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Abstract

In several regression applications, a different structural
relationship might be anticipated for the higher or lower
responses than the average responses. In such cases,
quantile regression analysis can uncover important fea-
tures that would likely be overlooked by mean regression.
We develop two distinct Bayesian approaches to fully
nonparametric model-based quantile regression. The first
approach utilizes an additive regression framework with
Gaussian process priors for the quantile regression func-
tions and a scale uniform Dirichlet process mixture prior
for the error distribution, which yields flexible unimodal
error density shapes. Under the second approach, the
joint distribution of the response and the covariates is
modeled with a Dirichlet process mixture of multivari-
ate normals, with posterior inference for different quan-
tile curves emerging through the conditional distribution
of the response given the covariates. The proposed non-
parametric prior probability models allow the data to un-
cover non-linearities in the quantile regression function
and non-standard distributional features in the response
distribution. Inference is implemented using a combina-
tion of posterior simulation methods for Dirichlet process
mixtures. We illustrate the performance of the proposed
models using simulated and real data sets.

Keywords: Dirichlet process mixture models; Gaussian
process priors; Multivariate normal mixtures; Scale uni-
form mixtures

1. Introduction

Quantile regression can be used to quantify the relation-
ship between a set of quantiles of the response distribu-
tion and available covariates. Because, in general, a set
of quantiles provides a more complete description of the
response distribution than the mean, quantile regression
offers a practically important alternative to traditional
mean regression. In many regression examples (e.g., in
econometrics, educational studies, and environmental ap-
plications), we might expect a different structural rela-
tionship for the higher (or lower) responses than the aver-

age responses. In such applications, mean, or median, re-
gression approaches would likely overlook important fea-
tures that could be uncovered by a more general quantile
regression analysis.

There is a fairly extensive literature on classical estima-

tion for the standard p-th quantile regression model, yi =
xT

i β + εi, where yi denotes the response observations,
xi the corresponding covariate vectors, and εi the errors,
which are typically assumed independent from a distribu-
tion (with density, say, fp(·)) that has p-th quantile equal
to 0. (See, e.g., the review paper by Yu, Lu and Stander,
2003, and the book by Koenker, 2005.) This literature is
dominated by semiparametric techniques where the error
density fp(·) is left unspecified (apart from the restriction∫ 0

−∞
fp(ε)dε = p). Hence, since there is no probability

model for the response distribution, point estimation for
β proceeds by optimization of some loss function. For
instance, under the standard setting with independent
and uncensored responses, the point estimates for β min-
imize

∑n
i=1 ρp(yi−x

T
i β), where ρp(u) = up−u1(−∞,0)(u);

this form yields the least absolute deviations criterion
for p = 0.5, i.e., for the special case of median regres-
sion. Any inference beyond point estimation is based on
asymptotic arguments or resampling methods. The clas-
sical literature includes also work that relaxes the para-
metric (linear) regression form for the quantile regression
function (see, e.g., He, Ng and Portnoy, 1998; Horowitz
and Lee, 2005).

By comparison with the existing volume of classical
work, the Bayesian literature on quantile regression is
relatively limited. The special case of median regression
has been considered in Walker and Mallick (1999), Kot-
tas and Gelfand (2001), and Hanson and Johnson (2002).
This work is based on a parametric form for the me-
dian regression function and nonparametric modeling for
the error distribution, using either Pólya tree priors or
Dirichlet process mixture priors. (See, e.g., Müller and
Quintana, 2004, for reviews of these nonparametric prior
models.) Regarding quantile regression, based again on
parametric regression functions, Yu and Moyeed (2001)
and Tsionas (2003) discuss parametric inference based on
the asymmetric Laplace distribution for the errors; Kot-
tas and Krnjajić (2005) develop Bayesian semiparametric
models using Dirichlet process mixtures for the error dis-
tribution; Hjort and Petrone (2005) study nonparametric
inference for the quantile function based on Dirichlet pro-
cesses, including brief discussion of the semiparametric
extension to quantile regression. Moreover, Dunson and
Taylor (2005) propose an approximate semi-Bayesian in-
ference method for quantile regression, which, in contrast
to the work discussed above, does not involve probabilis-
tic modeling for the response distribution.



A practical limitation of the Bayesian semiparamet-
ric approaches developed in Walker and Mallick (1999),
Kottas and Gelfand (2001), Hanson and Johnson (2002),
and Kottas and Krnjajić (2005) is that, although they
all provide flexible shapes for the error distribution, they
are based on parametric (in fact, linear) quantile regres-
sion functions. Regarding inference for non-linear quan-
tile regression functions, Scaccia and Green (2003) model
the conditional distribution of the response given a sin-
gle continuous covariate with a discrete normal mixture
with covariate-dependent weights. Moreover, Yu (2002)
discusses a semi-Bayesian estimation method based on a
piecewise polynomial representation for the quantile re-
gression function corresponding, again, to a single con-
tinuous covariate, but without a probability model for
the error distribution. We note that both of these ap-
proaches involve rather complicated Markov chain Monte
Carlo (MCMC) methods for inference, in particular, cer-
tain forms of reversible jump MCMC techniques.

To our knowledge, this paper presents the first attempt
to develop a model-based, fully inferential framework for
Bayesian nonparametric quantile regression. We argue
for the utility of Bayesian modeling approaches, since
they enable exact and full inference, given the data, for
the quantile regression function as well as for any func-
tional of the response distribution that may be of in-
terest. But then the fexibility of such inference under
nonparametric prior models becomes attractive. We pro-
pose two distinct modeling approaches to nonparamet-
ric quantile regression. The first approach (presented in
Section 2) utilizes an additive regression framework with
different nonparametric priors for the quantile regression
functions and for the error distribution. Under the sec-
ond approach (developed in Section 3), the joint distribu-
tion of the response and the covariates is modeled with a
flexible nonparametric mixture model, and then inference
for different quantile curves is obtained from the induced
conditional distribution of the response given the covari-
ates. We discuss MCMC posterior simulation methods
under both approaches, and illustrate inferences with ei-
ther simulated or real data sets. Section 4 concludes with
a comparative discussion of the two proposed approaches
to quantile regression.

2. Bayesian nonparametric modeling in an

additive quantile regression framework

2.1 Model formulation

Here, we employ the additive nonparametric regression
setting in the context of quantile regression. Hence, with
x = (x1, ..., xL) denoting the covariate vector (comprising
continuous variables), the p-th quantile regression func-
tion is expressed as a sum of covariate-specific regression
functions h`(x`), ` = 1, ..., L. Without loss of generality
for the model formulation, we consider the case with two
(continuous) covariates, and therefore with yi denoting

the response observations, the model becomes

yi = h1(xi1) + h2(xi2) + εi, i = 1, ..., n. (1)

The error terms εi are assumed independent from a distri-

bution with p-th quantile equal to 0, i.e.,
∫ 0

−∞
fp(ε)dε =

p, with fp(·) denoting the error density.
Our objective is to combine flexible nonparametric

prior models for the quantile regression function and the
random error density.

In particular, we work with independent Gaussian pro-
cess (GP) priors for h1(·) and h2(·). (See, e.g., Neal, 1997,
1998, on GP regression under parametric error distribu-
tions.) To avoid identifiability issues, we set the GP mean
functions to zero, E(h`(x)) = 0, for all x. We have also
observed empirically that an intercept in (1) is weakly
identifiable, especially, for data sets that support skew-
ness in the error distributions. Rather than working with
a random intercept with a very informative prior, we opt
to fix it to zero centering the response observations before
fitting the model. For the GP covariance functions, we
use the simple isotropic specification,

Cov(h`(x), h`(x
′) | τ2

` , φ`) = τ2
` exp(−φ`|x − x′|a`), (2)

with random variances τ2
` and range parameters φ` > 0,

and fixed power parameters a` ∈ [1, 2), ` = 1, 2.
For the random error density fp(·) we use the scale

uniform Dirichlet process (DP) mixture prior from Kot-
tas and Krnjajić (2005). The key result for its construc-
tion is a representation for non-increasing densities on
the positive real line. Specifically, for any non-increasing
density u(·) on R+ there exists a distribution function
G, with support on R+, such that u(t) ≡ u(t; G) =∫

θ−11[0,θ)(t)dG(θ), i.e., u(·) can be expressed as a scale
mixture of uniform densities. The result requires a gen-
eral mixing distribution G and thus, for Bayesian mod-
eling, invites the use of a nonparametric prior for G; see,
e.g., Brunner and Lo (1989), Brunner (1995), Lavine and
Mockus (1995), and Kottas Gelfand (2001) for DP-based
modeling involving variations of this representation.

In the context of the quantile regression setting
in (1), this result can be used to provide a mix-
ture representation for any unimodal density on the
real line with p-th quantile (and mode) equal to zero,∫∫

kp(ε; σ1, σ2)dG1(σ1)dG2(σ2). Here G1 and G2 are
general mixing distributions, supported on R+, and

kp(ε; σ1, σ2) =
p

σ1
1(−σ1,0)(ε) +

(1 − p)

σ2
1[0,σ2)(ε),

with 0 < p < 1, and σr > 0, r = 1, 2. Assuming indepen-
dent DP priors, DP(αr, Gr0), for Gr, r = 1, 2, we obtain
the DP mixture model

fp(ε; G1, G2) =

∫∫
kp(ε; σ1, σ2)dG1(σ1)dG2(σ2), (3)

for the error density in (1).
Recall that the DP was developed by Ferguson (1973)

as a prior probability model for random distributions



(equivalently, distribution functions) G. A DP(α, G0)
prior for G is defined in terms of two parameters, a para-
metric base distribution G0 (the mean of the process)
and a positive scalar parameter α, which can be inter-
preted as a precision parameter; larger values of α result
in realizations G that are closer to G0. We will write
G ∼ DP(α, G0) to indicate that a DP prior is used for
the random distribution G. In fact, DP-based modeling
typically utilizes mixtures of DPs (Antoniak 1974), i.e.,
a more general version of the DP prior that involves hy-
perpriors for α and/or the parameters of G0. The most
commonly used DP definition is its constructive defini-
tion (Sethuraman and Tiwari, 1982; Sethuraman, 1994),
which characterizes DP realizations as countable mix-
tures of point masses (and thus as random discrete distri-
butions). Specifically, a random distribution G generated
from DP(α, G0) is (almost surely) of the form

G(·) =
∞∑

`=1

w` δϑ`
(·)

where δy(·) denotes a point mass at y. The locations
of the point masses, ϑ`, are i.i.d. realizations from G0;
the corresponding weights, w`, arise from a stick-breaking

mechanism based on i.i.d. draws {ζk : k = 1, 2, ...} from
a Beta(1, α) distribution. In particular, w1 = ζ1, and, for

each ` = 2, 3, ..., w` = ζ`

∏`−1
k=1(1 − ζk). Moreover, the

sequences {ϑ`, ` = 1, 2, . . . } and {ζk : k = 1, 2, ...} are
independent.

To complete the DP mixture model specification in (3),
we take inverse gamma distributions for Gr0 with fixed
shape parameters cr and random scale parameters dr,
r = 1, 2, which are assigned gamma priors. (We use the
parameterization of the inverse gamma distribution with
mean dr/(cr − 1), provided cr > 1.) Gamma priors are
also placed on the DP precision parameters αr, r = 1, 2.

To break the mixture in (3), we introduce latent mixing
parameters σ1i and σ2i, corresponding to yi, and express
the full Bayesian model in the following hierarchical form:

yi | h1, h2, σ1i, σ2i
ind
∼ kp(yi −

∑2
`=1 h`(xi`); σ1i, σ2i)

h`(·) | τ2
` , φ`

ind
∼ GP(0, C`(τ

2
` , φ`))

σri | Gr
iid
∼ Gr

Gr | αr, dr
ind
∼ DP(αr, Gr0(dr)),

(4)

for i = 1, ..., n, ` = 1, 2, and r = 1, 2, where C`(x, x′) =
Cov(h`(x), h`(x

′) | τ2
` , φ`) denotes the covariance func-

tion in (2). Moreover, priors are placed on the GP and DP
hyperparameters ψ = (τ2

1 , φ1, τ
2
2 , φ2, α1, d1, α2, d2) (see

Section 2.2 regarding the priors for the τ 2
` , φ`).

To obtain posterior predictive inference, we work with
the version of (4) that involves the normal finite dimen-
sional distributions for the h`(xi`) induced by the GP
priors, and the priors for the σri induced by marginal-
izing the random distributions Gr over their DP priors
(Blackwell and MacQueen, 1973). Let δi1 = h1(xi1) and

δi2 = h2(xi2), for i = 1, ..., n. Then, the nonparametric
model (4) induces the following hierarchical model that
involves only finite dimensional parameters:

yi | δi1, δi2, σ1i, σ2i
ind
∼ kp(yi − δi1 − δi2; σ1i, σ2i)

(δ1`, ..., δn`) | τ2
` , φ`

ind
∼ Nn(0, S`(τ

2
` , φ`))

(σr1, ..., σrn) | αr, dr
ind
∼ p(σr1, ..., σrn | αr, dr),

(5)

for i = 1, ..., n, ` = 1, 2, and r = 1, 2, again, with
priors for the components of ψ. Here, the covariance
matrix S`(τ

2
` , φ`) is induced by the covariance func-

tion C`(τ
2
` , φ`), i.e., its (i, j)-th element is given by

Cov(h`(xi`), h`(xj`) | τ2
` , φ`) = τ2

` exp(−φ`|xi` − xj`|
a`).

Moreover, the priors p(σr1, ..., σrn | αr, dr) are con-
structed based on the standard DP Polya urn scheme.
Specifically, for r = 1, 2, p(σr1, ..., σrn | αr, dr) can be
represented in terms of successive complete condition-
als, with σr1 ∼ Gr0, and for each i = 2, ..., n, p(σri |
σr1, ..., σr,i−1, αr, dr) given by a mixed distribution with
point masses (αr + i− 1)−1 at the σrj , for j = 1, ..., i− 1,
and continuous mass αr(αr + i − 1)−1 on Gr0(dr).

2.2 MCMC posterior simulation

We describe here an MCMC algorithm to obtain poste-
rior samples from p(δ1, δ2,σ1,σ2,ψ | data), where δ` =
(δ1`, ..., δn`), ` = 1, 2, σr = (σr1, ..., σrn), r = 1, 2, and
data = {(yi, xi1, xi2) : i = 1, ..., n}. These posterior sam-
ples can then be used to estimate posterior predictive
distributions as is also discussed in this section.

Updating the σri, conditionally on the δi` and all other
relevant parameters, proceeds exactly as in the semipara-
metric model developed in Kottas and Krnjajić (2005),
the only difference being that xT

i β from the semipara-
metric model is replaced with h1(xi1) + h2(xi2). The
approach is also the same for updating the αr and dr.

For each i = 1, ..., n, the posterior full conditional for
δi1 is given by

p(δi1 | ..., data) ∝ N(δi1; m1, V1)kp(ui − δi1; σ1i, σ2i)

where ui = yi − δi2, and N(δi1; m1, V1) is the prior
full conditional for δi1 corresponding to the n-variate
normal prior for δ1. Hence, letting δ1(−i) = {δi′1 :
i′ 6= i}, we have m1 = bB−1δ1(−i) and V1 = τ2

1 −

bB−1bT . Here, b is the 1 × (n − 1) vector with ele-
ments τ2

1 exp(−φ1|xi1 − xi′1|
a1) for i′ 6= i, and B is the

(n− 1)× (n− 1) matrix with elements τ 2
1 exp(−φ1|xj1 −

xk1|
a1) for (j, k) with j 6= i and k 6= i. Now, p(δi1 |

..., data) ∝ N(δi1; m1, V1) {(1 − p)σ−1
2i 1(ui−σ2i,ui](δi1) +

pσ−1
1i 1(ui,ui+σ1i)(δi1)}, and therefore letting E1 =∫ ui

ui−σ2i
N(δ; m1, V1)dδ and E2 =

∫ ui+σ1i

ui
N(δ; m1, V1)dδ,

we obtain that p(δi1 | ..., data) is a two-component mix-

ture of truncated normal distributions, TN(m1, V1; δi1 ∈
(ui − σ2i, ui]) and TN(m1, V1; δi1 ∈ (ui, ui + σ1i)) with
weight, associated with the first component, given by q =
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Figure 1: Median regression simulation example with normal errors. The blue lines denote point and interval
estimates for the regression function (top panel) and the posterior predictive error density (bottom panel).

((1− p)σ−1
2i E1)/((1− p)σ−1

2i E1 + pσ−1
1i E2). Note that al-

though this is not a standard mixture, in that the com-
ponents have different support, it can be easily sampled,
since it only requires a truncated normal random variate.

For each i = 1, ..., n, the posterior full conditional for
δi2, p(δi2 | ..., data) ∝ N(δi2; m2, V2)kp(vi − δi2; σ1i, σ2i),
where vi = yi − δi1, and N(δi2; m2, V2) is the prior full
conditional for δi2 resulting from the Nn(0, S2(τ

2
2 , φ2))

prior for δ2. Hence, the approach to update the δi2 is
similar to the one above for the δi1.

For ` = 1, 2, assume an inverse gamma prior for τ 2
` with

shape parameter aτ`
and scale parameter bτ`

. Moreover,
write S`(τ

2
` , φ`) = τ2

` R(φ`), where R(φ`) is the correla-
tion matrix with (i, j)-th element exp(−φ`|xi` − xj`|

a`).
Then, the posterior full conditional for τ 2

` is an inverse
gamma distribution with shape parameter aτ`

+ 0.5n and
scale parameter bτ`

+ 0.5δT
` R−1(φ`)δ`.

Finally, for ` = 1, 2, the posterior full conditional for
φ` is proportional to

p(φ`)|R(φ`)|
−1/2 exp{−(δT

` R−1(φ`)δ`)/(2τ2
` )}

where p(φ`) is the prior for φ`, ` = 1, 2, which is taken
to be uniform on (0, bφ). Evidently, this form does
not lead to an expression that can be sampled directly.
Metropolis-Hastings steps can be used to update the φ`.
Alternatively, the full conditional can be discretized and
sampled directly as a discrete distribution (in which case,

the prior for φ` is discrete uniform on (0, bφ)). This lat-
ter approach is, in general, more efficient computation-
ally, since the computations involving matrix R(φ`) can
be performed before the beginning of the MCMC steps.
Regardless, because the data typically can not inform
stronly about this GP hyperparameter, we need to spec-
ify the priors for φ` with some care. The interpretation
of the range parameter φ` can be used to specify a plau-
sible upper bound bφ for its uniform prior. For instance,
under exponential covariance functions (i.e., a` = 1 in
(2)), 3/φ` is the range of dependence (the value of the
distance between covariate values that yields correlation
about 0.05). If z` is the range of the observed xi`, we can
use, say, z`/2 as a guess at the range of dependence, and
thus set accordingly the prior upper bound for the φ`.

To obtain inference for the quantile regression func-
tions, of direct interest is the posterior predictive distri-
bution for h`(x0`), ` = 1, 2, for any new covariate values
x01 and x02. Of interest is also the posterior predictive
error density and the posterior predictive distribution for
a new response observation y0. Denote by (σ10, σ20) the
new latent mixing parameters corresponding to y0, and
also let δ0` = h`(x0`), for ` = 1, 2.

Adding (σ10, σ20), δ01, δ02 and y0 to model
(4), and marginalizing the Gr over their
DP priors, the corresponding joint posterior
p(y0, σ10, σ20, δ01, δ02, δ1, δ2,σ1,σ2,ψ | x01, x02, data) is
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Figure 2: Median regression simulation example with skewed errors. The blue lines denote posterior point and
interval estimates for the regression function (top panel) and the posterior predictive error density (bottom panel).

given by

kp(y0 − δ01 − δ02; σ10, σ20)
×p(δ01 | δ1, τ

2
1 , φ1)p(δ02 | δ2, τ

2
2 , φ2)

×p(σ10 | σ1, α1, d1)p(σ20 | σ2, α2, d2)
×p(δ1, δ2,σ1,σ2,ψ | data).

Here, p(δ0` | δ`, τ
2
` , φ`) are the conditional normal dis-

tributions that result from the (n + 1)-variate normal
distributions for (δ0`, δ`) induced by the GP priors, for
` = 1, 2. Hence, the mean of p(δ0` | δ`, τ

2
` , φ`) is

given by b0`S
−1
` (τ2

` , φ`)δ` and the variance by τ2
` −

b0`S
−1
` (τ2

` , φ`)b
T
0`, where b0` is the 1× n vector with ele-

ments τ2
` exp(−φ`|x0`−xi`|

a`), for i = 1, ..., n. Moreover,
p(σr0 | σr, αr, dr) arises from the DP Polya urn struc-
ture, i.e., for r = 1, 2, p(σr0 | σr, αr, dr) can be expressed
as

αr

αr + n
Gr0(σr0 | dr) +

1

αr + n

n∗

r∑
j=1

nrjδσ∗

rj
(σr0),

where σ∗
rj , j = 1, ..., n∗

r, are the distinct values in the
vector (σr1, ..., σrn) and nrj is the size of the j-th cluster.

Now, the posterior predictive density for y0, p(y0 |

x01, x02, data), is given by∫∫ ∫∫ ∫
kp(y0 − δ01 − δ02; σ10, σ20)p(δ01 | δ1, τ

2
1 , φ1)

p(δ02 | δ2, τ
2
2 , φ2)p(σ10 | σ1, α1, d1)p(σ20 | σ2, α2, d2)

p(δ1, δ2,σ1,σ2,ψ | data)
dδ01dδ02dσ10dσ20dδ1dδ2dσ1dσ2dψ

and the posterior predictive error density,

p(ε0 | data) =
∫∫ ∫

kp(ε0; σ10, σ20)p(σ10 | σ1, α1, d1)
p(σ20 | σ2, α2, d2)p(σ1,σ2,ψ | data)
dσ10dσ20dσ1dσ2dψ.

Hence, both can be easily sampled using the expressions
for p(δ0` | δ`, τ

2
` , φ`) and p(σr0 | σr, αr, dr) and the pos-

terior samples from p(δ1, δ2,σ1,σ2,ψ | data).
Finally, for ` = 1, 2, the posterior predictive distribu-

tion for δ0`,

p(δ0` | x0`, data) =
∫∫ ∫

p(δ0` | δ`, τ
2
` , φ`)

p(δ`, τ
2
` , φ` | data)dτ2

` dφ`dδ`.

As illustrated in Section 2.3, samples from p(δ0` |
x0`, data) over a grid of points x0` yield (pointwise) point
and interval estimates for the quantile regression func-
tions h`(·), ` = 1, 2.

2.3 Simulation study

Here, we consider simulated data examples to study the
performance of the model developed in Section 2.1, fo-
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Figure 3: Simulation example for 25-th quantile regression. The blue lines denote posterior point and interval
estimates for the regression function (top panel) and the posterior predictive error density (bottom panel).

cusing on the case with a single covariate, x. In all ex-
amples, we take n = 150, and work with the non-linear
regression function used by Neal (1997) in the context of
mean regression with GP priors and either normal or t
error distributions. Specifically, the true quantile regres-
sion function for all simulated data sets is given by

h(x) = 0.4x + 0.5 sin(2.7x) + 1.1(1 + x2)−1.

The covariate values are generated from a standard nor-
mal distribution, while response values y are drawn by
adding errors to h(x) based on four different choices for
the error distribution, resulting in four simulated data
sets. In each case, the simulated response and covariate
values are plotted in the top panel of Figures 1 – 4, where
also plotted is the true regression function (denoted by
the red line). The bottom panels of Figures 1 – 4 include
histograms of the simulated errors as well as the corre-
sponding true error density (again, denoted by the red
line).

The first data set (Figure 1) involves normal errors in
the median regression setting. The other three data sets
are based on errors generated from mixtures of normal
distributions chosen to yield skewed error densities with
a specific quantile (and mode) equal to 0. In particular,
the error distribution in the second data example (Figure
2) is right skewed; here, again, we focus on the median
regression case. In the remaining two data examples, we

consider the cases of 25-th quantile regression (Figure
3) and 75-th quantile regression (Figure 4), with right
skewed and left skewed error distributions, respectively.

We apply the single-covariate version of model (4) to
the simulated data. For all four data examples, we take
an exponential covariance function for the GP prior, i.e.,
the version of (2) given by τ 2 exp(−φ|x−x′|), with a dis-
crete uniform prior on (0, 5) for φ, and an inverse gamma
prior for τ2 with mean 1 (and shape parameter 2). Re-
garding the DP prior specification, we take cr = 2 for the
shape parameters of the inverse gamma base distributions
Gr0, r = 1, 2, and specify the mean of the gamma priors
for the scale parameters dr using a rough range for the
response values. Sensitivity analysis with regard to the
dispersion of the prior distributions for the dr revealed ro-
bustness for the resulting posterior predictive inference.
Finally, a gamma(4, 0.5) prior (with mean 8) was used
for α1 and α2.

For each of the data examples, the top panels of Fig-
ures 1 – 4 plot pointwise posterior mean estimates and
95% posterior interval estimates for the respective quan-
tile regression functions. The bottom panels of the figures
show the corresponding posterior predictive error densi-
ties. In all cases, the model captures quite well the shape
of both the non-linear regression function and the error
density. Particularly encouraging for the potential of the
methodology is the fact that the posterior predictive esti-
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mates identify successfully the two random functions (the
quantile regression function and the error density func-
tion) under different types and amounts of skewness in
the true error distributions.

3. A fully nonparametric approach to inference

for quantile regression

The starting point for the approach of Section 2 (and for
most existing approaches to quantile regression) is the
standard additive regression framework y = h(x) + ε,
where again the errors ε are assumed independent from
a distribution with p-th percentile equal to 0. Note that,
under this framework (and regardless of the formulation
for the regression function), if inference is sought for more
than one quantile regression, the particular model needs
to be fitted separately for each corresponding p. In par-
ticular, note that estimated quantile regression functions
for nearby values of p might not satisfy the explicit order-
ing of the corresponding percentiles, especially with small
sample sizes and/or for extreme percentiles. And this at-
tribute of the additive formulation is shared by any ap-
proach that utilizes a (proper) probability model for the
error distribution, regardless of the estimation method
(likelihood or Bayesian). There are certain approaches
that allow, in the context of this framework, simulta-

neous estimation for more than one quantile regression

(e.g., Dunson & Taylor, 2005); however, this is only pos-
sible because they do not involve modeling for the er-
rors, but are rather based on approximate methods (e.g.,
certain pseudo-likelihoods). Hence, the additive quan-
tile regression framework is more suitable for applications
where interest lies in explaining one percentile (or a few
well-separated percentiles) of the response distribution in
terms of available covariates. For such settings, by sep-
arating the quantile regression function from the errors,
the model formulation in (1) allows readily interpretable
inference, incorporation of different types of covariates,
and extensions of the inference methods to handle cen-
sored observations.

In this section, we develop an alternative approach to
inference for quantile regression. This approach does not
build on a structured regression model formulation as the
one in Section 2, but it yields flexible, fully nonparametric
inference for quantile regression.

3.1 The modeling approach

The starting point for this approach is to consider a model
for the joint distribution of the response, y, and the set
of covariates, x = (x1, ..., xL) (again, we focus here on
covariate information on continuous variables). Then,
inference for any set of quantile curves can be obtained
based on the posterior of the implied conditional response



distribution given the covariates. Clearly, the richness
of the resulting inference relies on the flexibility of the
prior probability model for the distribution of z = (y,x).
We employ a DP mixture of multivariate normals, which
models the joint density for z through

f(z; G) =

∫
NL+1(z;µ, Σ)dG(µ, Σ), G ∼ DP(α, G0)

(6)

with G0 built from independent NL+1(m, V ) and
IWish(ν, S) components for µ and Σ, respectively. We
work with random m, V and S and fixed ν. Here,
IWish(ν, S) denotes the inverse Wishart distribution for
the (L+1)×(L+1) (positive definite) matrix Σ with den-
sity proportional to |Σ|−(ν+L+2)/2 exp{−0.5tr(SΣ−1)}.

This model has been studied in the context of multi-
variate density estimation as well as curve fitting (see,
e.g., Müller, Erkanli and West, 1996). However, the
scope of inference has been limited to posterior point es-
timates, obtained through posterior predictive distribu-
tions, i.e., p(z0|data) ≡ E(f(z0; G)|data), where, again,
data comprises {zi = (yi,xi) : i = 1, ..., n}. Our applica-
tion to quantile regression requires the entire posterior of
f(z0; G) at any z0, and we thus employ a more general
approach to MCMC inference (discussed in Section 3.2)
that includes sampling from the posterior of G.

The hierarchical model formulation involves, again, la-
tent mixing parameters associated with each vector of
response/covariate observations,

zi|µi, Σi
ind
∼ NL+1(zi;µi, Σi)

(µi, Σi)|G
iid
∼ G

G|α,ψ ∼ DP(α, G0(ψ))

(7)

for i = 1, ..., n, with hyperpriors for the DP precision
parameter α and for the parameters, ψ = (m, V, S),
of G0. In particular, we use a gamma prior for α, a
NL+1(am, Bm) prior for m, an IWish(aV , BV ) prior for
V , and a Wish(aS , BS) prior for the (L + 1) × (L + 1)
positive definite matrix S with density proportional to
|S|(aS−L−2)/2 exp{−0.5tr(SB−1

S )} (provided aS ≥ L+1).

3.2 Posterior inference for quantile regression

We describe here the approach to estimate quantile
curves based on the posterior for the conditional density
f(y|x; G) implied by DP mixture model (6).

The first step involves MCMC sampling from the pos-
terior of model (7) with G marginalized over its DP
prior. We update each (µi, Σi) using algorithm 5 from
Neal (2000), which is based on Metropolis-Hastings steps
with the prior full conditional of (µi, Σi) as the pro-
posal. Updating all the (µi, Σi), i = 1, ..., n, generates
a partition with n∗(≤ n) distinct components (µ∗

j , Σ
∗
j ),

j = 1, ..., n∗. The vector of the (µi, Σi) is determined
through configuration indicators w = (w1, ..., wn) such
that wi = j if and only if (µi, Σi) = (µ∗

j , Σ
∗
j ). Evi-

dently, the Metropolis-Hastings approach to update the

(µi, Σi) can lead to poor mixing. However, it is straight-
forward to implement and, combined with the standard
trick from Bush and MacEachern (1996) to resample the
(µ∗

j , Σ
∗
j ), yields an efficient MCMC method. For each

j = 1, ..., n∗, the posterior full conditional for (µ∗
j , Σ

∗
j ) is

proportional to g0(µ
∗
j , Σ

∗
j ;ψ)

∏
{i:wi=j} NL+1(zi;µ

∗
j , Σ

∗
j ),

where g0 denotes the density of G0. We sample from
this full conditional by drawing from the full condition-
als for µ∗

j and Σ∗
j . The former is (L + 1)-variate normal

with mean vector (V −1 +njΣ
∗−1
j )−1(V −1m+njΣ

∗−1
j z̃j)

and covariance matrix (V −1 + njΣ
∗−1
j )−1, where nj =

|{i : wi = j}| and z̃j = n−1
j

∑
{i:wi=j} zi. The latter is

inverse Wishart with scalar parameter ν +nj and matrix
parameter S +

∑
{i:wi=j}(zi − µ

∗
j )(zi − µ

∗
j )

T .
Regarding the DP hyperparameters, we update α

using the auxiliary variable method from Escobar
and West (1995). The posterior full conditional
for m is (L + 1)-variate normal with mean vector
(B−1

m
+ n∗V −1)−1(B−1

m
am + n∗V −1µ̃∗), with µ̃∗ =

n∗−1
∑n∗

j=1 µ
∗
j , and covariance matrix (B−1

m
+ n∗V −1)−1.

The full conditional for V is inverse Wishart with scalar
parameter aV +n∗ and matrix parameter BV +

∑n∗

j=1(µ
∗
j−

m)(µ∗
j −m)T . Finally, the full conditional for S is given

by a Wishart distribution with scalar parameter aS +νn∗

and matrix parameter (B−1
S +

∑n∗

j=1 Σ∗−1
j )−1.

Next, note that the full posterior corresponding to
model (7) is given by

p(G,θ, α,ψ|data) = p(G|θ, α,ψ)p(θ, α,ψ|data) (8)

where θ = {(µi, Σi) : i = 1, ..., n}, or equivalently,
θ = (n∗, {(µ∗

j , Σ
∗
j ) : j = 1, ..., n∗},w) (Antoniak, 1974).

Here, the distribution for G|θ, α,ψ corresponds to a
DP with updated precision parameter α + n and mean
G̃0(·;θ, α,ψ), which is a mixed distribution with point
masses nj(α + n)−1 at the (µ∗

j , Σ
∗
j ), j = 1, ..., n∗, and

continuous mass α(α + n)−1 on G0(ψ).
Hence, after we obtain posterior samples from

p(θ, α,ψ|data), using the MCMC algorithm described
above, we can draw from (8) by augmenting each pos-
terior sample with a draw from p(G|θ, α,ψ). The latter
requires simulation from the DP with parameters given
above, which we implement using the DP constructive
definition (discussed in Section 2.1) with a truncation ap-
proximation (Gelfand and Kottas, 2002; Kottas, 2006).
Therefore, this approach yields samples {Gb,θb, αb,ψb :
b = 1, ..., B} from the full posterior (8). Each poste-
rior realization Gb is a discrete distribution with point
masses at ϑrb = (µ̃rb, Σ̃rb), r = 1, ..., Rb, drawn i.i.d.
from G̃0(·;θ, α,ψ), and corresponding weights ωrb, r =
1, ..., Rb −1, generated using the stick-breaking construc-
tion based on i.i.d. Beta(1, αb) draws (we set ωRbb =

1 −
∑Rb−1

r=1 ωrb). Here, Rb is the number of terms used
in the truncation series approximation to the countable
series representation for the DP. In general, Rb depends
on the particular posterior realization, and the approxi-
mation can be specified up to any desired accuracy (see
Kottas, 2006, for a specific rule to choose Rb).
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Figure 5: Posterior estimates for the median and quartiles for the motorcycle data. In each panel, the black line
denotes the posterior mean and the blue lines contain a 90% posterior credible interval.

Now, for any specific combination of response and co-
variate values, say, (y0,x0),

f(y0,x0; Gb) =
∫

NL+1(y0,x0;µ, Σ)dGb(µ, Σ)

=
Rb∑
r=1

ωrbNL+1(y0,x0; µ̃rb, Σ̃rb)

is a realization from the posterior of the random mix-
ture density f(y,x; G), corresponding to the DP mixture
model (6), at point (y,x) = (y0,x0). Analogously, we
can compute f(x0; Gb) a draw from the posterior of the
marginal f(x; G) at point x = x0, and thus, also, f(y0 |
x0; Gb) = f(y0,x0; Gb)/f(x0; Gb), i.e., a realization from
the posterior of the conditional density f(y | x; G), at
point (y,x) = (y0,x0). Repeating over a grid in y, that
covers the range of response values of interest, we obtain
a posterior realization from the random conditional den-
sity function f(· | x0; G) for the specific covariate values
x0. Note that this is a posterior realization for the entire
function, obtained, of course, up to the grid approxima-
tion. Now, for any 0 < p < 1, the conditional quantile

qp(x0) ≡ qp(x0; G) satisfies
∫ qp(x0) f(y | x0; G) dy = p.

Hence, using numerical integration (with interpolation)
of the posterior realizations from the conditional density
f(· | x0; G), yields draws from the posterior of qp(x0) for
any set of percentiles that might be of interest (i.e., for
any set of p ∈ (0, 1)).

Therefore, for any specified x0, and for any 0 < p < 1,

we obtain samples from p(qp(x0) | data) that can be
used to summarize the information from these conditional
quantiles in any desired form. In particular, for any set
of p values, working with a grid in x, i.e., over the covari-
ate space, we can compute point and interval estimates
for the corresponding quantile curves qp(·; G). Evidently,
graphical depiction of these estimates for the entire curve
is not feasible for problems with more than two covari-
ates. For such applications, one can focus on illustrations
involving the quantile regression function given subsets
of the covariate vector including specific choices of one or
two covariates.

Note that this approach to inference for quantile re-
gression allows both non-linear quantile curves as well
as non-standard shapes for the conditional distribution
of the response given the covariates. As illustrated in
Section 3.3, the latter can be explored through the pos-
terior of f(· | x0; G) for any set of covariate values x0 of
interest. Moreover, the model does not rely on the addi-
tive nonparametric regression formulation and therefore
can uncover interactions between covariates that might
influence certain quantile regression curves. Finally, an
important feature of the approach is that it enables si-
multaneous inference for any set of quantile regressions
that might be of interest in a particular application.
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Figure 6: For the motorcycle data, posterior estimates of the conditional density f(· | x; G) at three values of x. In
each panel, the black line denotes the posterior mean and the blue lines contain a 90% posterior interval.

3.3 Data example

We illustrate the methodology of Section 3.2 with the mo-
torcycle data (see, e.g., Silverman, 1985), which consist
of 133 measurements of velocity in time for the helmet of
a motorcycle crash victim after impact. (The data set is
available from the MASS package for R.) Note that model
(6) incorporates uncertainty in the covariates, which is
arguably not required in this application. However, this
example is still useful for illustrative purposes, since the
motorcycle data is used as one of the standard tests for
nonparametric regression approaches, including quantile
regression estimation methods (see, e.g., Koenker, 2005,
chapter 7).

We used a rough center and range for the response
and covariate values to specify the hyperparameters for
G0. In particular, we choose the prior mean for m using
the center from the data. Setting ν = aV = aS = 6,
and working with diagonal matrices for Bm, BV , BS ,
we specify their diagonal elements using a rough range
for acceleration and time values. Posterior inference was
robust to less (as well as more) informative choices, e.g.,
involving range values larger (and smaller) than the data
ranges. Finally, an exponential prior with mean 5 was
placed on α.

Figure 5 plots point (posterior mean) and 90% inter-
val estimates for three quantile curves, specifically, for
the median regression, 25-th quantile regression, and 75-
th quantile regression functions. All posterior estimates
capture very well the shape suggested by the data, in par-

ticular, adapting to its heteroscedasticity, the key feature
of the motorcycle data. This is also reflected in poste-
rior inference for f(· | x; G) for different values x of time.
For instance, Figure 6 shows posterior mean estimates
and 90% posterior interval estimates for this conditional
density at three values of x.

4. Discussion

We have developed two different model-based, fully infer-
ential approaches for quantile regression. First, we have
discussed a practically important extension of the semi-
parametric model from Kottas and Krnjajić (2005), com-
bining Gaussian process priors for the regression func-
tions and a Dirichlet process mixture prior for the er-
rors in an additive quantile regression framework. Un-
der the second approach, the joint distribution of the re-
sponse and the (continuous) covariates is assigned a gen-
eral Dirichlet process mixture prior model with inference
for quantile regressions emerging from the induced con-
ditional posterior distribution of the response given the
covariates. We have presented MCMC posterior simula-
tion methods under both approaches. Finally, we have
provided illustrations for both models using either simu-
lated or real data examples.

The MCMC algorithms for both models can be readily
extended to handle censored response observations that
arise, for instance, in survival analysis applications. For
such applications, more structured versions for the ker-
nel of the nonparametric mixture model of Section 3 can



be utilized. For example, the kernel can be built from
a Weibull or gamma distribution for the response and,
independently, a multivariate normal distribution for the
covariates.

An alternative method for posterior simulation from
the model of Section 3.1 involves direct approximation
of G in model (7), using the constructive definition of
its DP(α, G0) prior, and then application of an MCMC
technique for the induced discrete mixture model (see,
e.g., Ishwaran and James, 2001). Results from compari-
son of this method with the approach of Section 3.2 will
be reported elsewhere.

Regarding the approach of Section 2, we note that there
has been relatively limited work in the Bayesian nonpara-
metrics literature on combination of nonparametric pri-
ors for different sets of functions within the same model.
Further study, involving either analytical work or empir-
ical work through simulation, is needed for this approach
regarding the extent of identifiability issues.

Finally, implementation of inference under both models
becomes computationally intensive for moderate number
of covariates, and seems prohibitive for large number of
covariates with the currently used MCMC algorithms. It
will therefore be of interest to study alternative to MCMC
inferential methods (e.g., variational approximation tech-
niques for Dirichlet process mixtures) and/or more effi-
cient MCMC posterior simulation methods.
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