typical orbital separationb
of the emerging protoplanets is of the order of a few Hill radii
(Kokubo & Ida 2002):

b = b̃rH = 10

(

2mmax

3M⋆

)1/3

r , (24)

where b̃ = 10. The average inclination of the planetesimals
< i2(s) >1/2 is assumed to be of the order of the average eccen-
tricity, so that< e2(s) >1/2= 2< i2(s) >1/2. Finally, the random
velocity of the planetesimals is also assumed to be related to
their average eccentricity by

σ(s) =< e2(s) >1/2 vK . (25)
The timescale for damping of the typical inclination and eccen-
tricity of the planetesimals is dictated by Stokes drag, namely

Tdp =
2m(s)

CDπs2ρσ(s)
. (26)

Equating the two timescales yields the velocity dispersionfor
planetesimals of sizes in the presence of protoplanets of size
smax

σ(s) =

(

3
2

)1/15[4lnΛ

3
√

γSt(s)
2π

CDb̃

h
r

]1/5(mmax

M⋆

)1/3

vK .

(27)
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As Kokubo & Ida (2002) found, this expression is only weakly
dependent on the planetesimal size. If the gravitational pertur-
bations are assumed to be statistically independent, then the rel-
ative velocities of the planetesimals are equal to their velocity
dispersion. The weak dependence on size then implies that one
can approximate the typical scaleheight of the planetesimals as

hp ≃< i2(smax) >1/2 r . (28)

2.5. Particle growth

In the proposed model, the particle size distribution func-
tion is parametrized with the power-law form given in equa-
tion (8), under the assumption that such power-law is natu-
rally maintained as the quasi-steady state outcome of a coag-
ulation/shattering balance. The normalization factornmax is di-
rectly related to the total surface density of the dustΣp, while
the maximum achievable sizesmax slowly grows in time as a
result of occasionally successful coagulation events.

Following this idea, I model the evolution equation forsmax
from the standard coagulation equation

dmmax

dt
=
∫ smax

smin

dn
ds

(s′)m(s′)∆v(smax,s
′)A(smax,s

′)ǫds′ (29)

where∆v(smax,s′) is the average relative velocity between par-
ticles of sizesmax and sizes′, A(smax,s′) is the collisional cross-
section of the two particles andǫ is the sticking probability
of the two particles after the collision, or can be alternatively
thought of as the average mass fraction of the impactor that
sticks to the target after each collision. Note that in principle ǫ
could depend on the collisional velocity, on the structure of the
particles and on their size. In what follows, the functionǫ will
be chosen to be constant across all sizes and relative velocities
for simplicity. This approximation is rather unsatisfactory, but
merely mirrors insufficient knowledge about the exact charac-
teristics of the dust or larger particles. It can also be thought of
as a weighted average of the true collisional efficiency across
all size ranges and all possible impact velocities.

2.5.1. Growth of particles in the turbulent regime

For solid particles typically smaller than a few kilometers
gravitational focusing is negligible (see below). Within this ap-
proximation, the collisional cross-section of two particles is re-
duced to the combined geometrical cross-section:

A(s,s′) = π(s+ s′)2 . (30)

Using the expressions derived in §2.4.1 for the relative ve-
locities and the particle disk scaleheight, it is now possible to
re-write equation (29) in a much simpler form. Three limits
must first be considered:τ (smax) ≪ τν , τν < τ (smax) < τd and
τd ≪ τ (smax).

Case 1:τ (smax) ≪ τν . In this case the particle growth is gov-
erned by

dsmax

dt
=

Σp

8ρs

√

2πγ
h
hp

√

αtStmax
I1

τd
, (31)

where the integralI1 is given by

I1 =
∫ 1

smin
smax

ǫx−0.5(1+ x)3/2(1− x)dx . (32)

Assuming that the sticking efficiencyǫ is constant, and that
smin/smax≪ 1 the integral simplifies toI1 ≃ 1.8ǫ.

Case 2:τν < τ (smax) < τd. In this case,
dsmax

dt
=

Σp

8ρs

√

2πγ
h
hp

√

αtStmax
I2

τd
, (33)

where the integralI2 is given by

I2 =
∫ 1

smin
smax

3ǫx−0.5(1+ x)dx . (34)

Under the same assumptions as in Case 1,I2 ≃ 8ǫ.

Case 3: τd ≪ τ (smax). This third case is slightly more com-
plex, as the integral over particle sizes must be split between
two bins, namelyτ (s′) < τd andτ (s′) > τd. This yields (in the
limit considered)

dsmax

dt
=

Σp

8ρs

√

2πγ
h
hp

√

αt

Stmax

I3 + I4

τd
, (35)

whereI3 ≃ 2ǫ andI4 ≃ 5ǫSt−0.1
max.

For simplicity, the three cases can be combined into one for-
mula only, namely

dsmax

dt
=

Σp

ρs

√

2πγ
h
hp

√

αtStmax

1+ 64St2max(2+ 5St−0.1
max)−2

ǫ

τd
. (36)

This expression overestimates the growth rate of the smallest
particles (i.e. case 1) by a factor of about four. This error
closely compensate for the factor of 4 underestimate in the
collisional velocity of the smallest particles deliberately made
in equation (17). The proposed expression recovers the for-
mula for grain growth proposed by Stepinski & Valageas (1997)
within factors of order unity (see their equation (38)).

2.5.2. Growth of particles in the gravitationally dominated
regime

In this regime, the collisional cross-section is equal to the ge-
ometrical cross-section augmented by a gravitational focusing
factor:

A(s,smax) = π(s+ smax)2(1+ Θ) whereΘ =
2Gmmax

smaxσ2(s)
. (37)

When the Safronov numberΘ is large, this expression simpli-
fies to

A(s,smax) ≃
2πGmmaxsmax

σ2(s)

(

1+
s

smax

)2

. (38)

In addition, as particles grow larger in size, most of solid ma-
terial becomes concentrated in fewer and fewer objects, until
isolation mass is reached (all of the available material is con-
tained in one object). In this work, I assume that the growing
protoplanet can indeed accrete all the material available within
the region of the disk centered onr and of width equal to∆r
with

∆r = min(
√

A(smax,smax), b̃rH) . (39)

In other words, the total surface density of material available
for growth (excluding the mass contained in the growing proto-
planet itself) is

Σp −
mmax

2πr∆r
. (40)

Finally, using the expressions derived in §2.4.2 for the parti-
cle velocity dispersion and for the disk scaleheight, the growth
of the largest object is found to be governed by the equation

dsmax

dt
=

nmaxmmax

3
2πGs2

max

σ(smax)
I5 , (41)
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where

I5 =
∫ 1

smin/smax

ǫx−0.7(1+ x)2dx≃ 5.3ǫ , (42)

andnmax is reduced to include only the material available for
growth (see equation (40)) ,

2nmaxmmax =
Σp − mmax

2πr∆r√
2πhp

(43)

so that
dsmax

dt
≃ 1.77ǫ

Σp − mmax
2πr∆r√

2πhp

πGs2
max

σ(smax)
. (44)

2.5.3. Transition size

The transition between the collisional regime dominated by
turbulence and the collisional regime dominated by gravita-
tional interactions is determined by the size for which the es-
timates of the velocity dispersion are equal, namely when

< e2(smax) >1/2 vK =
ve√
Stmax

. (45)

Note that although this size depends on the surface density and
temperature of the gas, and therefore on the position withinthe
disk, it is typically of the order of a few kilometers. Beyond
the transition size, the Safronov number is indeed found to be
much larger than unity, justifying the use of the approximation
Θ ≫ 1 in equation (38).

2.6. Evolution of the surface density of particles

The equation of evolution the surface density for each species
condensed into solid particles is given by Takeuchi, Clarke&
Lin (2005) for instance, as

∂Σ
i
p

∂t
+

1
r

∂

∂r

(

rF i
t + rΣi

pup
)

= 0 , (46)

whereF i
t is the vertically integrated equivalent diffused mass

flux cause by gas turbulence for each particle species (see equa-
tion (19)) andup is the mass-weighted drift velocity of the par-
ticles resulting from gas drag.

The radial velocity of a particle of sizes was calculated by
Weidenschilling (1977) and can be written in the notation used
here as

up(s) =
u

4π2St2(s) + 1
− 2ηvK

2πSt(s)
4π2St2(s) + 1

, (47)

whereη is related to the radial pressure gradient in the disk:

η = −
1
2

h2

r2

∂ ln p
∂ ln r

. (48)

Note that the constantη reflects the difference between the typ-
ical orbital gas velocity and the Keplerian velocity at the same
location in the disk. The mass-weighted average particle veloc-
ity is then determined by the integral

up =

√
2πhp

Σp

∫ smax

smin

m(s)up(s)
dn
ds

ds , (49)

which integrates to
up = uI(

√

2πStmax) − 2ηvKJ(
√

2πStmax) , (50)
where the functionsI andJ are given by

I (x) =

√
2

4x

[

f1(x) + f2(x)
]

and

J(x) =

√
2

4x

[

− f1(x) + f2(x)
]

where

f1(x) =
1
2

ln

(

x2 + x
√

2+ 1

x2 − x
√

2+ 1

)

,

f2(x) = arctan(x
√

2+ 1)+ arctan(x
√

2− 1) . (51)

The functionsI andJ are shown in Figure 1. Finally, note that
planetary migration resulting from planet-disk interaction (type
I or type II migration) is not taken into account here.

2.7. Sublimation/condensation

Given the simplistic temperature profile used in this work, a
simple sublimation/condensation model suffices. The sublima-
tion and condensation of each chemical species is assumed to
be instantaneous in time. After each timestep the new surface
densities in solid and vapor forms are recalculated according to
the very simple algorithm

Σ
i(r,t) := Σ

i
p(r,t) + Σ

i
v(r,t) ,

Σ
i
p(r,t) :=

Σi(r,t)
2

[

1+ tanh

(

Ti − Tm(r)
∆T

)]

,

Σ
i
v(r,t) := Σ

i(r,t) − Σ
i
p(r,t) , (52)

where Ti is the typical sublimation temperature of thei−th
species, and∆T is taken to be 10K (in practise, the exact value
of ∆T only influences the radial extent of the sublimation re-
gion).

2.8. Numerical procedure

The details of the numerical procedure adopted are given in
Appendix B, for reference. The algorithm constructed follows
the simple pattern at each timestep, from a given set of initial
conditions; (i) test whether particles of sizesmax are governed
by turbulent or gravitational interactions (ii) evolutionof the
particle size though collisions using equations (36) or (44) ac-
cordingly (iii) evolution of the gas density (iv) evolutionof the
vapor-phase of each species (v) evolution of the particle phase
of each species (vi) condensation/sublimation and calculation
the total surface density of particles.

The numerical scheme adopted uses a standard split-operator
techniques, where diffusion terms are integrated using a Crank-
Nicholson algorithm, the advection terms are integrated using
an upwind explicit scheme and other nonlinear terms are inte-
grated using a 2nd order Adams-Bashforth scheme.

Depending on the spatial accuracy and the number of grain
species studied, the typical integration time required to evolve
of a single disk over several Myr varies between a few hours
and a day on a conventional desktop.

3. MODEL PARAMETERS AND INITIAL CONDITIONS

3.1. Model parameters

The numerical model requires a certain number of input pa-
rameters, listed in Table 1; these are separated between stellar
parameters, photo-ionizing wind parameters, disk parameters
and finally grain parameters. Default values for a “fiducial
model” are also given.

TABLE 1: Fiducial model parameters
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FIG. 1.— I(x) (solid line) and J(x) (dashed line). Asx→ 0, I(x) → 1 andJ(x) → x2/3. Asx→ +∞, I(x) andJ(x) both tend to
√

2π/4x.

Stellar Mass M⋆ 1 M⊙

Stellar Luminosity L⋆ 1 L⊙

Stellar Radius R⋆ 1 R⊙

Stellar Temperature T⋆ 1 T⊙
Sound speed of ionized gas ci 106cm/s
Amplitude of photo-ionizing flux Φi 1042photons/s
Turbulentα αt 10−2

Scaleheight at 1AU hAU 0.0333
Temperature power law index q -1/2
Inner disk radius r in 0.01 AU
Outer disk radius rout 2000 AU
Solid density of grains ρs 1.0
Sticking efficiency ǫ 10−2

Separation of protoplanets b̃ 10

The various values selected for this fiducial model deserve
comments. The star is chosen to be a solar-type star for ease
of comparison of the results with the model of Stepinski &
Valageas (1997) and Ciesla & Cuzzi (2006). Another possi-
ble choice would have been to select a typical T Tauri star
(M⋆ = 0.5M⊙, T⋆ = 4000K, andR⋆ = 2.5R⊙) which was done
by Dullemond & Dominik (2005). Detailed discussions on
the values of the parameters associated with the photo-ionizing
wind can be found in the work of AA07.

The value ofαt is selected to be 0.01, which is a reasonable
upper limit on the value that seems to be favored by numeri-
cal simulations of MRI turbulence (Fromang & Nelson 2006).
However, by selecting a constant value ofαt both in time and
space, I neglect possible effects of dead-zones (Gammie, 1996)
which may not exist anyway (see Turner, Sano & Dziourke-
vitch, 2007) as well as the transition from angular momentum
transport dominated by gravitational instabilities to angular mo-
mentum transport dominated by MRI turbulence. The inner
disk radius is chosen as a plausible location for the magneto-
spheric truncation radius (Hartmann, Hewett, & Calvet, 1994)
while the outer disk radius is chosen at an arbitrarily largedis-
tance from the central star.

The solid density of grainsρs is an elusive parameter since it
is quite likely to vary strongly with time and with distance from
the central star, both through repeated compaction events,self-

gravity (in the case of large objects) and chemical composition.
Here it is set to unity for simplicity, although this is admittedly
not very satisfactory. The sticking efficiency is equally difficult
to constrain a priori, although fascinating computationaland
experimental studies (see the review by Dominiket al., 2007)
are beginning to shed light on the subject. Here, I begin by as-
suming a value of 0.01, and later discuss possible constraints on
this value from observations of the grain surface density profile
of disks.

3.2. Model initial conditions

The model described in this paper does not take into account
the evolution of gas induced by self-gravity. It also ignores in-
fall of mass onto the disk. As a consequence, it is limited to the
study of disks which are gravitationally stable with negligible
infall. The “initial” conditions should be thought of as thestate
of the disk after the Class I phase.

The required initial conditions of the model are: the initial
surface density of the gas, the initial total surface density of
heavy elements (both in gas and solid form), the respective pro-
portion of heavy elements contained in each chemical species,
and finally the initial maximum sizesmax of the dust particles.

The initial surface density of the gas is selected to be a trun-
cated power law (Clarke, Gendrin & Sotomayor 2001)

Σ(r,0) =
M0

2πR0r
e−r/R0 , (53)

and can therefore be easily characterized by the initial gasdisk
massM0 = M(0) and the initial disk “radius”R0. The initial
total surface density of heavy elements (in both gas and solid
form) is chosen to be a constant fraction ofΣ(r,0), with

Σp(r,0) = Z0Σ(r,0) , (54)

and thus can be characterized by one parameter only, namely
the initial metallicity fractionZ0. The code is written in a very
versatile way which allows the user to decide how many sep-
arate chemical elements to follow. The user needs to input
the initial mass fraction of each chemical element, as well as
their sublimation temperature under pressure and density con-
ditions typical of accretion disks. As a first step, the sublima-
tion/condensation routine is then run to decide what fraction
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of the total mass is in solid or in vapor form. The total solid
particle density is then recalculated accordingly.

Finally, the initial size of the particlessmax(r,0) must be cho-
sen; for simplicity, it is assumed to be constant withsmax(r,0) =
smax0. Although this is clearly an unrealistic initial condition,
grain growth in the inner disk is so rapid that all “memory” of
the initial conditions is lost within a few hundred years. On
the other hand, since growth is negligible in the outer disk,
smax(r,t) ≃ smax0 there. Hence selecting the value ofsmax0 ef-
fectively determines the timescale for the evolution of solids in
the disk (see §6.2). While the fiducial model considerssmax0
to be equal to the maximum plausible particle size in the MRN
size-distribution function for the ISM, one could also imagine
grains to grow even in the core-collapse phase. Suttner & Yorke
(2001) found that grains could achieve sizes up to 10µm post-
collapse, and so I will consider cases with varying initial con-
ditions forsmax0 in addition to the fiducial model (see §5.3).

Table 2 summarizes the initial condition input parameters,
and gives typical values for a fiducial run.

TABLE 2: Fiducial model initial conditions.

Initial disk mass M0 0.05M⋆

Initial disk radius R0 30 AU
Initial metallicity Z0 10−2

Number of species maxtype 3
Initial smax smax0 1µm

The initial chemical composition of the dust, in the fiducial
model, is taken to be the following: 45% “Ices” and other
volatile materials (with sublimation temperatureTIc = 170K),
35% refractory material (with sublimation temperatureTSi =
470K) and 20% finally iron-based material (with sublimation
temperatureTFe = 1300K). The solid composition and subli-
mation temperatures are adapted from Table 2 and Table 3
of Pollack et al. (1994) to account for a reduced number of
species.

The fiducial initial model (after condensation/sublimation of
the relevant species) is presented in Figure 2.

3.3. Model tests

The numerical algorithm was tested against the results of
AA07 for the evolution of the gas and grains by using their
initial conditions, switching off grain growth, sublimation and
condensation, and by replacing equation (50) for the drift veloc-
ity with equation (47). Both gas and grain evolution are found
to be in perfect agreement, as required.

4. OVERVIEW OF RESULTS IN THE FIDUCIAL MODEL

The fiducial model presented in §3 was integrated forward
in time until complete dispersal of the gas. Figure 3 shows the
evolution of the surface density of the gas, the total solid sur-
face density as well as that of the three species considered.Fig-
ures 4a and 4b show the evolution of the particle size and total
metallicity as a function of radius and time. Finally, Figure 5
shows the evolution in time of the total mass of gas and dust in
the disk.

4.1. Evolution of the gas surface density

The characteristic evolution ofΣ(r, t) under this particular
photo-ionizing wind model has been extensively studied by

Alexander, Clarke, & Pringle, (2006a and 2006b) (see also
Clarke, Gendrin & Sotomayor, 2001). It can be seen in Fig-
ure 3 as a dotted line, and in more detail in Figure 6. While the
mass flux from photo-evaporation is negligible compared with
the mass flux from viscous accretion/spreading, the disk under-
goes a long period of near self-similar evolution. When both
fluxes become comparable a depression appears inΣ(r,t) and a
gap eventually forms, here at radiusrgap = 0.9 AU, at t = 7Myr.
Within a few thousand years, most of the gas in the inner disk
has been accreted onto the central star, while the radius of the
hole begins to expand as a result of direct photo-evaporation.
At t = 7.12Myr, the hole radius has retreated to 200AU, and
finally beyond 500 AU aftert = 7.19Myr.

While the evolution of the gas is (in this model) independent
of the evolution of solids, particle growth and particle migration
are nonlinearly strongly coupled.

4.2. Particle growth

The evolution of the maximum particle sizesmax(r,t) is
shown in Figure 4a both for very early times and at later times.
Grain growth is extremely rapid in the inner disk regions in the
early stages of disk evolution, in particular near sublimation
lines. Within just 100,000 yr, a characteristic shape to thecurve
smax(r,t) appears, which contains three different regions: (I) in
the innermost disk region (r smaller than a fraction of 1 AU),
a slightly tilted plateau corresponding to the particles having
reached isolation mass; (II) a power-law region (from a frac-
tion of 1 AU to about 100AU); (III) a region where grains have
undergone negligible growth. Superimposed on this character-
istic shape are a set of peaks corresponding to the successive
sublimation lines. The transition between region I and region
II is easily identified as the transition between the gravitational
regime and the turbulent regime; its steepness confirms thatas
soon as gravitational focusing becomes effective, the collision
rate increases and particles rapidly reach isolation mass.The
transition between region II and region III can also be easily
identified as the region where the growth timescale of particles
of sizesmax0 becomes comparable with the age of the disk.

Once established (after the first Myr), the global shape of the
curvesmax(r,t) varies little with time (see solid lines), although
particles within the sublimation region continue growing,and
the three regions slowly expand outward.

4.3. Solid density and chemical composition

The evolution of the solid density is shown in Figure 3. Small
particles well-coupled with the gas (Stmax ≪ 1) closely follow
its inward or outward motion depending on the radial position
considered. As a result, during the initial viscous spreading of
the disk (within the first Myr) a significant proportion of the
mass in solids is transported outward with the gas creating a
large reservoir of small dust grains at large radii (r > 100AU).
Meanwhile, particles in the inner regions of the disk (r < 10
AU) rapidly grow and begin to drift towards the central star dif-
ferentially from the gas, which results in local changes in the
metallicityΣp/Σ. Figure 4b shows the evolution of metallicity
in more detail, and reveals that the inner and intermediate disk
go through an initial phase of strong depletion in heavy ele-
ments. Later, the global evolution of the surface density ofpar-
ticles is controlled by the mass flux incoming from large radii.
The observed increase in the metallicity is essentially related to
the decrease inΣ through photo-evaporation.

In addition to this global trend strong surface density peaks
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FIG. 2.— Initial dust and gas surface densities in the fiducial disk model. The dotted line corresponds to the molecular gas and the solid line to the total surface
density of solids. The three species considered are: the volatile material (dot-dot-dot-dash line), refractory material (dot-dash line) and the iron-rich material (dashed
line).

can be observed near the successive sublimation lines. These
are presumably caused by the differential drift of the solidand
vapor form of each chemical species (Stepinski & Valageas
1997, Ciesla & Cuzzi, 2006). The peaks consistently stand
roughly one to two orders of magnitude above the smoother
“background” surface density profile, but do not appear to grow
independently of it beyond the first 100,000 yrs. As the gas den-
sity decreases, the local metallicity near the sublimationlines
steadily grows. By 4Myr, the sublimation line for refractory
materials has equal content in gas and solids, suggesting the
possibility of local onset of gravitational instability ofsolids
(which is not modeled here). After 6Myr, the two remaining
sublimation lines (for the volatile and iron-rich material) also
pass the same threshold. Interestingly, Figure 3 reveals that the
very rapid growth of material near each sublimation line traps
a variety of grain species into the growing bodies, so that the
strong enhancement in the surface density of icy bodies nearthe
volatile sublimation line is accompanied by an enhancementin
the surface density of refractory materials and iron-rich mate-
rials. The same phenomenon is observed near the sublimation
line for refractory materials.

4.4. Disk masses

The evolution of the total mass in gas and solids in the disk
is shown in Figure 5 as dotted and solid lines respectively. Also
shown are the total amount of solids found within 20 AU and
outside of 20AU. Att = 0, the solid mass is equally distributed
between the inner (< 20 AU) and the outer disk (> 20AU);
Within a short time (of the order of 100,000yr), most of the
mass in the inner disk accretes onto the central star, while the
mass contained in the outer disk remains at a constant fraction
of the disk mass in gas. Beyond this point, the mass in the inner
disk is controlled by the flux of material drifting in from the
outer disk.

When the gap opens (at 7Myr), the total mass of gas drops
precipitously (within about 200,000 yr) while the total mass of
solids remains constant. The total content of solids left inthe
disk after complete photo-evaporation of the gas is about 1.3
×10−5M⊙, or in other words about 4 Earth masses. Only 20%
of this amount is located within the inner 20AU of the disk,

while the remaining 80% are swept out to the outer disk.

5. MATHEMATICAL INTERPRETATION OF THE RESULTS

In order to gain more insight into the numerical results for
the fiducial model, it is useful to characterize and when pos-
sible quantify some of the generic behaviors observed in the
solutions.

In this section I present both existing and new analytical re-
sults on the evolution of gas and solids in viscously evolving
disks. While the complexity of the system clearly precludesthe
existence of a closed-form fully analytical solution, there are
certain limits where analytical efforts pay off. By comparing
the analytical estimates derived with the exact outcomes ofthe
numerical algorithm, I am able to test the numerical resultson
a systematic basis, and at the same time obtain strict constraints
on the regimes of validity of the analytical solutions.

Given that the evolution of the gas is more-or-less indepen-
dent of the evolution of solids, much progress has already been
done in describing it analytically. These are presented in §5.1.
New results on the evolution of solids are presented in §5.2 and
§5.3.

5.1. Evolution of the gas

The evolution of the gas density is shown in more detail in
Figure 6. Lynden-Bell & Pringle (1974) (see also Hartmann
et al. 1998) showed that provided (i) the mass accretion rate
due to viscous transport is much larger than the wind photo-
evaporation rate and (ii) the disk is allowed to spread to infinity,
then there exist a simple self-similar solution forΣ(r,t):

Σ(r,t) =
M0

2πrR0
T−3/2exp

(

−
r

R0T

)

with

T =
t
τv

+ 1 , (55)

where the viscous spreading time of the disk isτv = R2
0/3νt(R0).

In this solution, the gas velocity is equal to

u = −3νt(r)

(

1
2r

−
1

R0T

)

(56)

showing thatu < 0 for r < rv(t) (viscous accretion) andu > 0
for r > rv(t) (viscous spreading), the critical radius beingrv(t) =
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FIG. 3.— Total surface density of gas (dotted line) and solids (solid line) at selected times. Also shown is the mass fractionin volatile materials (dot-dot-dot-dash
line), refractory materials (dot-dash line) and iron-richmaterials (dashed line).

R0T/2. Figure 6 compares the self-similar solution compares
with the true numerical solution, and reveals excellent agree-
ment at early times, gradually deteriorating in the inner disk
as time evolves and photo-evaporation begins to dominate the
gas dynamics. In the outer disk the agreement remains glob-
ally much better (since the photo-evaporation rate is very low
at large radii) and deteriorates only slightly (by a factor of no
more than a few) as expected when the critical radius reaches
the outer boundary. Note that a much better approximation to
Σ(r,t) including the effects of photo-evaporation has been ob-
tained by Ruden (2004).

In the early self-similar phase, and withinrv, the mass ac-
cretion rateṀ(r,t) = 2πruΣ is roughly constant with radius.
The total gas disk mass decays asM(t) = M0T−1/2 (neglect-
ing the effects of the outer boundary condition), so that thegas
accretion timescale increases linearly with the reduced time:
M/|Ṁ| ≃ 2Tτv.

When the photo-evaporation rate becomes comparable with
the accretion rate, a gap opens in the disk. Hollenbachet al.
(1994) argued that the gap opening radiusrgap is located close
to the gravitational radiusrg = GM⋆/ci, while Liffman (2003)
and Fontet al. (2004) revised this estimate to be a fraction of
rg. Sincerg scales linearly with stellar mass so doesrgap; in
what follows, I adopt

rgap = 1

(

M⋆

M⊙

)

AU . (57)

The time at which the gap opens can be estimated by equating
the wind mass loss ratėMw to the viscous accretion rate in the
self-similar solution (Clarke, Gendrin & Sotomayor, 2001); this
yields (providedτgap≫ τv)

τgap= τv

(

M0

2τvṀw

)2/3

. (58)

The wind mass loss-rate prior to gap opening for the fiducial
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FIG. 4.— Left: Evolution of the maximum particle size at selected times. From bottom to top,t = 0, 104 (dotted line), 105 (dash line), 106 (dot-dash line), 2×106

(dot-dot-dot-dash line), 4×106 (long-dash line) and 6×106 yr (solid line). Note the strong growth peaks located near the respective sublimation lines, the plateau
for r < 0.1AU where particles have reached isolation mass and the region of negligible growth forr > 100AU. Right: Metallicity fraction at the same selected times
as in the left-hand-side figure. Note the strong initial reduction caused by the rapid inward drift of the particles, followed by gradual growth. The latter is caused by
the reduction inΣ rather than by an increase inΣp.

FIG. 5.— Total disk mass in the fiducial model. The dotted line shows the integrated gas mass and the solid line shows the integrated solid mass. To illustrate the
rapid loss of solids in the inner disk, the total disk mass contained inr < 20AU is shown in the dashed line, while the rest is shown in thedot-dash line.

model was calculated by AA07 to be

Ṁw ≃ 4×10−10M⊙/yr . (59)

Table 3 compares the estimate from equation (58) with the
outcome of numerical simulations with varyingR0 and M0,
showing that it is indeed a very good estimate for the gap for-
mation timescale except for the fiducial model. This is because
the actual viscous mass accretion rate in the numerical solu-
tion of the fiducial model deviates from the simple estimate of
M0T−3/2/2τv at large times, when the disk spreads all the way
out to the outer edge of the numerical mesh1.

TABLE 3: Gap opening time, actual and predicted

R0 (AU) M0/M⊙ τnum
gap (Myr) τpred

gap (Myr)
30 0.05 7.01 7.79
10 0.05 5.35 5.40
5 0.05 4.36 4.29
10 0.01 1.96 1.84

After the gap formation, supply of material from the outer
disk is shut off and the inner disk rapidly clears of all gas. The
gas clearing time can be estimated from the viscous timescale
at the gap formation radius:

τclear= τv

(

rgap

R0

)

. (60)

In the fiducial model, the gas clearing time is of the order of
4,000 yr only, and can be considered to be near-instantaneous.
This is indeed seen in the simulations (see Figure 3).

1 To get a better estimate for the gap formation time in this case, one should simply not neglect the outer boundary term in the calculation of the total mass of the disk,
see Hartmannet al. 1998.
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FIG. 6.— Gas surface density in the fiducial model (from the top tothe bottom curve) att = 0, 1, 2, 3, 4, 5, 6 and 7 Myr. The solid lines show the exact numerical
solution, while the dotted lines show the analytical estimate provided by the self-similar solution (55) at the same times.

Direct photo-ionization of the gas at the hole edge results in
a sharp change in the gas mass loss rate (see Appendix A). The
evolution of the size of the hole can be derived from the work
of Alexander, Clarke & Pringle (2006b) to be

rhole(t) = rgap

(

t − τgap

2τclear
+ 1

)2

, (61)

which is again a good estimate of the hole radius derived from
the numerical solution (see §4.1) fort > τgap.

5.2. Grain growth

For simplicity, in this section I focus on deriving analytical
estimates for grain growth in disks where sublimation and con-
densation are neglected. For ease of comparison with the nu-
merical model, an additional run was performed using the fidu-
cial model but with no sublimation or condensation of mate-
rial, yielding the solution shown on Figure 7. After the initial
rapid growth period (for t > 104 yrs), one can note very clearly
the three regions of interest described earlier: region IIIwhere
smax(r,t) ≃ smax0; region II wheresmax(r, t) appears to follow
roughly a power law inr, and region I where the particles have
reached isolation mass and stopped growing. In this figure the
peaks associated with sublimation lines are naturally absent.

Despite the apparently simple behavior of the numerical so-
lutions, modeling this evolution is a complex problem: the par-
ticle growth rate depends onΣp(r, t), which is regulated by the
drift velocity of the particles, which depends on the particle size
smax(r,t). The implied nonlinearities preclude the existence of
analytical solutions in most cases.

However, there exist a limit in which insight can be gained
from simple models: when the particle drift time is much longer
than the particle growth time, one can expect the metallicity to
remain close to its initial value, namelyΣp/Σ = Z0. This hap-
pens in the very early stages of disk evolution (the limit of small
t), as well as in the outer regions of the disk (region III) at all
times.

5.2.1. Growth timescales

To interpret the numerical solutions I consider the growth
regime dominated by turbulent encounters, where particlesof

sizesmax follow the growth law given by equation (36). The
growth timescale of the particles is given by

τg =

(

1
smax

dsmax

dt

)−1

. (62)

In the limit whereStmax≪ 1, the growth timescale is equal to

τg =
Σ

Σp

√

Stmax

αt

τd

ǫ
, (63)

while in the limit whereStmax≫ 1

τg = 2
√

3γ1/4 Σ

Σp
St3/4

max
τd

ǫ
. (64)

Note that the second expression is independent ofαt. This is re-
lated to the fact that for larger particles, coupling with the turbu-
lent eddies is weakened, which reduces their relative velocities
but also increases particle concentration through sedimentation.

Figure 8 shows (as lines) the exact analytical expression for
the growth timescale obtained by combining equation (62) with
equation (36), and consideringΣp/Σ fixed and equal to the ini-
tial metallicityZ0 = 0.01. Growth timescales of particles at radii
0.1, 1, 10 and 100 AU are shown. The power laws seen in ei-
ther limits are well-approximated by equations (64) and (63),
and the flattening of the four curves corresponds to the transi-
tion Stmax ≪ 1 to Stmax ≫ 1. This figure is particularly useful
for reading directly the maximum size of particles achievable
at a given age in the disk should the surface densities of dust
and gas indeed remain constant over that period. For exam-
ple by looking at the intersection of a horizontal line at 104yr
with each curve, one deduces that in a 104yr-old disk there will
be no significant growth beyond 20 AU, 10-20µm-size parti-
cles at 10AU, m-size objects at 1 AU and finally, gravitation-
ally dominated growth (towards isolation mass) below 0.1AU.
Sinceτg ∝ 1/Z0ǫ, the growth timescale and maximum particle
sizes for disks with other values of the metallicityZ0 or stick-
ing efficiencyǫ can be read by translating the curves up or down
accordingly.

In reality, the metallicityZ = Σp/Σ is of coursenot con-
stant. Figure 8 also shows (as symbols) the actual particle size
achieved in the fiducial disk with no sublimation/condensation
at the same selected radii. The lines and the symbols follow
each other reasonably well in the expected limits (large radii or
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FIG. 7.— Maximum grain sizesmax(r, t) at t = 0, 1, 10, 100, 1000, 104, 105 and finally 106 yrs (solid lines, from bottom to top) obtained from the numerical
simulation of the fiducial model with no sublimation/condensation. The dotted lines show the analytical estimates of equation (65) at the same times. The dashed
line marks the transition between the turbulent and gravitational regime att = 1Myr.

FIG. 8.— Growth timescale for particles of sizes for the initial conditions of the fiducial disk described in §3.2 with no sublimation/condensation; the curves
show the growth timescale atr = 0.1AU (solid line),r = 1AU (dotted line),r = 10AU (dashed line) and finallyr = 100AU (dot-dash line). The symbols show the
truesmax(r, t) at the same radii (0.1 AU: diamonds; 1 AU: stars; 10 AU: triangles; 100 AU: squares).

short times) up to the point whereStmax≃ 1 at which point the
simple analytical estimate systematically breaks down2.

5.2.2. Particle size

Given the good fit found for particles withStmax≪ 1, I now
approximatesmax(r,t) by the value of the grain size for which
the growth timescale equals the age of the disk: settingτg = t in
equation yields (63)

smax(r,t) =

√
2πγ

ρs

(

t
1year

)2(
Σp

Σ

)2

ǫ2αtΣ(r, t)r−3
AU

(

M⋆

M⊙

)

.

(65)
If one assumes as before thatΣp/Σ ≃ Z0 then one can get a
rough estimate ofsmax(r, t) by combining equations (65) and
(55), and shown in Figure 7 as dotted lines.

As expected, the estimate forsmax(r,t) is in fairly good a
agreement with the numerical results for small times; it cor-
rectly predicts the power law structure of the whole intermedi-
ate region (fors< 1km, roughly) at early times (t < 104yr), but
not so at later times (where the analytically predicted power law
is too steep compared with the numerical results). This is again
related to the fact that the surface density of particles becomes
significantly depleted at later times.

The estimate forsmax(r,t) also correctly predicts the transi-
tion between regions II and III of the disk. Since particle growth
is fundamental to our understanding of disk SEDs, I now give
an analytical estimate for this transition radius: for early times
(for t < τv), r II

III (t) is given by

r II
III (t) =

[

Z2
0ǫ

2αt

Stmax0

R0

1AU

]1/4(
t

1year

)1/2( M⋆

M⊙

)1/4

AU , (66)

2 The reason whyStmax ≃ 1 is equivalent to the point whereZ begins to differ significantly fromZ0 is related to the fact most of the mass is contained in the particles
of sizesmax, which also happen to be the particles with the highest inward drift velocity.
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where

Stmax0=
2πR2

0smax0ρs√
2πγM0

(67)

is the Stokes number att = 0 andr = R0 of particles of sizesmax0.
For later times (t > τv)

r II
III (t) =

[

Z2
0ǫ

2αt

Stmax0

R0

1AU

]1/4(
τv

1year

)3/8( t
1year

)1/8( M⋆

M⊙

)1/4

AU .

(68)

5.2.3. Gravitational regime

The transition from the turbulent regime to the gravitational
regime (region II to region I) is easily understood by consider-
ing equation (45). The transition sizẽsmax is given by

s̃smax(r,t) = 7.1

(

M⋆

M⊙

)10/51(h
r

)8/17
(

Σ(r, t)

1000g/cm2

)7/17

km.

(69)
The curve fors̃smax(r, t) at t =1Myr is shown on Figure 7, and
correctly marks the transition between the turbulent and gravi-
tational regime at the time considered. As time progresses and
Σ(r,t) decreases so does the transition size.

5.3. Evolution of the solid mass fraction prior to gap opening

The evolution of the solid mass fraction is governed by par-
ticle diffusion and drift. The analytical prescription used to de-
scribe the particle size distribution function is particularly use-
ful since it can easily be integrated to yield the bulk motion
properties, as seen in equations (20) and (50). Given the asymp-
totic behavior of the functionsI (x) andJ(x), up is roughly equal
to

up = u− 2ηvK
2πStmax

3
for Stmax≪ 1 ,

up = (u− 2ηvK)

√
π

4
√

Stmax
for Stmax≫ 1 , (70)

so that, as expected, the bulk radial velocity of the particles
is close to that of the gas for small particles, and tends to 0
whensmax grows. Note thatup ∝ 1/

√
Stmax instead of 1/St(s),

which accounts for the fact that even though particles of size
smax may be largely decoupled from the gas, a non-negligible
mass fraction is contained in rapidly drifting intermediate-size
particles. This is the main difference between this model and
a single-size particle model; it accounts for the fact that even
whenStmax≫ 1, a significant fraction of the collisional encoun-
ters are destructive and result in the erosion of the larger bodies
into smaller rapidly drifting particles withSt(s) ≃ 1.

5.3.1. Reservoir of small grains at large radii

The sign ofup determines whether grains are transported in-
ward or outward. As expected from equation (56) the gas ve-
locity changes sign atrv(t). This critical radius grows linearly
with T (defined in equation (55)), and therefore sweeps out-
ward roughly on the viscous timescaleτv. As a result forr < rv
the particle velocity is necessarily negative, while forr > rv
particles can be entrained outward provided they are strongly
coupled with the gas. Sincerv is typically much larger thatr II

III ,
all the particles outward ofrv are particles of sizesmax0. Com-
bining these facts implies that there exists a reservoir of small
particles at large radii, slowly eroded by the outward motion of
rv(t). In addition, as the gas density drops, the small particles

gradually decouple from the gas implying that the reservoirbe-
gins to “leak”. Eventually, even the smallest particles decouple
from the gas, and all the solids come rushing inward. The evo-
lution of the particle velocity can be seen in Figure 9. Note the
existence of the reservoir (a region of significant radial extent
with up > 0) for all particle sizes at early time. As time pro-
gresses, the reservoir begins to “leak” as the particles gradually
decouple from the gas, until a a critical point whereup becomes
negative for all radii. The phenomenon depends strongly on the
initial size of the particlessmax0: three simulations are shown
in which the maximum particle size is respectively 1µm, 3µm
and 10µm. The timescaletp for the release of the particle reser-
voir is clearly much shorter for the larger particles (0.84Myr for
10µm-size particles instead of 2.33Myr forµm-size particles).

In fact, this timescale can easily be estimated by solving si-
multaneously the equationsup = 0 and∂up/∂r = 0. Assuming
thatΣ(r,t) is equal to the self-similar solution, and that the par-
ticles in that regime satisfyStmax≪ 1 (which was checked nu-
merically),up ≃ u− 4πηStmax/3. It follows that

tp
τv

+ 1 = Tp =

[

3
16eπ2η(R0)

τd(R0)
τv

1
Stmax0

]2/5

, (71)

whereτd(R0) is the dynamical time atR0, η(R0) is obtained by
applying equation (48) atr = R0, Stmax0 is the Stokes number
of particles of sizesmax0 at R0 (see equation (67)). Note that
in order to derive this expression, I have also made explicituse
of the fact thatq = −1/2. The quality of this estimate is found
to be excellent given the approximations made (see Figure 10),
and small discrepancies are attributed to the fact thatΣ(r,t) is
not exactly equal to the self-similar solution, and thatup has
been approximated by its Taylor expansion for smallStmax. In
the same analytical calculation, the radius of the reservoir at re-
lease is found to berp = R0Tp; checking this solution against the
numerical runs also reveals excellent agreement.

5.3.2. Evolution of the total mass of the particle disk

Since particles in the inner disk can achieve significant sizes,
the drift timescale of grains withinrv(t) is usually much smaller
than the viscous accretion timescale and/or the age of the disk.
This can be readily seen in Figure 9.

This very simple fact has important consequences: it implies
that the distribution of solids in the inner disk is uniquelycon-
trolled by the mass flux leaking from the reservoir. One way
to see this is to look at the particle disk evolution timescale
Mp/|Ṁp| obtained by numerical integration of the fiducial
model. Figure 11 shows results for the three different initial
particle sizes considered in the previous section (as solidlines).
The linear increase for early times (T ≪Tp) mirrors the gas evo-
lution timescale, as expected from the tight coupling between
the reservoir particles and gas:

Ṁp(t) = Z0Ṁ(t) = −
Z0M0

2τv
T−3/2 , (72)

so thatMp/|Ṁp| ≃ M/Ṁ = 2τvT. As T exceedsTp, the linear
increase saturates then rapidly turns over, as expected from the
release of the reservoir particles.

Constructing an exact analytical model governing the evolu-
tion of the particle disk afterTp from first principles turned out
to be rather difficult. However, it is possible to gain insight into
the problem by inspecting the results of the numerical simula-
tions first. At later time, one can expect the dynamics of the
particle disk to depend on the reservoir release timescaleTp. I
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FIG. 9.— Radial velocityu of the gas (solid line) and mass-weighted average radial velocity up of particles of maximum sizesmax0 = 1µm (dotted line), 3µm
(dot-dashed line) and 10µm (dashed line). Note how the slow erosion and eventual release of the reservoir (i.e. of the spatial region withup > 0) depends onsmax0.

FIG. 10.— Non-dimensional timescaleTp for the release of the particle reservoir as a function of initial particle sizesmax0. The analytical estimate (solid line) is
compared with hand-checked values ofTp for three numerical simulations of the fiducial model with different initial particle sizes (stars). On the same plot is shown
the numerically determined radius of the reservoir at releaserp in AU (diamonds) as well as the corresponding analytical estimateR0Tp (dashed line).

seek a functional form of the kind
Mp

Ṁp
≃ 2τvT f

(

T
Tp

)

, (73)
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with

f (x) =
e−a1x

1+ a2xa3
, (74)

(with a1, a2, a3 > 0) which satisfies the requirement thatf (x)→
1 asx → 0, and f (x) → 0 nearly exponentially asx → ∞). A
fairly good (but clearly not perfect) fit for all three curvesis
empirically found to havea1 = 0.2, a2 = 0.25 anda3 = 3.3, im-
plying

dMp

dt
≃ −

Mp

2T
exp

(

0.2
T
TP

)

(

1+ 0.25

(

T
TP

)3.3
)

. (75)

The fitting curves, for each of the three initial particle sizes cho-
sen, are also shown in Figure 11a. The initial linear rise as well
as the maximum are very well represented, while the fit at later
times (forT > Tp), in particular for the smaller particle sizes,
is slightly poorer3. Integrating equation (75) yields an estimate
for the total particle disk mass as a function of time, which
is compared with the results of the numerical simulations in
Figure 11b. The approximate solutions follow the trend of the
exact solutions well, with some small acceptable systematic de-
viations at early times (see below). In particular, it reproduces
well the very rapid decrease in the particle disk mass as the
reservoir is finally released (T > Tp).

A very important consequence of the “leaky reservoir” model
is that the total disk mass is reasonably independent of the phys-
ical phenomena taking place in the inner disk (provided the bulk
drift timescale of the particles is smaller than the viscousaccre-
tion timescale). This implies that the evolution of thetotal disk
mass depends very weakly on the particle growth rate (and in
particular of the sticking efficiencyǫ), and of sublimation or
condensation fronts. This can actually be seen in Figure 11,
which shows the numerical solution for the fiducial model with
sublimation/condensation in addition to the three curves dis-
cussed earlier. The disk mass in the fiducial model is practi-
cally indistinguishable from that of the disk without sublima-
tion/condensation (for the micron-size particles).

Finally, note that the proposed evolution equation forMp
breaks down if the bulk drift timescale of the particles is com-
parable to or larger than the viscous accretion timescale orthe
age of the disk (whichever is smaller). For instance, if the par-
ticles remain small at all times, then they naturally followthe
evolution of the gas at all times (which explains the resultsof
AA07). As an other example, one can see in Figure 11 when
T → 1 that there is a very small difference between the fidu-
cial model with sublimation/condensation lines and the model
without. This arises because at early times, the drift timescale
of the particles is much smaller than the age of the disk and
the solid mass content has not yet had time to equilibrate. As
a result, most of the solid mass in the inner disk rapidly drifts
toward the central star. In the absence of sublimation linesall
of this mass is lost, whereas a significant fraction of it can get
trapped by the sublimation lines if sublimation/condensation is
taken into account (see §5.5).

5.3.3. Evolution of the particle surface density

Having characterized the global evolution of the total disk
mass in solids (which was shown to depend only on the initial
grain sizesmax0 and on the viscous diffusion timeτv), one could
hope to describe the evolution of the surface density of grains as
well. As mentioned earlier, when the surface density of grains

within the disk is controlled by the mass flux coming from the
reservoir one can expect that

2πrup(r,t)Σp(r,t) ≃ Ṁp(t) , (76)

whereṀp(t) is given by equation (75). This approximation
turns out to be quite good (except outside ofrv(t) of course).
Unfortunately, the problem lies elsewhere: even thoughṀp(t) is
known, it is particularly difficult to estimateup(r,t) since it de-
pends onsmax(r,t) andΣ(r,t): the analytical estimate ofsmax(r,t)
given in equation (65) is unfortunately not valid in regionsI and
most of region II beyond a few times 104 yr and the self-similar
solution forΣ(r,t) is also invalid fort > τv in the same regions.
Using these estimates despite their poor quality yield predic-
tions that are off by up to an order of magnitude (see Appendix
C). Note that if all that is needed is a “quick and dirty” order
of magnitude estimate then the procedure described in the Ap-
pendix could be considered satisfactory. In particular, itdoes
reproduce well the particle surface density dip observed inthe
intermediate disk regions, a feature which could be used to-
gether with spatially resolved disk observations to constrain the
value of the sticking efficiencyǫ.

5.4. Evolution of the solids posterior to gap opening

The study of the evolution of solids after the gap opening
phase was the main purpose of the work of AA07. When
growth is ignored, AA07 showed that the evolution of the sur-
face density of solids follows that of the gas (for small parti-
cles).

After the formation of the gap, both gas and solids within
quickly accrete into the central star on the clearing timescale,
leaving a hole clear of both dust and gas. Near the edge of
the hole thus formed, an inversion in radial pressure gradient
causes the particles to drift outward instead of inward. As the
hole grows all of the grains outside ofrhole(t) are slowly shep-
herded outward with it. As a result of these processes, most of
the solid mass at the time of gap opening is retained in the disk
but moved to larger and larger radii.

When grain growth is taken into account on the other hand,
a different picture emerges. The particles within the initial gap
radius have typically grown to embryo sizes, so that their Stokes
number is well above unity by the time the gap opens. The re-
duction in the surface density of the gas does not affect their
drift velocity much (which is exactly the opposite case to the
AA07 model) and they stay in place while the gas within the
gap accretes. The “hole” thus created still contains a significant
amount of solid material.

As direct photo-evaporation takes over, the hole in the gas
widens as expected but the corresponding reverse radial pres-
sure gradient has very little effect on the large particles.As a
result, one observes a significant amount of solid material re-
maining in the inner disk all the way out to about 10 AU (in
the case of the fiducial model). Eventually, the edge of the hole
retreats out to regions where the particle Stokes number is of
order unity, at which point the clearing begins as in the AA07
model. As already suggested by AA07, all particles smaller
than 1-10cm are entrained to large radii, while all particles
larger than this particular size remain behind.

The prediction for the particle size given in equation (65) can
be used to estimate the radius outside of which particles areen-
trained, by setting the age of the disk to bet = τgap: let r inner the

3 This is again attributed to the numerical boundary effects plaguing the gas disk evolution fort > 6Myr, which introduce some non-self-similar effects in thesolution.



18

FIG. 11.— Left figure: Particle disk evolution timescaleMp/|Ṁp|. The solid lines are the outcomes of the numerical simulations for the fiducial model with initial
particle sizes (from top to bottom) 1µm, 3µm and 10µm respectively. The empirical analytical fits to these formula are also shown, with the dotted line for the 1µm
case, the dot-dash line for the 3µm case and the dashed line for the 10µm case. Right Figure: Total mass in solids in the disk as a function of the nondimensional
time T. The three solid lines are the outcomes of the numerical simulations for the fiducial disk model with initial particle sizes (from right to left) 1µm, 3µm and
10µm respectively. Approximates to these numerical results are obtained by seeking the solution to equation (75), and alsoshown here (linestyles are the same as
in the left-side figure).

innermost extent of the cleared region, so that

r inner =

[

(

τgap

1yr

)2

Z2
0ǫ

2αt

(

M⋆

M⊙

)

]1/3

AU (77)

which yields a prediction ofr inner = 16 AU for the fiducial
model. This value is larger than that observed in Figure 3 by
a factor of about 2≃ 101/3, which can be attributed to the fact
that the estimated particle size at this point is a factor of 10 too
large compared with the true numerical simulations (see Figure
4). However, the estimate in equation (77) can be thought of as
a solid upper limit for the radial extent of the remaining solid
material in the inner regions of the disk after the clearing of the
gas.

Material outside ofr inner is shepherded outward with the re-
treating hole. As more and more material is swept and en-
trained outward, a strongly localized surface density peakap-
pears, which eventually grows to be a large as the local surface
density of the gas. When this happens, two situations could
occur within similar outcomes: either gravitational instabilities
set in, resulting in the in-situ formation of a planet, or thefric-
tional drag between the particles and the gas begins to influence
the evolution of the gas itself, and the particles stop moving out-
ward (neither effects are included in the numerical model, and
therefore cannot be seen in the simulations). This effect isdif-
ficult to quantify in the general case, since neitherΣp norΣ are
known analytically at this stage of the disk evolution. In the
fiducial model show in Figure 3, this occurs at about 200AU.
This process could lead to the systematic formation of local-
ized debris rings reasonably far from the central star (froma
few tens to a few hundreds of AU), without any need for prior
planet formation or other clumping mechanism. Such debris
rings are commonly observed, or inferred from the dust dus-
tribution (see for instance Schneideret al. 2006 for direct de-
tections, and Strubbe & Chiang 2006 for inference from spatial
dust distribution).

As in the AA07 model, most of the solid content present in
the disk att = τgap remains in the disk after complete clearing
of the gas. The fraction of solid material moved to large radii
depends on the details of the surface density distribution of par-

ticles atτgap (which is not well-known a priori), but is typically
of the order of 80%-90% of the total mass of solids; the remain-
ing fraction can be found in the inner disk.

5.5. Effects of sublimation and condensation

The role of sublimation lines on the local accumulation and
growth of particles has already been shown and discussed by
others (Stepinski & Valageas, 1997; Ciesla & Cuzzi, 2006).
Roughly speaking, the idea is that particles composed mainly
of a given chemical species drift inward until they reach the
sublimation line where they are transformed into vapor. The
vapor diffuses inward much more slowly than the rate of mi-
gration of the incoming solids, leading to a large enhancement
of the local metallicity. Through turbulent diffusion, a fraction
of the vapor content actually finds it way back through the sub-
limation line and recondenses. The typical width of the region
where this effect dominates can be evaluated from a local diffu-
sive lengthscale, and naturally scales ash(r). The exact amount
of material accumulating in the region is more difficult to es-
timate a priori, since it depends on the difference between the
solid mass flux into the sublimation line and the vapor mass flux
out of the sublimation line. However, for most of the lifetime of
the disk the flux of both solid and gaseous material is controlled
by the reservoir at large radii so that the solid mass flux is equal
to Z0Ṁ, which is also roughly equal to the mass flux of va-
por out of the sublimation zone. This explains why the relative
strength of the surface density peaks compared with the back-
ground curve fails to grow with time after the initial adjustment
period, which would necessarily occur otherwise.

The conclusion is that any local surface density enhance-
ment, and associated localized peak in the particle size is cre-
ated very early in the lifetime of the disk (this is indeed seen in
Figure 4b) – but it is only later, when the gas surface density
decays and the metallicity increases, that gravitational instabil-
ities in the particle layer could set in to trigger the planetary
formation process. This picture, should it be correct, alsoim-
plies that the relative heights of the peaks determines a strict
sequence of “alarm clocks” on planetary formation timescales.

Note that only three species have been selected in the fiducial
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model. Clearly, there will be as many surface density and par-
ticle size peaks as the number of separate sublimation temper-
atures. Also, in this particular model the background tempera-
ture of the disk is fixed. In reality, the disk temperature cools
significantly asṀ decreases, resulting in the inward migration
of the various sublimation lines (see Garaud & Lin 2007, for
instance). This will also affect the shape of the surface density
profile in the inner disk; feedback between the disk temperature
profile and the evolution of the surface density of grains will be
the subject of future work.

6. DISCUSSION

6.1. Discussion of the particle size distribution function.

The fundamental assumption underlying this work is that of
the maintenance of a power-law particle size distribution func-
tion at all radii, throughout the disk lifetime. The assumption is
justified exactly only if the collisional timescale (note:not the
growth timescale, which is naturally a factor of 1/ǫ larger) is
shorter than the drift timescale for each size-bin. Whetherthis
is in fact exactly true is certainly unlikely, but neither isit par-
ticularly relevant. The correct questions that should be asked
are: (i) how far from equation (8) is the true size-distribution
function in a disk, and (ii) how do deviations from (8) impact
the conclusions from this paper?

Question (i) is a fundamental question, with implications
reaching far beyond the scope of this paper. Attempts at an-
swering it have come from various angles including both direct
observations (in disks, but also in molecular clouds, in theISM,
as well as in our own solar system) and numerical experiments.
As mentioned in §2.3, the observational evidence and theo-
retical motivation for a power-law size-distribution function is
strong but limited to more-or-less spatially isotropic andhomo-
geneous cases where there exist no systematic size-dependent
drift or settling velocity which could act as a size-filter. Numer-
ical simulations of the coagulation-shattering balance insimilar
conditions also unanimously agree on the power-law distribu-
tion, with indices varying slightly depending on the model as-
sumptions but never straying too far from -3.5.

Unfortunately, there has only been one study (Suttner &
Yorke 2001) that self-consistently includes a complete param-
eterization of the coagulation/shattering balance together with
radial drift and vertical settling of the particles in an accretion
disk4. Suttner & Yorke (2001) studied the formation of a pro-
tostellar accretion disk through the collapse of a uniformly ro-
tating molecular cloud core, and closely followed the evolu-
tion of the grain size distribution function at every spatial po-
sition throughout the collapse phase (first 10,000 years). They
found that accretion shocks play an important role in limiting
the growth of the grains; they also found, as expected, that
the assumed sticking efficiency essentially governs the maxi-
mum grain size achievable. The dust size distribution functions
computed vary strongly with height above the disk: they show
clear evidence that larger grains tend to be found in the mid-
plane, while regions high above the mid-plane remain close to
the MRN-derived initial conditions. This can be attributedto a
combination of settling of the larger grains as well as preferen-
tial in-situ growth. The mid-plane regions in their simulations
appear to be largely depleted of small grains, which would be
evidence for strong deviations from the power-law structure I
assume. However, one may wonder whether this depletion is in-
deed true in a real disk, since Suttner & Yorke neglect diffusion

of the smallest grains by the gas turbulence (which could eas-
ily bring small grains back towards the mid-plane from higher
regions of the disk).

In conclusion, one should bear in mind that the assump-
tion made in selecting a power-law size distribution function
is probably not always strictly justified (in particular forlarger
particles). But given the enormous computational advantage of
this approach, it should be thought of as an acceptable trade-off
between models in which the full coagulation/shattering equa-
tion is solved, and models in which only one particle size (ora
few particle sizes) are considered.

Question (ii) can easily be answered by identifying where
in the proposed model the assumption of a power-law size-
distribution function is used.

As mentioned in §2.5, the minimum particle sizesmin plays
no role in the dynamical evolution of the solids in the disks,
as long assmin ≪ smax, which is the case for the MRN size-
distribution function, and therefore likely to continue being the
case throughout the disk evolution. Thus whether the smallest
grains are slightly depleted or not compared with the proposed
power-law distribution function really does not matter.

Collisional growth is essentially dominated by encounters
between particles of similar sizes: even if collisions with
smaller particles are more frequent, the mass gained is much
smaller. This is easily seen mathematically in the derivation
of the growth rates dsmax/dt in §2.5, where the integral over
all possible impactor sizes is always dominated by the largest
particles, except possibly whenStmax ≫ 1, in which case the
integral is dominated by particles of intermediate size. Another
way of seeing this is that while the assumptions concerning the
grain size distribution function used to derive equation 36are
very different from those of Stepinski & Valageas (1997) who
assume that the distribution function is strongly peaked around
a single-size, the outcome is the same whithin some factors of
order unity.

The systematic radial motion of decoupled particles (Stmax≫
1) is the only place where the assumption made has a signifi-
cant effect on the model results. If one assumes that all par-
ticles have a single sizesmax, thenup(smax) ∝ 1/Stmax while if
one considers the mass-weighted average motion of all parti-
cles following the proposed size-distribution function (8) then
up ∝ 1/

√
Stmax which can be significantly larger. As mentioned

earlier, this accounts for the fact that when a continuum of par-
ticle sizes is taken into account, intermediate-size grains (with
St(s)≃ 1)) do rapidly drift leading to a non-neligible mass flux,
even if the largest ones are fully decoupled,

The scalingup ∝ 1/
√

Stmax clearly depends on dn/ds∝ s−3.5;
whether this exact scaling really applies to disks certainly is de-
batable, but I would argue that the general picture of large bod-
ies being eroded by collisions and leading to a non-negligible
mass-flux even when the larger bodies themselves do not drift
has to hold. The only caveat is that the collision rate becomes
null when the bodies reached isolation mass; thus one should,
for self-consistency, setup → 0 in this limit, which was not done
here (otherwise, smaller particles coming from larger radii arti-
ficially accumulate in the inner regions). A way forward would
be to combine the model proposed here with an N-body code,
in which particles are treated using a size-distribution until they
reach embryo size, then taken out of the distribution and indi-
vidually followed using N-body simulations. This could be the
subject of future work.

4 The study by Dullemond & Dominik (2005) does not include radial drift, and only treats shattering in a very simplistic way.
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6.2. Heavy element retention efficiency in the UV-switch
model

The simple equation for the evolution of the total mass of
solids (75) can be used to derive the final contents of the disk
after complete gas dispersal when caused by photo-evaporation
from the central star.

If grains in the outer disk remain fully coupled to the gas
throughout the lifetime of the disk (i.e. iftp ≫ τgap, or equiv-
alently, smax0 ≪ 1µm) then the amount of material left after
complete dispersal of the gas can easily be estimated by the
amount of solids left att = τgap (see AA07). Therefore an or-
der of magnitude estimate for the heavy-element retention effi-
ciency is simply

Mp(τgap)
Mp0

≃
(

M0

2τvṀw

)−1/3

, (78)

whereMp0 = Z0M0. For a fixed initial disk mass, this estimate
depends weakly onR0; this could explain the very low dis-
persion observed in the heavy element retention efficiency of
evolved systems (Wildenet al. 2002) despite the vastly differ-
ent disks dispersal timescale required by SED observations.

To refine this estimate and quantify the effect of the ini-
tial grain size distribution on the heavy-element retention ef-
ficiency, I integrate (75) fromt = 0 to t = τgap for a wide variety
of initial conditions (M0, R0). The results are shown in Figure
12. Four cases are considered, with varying initial parti-
cle sizesmax0 and turbulentαt. The weak dependence on the
initial conditions of the disk (M0, R0) for given values ofαt
andsmax0 suggested by equation (78) is naturally still present:
it appears that even withM0 andR0 varying by two orders of
magnitude, the remaining amount of solids does not vary more
a factor of a few. In the fiducial model for instance (smax0= 1µm
andαt = 0.01) the typical amount of solids left is of the order
of a few Earth masses for most plausible values ofM0 andR0.

As suggested by the results of §5.3.2, the retention efficiency
drops dramatically for larger initial grain sizes, but naturally
saturates near the value given by equation (78) for very small
grain sizes (e.g. compare the results forsmax0 = 3µm with the
results forsmax0 = 0.3µm). Also suggested by (78) is the de-
pendence of the phenomena onαt: for the smaller value of
αt = 0.001, one could expect up to a few tens of Earth masses
to be left behind in the disk, a value that begins to be consis-
tent with the amount of solids left in the Minimum Solar Neb-
ula model augmented with the mass of the Oort cloud. Thus it
appears that consistency of this idea with our own solar system
would strongly favour a model withsmax0 is no larger than 1µm,
andαt is preferably of the order of 0.001.

How reliable is this estimate given the simplifications made
in the model? Conveniently, given that the total disk mass re-
sides mostly in the outer disk, and that the amount of mate-
rial remaining in the inner disk is ultimately controlled bythe
mass flux from the outer reservoir, the mass estimates given
here are reasonably independent of the physics of the inner
disk (including sublimation/condensation, but also dead zones,
etc..). There is however an important caveat; as mentioned ear-
lier, large protoplanetary embryos which have reached isolation
mass are fully decoupled from the disk dynamics (both in terms
of their drift velocity and in terms of their collision frequency),
and are not well-modeled by the size distribution function pro-
posed. The mass contained in these embryos could add a few
Earth masses to what is presently estimated, but only in the
inner disk. The total mass of solids which ends up being shep-

herded out to the outer solar system is not affected by this prob-
lem, and is therefore reliably estimated by this method.

7. CONCLUSIONS

This paper presents a new algorithm modeling the evolution
of gas and solids in protostellar, as well as some reliable quan-
titative analytical estimates for the outcome of the numerical
simulations.

The global disk evolution paradigm is well-reproduced by
the numerical solutions. Well-known results are recovered,
such as the two-timescale gas evolution (Clarke, Sotomayor&
Gendrin 2001; Alexander, Clarke & Pringle 2006a), the rapid
growth of solids in the inner disk (Suttner & Yorke, 2001,
Stepinski & Valageas, 1997, Dullemond & Dominik, 2005),
the shepherding of smaller particles by the retreating holefront
(Alexander & Armitage 2007), and the accumulation of ma-
terial near the sublimation lines (Stevenson & Lunine, 1988,
Stepinski & Valageas 1997, Ciesla & Cuzzi, 2006).

Novel conclusions of this paper are:
(i) The evolution of the mass of solids in the disk is essen-

tially controlled by a reservoir of small grains at large radii. A
well-tested empirical formula for the total solid mass in the disk
is given in equation (75).

(ii) The heavy-element retention efficiency after gas dispersal
is controlled by the remaining amount of solids left at the time
of gap opening, and is found to vary weakly with initial disk
conditions butvery sensitivelywith initial particle sizesmax0.
The remaining amount of solids in the Minimum Solar Neb-
ula combined with the mass of the Oort cloud is inconsistent
with smax0 greater than 1µm, and would tend to prefer a value
of αt ≃ 0.001.

(iii) The strong dependence of the gas dispersal timescale on
the initial mass and radius of the disk combined with the weak
dependence of the heavy element retention efficiency on the
same parameters could simultaneously explain the wide diver-
sity of the SED observations with the very low dispersion of
the stellar metallicities observed in the Pleiades (Wildenet al.
2002).

(iv) Rapid grain growth in the inner disk implies that solids
in the form of large planetesimals (with sizes ranging from a
few meters to 1000 km) are locally retained after gas dispersal.
The presence of a population of large planetesimals in the inner
regions of debris disks has been inferred from interferometric
observations of the presence of dust despite its very short radi-
ation blowout time (specifically in TW Hya, by Eisner, Chiang
& Hillenbrand 2006)

(v) All the small grains are swept by the retreating gas front
at the edge of the hole and shepeherded outward. When the ac-
cumulated surface density of grains approaches that of the gas,
the gas becomes unable to continue moving the grains and will
most likely leave them behind. This could explain the system-
atic formation of narrow dust rings at large radii.

(vi) Regulation of the solid mass flux by the “leaky reservoir”
implies that any local surface density enhancement (or “peaks”)
near sublimation lines must be accumulated very early on in
the disk lifetime, more precisely during the initial phase when
the disk dynamics are still out of equilibrium (∼ first 10,000-
100,000 yr). The gradual decay of the inner disk gas density
through photo-evaporation could then trigger gravitational in-
stabilities at well-separated times as each peak respectively ap-
proaches unit metallicity.

(vii) Possible constraints on the sticking efficiency of parti-
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FIG. 12.— Heavy element retention of disks after total photo-evaporation of the gas as a function of the initial conditions of the disk, for various initial particle
sizes and turbulent parameterαt. The color scheme is the same for all four plots. The solid lines (at 1, 2, 5, 10, 20 and 50%) mark the retention efficiency, namely the
percentage of heavy elements remaining in the disk comparedwith its initial contentZ0M0. The dotted lines (at 10−6, 2×10−6, 5×10−6, 10−5, 2×10−5, 5×10−5,
10−4 and finally 2× 10−4M⋆) follow the colored contours and mark the actual total mass of the remaining solids. Note that 1M⊕ ≃ 3× 10−6M⊙ so that the 10−4

contour corresponds to about 33M⊕.

cles in the turbulent conditions found in protostellar disks could
be derived from spatially resolved observations of the grain sur-
face density of nearby disks (see Appendix C).

Direct comparison of the model predictions with disk SEDs
is the subject of Paper II.
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APPENDIX

APPENDIX A: PHOTO-EVAPORATION MODEL

Alexander & Armitage (2007) studied the following model forthe mass loss rate from photo-evaporation from the central star,
based on the works of Hollenbachet al. (1994), Fontet al. (2004), as well as Alexander, Clarke & Pringle (2006a and 2006b).

Prior to the removal of the gas in the inner disk, the mass lossrate is caused by the diffuse UV field reprocessed high in the disk
atmosphere. It is equal to

Σ̇w(r) = 2n0(r)ul(r)µmH , (1)

whereµ is the mean molecular weight of the ionized gas (taken to beµ = 1.35), mH = 1.67×10−24g is the mass of the Hydrogen
atom, the column density at the base of the ionized layern0 is taken to be (see Fontet al. 2004)

n0(r) = 0.14

(

Φ

4παBR3
g

)1/2
[

2
(r/Rg)15/2 + (r/Rg)25/2

]1/5

, (2)
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with Φ is the photo-ionizing flux (in photons per second),αB = 2.6× 10−13cm3/s, Rg = GM∗/c2
i andci is the sound speed of the

ionized gas (taken to be 10km/s in the fiducial model). The launch velocityul(r) is taken to be (see Fontet al. 2004)

ul(r) = 0.3423ci exp

[

−0.3612

(

r
Rg

− 1

)](

r
Rg

− 1

)0.2457

if r > 0.1Rg ,

= 0 if r < 0.1Rg . (3)

After clearing of the inner disk, the mass loss rate is mostlycaused by direct photo-ionization of the inner edge of the remaining
disk, and accordingly changes to

Σ̇w(r, t) = 0.47µmHci

[

1+ exp

(

−
r − rhole(t)
h(rhole(t))

)]−1(
Φ

4παBr3
hole(t)

)1/2(h
r

)−1/2( r
rhole(t)

)−2.42

, (4)

whererhole(t) is the hole radius, well approximated to be the radius for which Σ(r,t) drops below 10−7g/cm2 (Alexander, private
communication).

APPENDIX B: NUMERICAL METHOD

Equations (1), (7) (for each species), (36) or (44), and finally (46) (for each species) are evolved simultaneously in time using the
following approach.

The independent variablesr andt are first normalized to 1 AU and toTAU = 2π/ΩK(1AU) respectively. Following Pringle, Verbunt
& Wade (1986), a new variable is introduced

y = r1/2
AU , (1)

upon which space is uniformly discretized. Next, new dependent variablesG, Gi
v andGi

p are defined as

G = y2q+4
Σ andGi

v,p = y2q+4
Σ

i
v,p . (2)

With these modifications, equations (1) and (46) can be rewritten as

∂G
∂tAU

=
3π

2
αt
√

γh
2
AUy2q+1∂2G

∂y2
− TAUy2q+4

Σ̇w , (3)

(and similarly for each vapor-form species) wheretAU = t/TAU. The evolution equation for the solids becomes

∂Gi
p

∂tAU
+ y2q+1 ∂

∂y

[(

π

2
αt
√

γh
2
AU(Sc−1

eff − 3I )
∂ lnG
∂y

−
2πηJ
y2q+3

)

Gi
p

]

=
π

2
αt
√

γh
2
AUy2q+1 ∂

∂y

(

1
Sceff

∂Gi
p

∂y

)

, (4)

for each solid-form species. This formulation emphasizes the pure diffusive terms, which cause numerical instabilities if not treated
adequately. For simplicity,I ≡ I (

√
2πStmax) and similarly forJ.

Equations (36) or (44) depending on the regime considered involve no spatial derivative, and are therefore simply integrated
forward in time using a simple explicit second-order Adams-Bashforth scheme. Equations (4) and (3) are integrated forward in
time using a centered implicit scheme for the diffusion terms, an upwind first-order scheme for the advection terms and a second-
order Adams-Bashforth scheme for all other terms. With thisparticular semi-implicit scheme, it is found that using about 1000-4000
meshpoints (depending on the radial resolution required) and a typical timesteps∆t ≃ 0.1−10yr yields a stable and accurate solution.

APPENDIX C: A QUICK-AND-DIRTY ESTIMATE FOR Σp(r,t)

To get an estimate forΣp(r, t), one could use equation (50) together with equation (76). Unfortunately, the value ofStmax(r,t)
is unknown since it depends both onsmax(r, t) and onΣ(r,t), neither of which are particularly well approximated in inner and
intermediate regions of the disk. Nonetheless, let’s construct a low-quality estimate ofStmax(r,t) using the following algorithm: at
each radiusr and timet,

smax(r, t) := max

[√
2πγ

ρs

(

t
1year

)2

Z2
0ǫ

2αtΣ(r,t)r−3
AU

(

M⋆

M⊙

)

,smax0

]

,

miso(r, t) :=

[

2πr2Z0Σ(r,t)b̃

(

2
3M⋆

)1/3
]3/2

,

smax(r, t) := min

[

smax(r,t),

(

3miso(r,t)
4πρs

)1/3
]

,

Stmax(r, t) :=
smax(r, t)ρs√
2πγΣ(r,t)

, (1)

wheremiso(r,t) is an estimate of the local isolation mass, and whereΣ(r,t) is given by the self-similar solution (55). The resulting
predicted solution forΣp(r, t) is shown in Figure 13 att = 4.5Myr, for the three initial particles sizes considered in the text (1, 3 and
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FIG. 13.— True numerical solution (solid lines) and approximate estimates for the total surface density of solids, using the algorithm shown in Appendix C. The
estimate for 1µm size particles is shown as a dotted line, 3µm as dot-dash line and 10µm as a dashed line. Note that some of the global trends (in particular the
overall normalization of the curve, and the surface densitydip) are well-reproduced by the estimate but that quantitative agreement is poor.

10µm). While the global features of the solution are fairly wellreproduced, the quantitative predictions are clearly off by up to an
order of magnitude in regions I and II of the disk, and even larger in region III where equation (76) looses validity. Note that one of
the features that is well-reproduced by the solution is the sharp decrease in the surface density of particles in the intermediate regions
of the disk. This feature corresponds to radii whereStmax≃ 1, which is approximately where

rdip = 4.64

(

Z0

0.01

)2/3
( ǫ

0.01

)2/3( αt

0.01

)1/3
(

M⋆

M⊙

)1/3( t
1Myr

)2/3

AU . (2)

Interestingly,rdip is entirely independent on the initial conditions of the disk (M0 andR0). SinceZ0, M⋆ andt should be fairly well
observationally determined by the stellar properties, possible measurements ofrdip may help constrain the productǫ2αt (at least
within an order of magnitude).
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