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Abstract

We consider the problem of joint estimation of some of the soil properties of an
oil reservoir, like porosity and sand thickness. In an exploration scenario, only a few
wells have been drilled, thus data from the wells are scarce. In contrast, there is an
abundance of seismic data. In our example, which corresponds to a Venezuelan oil
reservoir, the data available from the wells consist of gamma ray logs measured as a
function of depth. The seismic data correspond to traces obtained around the wells.
The average properties of the soil corresponding to a given range of depths for the wells
are known from direct measurement. The goal is to predict those properties at points
where only seismic data are available. We fit a multivariate linear regression model that
accounts for the spatial correlation using spatial kernels. These are based on the family
of Matern correlations. The kernels provide weighting of the information in the signals
that are dependent on spatial locations. We first transform the dependent variable
using discrete wavelets. We then perform a Bayesian variable selection procedure using
a Metropolis search. This allows for the detection of the most informative wavelet
coefficients. Not all the soil properties are available at all wells, so we use a Bayesian
approach to handle the missing data. We obtain predictions of all the properties
over the whole reservoir. Thanks to the Bayesian nature of our method we are able
to provide a probabilistic quantification of the predictive uncertainties. The cross-
validated results show that very high accuracy can be achieved even with a very small
number of wavelet coefficients.

1 Introduction

Predicting the properties of the soil in a reservoir is a fundamental activity during the
initial stages of oil exploration. The basic objective of all geophysical exploration is to
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employ the principles of physics, especially the physical properties of rocks, to determine
the disposition of rocks below the surface of the earth. Oil does not accumulate in all types
of rock, hydrocarbons may travel large distances throughout the porous medium until they
find the proper conditions that help to trap them. A rock possessing both porosity and
permeability must be available to receive the hydrocarbons from their source sediments; a
rock lacking those properties must be adjacent to the porous and permeable rock to prevent
the fluids from escaping. For this reason, determining properties of rocks in a certain oil
exploration area becomes a fundamental task for efficient exploitation of existing reserves
(see for example, Tiab and Donaldson, 2004; Hearst and Nelson, 2000; Schon, 2006).

The most common sources of quantitative information consist of: Core analyses, per-
formed on actual samplings of the soil from the wells; Recordings of different electromag-
netic, physical, chemical or radioactive characteristics of the soil, obtained by inserting var-
ious tools into the wells. These are usually referred to as well logs or well profiles; Seismic
traces recorded over a dense grid of points throughout the reservoir. Core data are usually
scarce, very localized and expensive to obtain. Several well logs are routinely obtained from
the wells for various depths. The most common profiles are those of electric, radioactive and
electromagnetic measures.

An example of a profile used to measure radioactivity is the v-ray log. The ~-ray log
is a measurement of the natural radiation of various formations penetrated by a well (or in
some cases artificially placed sources of radiation). It can be recorded in open and cased
holes, separately or in conjunction with virtually any other log, or with perforating guns.
Dolomites, limestones, sandstones and salts typically exhibit a low level of radiation, while
shales, clays, and rocks of igneous origin typically have higher levels of radiation. These
differences make the v-ray log very useful in determining lithologies and in the evaluation of
the shale volume, porosity and other rock properties in zones of interest, (see for example,
Robinson, 2000; Hearst and Nelson, 2000). This will be the well log used in the present
paper.

Seismic traces are obtained from an impulse or electric wave generated at the surface.
A vibratory source sends waves into the ground. These waves travel through the ground
and are recorded by devices located on a regular grid at the surface. Their traveling speed
depends on the density and rigidity of the medium, so seismic waves are affected by the
characteristics of the rock that they penetrate. They provide an indirect measurement of
the properties of a reservoir.

Figure 1 shows the profiles of a y-ray well log and a seismic trace available for the reservoir
that we consider in this paper. We notice that the y axis of the two panels have different
units. Well logs are measured at different depths and seismic signals are recorded as a time
series. Accurate matching of the recording times with the corresponding depths requires
precise knowledge of the soil properties. An initial mapping of the two scales is usually done
by experts using geological information, (see for example, Lisle, 2003)

The data considered in this paper were recorded on a reservoir located between the States
of Apure and Barinas in Western Venezuela. We have 7-ray logs for 14 wells and seismic data
covering an area of about 100 km?. A reservoir is a three dimensional domain. Here we focus
in the estimation of the average clay volume, potassium level and porosity in a window of
150 feet, starting at 9,000 feet of depth. So we tackle a two dimensional prediction problem.
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Figure 1: Left panel shows a typical v-ray log for the wells in the reservoir. Right panel corresponds
to a typical seismic trace.

This segment of the reservoir has been identified as being of petrophysical interest. It is
considered to be reasonably homogeneous and it has been estimated to correspond to 32
seconds of seismic traces. The locations of the wells are irregularly scattered. They are
presented in Figure 2. We notice that all three properties are available at all 14 wells, with
the exception of potassium levels, which is missing at wells 1,8 and 13. The goal of this
work is to obtain predictive fields for all three properties over the whole area covered by the
seismic data.

From the petroleum engineering point of view the problem considered in this paper is
challenging due to the fact that the reservoir is in the exploration phase. In contrast to a
production scenario, where information from hundreds of wells may be available, only few
wells are drilled for exploration. Predicting the properties of a reservoir is usually done using
geostatistical methods like kriging and co-kriging (see for example Cressie, 1993; Chambers
et al., 2002; Sheldon, 1995). Such methods can have very low accuracy when only few spatial
locations are available. Additionally, seismic information, can be difficult to incorporate in
an effective way. For a critical review of the use of geostatistical methods for the exploration
of oil reservoirs see Hirshe and Porter-Hirsche (1997).

This paper addresses a number of statistical issues. The proposed approach uses informa-
tion from different sources to produce inference about a multivariate random field on a two
dimensional space. We do so by using well logs and seismic traces as explanatory variables.
We transform them using wavelets. This creates an overparameterized problem that is dealt
with using stochastic variable selection. The results show that about 2% of the wavelet
coefficients of the well logs and 9% of those of the seismic traces are needed for accurate
predictions. This provides a useful summary of the information, which consists of 289,926
seismic traces, amounting to 566 Mb of data. The spatial dependence between locations is
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Figure 2: Locations of the 14 well in the reservoir under study. Wells are numbered so that they
can be referenced in the analysis.

modeled using kernels centered around the locations of the existing wells.

We use a Bayesian approach that allows us to use prior distributions that informs the
variable selection process. It also incorporates all estimation uncertainties in the prediction
and quantifies them using probabilities. The results produced by the model are compatible
with the lithological composition of the reservoir as inferred by geophysicists with good
knowledge of the area. Recent references on the prediction of the properties of an oil reservoir
using Bayesian methods are Eidsvik et al. (2004); Larsen et al. (2006); Eide et al. (2002).

In Section 2 we develop the model and discuss the parameter estimation, soil properties
prediction and model assessment. In Section 4 we present the results and finally, in Section
5 we discuss our findings. We have included three appendixes that are helpful for a better
understanding of the proposed model and estimation method.

2 A multivariate model for soil properties

We consider a matrix of response values consisting of 14 rows, one for each well location,
and three columns, one for each of the soil properties. We assume that the well logs and
the seismic traces have some predictive capability for the properties. Thus, at each point of
the surface for which a seismic record is available, we regress the responses on the seismic
traces. Additionally, we include weighted averages of the regressed values of the well logs.
The weights are dependent on the distance between the given location and that of the well
logs. So, the ‘soft” information provided by the seismic traces is only used locally. The ‘hard’
information from the wells is used globally but spatially weighted. Alvarez and Sansé (2007)
found that wavelet transforms of v-ray well logs as well as those of seismic traces measured
around the well are good predictors of porosity and sand thickness. Moreover, less than
2% of the coefficients are enough to produce accurate predictions. This is not surprising



since the multiresolution properties of wavelets have been successfully applied to quantify
the decay of energy from large to small scales in well logs and seismic traces (see for example
Alvarez et al., 2003).

Let Y € R**3 be the matrix of response values. We consider the regression model

Y = la,+ X,B;,+M + E;
M = Kvec(p) (1)
p = la, + X,By + E, .

Here a; € IR? and «,, € IR? are the intercepts, with ¢ = 3. Letting n = 14, X, € IR"*Ps and
X, € IR™P» are the matrices of seismic traces and well logs respectively. We assume that
columns of X, and X, have been centered. Since each seismic trace has 128 observations and
each well log has 512, we have that p, = 128 and p,, = 512. B, € IRP**? and B,, € IRP»*1
are the corresponding matrices of the regression coefficients. E; and E,, are noise matrices
of dimension n x ¢q. p € IR"*? is a matrix of latent parameters providing the link between
the information at the wells and the soil properties at a given point. vec(-) operates on a
matrix by stacking its columns into one vector.

K € IR"7*™ is a matrix of kernel values calculated as a function of the distance between
points in the surface of the reservoir. More specifically K is a block diagonal matrix with ¢
blocks. Each block is of dimensions n X n and corresponds to one of the columns in Y. Let
u; be the location of the i-th well, then the elements of the j-th block are given by

S="t 4=1,....n i=1,---.n j=1,...,q.

%

where , .
) = (el [y g (Tl oy 500 2
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K, (-) is the modified Bessel function of the second kind of order v > 0 (see Abramowits and
Stegun, 1970) and A; > 0,7 =1,...,q. The use of the kernel defined in (2) is motivated by
the class of Matern correlation functions (see for example, Stein, 1999). In fact, a Gaussian
process with a given correlation function, can be represented under fairly general conditions
as the convolution of white noise with an appropriate kernel (see for example, Higdon, 2002).
Processes with correlation functions in the Matern class can be represented using kernels of
the type in Equation (2). Please refer to Appendix A for details. Thus the parameters
A; provide information about the correlation range and v measures the smoothness of the
resulting random field. Here we are assuming that v is common to all ¢ responses, but that
each component has a different range parameter. Given that we only evaluate the kernels
at 14 points, the model in Equation (1) gives only a crude approximation to the continuous
process convolution. Nevertheless, it provides an effective and parsimonious way of capturing
the spatial structure of the data.

To specify the distribution of the error matrices E,; and E,, we use a matrix normal
distribution. See Appendix B for notation and properties. Thus,

Y — 1o, — X,B, - M ~NM(I,%,)
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p—1al, — X By, ~NM(I,X,),

Where I denotes the identity matrix. So, in both cases, the rows are independent but the
columns have a non-diagonal covariance matrix. This implies that, after accounting for the
information in the signals and conditioning on all parameters, the responses from different
wells do not have any correlation, but there is a correlation among the different properties
that does not depend on location.

Notice that the model has a larger number of regression coefficients than data. Thus direct
estimation of B, and B,, using traditional regression methods is unfeasible. We either have
to impose some restrictions or consider prior information. Conditional on K, we can obtain
a conjugate prior for ay, oy, By, B, ¥, and ¥, by using a normal-Wishart distribution.
This is obtained by assuming that, conditional on ¥, and X, o — o ~ NM(Ih;, %;)
and B; ~ NM(H;,X;), where i = s or w. h; € R and the matrices «;, and H; are
assumed known. The Distributions of X3 and 3, are Inverse Wishart (see Appendix B for
Definition), and we write X; ~ ZW(6,Q;),i = s, w.

Motivated by the work of Brown et al. (2001) we consider a wavelet transformation of
the signals. The idea of such a transformation is that only a reduced number of wavelet
coefficients are needed to predict the value of the properties at a given location. A discrete
wavelet transformation is given by an orthogonal matrix (see for example, Vidakovic, 1999),
say W € RP*P_ such that WW' = I. We then have that

Y —1& — Z,8, — M ~ NM(L, ) (3)

where Z, = X, W is the matrix of wavelet coefficients for the seismic traces and 8, = W'B,.
A transformation similar to the above one yields, for the well profiles, p — 1o, — Z,,8,, ~
NM(I,X,), thus B and B, are the new matrices of regression coefficients.

From Equation (3) we obtain the likelihood

f(Y|a5aIBSa 281 l‘l’a A’ V) X |§]“3|_n/2
1
exp {—Etr [(Y ~Ta,-Z,8,-M)S, (Y — Vo, — Z,8, - M)I}}

and

F (B, Bus Bw) o [y |2

The prior for the parameters ay, ., 25, 2w, are unchanged by the orthogonal transforma-
tions and we can write their prior distributions as

1
m(ou|Ss) o Y23 exp [—%(ai — ;)2 (o — aio)']

1
A(6,Q) o [0/ exp [iinzi—l)] i< sw.



The prior for the transformed regression matrices 3,, and B, are
1 .
H(B1%.) x [EL 20 exp [~ (B (8- BB 80— Bu)) | i = s

where H; = WH,;W'. In order to compute these matrices, we use the the recursive algo-
rithm developed in Vannucci and Corradi (1999), which speeds up computations by using
two-dimensional discrete wavelet transforms.

2.1 Selection of wavelet coeflicients

To perform the selection of wavelet coefficients we use a stochastic variable selection ap-
proach, as in Brown et al. (1998). We define latent binary vectors v* and *® of dimension
pw and p, respectively. Each component of 4,7 = s, w denotes the presence or absence of
the corresponding coefficient. To incorporate this information into the prior for 8,, and g,
we assume that the covariance matrix of a given row of 3; is zero when the corresponding
component of 4" is zero. Denote B the matrlces of non-zero regression coefficients, then
we have that 87 ~ NM(H, ,X;), where H is equal to the appropriate sub-matrix of H;.
Denote as G;[j :] the j-th column of B, then under the proposed prior
Bili :]N<1_’V;’)IO+ z-/\/’(0 P> i), i=uw,s,

LAY

where fz;] corresponds to the j-th element of the diagonal of the matrices H; and I, is a
point mass at 0. We note that, if 3; is not diagonal, the rows of 8; are not independent.
To complete the prior we need to specify the distribution for 'y;- and values for H;, 6 and
Q;. We assume that 'y; ~ Bernoulli(w;), j =1,2--- p;, i = w, s for some w;. Experience
shows that good predictions can be obtained with about 20 wavelet coefficients. Thus our
prior distribution for v, and 7, is such that the prior expected number of coefficients, pw,
is equal to 20. Thus w = 0.16 for the seismic traces and w = 0.04 for logs. The inverse
Wishart prior for 3; implies that E(X;) = Q;/(d — 2), if § > 3. So we choose § = 3 and set
Q, =0.06I, and Q,, = 0.11,. So that, a priori, we have no expected off-diagonal terms and
the expected scales are comparable to the error variances of the standardized Y given X.
To set values of H;, i = w,s we performed a preliminary analysis using partial least
squares regression on each of the three soil properties separately. We observed that the
resulting coefficients are reasonably smooth. Thus, we expect the regressors B; to be rea-
sonably smooth as well. Such smoothness is imposed by taking H; to be the covariance
matrix of a ﬁrst order autoregressive process. Thus, we assume that h}; = af,o‘zj !, for some
o; and p;, i = w,s. We follow Brown et al. (1998) for the derlvatlon of such constants.
Using an empirical Bayes approach we set 02 = 351, p,, = 0.26 and o2 = 298 and p, = 0.14
by maximizing the marginal density of Y. We observe that the resulting variances of the
transformed coefficients 3, and 3,, show the typical exponential decay of wavelet coefficients.

3 Estimation and prediction

To obtain inferences on the parameters in our model we need to explore a probability dis-
tribution on a very highly dimensional space. This can be done by using a Markov chain
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Monte Carlo method (MCMC) as proposed, for example, in Gamerman and Lopes (2006).
We use a traditional MCMC that consists of sampling iteratively from the distributions of
each of the parameters or blocks of parameters conditional on all the remaining ones. a; and
a,, can be sampled from ¢-dimensional multivariate normal distributions, but in the present
application we set them to zero after centering Y, X, and X,,. We sample vec(u) from a
ng-dimensional multivariate normal. 87 and 87 are sampled from matrix-normal distribu-
tions of dimensions that are appropriate for the number of non-zero entries in 4,7 = s, w.
¥, and X, are sampled from ¢ x g-dimensional inverse Wishart distributions. See Appendix
C for explicit expressions for the parameters of the full conditional distributions.

Generating samples of v* and 4" presents the challenge of dealing with a highly multi-
variate distribution, since in our case p, is 128 and p,, is 512. The use of Metropolis search
to find configurations with high posterior probabilities has been developed in Madigan and
York (1995) and applied by George and McCulloch (1993), Raftery et al. (1997) and Brown
et al. (2001). We proceed by considering a random initial configuration. Then, at each
iteration, one of the following two ways of choosing a candidate configuration is chosen with
(fixed) probability ¢: (a) Generate a new candidate by choosing at random a component.
This component is deleted if it is part of the current configuration and added if it is not;
(b) Select two components & and j such that 7; = 0 and 7} = 1 and swap their values. The
proposed configuration is rejected or accepted following a Metropolis-Hastings rule.

The acceptance probability for the new value v* is

i)

a(vy,v") = min {1,

Finally, the parameters in the kernels matrix K, Ai, Ay, A3 and v are sampled using Metropolis-
Hastings. We use a gamma-prior distribution for the kernels parameters.

3.1 Predictive Distribution

As stated in the Introduction the goal of our model is to estimate the soil properties at
locations of the reservoir where no wells have been drilled and only seismic information is
available. Denote such values as Y. Then we base our estimates on the posterior predictive
distribution of Y given Y, X, and X,,. Bayesian computations in a predictive problem are
based on the joint posterior distribution of parameters and variables to be predicted. Denote
as 0 the set of all parameters in the model, then posterior predictive distribution of Y is

P(Y|Y.X, X,) = /P(Y|Xs,Xw,O)P(O\Y,Xs,Xw)dO,

since P(Y'|Y, X, X,,, 0) = P(Y|X,, X,,0). This is due to the fact that the spatial depen-
dence between properties at different locations is explained by M = Kvec(u), and these
quantities are given.

Suppose that the output from the MCMC consists of L blocks of values 81, .... W,
Consider a location u with corresponding (unobserved) soil properties Y (u), then we ap-



proximate the predictive posterior distribution of ¥ (u) as

L
A~ 1 ~ :
PY ()Y, X, Xu) = 7 Y P(Y(u)|69, X,, X,,)

J=1

where

P(Y (u) 09, X, Xy) = N(Vo) + 2187 + m*, £7).
Here m* = (m},m3,m3) and m} = 3.7 ki(u — w;)pl?’, w, is the location of the i-th well.
Z;, corresponds to the wavelet transformation of the signal at location w. We notice that
~® and ¥ are two of the components of 8 and that they may vary from one iteration to the
next. So the number of regression coefficients may change as the MCMC evolves, defining
potentially different models. Our predictions are based on averaging across all models visited

by the Markov chain.

4 Results

We fitted the model using wavelet transformations based on the Haar basis. Haar wavelet
basis are a popular choice in geological applications due its simplicity and its ability to detect
sudden changes in the signals. We present results that were obtained from 5,000 iterations
of a MCMC after a burn in period of 500 iterations. To establish the convergence of the
chain we use the method in Raftery and Lewis (1992) with the default values provided in
BOA package of R (Smith, 2005; R Development Core Team, 2005). This yields a minimum
number of 3,740 iterations with a dependence factor smaller than 3.

Table 1 shows the quantiles of the kernel parameters. Regarding the estimation of X
and X, we have their posterior means are

1.635 —0.0225 -0.035 2.0520 —-0.091 -0.086
—0.0225  0.942 0.046 and —0.0091 1.1512 0.071
—0.035  0.046 1.26 —0.086 0.071 1.12

respectively. This suggests that the first column in both errors are negatively correlated
with the other two, while the second and the third are positively correlated Table 2 shows

the 2.5%, 50% and 97.5% posterior quantiles for the correlations c = E(w / E(w Eg;ﬂ ,

and cz(j) = Ez(j) / EE?Z;} t,7 = 1,2,3. The numbers indicate that the correlation are not
significant.

As mentioned in the previous section, the number of non-zero coefficients can vary from
one iteration of the MCMC to the next. Nevertheless we observed that no more than 10
coefficients were different from zero at any given iteration. This implies that with less than
2% of the wavelet coefficient is possible to obtain accurate predictions. Figure 3 shows the
values predicted for the three soil properties over the whole reservoir. Figure 4 shows the
estimated interquartile ranges for the properties of the reservoir over the whole area. We
observe greater predictive uncertainty in the zones without wells. This is expected, since in
those areas prediction depend mainly on the seismic data.
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‘ Parameters H 2.5% ‘ 50% ‘ 97.5% ‘

A1 0.5 |0.69 | 0.75
A2 1.28 | 1.42 | 1.49
A3 0.67 | 0.72 | 0.77
v 093 | 1.7 | 2.35

Table 1: Posterior quantiles of the Kernel parameters

‘ quantiles H R ‘ R ‘ &) ‘ S ‘ 2 ‘ &) ‘
2.5% -0.1043 | -0.1743 | -0.1632 | -0.1916 | -0.1678 | -0.1287
50% -0.0181 | -0.0243 | 0.0422 | -0.0592 | -0.0569 | 0.0546
97.5% 0.2215 | 0.1249 | 0.2312 | 0.2714 | 0.0643 | 0.1014

Table 2: Posterior quantiles of the Correlation Matrices

To explore the predictive capability of the model we adopted a “leave one out” validation
approach, consisting on obtaining the posterior predictive distribution for each of the 14
locations using the remaining 13. The predictions for each well are given by the medians
of the simulated values obtained from the MCMC samples. In Figure 5 we compare the
interquartile ranges of the posterior predictive distributions of each of the 14 wells, based
on the remaining 13 wells, to the actual observed values of porosity, sand thickness and
potassium levels. We observe that in all cases the observations are within the predicted range.
A more detailed predictive assessment is presented in Figures 6 and 7. We selected Well 11,
which is central to the domain, and estimated the joint posterior predictive density for the
soil properties using the MCMC samples. The comparison with the observed values show
that these are very central to the predictive densities in both the univariate and bivariate
cases. The former shows that the method has a very high level of predictive accuracy. Also,
given the Bayesian nature of the method, we are not only providing an estimate of the
properties at each location, but a precise assessment of the uncertainties involved in such
estimation, given by the predictive distribution.

5 Discussion and Conclusions

We have presented a method to estimate jointly several petrophysical properties of an oil
reservoir during the exploration phase, using abundant seismic traces and scarce well infor-
mation. The methodology is able to produce an interpolated field over the whole reservoir
with a probabilistic assessment of the uncertainties in the estimations. The cross-validation
of the predictions yields accurate results. The use of wavelet transformations results in an
effective way of summarizing the information in the two different types of signals. In fact, it
is seen that only a small proportion of the wavelet coefficients are needed to obtain realistic
estimations of the soil properties. This points at the possibility of using wavelets methods for
data reduction purposes in this type of analysis. The use of a suitable structured prior for the
wavelet coefficients is key to achieve a parsimonious estimation in an otherwise overparam-
eterized problem. The spatial structure of the data is described using kernel convolutions.
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These offer a valid alternative to other spatial inference methods, as they provide a link
between spatially indexed signals of different dimensions, available at different locations.

Additional information regarding the structure of the reservoir could be incorporated
in the analysis by embedding the current model within a hierarchical structure. In an
exploration scenario, such information is likely to consist of geological knowledge about
the subsurface. A clear limitation for its use is that fact that it may not be completely
independent from the signals already considered in this paper.
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A Process convolutions

A process convolution is given by

z(s) = /Skw(u — s5)dW (u) (4)

for s € S, S a subset of an Euclidean space, W a Wiener process and ky(-) a kernel, possibly
depending on a low dimensional parameter 1. The covariance of the process z(s) defined in
Equation (4) is given by the convolution of the kernel with itself, so

c(s,8") = cov(z(s), 2(s")) = /s ky(u — d)ky(u)du

where d = s — s'. If ky(-) depends only on the magnitude of d, then so does the covariance
function ¢(-), implying that z(s) is isotropic. If the kernel is square-integrable, for a given
c(+), ky() can be obtained as the inverse Fourier transform of the square root of the spectral
density of c. For the Matérn class of isotropic correlations in R?, with range A > 0 and
smoothness v > 0, the spectral density is given by f(w) oc 1/(A*+w?)"*. The corresponding
kernel is the inverse Fourier transform of 1/(A\? 4+ w?)¥/?t1/2 which is proportional to

(As)FV2KC, g p(As), A > 0,0 > 1.

In practice a discrete version of Equation (4) is used.

B Matrix-variate distributions

We follow the notation used by Dawid (1981) for matrix-variate distributions. This has the
advantage of preserving matrix structures.
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Definition 1 : We say that L has a matriz-variate distribution, X — M ~ NM(T', %), if
L =M+ AUB, with U a matriz having independent standard normal entries, M, A and B
fized matrices satisfying A’A =1, B'B =X. Thus M is the matriz mean of V ,and 743 and
o;;I" are the covariance matrices of the ith row an jth columns respectively of L.

Form the above definition we obtain a procedure for the generation of matrix normal
samples based on the Cholesky decomposition of I' and X.

Definition 2 We say that W has an inverse Wishart distribution with scale matriz ¥ and
shape parameter § if W = B'(U'U)"'B, with U and L defined as above. We use as notation:
W ~ IW(§,%).The Expectation of W exists for 6 > 2 and is then X/(6 — 2).

Definition 3 Let A = a;; be a p1 X py matriz and let B = b;; be a g1 X q¢o matriz. Then the
Kronecker Product of A and B is the p1q1 X pago matric C = A ® B,

allB CI,12B s alsz
apllB aplgB s aplsz
Lemma 1 Let be X € R™™ and denote its columns as x;,i = 1,...,n. Assume that
X -—M~NM(T,X) and let
T
T2
vec(X) =
T

Then vec(X) ~ NM(vec(M), X RT), where X @ T € IR"*™ js the Kronecker Product of
r'y3.

Lemma 2 Let be Y = BXZ)Y — M ~ NM(T,X), B e R and C € IR"™¢ constant
matrices and vec(Y') = C ® B vec(X), then

E(vec(Y)) (C' ® B) vec(M)
cov(vec(Y)) = (C'TC)® (BXB)

C Full Conditional Distributions

b 6i’ 1= S, w:
1 7 _
T(Bil-) o< exp —gtT (2,18 — Apbi)Ag (B — Ap,b;)')
where Agl = Z/'Z; + H;' and b; = Z;(Y — T'a; — M).
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e 3, i=s5w:
* 1
(i) oc |70/ exp [—EtrQ*Ei‘l]

Where 6* =N +pi + 1 -+ 6, Q: = C + Co + C3 C1 = (ﬂz — ,Bzo)Hz(,Bz — ,BZ'O)I,CQ =
(Y - ]l'ai - Zsz - M)(Y - 111011‘ - ZZBZ - M)I and C3 = Q

o L |
) < exp |~ A s = )|

where m = Ap [K' (I, @ )t vee(Y) + (I, @ B,) 7" vec(pw)] s Ay = K' (I, ® ¥,) K+
(I, ® X)) " and g, = vee(l' oy — ZywBu).-
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Figure 3: Estimated median soil properties of the reservoir. Upper left panel corresponds to clay
volume. Upper right panel corresponds to Potassium levels. Lower panel corresponds to porosity.

16



3000
3000

2800

2800

2600
2600

2400
2400

2200
2200

20
15
15
10
N\
10
5
5 5

2200 2400 2600 2800 3000 2200 2400 2600 2800 3000

2400 2600 2800 3000

2200

2200 2400 2600 2800 3000

Figure 4: Estimated interquartile ranges for the soil properties of the reservoir. Upper left panel
corresponds to clay volume. Upper right panel corresponds to Potassium levels. Lower panel
corresponds to porosity.
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Figure 5: Posterior predictive interquartile intervals of each of the 14 wells obtained using the
remaining 13 wells. The wells are ordered with respect to the & coordinate. Top panel corresponds
to clay volume, center panel to Potassium levels and bottom panel to porosity. Actual observations
marked as a solid circle. Posterior predictive median marked as a circle.
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Figure 6: Univariate marginal predictive densities for the soil properties at Well 11. Clay volume
(bottom left), potassium level (bottom right) and porosity (down). The dotted lines correspond to
the observed values.
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Figure 7: Bivariate marginal predictive densities for the soil properties at Well 11. The black dots
correspond to the observed values.
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