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In several regression applications, a different structural relationship might be anticipated for the

higher or lower responses than the average responses. In such cases, quantile regression analysis

can uncover important features that would likely be overlooked by traditional mean regression. We

develop a Bayesian method for fully nonparametric model-based quantile regression. The approach

involves flexible Dirichlet process mixture models for the joint distribution of the response and

the covariates, with posterior inference for different quantile curves emerging from the conditional

distribution of the response given the covariates. Inference is implemented using a combination of

posterior simulation methods for Dirichlet process mixtures. Partially observed responses can also

be handled within the proposed modeling framework leading to a novel nonparametric method

for Tobit quantile regression. We use simulated data sets as well as two data examples from the

literature to illustrate the utility of the model, in particular, its capacity to uncover non-linearities

in quantile regression curves as well as non-standard features in the response distribution.

KEY WORDS: Dirichlet process mixture models; Markov chain Monte Carlo; Multivariate normal

mixtures; Tobit quantile regression.
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1. INTRODUCTION

Quantile regression can be used for inference about the relationship between quantiles of

the response distribution and available covariates. It offers a practically important alternative

to traditional mean regression, since, in general, a set of quantiles provides a more complete

description of the response distribution than the mean. In many regression examples (e.g., in

econometrics, educational studies, and environmental applications), we might expect a different

structural relationship for the higher (or lower) responses than the average responses. In such

applications, mean, or median, regression approaches would likely overlook important features

that could be uncovered by a more general quantile regression analysis.

There is a fairly extensive literature on classical estimation for the standard p-th quantile

regression model, yi = xT
i β + εi, where yi denotes the response observations, xi the corre-

sponding covariate vectors, and εi the errors, which are typically assumed independent from

a distribution (with density, say, fp(·)) that has p-th quantile equal to 0 (see, e.g., Koenker,

2005). This literature is dominated by semiparametric techniques where the error density fp(·)

is left unspecified (apart from the restriction
∫ 0
−∞ fp(ε)dε = p). Hence, since there is no prob-

ability model for the response distribution, point estimation for β proceeds by optimization of

some loss function. For instance, under the standard setting with independent and uncensored

responses, the point estimates for β minimize
∑

ρp(yi−x
T
i β), where ρp(u) = up−u1(−∞,0)(u);

this form yields the least absolute deviations criterion for p = 0.5, i.e., for the special case of

median regression. Any inference beyond point estimation is based on asymptotic arguments

or resampling methods. The classical literature includes also work that relaxes the parametric

(linear) regression form for the quantile regression function (see, e.g., He, Ng and Portnoy, 1998;

Horowitz and Lee, 2005).

By comparison with the existing volume of classical work, the Bayesian literature on quantile

regression is relatively limited. The special case of median regression has been considered in

Walker and Mallick (1999), Kottas and Gelfand (2001), and Hanson and Johnson (2002). This
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work is based on a parametric form for the median regression function and nonparametric

modeling for the error distribution, using either Pólya tree or Dirichlet process (DP) priors.

(See, e.g., Müller and Quintana, 2004, and Hanson, Branscum and Johnson, 2005, for reviews

of these nonparametric prior models.) Regarding quantile regression, Yu and Moyeed (2001)

and Tsionas (2003) discuss parametric inference based on linear regression functions and the

asymmetric Laplace distribution for the errors; Kottas and Krnjajić (2009) develop Bayesian

semiparametric models using DP mixtures for the error distribution; and Hjort and Petrone

(2007) study nonparametric inference for the quantile function based on DP priors, including

brief discussion of the semiparametric extension to quantile regression. Moreover, Chamberlain

and Imbens (2003) and Dunson and Taylor (2005) propose semi-Bayesian inference methods

for linear quantile regression, which, in contrast to the work discussed above, do not involve

probabilistic modeling for the response distribution.

A practical limitation of the Bayesian semiparametric models developed in Walker and

Mallick (1999), Kottas and Gelfand (2001), Hanson and Johnson (2002), and Kottas and Krn-

jajić (2009) is that, although they provide flexible shapes for the error distribution, they are

based on linear quantile regression functions. Regarding inference for non-linear quantile re-

gression functions, Scaccia and Green (2003) model the conditional distribution of the response

given a single continuous covariate with a discrete normal mixture with covariate-dependent

weights. Moreover, Yu (2002) discusses a semi-Bayesian estimation method based on a piece-

wise polynomial representation for the quantile regression function corresponding, again, to a

single continuous covariate, but without a probability model for the error distribution. Finally,

Kottas, Krnjajić and Taddy (2007) present an approach that combines the nonparametric prior

model for the errors from Kottas and Krnjajić (2009) with a Gaussian process prior for the

quantile regression function. We note that these approaches involve relatively complex Markov

chain Monte Carlo (MCMC) methods for inference, and, most importantly, their extension to

handle problems with more than one covariate appears to be non-trivial.
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To our knowledge, this paper presents the first attempt to develop a model-based, fully in-

ferential framework for Bayesian nonparametric quantile regression. We argue for the utility of

Bayesian modeling, since it enables exact and full inference for the quantile regression function

as well as for any functional of the response distribution that may be of interest. But then the

flexibility of such inference under nonparametric prior models becomes attractive. We propose

an approach to inference for nonparametric quantile regression, which is founded on proba-

bilistic modeling for the underlying unknown (random) distributions. In particular, we model

the joint distribution of the response and the covariates with a flexible nonparametric mixture,

and then develop inference for different quantile curves based on the induced conditional distri-

bution of the response given the covariates. The modeling framework can readily incorporate

partially observed responses and, in particular, can be utilized to provide flexible inference for

Tobit quantile regression. We present a method for MCMC posterior simulation, and illustrate

inferences with simulated data and two data sets that have been previously considered in the

econometrics literature.

The outline of the paper is as follows. In Sections 2 and 3 we formulate the probability

model and the approach to inference for quantile regression (with technical details given in the

Appendix). Section 4 provides applications of the modeling approach to simulated data sets,

and data on moral hazard from industrial chemical firms listed on the Tokyo stock exchange.

In Section 5 we develop a nonparametric modeling approach for Tobit quantile regression, and

illustrate it with an example involving data on the labor supply of married women. Finally,

Section 6 concludes with a summary.

2. BAYESIAN MIXTURE MODELING FOR FULLY

NONPARAMETRIC REGRESSION

Section 2.1 presents the mixture modeling framework that forms the basis of the proposed

approach for nonparametric quantile regression. Specific model formulations for categorical

and/or continuous covariates are discussed in Section 2.2. Details on the choice of priors are
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given in Section 2.3.

2.1 Modeling Framework

The starting point for most existing approaches to quantile regression is the traditional

additive regression framework, y = h(x) + ε, where the errors ε are assumed independent from

a distribution with p-th quantile equal to 0. Note that, under this framework (and regardless

of the formulation for the regression function), if inference is sought for more than one quantile

regression, the particular model needs to be fitted separately for each corresponding p. In

particular, note that estimated quantile regression functions for nearby values of p might not

satisfy the explicit ordering of the corresponding percentiles, especially, with small sample sizes

and/or for extreme percentiles. And this attribute of the additive formulation is shared by any

approach that utilizes a probability model for the error distribution, regardless of the estimation

method (likelihood or Bayesian).

This limitation of the standard additive quantile regression framework provides the impetus

for our methodology. We develop an alternative approach to inference for quantile regression

that does not build on a structured regression model formulation, and yields flexible, fully non-

parametric inference for quantile regression. In particular, it enables simultaneous inference for

any set of quantile curves resulting in estimates that satisfy the explicit ordering of percentiles

of the response distribution.

The starting point for this approach is to consider a model for the joint distribution of

the response, y, and the vector of covariates, x, which, in general, comprises both continuous

covariates, xc, and categorical covariates, xd, and thus x = (xc,xd). (We use lowercase letters

for random variables as well as for their values, since, throughout the paper, the distinction is

clear from the context.) Based on the joint model for z = (y,x), inference for any set of quantile

curves can be obtained from the posterior of the implied conditional response distribution given

the covariates. Clearly, the richness of the resulting inference relies on the flexibility of the prior
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probability model for the distribution of z. We employ a nonparametric mixture model,

f(z;G) =

∫

k(z;θ)dG(θ) (1)

for the density of z, with a parametric kernel density, k(z;θ), and a random mixing distribution

G that is modeled nonparametrically. In this context, a flexible choice for the nonparametric

prior for G is given by the DP, resulting in a DP mixture model for f(z;G).

Recall that the DP was developed by Ferguson (1973) as a prior probability model for

random distributions (equivalently, distribution functions)G. A DP(α,G0) prior forG is defined

in terms of two parameters, a parametric base distribution G0 (the mean of the process) and a

positive scalar parameter α, which can be interpreted as a precision parameter; larger values of

α result in realizations G that are closer to G0. We will write G ∼ DP(α,G0) to indicate that

a DP prior is used for the random distribution G. In fact, DP-based modeling typically utilizes

mixtures of DPs (Antoniak, 1974), i.e., a more general version of the DP prior that involves

hyperpriors for α and/or the parameters of G0. The most commonly used DP definition is its

constructive definition (Sethuraman, 1994), which characterizes DP realizations as countable

mixtures of point masses (and thus as random discrete distributions). Specifically, a random

distribution G generated from DP(α,G0) is (almost surely) of the form

G(·) =
∞

∑

`=1

ω` δϑ`
(·) (2)

where δϑ(·) denotes a point mass at ϑ. The locations of the point masses, ϑ`, are i.i.d. real-

izations from G0; the corresponding weights, ω`, arise from a stick-breaking mechanism based

on i.i.d. draws {ζk : k = 1, 2, ...} from a Beta(1, α) distribution. In particular, ω1 = ζ1, and,

for each ` = 2, 3, ..., ω` = ζ`
∏`−1

k=1(1 − ζk). Moreover, the sequences {ϑ`, ` = 1, 2, . . . } and

{ζk : k = 1, 2, ...} are independent.

The hierarchical model for the data, {zi = (yi,xi) : i = 1, ..., n}, corresponding to the
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DP mixture in (1), involves latent mixing parameters, θ i, associated with each vector of re-

sponse/covariate observations, zi, and can be written as follows

zi | θi
ind
∼ k(zi;θi), i = 1, ..., n

θi | G
iid
∼ G, i = 1, ..., n

G | α,ψ ∼ DP(α,G0(ψ)).

(3)

We place a gamma(aα, bα) prior (with mean aα/bα) on the DP precision parameter α, and

further hyperpriors on the parameters, ψ, of the base distribution G0. The form of G0 and of

the priors for ψ depends on the choice of the mixture kernel k(·;θ), as discussed in Section 2.2.

Specification of the model hyperpriors is addressed in Section 2.3.

Under the modeling framework defined by (1) – (3), the discreteness of G, induced by its DP

prior, is a key feature as it enables flexible shapes for the joint distribution of the response and

covariates through data-driven clustering of the mixing parameters θ i. Note, however, that we

employ the DP mixture setting to model random distributions and not, merely, as a clustering

mechanism (as used, to some extent, in the recent literature).

2.2 Choice of the mixture kernel

When the covariate vector consists of continuous covariates (as in the data example of

Section 4.2), a natural choice for the kernel of the DP mixture model in (1) is the (L+1)-variate

normal distribution (perhaps, after transformation for the values of some of the components of

z). In this case, L is the dimension of xc ≡ x. Therefore, we model the joint density for z

through a DP mixture of multivariate normals,

f(z;G) =

∫

NL+1(y,xc;µ,Σ)dG(µ,Σ), G | α,ψ ∼ DP(α,G0(ψ)) (4)

with G0 built from independent NL+1(m, V ) and IWish(ν, S) components for the mean vector

µ and the covariance matrix Σ of the normal mixture kernel. Here, IWish(ν, S) denotes the
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inverse Wishart distribution for the (L+ 1) × (L+ 1) (positive definite) matrix Σ with density

proportional to |Σ|−(ν+L+2)/2 exp{−0.5tr(SΣ−1)}. We work with fixed ν and place hyperpriors

on ψ = (m, V, S). In particular, we use a NL+1(am, Bm) prior for m, an IWish(aV , BV ) prior

for V , and a Wish(aS , BS) prior for the (L+1)×(L+1) positive definite matrix S, with density

proportional to |S|(aS−L−2)/2 exp{−0.5tr(SB−1
S )} (provided aS ≥ L+ 1).

Model (4) has been applied in various settings following the work of Müller, Erkanli and West

(1996) on multivariate density estimation and curve fitting. However, the scope of inference

has been typically limited to posterior point estimates, obtained through posterior predictive

densities, p(z0 | data) ≡ E(f(z0;G) | data), where z0 is a specified support point. Our

application to quantile regression requires the entire posterior of f(z0;G) at any z0, and we

thus employ a more general approach to MCMC inference (discussed in Section 3) that includes

sampling from the posterior of G.

The DP mixture model in (4) can be extended to incorporate both continuous and cate-

gorical covariates through replacement of the multivariate normal distribution with a mixed

continuous/discrete specification for the mixture kernel k(y,xc,xd;θ). One possible specifica-

tion emerges from independent components for (y,xc) and xd. The former can be a multivariate

normal distribution, as in (4), whereas the latter would be assigned an appropriate discrete dis-

tribution. For instance, with a single binary covariate xd (as in the simulated data set of Section

4.1), the DP mixture model is based on a mixed normal/Bernoulli kernel,

f(z;G) =

∫

NL+1(y,xc;µ,Σ)πxd(1 − π)1−xd dG(µ,Σ, π), G | α,ψ ∼ DP(α,G0(ψ)). (5)

Here, G0 comprises independent components for (µ,Σ) and π, the former as in model (4), with

the corresponding hyperpriors for (m, V, S), and the latter given by a beta(aπ, bπ) distribution

(with fixed shape parameters). This approach is easily extended to general categorical xd by

replacing the Bernoulli kernel with a multinomial component and a Dirichlet base distribution

for the multinomial mean vector.
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As a further example, consider again a single categorical covariate xd, involving in this case

counts (as in the Tobit quantile regression data example of Section 5.2). Then, a possible form

for the DP mixture arises from a mixed normal/Poisson kernel,

f(z;G) =

∫

NL+1(y,xc;µ,Σ)Po(xd;λ) dG(µ,Σ, λ), G | α,ψ ∼ DP(α,G0(ψ)), (6)

where Po(·;λ) denotes the probability mass function of the Poisson distribution with mean λ.

(A similar model replacing the Poisson component with a negative binomial could be considered

as a robust alternative.) Again, G0 can be built from independent components for (µ,Σ) and λ,

where, now, the latter could be a gamma distribution with fixed shape parameter and random

scale parameter, which is assigned a gamma hyperprior.

In general, with a vector of categorical covariates, we would need a multivariate discrete

distribution for the kernel component corresponding to xd. In its simplest form, this discrete

distribution would comprise independent components for the individual elements of xd. More

structured versions for k(y,xc,xd;θ) can be built from a conditional distribution for either the

categorical or continuous part given the other variables. Dropping the kernel parameters from

the notation, in the former case, k(y,xc,xd) = Pr(xd | y,xc)k(y,xc), where, for example, with

one binary covariate xd, a (linear) logistic form could be used for Pr(xd = 1 | y,xc). The

latter setting will perhaps be more appropriate given the direction of conditioning involving

the response variable. In this case, we could have k(y,xc,xd) = k(y,xc | xd) Pr(xd), and use

a multivariate normal density for k(y,xc | xd) with parameters that are functions of xd. A

simpler formulation would be k(y,xc,xd) = k(y | xc,xd)k(xc) Pr(xd), using, say, a normal

density for k(y | xc,xd) with mean that is a function of xc and xd.

We note that there is nothing ad hoc about our choices for kernel or base distribution

in these DP mixture models. Each independent mixture kernel component is a member of a

parametric family of densities which forms a standard Bayesian model for the respective type of

data. Efficient posterior simulation is aided by the analytical convenience and intuition made
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possible through these conditionally conjugate component choices. The modeling approach

allows for flexibility through nonparametric mixing despite the choice of such convenient kernel

densities and the possible assumption of independence between kernel components.

Finally, the modeling approach needs to be modified for applications involving fixed cate-

gorical covariates, such as treatment-control settings in survival analysis problems. For such

applications, a more appropriate modeling strategy arises by retaining the multivariate normal

mixture structure for the response and continuous covariate variables and placing a version of a

dependent DP prior (MacEachern, 2000) on the collection of mixing distributions correspond-

ing to the different levels of the categorical covariates. For instance, consider a setting with

a single binary categorical covariate (say, with values indicating treatment or control groups)

and a vector x of continuous covariates. Hence, the data vector can be decomposed into two

groups, {zij = (yij,xij) : i = 1, ..., nj}, j = 1, 2, associated with the two levels of the categorical

covariate. Then, for j = 1, 2, the zij are assumed to arise from the DP mixture in (4) given

group-specific mixing distributions Gj . The model is completed with a dependent DP prior for

(G1, G2), say, in the spirit of Tomlinson and Escobar (1999) or De Iorio et al. (2004). Results

from this line of research in the context of regression modeling for survival analysis problems

will be reported in a future article.

2.3 Prior Specification

Here, we discuss the choice of hyperpriors for the DP mixture models of Section 2.2. We

propose an approach that requires a small amount of prior information, in particular, only rough

prior guesses at the center of the response and covariate variables, say, hy and hxl
, l = 1, ..., L, as

well as at their corresponding ranges, say, ry and rxl
, l = 1, ..., L. Let h = (hy, hx1

, ..., hxL
) and

denote by H the (L+1)× (L+1) diagonal matrix with diagonal elements (ry/4)
2 and (rxl

/4)2,

l = 1, ..., L, which are prior estimates for the variability of the response and covariates. Then,

for a default prior specification for model (4) we consider a single component in the mixture,
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NL+1(·;µ,Σ), i.e., the limiting case of the model with α→ 0+. Therefore, we effectively seek to

roughly center and scale the mixture model, using prior information that identifies the subset

of RL+1 where the data are expected to be supported. Next, based on the form of G0 and the

hyperpriors for its parameters ψ, we can obtain marginal prior moments for µ, i.e., E(µ) = am,

and Cov(µ) = (aV −L−2)−1BV +Bm, which are matched with h and H. Specifically, we take

am = h, and, using a variance inflation factor of 2, set Bm = H and (aV − L− 2)−1BV = H.

We use H to specify also the prior for S through H = E(Σ) = (ν − L− 2)−1aSBS . Finally, ν,

aV , and aS are chosen to scale appropriately the hyperpriors, e.g., note that smaller values of

(ν − L− 2)−1aS yield more dispersed priors for S, and that aV = L+ 3 is the (integer) value

that yields the largest possible dispersion while ensuring finite prior expectation for V . For the

data analyses presented in Section 4, we used ν = aV = aS = 2(L+2); we have also empirically

observed this choice to work well for other data sets that we have studied with model (4).

This general approach to default prior specification – placing a hyperprior on the base dis-

tribution that would be an appropriate prior for the single component model – is also applicable

to other kernel forms. In the normal/Bernoulli mixture model of (5), the expectation of π with

respect to G0 will be a prior guess for the marginal probability of xd = 1. In the case of model

(6), where xd consists of count data, the base distribution mean for λ is set to a prior guess of

the mean for marginal counts.

Regarding the prior choice for the DP precision α, guidelines are available based on the

role this parameter plays with regard to the number of distinct components in the DP mixture

model. Note that, marginalizing G over its DP prior, the second and third stages of model

(3) collapse into a joint prior distribution for the mixing parameters Θ = {θ i : i = 1, ..., n},

which arises according to a particular Pólya urn scheme. Specifically, as shown by Blackwell

and MacQueen (1973), conditional on the DP hyperparameters,

p(Θ | α,ψ) = g0(θ1;ψ)

n
∏

i=2

{

α

α+ i− 1
g0(θi;ψ) +

1

α+ i− 1

i−1
∑

`=1

δθ`
(θi)

}

(7)
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where g0 is the density of G0. This expression indicates the DP-induced clustering of the mixing

parameters. In particular, Θ is partitioned into n∗(≤ n) distinct components, where the prior

distribution for n∗ is controlled by α (see, e.g., Antoniak, 1974; Escobar and West, 1995).

In practice, larger values of α yield higher prior probabilities for larger n∗. For instance, for

moderately large n, E(n∗ | α) ≈ α log{(α+n)/α}, which can be averaged over the gamma prior

for α to obtain an approximation to E(n∗).

3. POSTERIOR INFERENCE FOR QUANTILE REGRESSION

We develop here the general approach to estimate quantile curves based on the posterior

for the conditional response density implied by the mixture modeling framework of Section 2.

The full posterior corresponding to the generic DP mixture model in (3) comprises the

mixing distribution G, the vector of mixing parameters Θ = {θ i : i = 1, ..., n}, and the DP

hyperparameters α and ψ. Recall from Section 2.3 that the DP induces a partition of Θ into

n∗ distinct components, say, θ∗j , j = 1, ..., n∗. The θ∗j , along with configuration indicators w =

(w1, ..., wn) defined such that wi = j if and only if θi = θ∗j , determine Θ. Hence, an equivalent

representation for Θ is given by (n∗, {θ∗j : j = 1, ..., n∗},w).

Based on Antoniak (1974), the full posterior can be expressed as

p(G,Θ, α,ψ | data) = p(G | Θ, α,ψ)p(Θ, α,ψ | data). (8)

Here, the distribution for G | Θ, α,ψ corresponds to a DP with precision parameter α+ n and

mean G̃0(·; Θ, α,ψ), which is a mixed distribution with continuous mass α(α+n)−1 on G0(ψ),

and point masses nj(α + n)−1 at θ∗j , j = 1, ..., n∗, where nj = |{i : wi = j}| is the size of the

j-th distinct component. Moreover,

p(Θ, α,ψ | data) ∝ p(α)p(ψ)p(Θ | α,ψ)

n
∏

i=1

k(zi;θi)

is the posterior of the finite-dimensional parameter vector that results by marginalizing G over
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its DP prior; in particular, p(Θ | α,ψ) is given by (7), and p(α) and p(ψ) are the (independent)

hyperpriors for α and ψ.

Hence, sampling from (8) involves MCMC posterior simulation from p(Θ, α,ψ | data) and

then direct sampling from p(G | Θ, α,ψ). A general outline of the MCMC algorithm to sample

from p(Θ, α,ψ | data) is the following.

(i) Update each θi, i = 1, ..., n, by drawing from its posterior full conditional

p(θi | {θ` : ` 6= i}, α,ψ,data) ∝ p(θi | {θ` : ` 6= i}, α,ψ)k(zi;θi)

where the prior full conditional, p(θi | {θ` : ` 6= i}, α,ψ), corresponding to the joint

prior in (7), is a mixed distribution with point masses (α+ n− 1)−1 at the θ`, for ` 6= i,

and continuous mass α(α + n − 1)−1 on G0(ψ). Note that updating all the θi provides

implicitly posterior samples for n∗, for the θ∗j , j = 1, ..., n∗, and for w.

(ii) To improve mixing of the MCMC algorithm (Bush and MacEachern, 1996), resample each

θ∗j , j = 1, ..., n∗, from its posterior full conditional

p(θ∗j | n∗,w,ψ,data) ∝ g0(θ
∗
j ;ψ)

∏

{i:wi=j}

k(zi;θ
∗
j).

(iii) Update hyperparameters ψ based on their posterior full conditional

p(ψ | n∗, {θ∗j : j = 1, ..., n∗}) ∝ p(ψ)
n∗
∏

j=1

g0(θ
∗
j ;ψ).

(iv) Update α using, for instance, the auxiliary variable method from Escobar and West (1995)

(see Appendix A.1 for details).

Except for step (iv), details of the MCMC algorithm depend on the choice of DP mixture kernel

and the form of G0. The Appendix provides further details for the specific DP mixture models
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in (4) – (6) used for the data examples of Sections 4 and 5.2. Sampling from the conditional

posterior p(G | Θ, α,ψ) = DP(α+n, G̃0) is more generic and we can present an approach which

does not depend upon specifics of the DP mixture model choice.

Given each posterior sample {Θb, αb,ψb : b = 1, ..., B} from p(Θ, α,ψ | data), it is possible

to sample a posterior realization Gb from p(G | Θ, α,ψ) using the DP constructive definition

in (2) with a truncation approximation (e.g., Kottas, 2006). Each Gb is a discrete distribution

with point masses {θ̃rb : r = 1, ..., Rb}, drawn i.i.d. from G̃0(·; Θb, αb,ψb) as defined following

equation (8), and corresponding weights {ωrb : r = 1, ..., Rb}, generated using the stick-breaking

construction based on i.i.d. Beta(1, αb +n) draws, and normalized so that
∑Rb

r=1 ωrb = 1. Here,

Rb is the number of terms used in the truncation series approximation to the countable series

representation for the DP. In general, Rb may depend on the particular posterior realization,

though, in practice, it suffices to consider a common value R. Regardless, the approximation can

be specified up to any desired accuracy. For instance, it can be shown that E(
∑Rb−1

r=1 ωrb | αb) =

1 − {(αb + n)/(αb + n + 1)}Rb−1, and thus a (conservative) approach to choose a common

truncation level R would be to make {(n+maxb αb)/(n+1+maxb αb)}
R−1 small to any desired

accuracy.

For any specific combination of response and covariate values, say, z0 = (y0,x0),

f(y0,x0;Gb) =

∫

k(y0,x0;θ)dGb(θ) =

R
∑

r=1

ωrbk(y0,x0; θ̃rb)

is a realization from the posterior of the random mixture density f(z;G) in (1) at point z =

(y0,x0). Analogously, we can obtain the draw from the posterior of the marginal density

f(x;G) at point x = x0 by computing f(x0;Gb) =
∫

kx(x0;θ)dGb(θ), where kx(·;θ) denotes

the marginal density for x corresponding to the joint kernel density k(y,x;θ). For instance,

under model (4), f(x0;Gb) =
∫

NL(x0;µ
x,Σx)dGb(µ,Σ), where (µx,Σx) are the parameters

of the marginal for x induced by the joint NL+1(y,x;µ,Σ) distribution.

Hence, we obtain f(y0 | x0;Gb) = f(y0,x0;Gb)/f(x0;Gb), which is a realization from
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the posterior of the conditional density f(y | x;G), at point (y,x) = (y0,x0). Repeating

over a grid in y that covers the range of response values of interest, we obtain a posterior

realization from the random conditional density function f(· | x0;G) for the specific covari-

ate values x0. For any 0 < p < 1, the conditional quantile qp(x0) ≡ qp(x0;G) satisfies

∫ qp(x0)
f(y | x0;G) dy = F (qp(x0) | x0;G) = p. Numerical integration of the posterior

realizations from the conditional response density, f(· | x0;G), yields draws from the pos-

terior of qp(x0) for any set of percentiles that might be of interest. Alternatively, certain

kernel choices allow for direct calculation of the conditional response distribution function,

F (· | x0;G), removing the need for numerical integration. For example, consider model (4)

with the partition of kernel parameters, θ̃rb = (µ̃rb, Σ̃rb), into components for y and x. Specif-

ically, µ̃rb comprises L × 1 vector µ̃x

rb and scalar µ̃y
rb, and Σ̃rb is a square block matrix with

diagonal elements given by L × L covariance matrix Σ̃x

rb and scalar variance Σ̃y
rb, and above

and below diagonal vectors Σ̃xy
rb and Σ̃yx

rb . Then, a posterior realization for F (y0 | x0;Gb) is

calculated as
[

∑R
r=1 ωrbNL(x0; µ̃

x

rb, Σ̃
x

rb)Φ((y0 −m(x0))/s(x0))
]

/f(x0;Gb), where Φ(·) is the

standard normal distribution function, m(x0) = µ̃y
rb + Σ̃yx

rb (Σ̃x

rb)
−1(x0 − µ̃x

rb), and s2(x0) =

Σ̃y
rb− Σ̃yx

rb (Σ̃x

rb)
−1Σ̃xy

rb .

Because of the need to obtain the posterior of f(· | x0;G) (or F (· | x0;G)) over a sufficiently

dense grid of x0 values, implementation of inference becomes computationally intensive for high-

dimensional covariate spaces. However, it is only ever possible to plot estimates for quantile

regression functions given one- or two-variable subsets of the covariate vector (e.g., Figures 2

and 3). In these cases, the input grid is over a lower dimensional space and the computational

expense is reduced. Note that inference for a marginal p(qp(x0i) | data), where x0i ∈ x0,

is exactly the same as inference for the full conditional quantile except based on marginal

kernel densities. Moreover, if interest focuses on the posterior of conditional response densities

f(y | x0;G) (e.g., Figure 4), or corresponding conditional quantiles, for a small number of

specified x0 values, the approach is feasible in higher dimensions.
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We can thus obtain samples from p(qp(x0) | data) for any x0 and for any 0 < p < 1. For any

set of p values, working with a grid over the covariate space, we can compute simultaneous point

and interval estimates for the corresponding quantile curves qp(·;G). And, since inference for all

quantiles is based on a single density function, these estimates necessarily satisfy the ordering of

percentiles of the response distribution. Hence, while providing a flexible framework for quantile

regression inference, our model-based nonparametric approach avoids any issues with crossing

quantiles. Estimated crossing quantiles may arise under classical nonparametric methods for

quantile regression, and the related literature includes various techniques for addressing this

problem (see, e.g., Dette and Volgushev, 2008, and further references therein).

The proposed approach to inference for quantile regression is well-suited for problems with

a moderate number of covariates, and there is indeed a wide variety of such regression problems

that are of interest in economics. The methodology is very flexible as it allows both non-

linear quantile curves as well as non-standard shapes for the conditional response distribution.

Moreover, the model does not rely on the additive nonparametric regression formulation and

therefore can uncover interactions between covariates that might influence certain quantile

regression curves.

4. DATA ILLUSTRATIONS

Section 4.1 presents results from a small simulation experiment, whereas Section 4.2 con-

siders an example involving data on moral hazard from Japanese industrial chemical firms.

4.1 Simulation Experiment

We consider synthetic data to study empirically some key aspects of the performance of

the modeling approach developed in Sections 2 and 3. While an extensive simulation study is

beyond the scope of this paper, these examples serve to indicate the effect of the sample size

and prior choice on the resulting posterior inference under a setting where the true regression

function and response distribution are known.
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Two datasets, of size n = 200 and n = 2000, consist of realizations of a continuous response

y, a binary covariate xd, and a continuous covariate xc. The data were generated such that

xc ∼ N(0, 1), xd | xc ∼ Bernoulli(Φ(xc)), y | xc, xd ∼ N(h(xc), σ
2(xd)),

where N(µ, σ2) is the normal distribution with mean µ and variance σ2; σ(0) = 0.25, σ(1) = 0.5;

and h(xc) = 0.3 + 0.4xc + 0.5 sin(2.7xc) + 1.1(1 + x2
c)

−1. The marginal conditional distribution

for y given xc is defined by heteroskedastic normal errors around a mean/median function

(taken from Neal, 1997) that is nonlinear within the likely range for xc. Note that the data

are generated through an additive error mechanism, as assumed by the majority of quantile

regression models, even though this is not the setting under which our model was developed.

The model specification follows the outline of Section 2. In particular, the mixed nor-

mal/Bernoulli kernel of model (5) is assumed. The base distribution is the product of normal

and inverse Wishart components for the kernel parameters related to (y, xc), and a uniform

component for π, such that G0(µ,Σ, π;m, V, S) = N2(µ;m, V ) IWish(Σ; ν, S) beta(π; 1, 1). To

study prior sensitivity, we considered two dramatically different prior specifications. Both have

the same mean for m at (0, 1.5), corresponding to the approximate mean for (xc, y), and in

both cases the required priors for variance matrices are specified in terms of a single matrix H

and the appropriate number of degrees of freedom, following the procedure in Section 2.3. In

the first specification, referred to as the default prior, H is set to I, the identity matrix, such

that (with variance of about one for xc and y) the prior variance matrices are the approximate

expectation of the data dependent hyperparameters proposed in Section 2.3. Moreover, under

the default specification, π(α) = gamma(2, 0.2). The second (alternative) prior specification is

based on H = 10I and π(α) = gamma(2, 2). Hence, the alternative specification inflates the

prior expectation for variance matrices by a factor of 10, and deflates the prior expectation

for α by a factor of 10 (thus, e.g., under n = 200, decreasing the approximate prior expecta-

tion for n∗ from about 28 to 5). These two priors represent very different (but still plausible)
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representations of uncertainty about the DP mixture prior parameters.

All the results are based on MCMC samples of 80000 draws, recorded on every tenth it-

eration, following a burn-in period of 20000 iterations. Inference for the median and 90-th

percentile regression functions is shown in the two left hand columns of Figure 1, and the

results are encouraging. There is a striking similarity between posterior mean and interval

estimates corresponding to the two very different prior specifications. Compared to inference

under the small sample, posterior means informed by the larger sample are closer to the truth

and the 90% intervals are tighter, such that an increase in information leads to a corresponding

increase in posterior precision. Since inference for extreme quantile functions is notoriously

challenging, it is notable that accurate estimation and quantification of uncertainty holds in

the case of the 90-th percentile as well as for the median.

Figure 1 (far right hand column) also plots posterior estimates for the conditional response

density f(y|xc = 0, xd = 1;G). Again, there is a desirable uniformity among results correspond-

ing to the different prior choices. Moreover, as the sample size increases to 2000, the posterior

mean estimates approach the true conditional density function. For the 200 point sample,

inference relies heavily on a small number of local observations (i.e., response observations as-

sociated with xc around 0) and shows posterior mean density functions that are shifted to the

right of the true density. The wide posterior 90% interval reflects this uncertainty, although

the default prior analysis appears to provide a better quantification of uncertainty than that

based upon the alternative prior. Results for the larger sample show a substantial improvement

with the posterior distribution effectively capturing the truth under both prior choices. This

is achieved despite the still limited amount of information provided about the entire response

density corresponding to any specific conditioning.

4.2 Moral Hazard Data

Here, we illustrate the methodology with real data used by Yafeh and Yoshua (2003) to
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Figure 1: Simulated data. Each row shows posterior estimates for (from left to right) the
marginal conditional median and 90-th percentile for y given xc (xc ≡ x in the plot labels),
and the conditional density f(y | xc = 0, xd = 1;G). The solid lines are truth, dashed lines
are posterior mean estimates, and dotted lines contain a 90% interval. The rows correspond to
the sample with n = 200 with the default prior (top) and with the alternative prior (second
from top), and to the sample with n = 2000 under the default prior (third from top) and the
alternative prior (bottom).
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investigate the relationship between shareholder concentration and several indices for manage-

rial moral hazard in the form of expenditure with scope for private benefit. The data set

includes a variety of variables describing 185 Japanese industrial chemical firms listed on the

Tokyo stock exchange. (The data set is available online through the Economic Journal at

http://www.res.org.uk.) A subset of these data was also considered by Horowitz and Lee (2005)

in application of their classical nonparametric estimation technique for an additive quantile re-

gression model. As was done there, we consider a single model proposed by Yafeh and Yoshua

(2003) in which index MH5, consisting of general sales and administrative expenses deflated

by sales, is the response y related to a four-dimensional covariate vector x, which includes

Leverage (ratio of debt to total assets), log(Assets), the Age of the firm, and TOPTEN, the

percent of ownership held by the ten largest shareholders. The response and all four covariates

are continuous and, although Leverage and TOPTEN occur over subsets of the real line, the

data lies far enough from support boundaries to render the DP mixture of multivariate normals

in (4) a suitable choice for the analysis.

The model is implemented using the prior specification approach outlined in Section 2.3.

In the absence of genuine prior information in our illustrative analysis, we take values from the

data for the prior guesses of the center and range for the response and four covariates. Results

were insensitive to reasonable changes in the prior specification, e.g., doubling the observed

data range for the response and covariates did not affect the posterior estimates in Figures 2

– 4. A gamma(1, 0.2) prior is placed on the DP precision parameter α, implying E(n∗) ≈ 16.

Experimentation with alternative gamma priors, yielding smaller prior estimates for the number

of distinct mixture components, has resulted in essentially identical posterior inference. Results

are based on an MCMC sample of 150000 parameter draws, recorded on every tenth iteration,

following a (conservative) burn-in of 50000 iterations.

Although it is not possible to show the response quantile functions over all four variables, as

discussed in Section 3, it is straightforward to obtain quantile curves for the response given any
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one-dimensional or two-dimensional subset of the covariates. In Figure 2, we plot posterior point

and 90% interval estimates for the response median and 90-th percentile as a function of each

individual covariate. In addition, Figure 3 provides inference for the response median and 90-th

percentile surfaces over the two-dimensional covariate space defined by Leverage and TOPTEN.

(Note that Yafeh and Yoshua, 2003, found these two covariates to be the most significant.) In

particular, shown are point estimates, through the posterior mean, and a measure of the related

uncertainty, through the posterior interquartile range.

These two figures indicate the capacity of the model to capture non-linear shapes in the

estimated quantile curves as well as to quantify the associated uncertainty. Figure 2 shows that

the marginal relationship between each covariate and MH5 may differ significantly depending

upon the quantile of interest; this is particularly clear in the contrast between median and

90-th percentile curves for MH5 conditional on TOPTEN. The inference results displayed in

Figure 3 show an interaction between the effects of Leverage and TOPTEN in both the median

and 90-th percentile surfaces, suggesting that it is useful to relax the assumption of additivity

over the covariate space (which forms the basis of the method in Horowitz and Lee, 2005).

Moreover, Figure 3 indicates that posterior uncertainty about the quantile functions is highly

variable throughout the covariate space; for each quantile, regions of steep change in the quantile

function correspond to significantly higher uncertainty around the function estimate.

Figure 4 illustrates inference for the conditional response density f(y | x0;G). Included are

results for four values, x0, of the covariate vector x = (TOPTEN, Leverage, Age, log(Assets)),

specifically, clockwise from top left, x0 = (40, 0.3, 55, 11), (35, 0.6, 55, 11), (40, 0.3, 70, 13), and

(70, 0.8, 55, 11). This type of inference highlights the ability of the model to capture non-

standard distributional features such as heavy tails, skewness, and multimodality. The poste-

rior estimates in Figure 4 clearly indicate that the response distribution changes significantly

throughout the covariate space in ways that can not be modeled with standard parametric

forms. Inspection of the data scatterplots in Figure 2 makes it clear that the non-standard
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Figure 2: Moral hazard data. Posterior estimates for median regression (left column) and 90-
th percentile regression (right column) for MH5 conditional on each individual covariate. The
solid lines are posterior mean estimates and dashed lines contain a 90% posterior interval. Data
scatterplots are shown in grey.
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Figure 4: Moral hazard data. Posterior mean estimates (solid lines) and 90% interval estimates
(dashed lines) for four conditional densities f(y | x0;G) (see Section 4 for the values of x0).

23



features captured in the posterior estimates from the DP mixture model are driven by the data

and are not simply an artifact of the flexible nonparametric prior mixture model. In this regard,

note also that for the simulated data of Section 4.1, arising from a normal response distribution,

the DP mixture model yields unimodal, roughly symmetric, estimates for conditional response

densities (refer again to Figure 1 for results under a specific combination of covariate values).

Finally, given the results of this section, it is worth drawing some comparison between the

proposed modeling approach with existing methods for quantile regression discussed in the

Introduction. First, given the non-linearities in regression relationships (Figure 2) and non-

standard response density shapes (Figure 4), it is evident that the standard linear quantile

regression model would be outperformed by the DP mixture model. And, to a smaller or larger

extent, this would be the case regardless of the estimation approach, classical semiparametric,

Bayesian parametric (e.g., Yu and Moyeed, 2001) or Bayesian semiparametric (e.g., Hjort and

Petrone, 2007; Kottas and Krnjajić, 2009). Classical nonparametric estimation methods would

likely fare better with regard to capturing non-linear quantile regression relationships. However,

such estimation techniques are limited with respect to inference for the response distribution,

e.g., the results reported in Figure 4 would not be possible under these approaches. Although

comparison with Bayesian nonparametric methods for non-linear quantile regression is more

relevant, there is very little work in this direction. Moreover, as discussed in the Introduction,

extensions of the existing work (e.g., Scaccia and Green, 2003; Kottas, Krnjajić and Taddy,

2007) to incorporate more than one covariate is challenging.

5. NONPARAMETRIC TOBIT QUANTILE REGRESSION

Section 5.1 develops the extension to nonparametric Tobit quantile regression. A data ex-

ample that illustrates this extension is presented in Section 5.2.

5.1 The Modeling Approach

There are several regression applications that involve constrained observations for the re-
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sponse variable, and possibly also for the covariates. For instance, different types of censoring

or truncation are commonly present in survival analysis data. In econometrics applications, a

standard scenario involves certain forms of partially observed responses leading to what is typi-

cally referred to as Tobit regression models, after the work by Tobin (1958) (see, e.g., Amemiya,

1984, for a thorough review of various types of Tobit models).

The standard Tobit model is formulated through latent random variables y∗i , which are

assumed independent and normally distributed with mean xT
i β and variance σ2. Tobit quantile

regression arises by modeling a specific quantile of the latent response distribution as a function

of the covariates. The covariate vectors xi are observed for all subjects in the data. However,

the observed responses, yi, are constrained according to yi = max{y0
i , y

∗
i }, where the y0

i are fixed

threshold points. In applications, the threshold value is typically the same for all data subjects,

and we can thus set without loss of generality y0
i = 0 (as in our data example of Section 5.2).

Formally, this data structure corresponds to (fixed) left censoring. However, there is a subtle

difference with more traditional survival analysis applications, since in economics settings, the

latent variable y∗ may exist only conceptually, e.g., as a particular utility functional formulated

based on empirical and/or theoretical studies.

The classical semiparametric literature includes several estimation techniques for both the

mean regression and quantile regression Tobit models (see, e.g., Buchinsky and Hahn, 1998,

and further references therein). Again, these approaches do not include probabilistic modeling

for the latent response distribution and are thus limited in terms of the range of inferences that

they can provide. Bayesian approaches to Tobit regression for econometrics applications appear

to have focused on parametric modeling with linear regression functions. For instance, the early

work of Chib (1992) developed Bayesian inference for linear Tobit regression with normal errors

whereas, more recently, Yu and Stander (2007) studied linear Tobit quantile regression with

asymmetric Laplace errors.

The modeling framework developed in Sections 2 and 3 can be utilized to provide a flexible
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nonparametric approach to inference for Tobit quantile regression. Again, we start with a

DP mixture model, f(y∗,x;G) =
∫

k(y∗,x;θ)dG(θ), G | α,ψ ∼ DP(α,G0(ψ)), for the joint

distribution of the latent response variable y∗ and the vector of covariates x. The mixture

kernel can be specified following one of the approaches of Section 2.2. The first stage of the

hierarchical model for the data, (yi,xi), i = 1, ..., n, is built again from conditional independence

given the mixing parameters θi, i = 1, ..., n, but is modified with respect to (3) by replacing

the (conditional) response kernel density with its corresponding distribution function for all i

with yi = 0.

The analogous modifications to the MCMC posterior simulation method of Section 3 yield

the full posterior for G, α, ψ and the θi, i = 1, ..., n. (We provide specific details in Appendix

A.3 in the context of the DP mixture model used in Section 5.2.) In particular, full and exact

inference for any set of quantile regression curves emerges from the posterior realizations for

the conditional response density f(· | x0;G) over grid values x0 in the covariate space. Note

that here, for any specified point y0 > 0 associated with fully observed responses, f(y0 | x0;G)

in the notation of Section 3 is given through f(y0 | y∗ = y0 > 0,x0;G). Hence, inference for

Tobit quantile regression is based on the conditional response density, given x, arising from

the underlying DP mixture f(y∗,x;G), conditionally also on y∗ > 0. Moreover, using the

posterior realizations for f(y∗ | x;G), we can obtain the posterior for Pr(y∗ ≤ 0 | x0;G). A

collection of these posteriors for a set of specified x0 provides information on the relationship

between the covariates and the censoring mechanism for the response. Because of the flexibility

of the mixture model for the joint distribution of y∗ and x, the proposed modeling approach en-

ables potentially different structure for the relationship between the response and the covariates

across different quantile regression curves as well as for the relationship between the covariates

and the underlying mechanism that constrains the response. This is a practically important

advantage over parametric formulations (as in, e.g., Yu and Stander, 2007) that postulate a

linear regression form for all the relationships above.

26



5.2 Data Example

We consider a subset of the data on female labor supply corresponding to the University

of Michigan Panel Study of Income Dynamics for year 1975. Using this data set, Mroz (1987)

presents a systematic analysis of theoretical and statistical assumptions used in empirical models

of female labor supply. The sample considered by Mroz (1987) consists of 753 married white

women between the ages of 30 and 60, with 428 of them working at some time during year 1975.

The 428 fully observed responses, yi, are given by the wife’s work (in 100 hours) during year 1975.

For the remaining 325 women, the observed work of yi = 0 corresponds to negative values for the

latent labor supply response, y∗. The response variable can be treated as continuous (non-zero

observed responses range from 12 to 4950 hours). The data set includes covariate information

on family income, wife’s wage, education, age, number of children of different age groups, and

mother’s and father’s educational attainment, as well as on husband’s age, education, wage,

and hours of work. For our illustrative analysis, we consider number of children as the single

categorical covariate, xd ≡ x. This covariate combines observations from two variables in the

data set, “number of children less than 6 years old in household” and “number of children

between ages 6 and 18 in household”; the observed values range from 0 to 8 children.

To model the joint distribution of the covariate and the latent labor supply response, we

work with the special case of DP mixture (6) given by

f(y∗, x;G) =

∫

N(y∗;µ, σ2)Po(x;λ) dG(µ, σ2, λ), G | α,ψ ∼ DP(α,G0(ψ)). (9)

Here, G0 is built from independent components, specifically, N(ψ1, ψ2) for µ, gamma(c, ψ3) for

σ−2, and gamma(d, ψ4) for λ, with hyperpriors placed on ψ = (ψ1, ψ2, ψ3, ψ4).

Posterior inference under model (9) is implemented using the MCMC method detailed in

Appendix A.3. The results reported below are based on a gamma(1, 0.2) prior for α, and

N(10, 40), gamma(2, 40), gamma(2, 0.2), and gamma(3, 3) priors for ψ1, ψ
−1
2 , ψ3, and ψ4, re-
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spectively. The remaining parameters of G0 are set to c = 2 and d = 1. We have experimented

increasing and decreasing the variability around α and ψ1 and the prior expectations for ψ2

and ψ3, as well as with alternative specifications for ψ4, and have not found this to affect the

analysis. Results are based on an MCMC sample of 100000 parameter draws, recorded on every

fifth iteration, following a (conservative) burn-in period of 50000 iterations.
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Figure 5: Female labor supply data. Posterior estimates for f(y∗ | x;G) given x = 0, ..., 5
children. Solid and dashed lines correspond to posterior mean and 90% posterior interval
estimates, respectively.

The posterior samples for G can be used to obtain the posterior of the conditional distribu-

tion for the latent labor supply response given a specific value for the number of children covari-

ate. Posterior estimates for the conditional densities f(y∗ | x;G), corresponding to x = 0, ..., 5

children, are shown in Figure 5. The estimated latent response densities have non-standard
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Figure 6: Female labor supply data. Posterior mean estimates for Pr(y∗ < u | y∗ > 0, x;G) for
(progressing from black to light grey) x = 0, ..., 5 children.

shapes that change with the covariate value in a fashion that is difficult to describe with a

parametric regression relationship. The peak around 2000 hours of work, which is seen in con-

ditional response densities for lower numbers of children, corresponds to a traditional full-time

job (50 weeks of 40 hours). The nonparametric DP mixture model is exposing density structure

that would have been missed under standard parametric assumptions for the latent response

distribution, e.g., the models developed by Chib (1992) and Yu and Stander (2007) based on

normal and asymmetric Laplace distributions, respectively. In particular, the density mode

corresponding to full-time labor decreases in magnitude as the number of children increases

and the probability mass is redistributed in the region with y∗ < 2000 hours of work. From

an economic perspective, this suggests that the main effect of an increase in offspring on labor

supply is to reduce the proportion of women working full-time.

Non-standard features are also seen in response distributions for positive observed work.

This is illustrated in Figure 6 through posterior mean estimates for Pr(y∗ < u | y∗ > 0, x;G) =

Pr(0 < y∗ < u, x;G)/Pr(y∗ > 0, x;G), i.e., the conditional distribution function at u > 0, given
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panel) and 90-th percentile (right panel) given the realized values of the covariate. The positive
data observations are shown in grey.
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Figure 8: Female labor supply data. Posterior samples for Pr(y∗ ≤ 0 | x;G).
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positive observed work and given x; results are plotted for x = 0, ..., 5 children. For any value

of x, working with a grid of u values, posterior realizations for Pr(y∗ < u | y∗ > 0, x;G) are

given by

Pr(y∗ < u | y∗ > 0, x;Gb) =

R
∑

r=1
ωrbPo(x; λ̃rb) [Φ((u− µ̃rb)/σ̃rb) − Φ(−µ̃rb/σ̃rb)]

R
∑

r=1
ωrbPo(x; λ̃rb) [1 − Φ(−µ̃rb/σ̃rb)]

,

where, following the notation of Section 3, Gb = {ωrb, (µ̃rb, σ̃
2
rb, λ̃rb) : r = 1, ..., R} is the b-th

posterior realization for G, with b = 1, ..., B (= 10000).

Next, inference about conditional quantiles qp(x) for positive observed work proceeds based

on these posterior realizations. In particular, for any specified p and any value x for the number

of children, the posterior samples {qpb(x) : b = 1, ..., B} for qp(x) are obtained (with interpola-

tion) from p = Pr(y∗ < qpb(x) | y
∗ > 0, x;Gb). As an illustration, Figure 7 plots boxplots of the

posterior samples for q0.5(x) and q0.9(x). (Boxplots are constructed such that the boxes contain

the interquartile sample range and the whiskers extend to the most extreme sample point that

is no more than 1.5 times the interquartile range outside the central box.) Noteworthy is the

different rate of decrease in the median and 90-th percentile regression relationships between

positive observed work and number of children. Note also that the posteriors for q0.9(x) at

x = 1, 2, 3, 4 children are more concentrated than the posterior for q0.9(0), whereas such a

difference is substantially less pronounced in the posteriors for q0.5(x).

Finally, as discussed in Section 5.1, of interest might be inference for Pr(y∗ ≤ 0 | x;G),

i.e., the probability of zero hours of observed work given the number of children. For any

value of x = 0, ..., 8, posterior samples for this probability arise from Pr(y∗ ≤ 0 | x;Gb) =
[

∑R
r=1 ωrbPo(x; λ̃rb)Φ(−µ̃rb/σ̃rb)

]

/
∑R

r=1 ωrbPo(x; λ̃rb), for b = 1, ..., B. Boxplots of these pos-

terior samples are shown in Figure 8, indicating fairly similar relationship between the covariate

and the censoring mechanism for the response when x = 0, 1 children; a noticeable increase in

the probability of zero hours of observed work with x = 2, 3, 4 children; and similar probabilities,
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albeit with increased posterior uncertainty, for x = 5, 6, 7, 8 children.

6. SUMMARY

We have developed a fully inferential Bayesian approach for quantile regression. The model-

ing approach utilizes flexible Dirichlet process mixtures for the joint distribution of the response

and covariates, with inference for quantile curves emerging from the posterior of the induced

conditional distribution of the response given the covariates. We have discussed Markov chain

Monte Carlo posterior simulation methods for such inference. The modeling framework allows

incorporation of both categorical and continuous covariates as well as partially observed re-

sponses. In particular, we have presented an approach to fully nonparametric Tobit quantile

regression. Finally, we have provided illustrations of the methodology with simulated and real

data examples.
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APPENDIX: MCMC POSTERIOR SIMULATION DETAILS

A.1 DP Mixture of Multivariate Normals Model

Here, we provide details for the MCMC algorithm, outlined in Section 3, to sample from

p(Θ, α,ψ | data) under DP mixture model (4). Regarding step (i), we update each θ i = (µi,Σi)

using algorithm 5 from Neal (2000), which is based on Metropolis-Hastings steps with proposal

distribution given by the prior full conditional of (µi,Σi), p((µi,Σi) | {(µ`,Σ`) : ` 6= i}, α,ψ),

implied by (7). Updating all the (µi,Σi), i = 1, ..., n, generates a posterior realization for the
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partition of Θ comprising n∗ distinct components θ∗j = (µ∗
j ,Σ

∗
j ), j = 1, ..., n∗. The Metropolis-

Hastings approach to update the (µi,Σi) can potentially lead to poor mixing. However, it is

straightforward to implement and, combined with step (ii) that resamples the (µ∗
j ,Σ

∗
j ), yields

an efficient MCMC method. For each j = 1, ..., n∗, the posterior full conditional for (µ∗
j ,Σ

∗
j )

is proportional to g0(µ
∗
j ,Σ

∗
j ;ψ)

∏

{i:wi=j} NL+1(zi;µ
∗
j ,Σ

∗
j ), and is sampled by drawing from

the full conditionals for µ∗
j and Σ∗

j . The former is (L + 1)-variate normal with mean vector

(V −1 + njΣ
∗−1
j )−1(V −1m + njΣ

∗−1
j z̃j) and covariance matrix (V −1 + njΣ

∗−1
j )−1, where nj =

|{i : wi = j}| and z̃j = n−1
j

∑

{i:wi=j} zi. The latter is inverse Wishart with scalar parameter

ν + nj and matrix parameter S +
∑

{i:wi=j}(zi − µ
∗
j )(zi − µ

∗
j)

T .

Regarding the hyperparameters ψ = (m, V, S) of G0 (step (iii)), the posterior full condi-

tional for m is (L+1)-variate normal with mean vector (B−1
m +n∗V −1)−1(B−1

m am +n∗V −1µ̃∗),

with µ̃∗ = n∗−1
∑n∗

j=1µ
∗
j , and covariance matrix (B−1

m + n∗V −1)−1. The full conditional for

V is inverse Wishart with scalar parameter aV + n∗ and matrix parameter BV +
∑n∗

j=1(µ
∗
j −

m)(µ∗
j −m)T , and the full conditional for S is given by a Wishart distribution with scalar

parameter aS + νn∗ and matrix parameter (B−1
S +

∑n∗

j=1 Σ∗−1
j )−1.

Finally, we update the DP precision parameter α (step (iv)) using the augmentation method

from Escobar and West (1995). Specifically, an auxiliary variable u is introduced such that the

joint density of α and u has full conditionals p(u | α,data) = Beta(α + 1, n) and

p(α | u, n∗,data) = pgamma(aα + n∗, bα − log(u)) + (1 − p)gamma(aα + n∗ − 1, bα − log(u)),

where p = (aα + n∗ − 1)/ {n(bα − log(u)) + aα + n∗ − 1}.

A.2 DP Mixture Model for the Simulation Example of Section 4.1

The MCMC posterior sampling algorithm for DP mixture model (5) involves only minor

differences from the approach described in Appendix A.1. Each θ i = (µi,Σi, πi) is again

updated using algorithm 5 from Neal (2000), in this case sampling each proposed (µ i,Σi, πi)

from p((µi,Σi, πi) | {(µ`,Σ`, π`) : ` 6= i}, α,ψ) as implied by (7). The algorithm is again
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augmented by a re-sampling step from the posterior full conditional for each θ∗
j = (µ∗

j ,Σ
∗
j , π

∗
j ),

j = 1, ..., n∗. This step is aided by noticing that, given the allocation of observations to

each unique kernel component, (µ∗
j ,Σ

∗
j) is conditionally independent of π∗

j . Thus, re-sampling

for (µ∗
j ,Σ

∗
j ) proceeds exactly as described in Appendix A.1. The posterior full conditional

for π∗j is proportional to g0(π
∗
j )

∏

{i:wi=j} π
∗
j
xdi(1 − π∗j )

(1−xdi), and thus π∗j is drawn from a

beta(aπ +
∑

{i:wi=j} xdi, bπ +
∑

{i:wi=j}(1−xdi)) distribution. Sampling for α and ψ is the same

with Appendix A.1.

A.3 DP Mixture Model for Tobit Quantile Regression Example of Section 5.2

Here, we describe the MCMC approach to sampling from p(Θ, α,ψ | data) for model (9),

where Θ = (θ1, ...,θn), with θi = (µi, σ
2
i , λi). We have

p(Θ, α,ψ | data) ∝ p(α)p(ψ)p(Θ | α,ψ)
∏

i∈I0

Φ(−µi/σi)
∏

i∈I1

N(yi;µi, σ
2
i )

n
∏

i=1

Po(xi;λi)

where I0 = {i : yi = 0}, I1 = {i : yi > 0}, and p(Θ | α,ψ) is given by (7). The structure

of the Metropolis-Hastings steps for the θi (step (i)) is the same with the models discussed in

Appendixes A.1 and A.2. However, when resampling, for j = 1, ..., n∗, the distinct components

(step (ii)) from

g0(µ
∗
j , σ

2∗
j , λ

∗
j ;ψ)

∏

{i:wi=j}

Po(xi;λ
∗
j)

∏

i∈I0∩{i:wi=j}

Φ(−µ∗j/σ
∗
j )

∏

i∈I1∩{i:wi=j}

N(yi;µ
∗
j , σ

2∗
j ),

the posterior full conditionals for µ∗
j and σ2∗

j are no longer available in a form from which it is

easy to draw. Sampling proceeds through Metropolis-Hastings steps with normal proposals for

µ∗j and gamma proposals for σ2∗
j . The posterior full conditional for λ∗j is a gamma distribution

with shape parameter d+
∑

{i:wi=j} xi and rate parameter ψ4+nj. The posterior full conditionals

for all four hyperparameters in ψ have standard forms, specifically, they are given by a normal

distribution for ψ1, and by gamma distributions for ψ−1
2 , ψ3 and ψ4.
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