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Abstract. This paper reviews current understanding of the interngltion of the Sun. We sum-
marise the outcome of the latest helioseismic measurenoéritee angular velocity profile, and
review existing dynamical models of rotation in the coni@tizone and in the radiative zone be-
neath. Finally, we discuss preliminary results along a riee/¢f investigation.

Keywords. MHD; Solar rotation; Solar interior
PACS: 52.30.Cv; 96.60.Jw

INTRODUCTION

Measurements of the surface solar differential rotatiorsbgspot tracking were first
performed by Carrington (1860). Sunspots are in fact seen to rotatk ait angular
velocity which is typically a few per cent faster than thatiofe photospheric features
(Snodgrass, 1984), a result then attributed to the factttieat are anchored in more
rapidly rotating sub-photospheric layers. The developneérelioseismic techniques
confirmed the existence of a near-surface shear layer, ardlsgl many other puzzling
dynamical features of the solar rotation profile.

The exquisite quality of recent helioseismic observatibas turned them into a
laboratory for the study of fluid dynamics at asymptoticdflyge or small values of
most characteristic numbers (eg. Reynolds number, Raytignber, Prandtl number).
Today, much of the theoretical focus is on understandingdtagion profile of the Sun:
models are beginning to reach a point where quantitativepesisons with observations
can be made.

In this paper, we review recent progress on measuring ancetnagl the solar ro-
tation. Since detailed technical analyses of the subjeat hacently been published
elsewhere (cf. “The Solar Tachocline” edited by Hughes,reo& Weiss, 2007) we
select to address non-specialists by presenting a revidiveokey concepts and refer-
ring the reader to the adequate source where appropriatthéiigoropose a new line of
investigation concerning the dynamics of the radiativeweative interface, and present
preliminary results.

1 carrington noted that spots underwent increasing retdEytfongitudinal drift” with latitude when
viewed from a frame rotating with a period of 25 days. He aleted the now well-known systematic
poleward flows in each hemisphere.
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FIGURE 1. Internal solar angular velocit@ /27 (contour labels in nHz) inferred by four different
inversion methods. The dashed circle indicates the baseeafdnvection zone, and the tick marks at the
edge of the outer circle are at latitudes’ 180, 45°, 60°, 75°. The dark area indicates the region in the
Sun where no reliable inference can be made. Adapted froroBethal. (1998), see original paper for
details.

HELIOSEISMIC OBSERVATIONS OF SOLAR ROTATION

Helioseismic inference of the internal rotation rate of then relies on measuring
the frequency difference between positively Dopplerishifprograde sound waves and
their negatively Doppler-shifted retrograde counterpaRobust techniques for invert-
ing thesefrequency splittinginto a plausible angular velocity profi@(r, ) were de-
veloped by Gough (1985) and applied to real solar data fofitsttime by Duvallet al.
(1984). Extensive reviews of helioseismic techniques asdlts are available elsewhere
(Gough & Thompson, 1991; Christensen-Dalsgaard, 2002rifsonet al. 2003).

The long-term averaged and north-south symmetric solatiost profile is shown in
Fig. 1. Itis typically fitted to the simple smooth function

Q(r,0) = Qeq(r) (1 — ap(r)u? —ag(r)u*) , wherep = cosf . 1)

Very close to the surface (at= 0.995, wherer, is the solar radiusXeq~ 2.86 x

10 %571 a, ~ 0.12 anday ~ 0.17 (Schouet al. 1998). The angular velocity increases
with depth below the surface by a few percent down to about.Q.Bn what is how
commonly referred to as the near-surface shear layer. Thelanvelocity profile from
there down to the base of the convection zone (locatad,at 0.713 ) is roughly
constant on lines inclined by 2%rom the polar axis (Gilman & Howe 2003). Just above
the radiative—convective interface fat 0.75r ) the rotation profile is consistent with
Qeq~~2.90x 107 %71, a, ~ 0.17 anday ~ 0.08.



Further down, the radiative interior appears to be in a stdteniform rotation:
Q(r,0) ~ Qr; ~ 2.70x 1071 at all latitudes and radii below about6Jr . A thin
shear layer, the solar tachocline (Spiegel & Zahn, 1993)aisges these two dynam-
ically distinct regions. It is generally agreed that the thidf the tachoclin&\ is no
greater than 4% of the solar radius near the equator. Thetd®ieof a possible lati-
tudinal variation ofA remains controversial (Charbonneaual. 1999, Basu & Antia,
2003). The shear disappears in mid-latitudes (around &@)twhere the rotation of
the radiative interior matches that of the convection zone.

A detailed review of the observed properties of the coneecdone and the solar
tachocline outlined above is given by Christensen-Dalsh&Thompson (2007), in-
cluding recent detections of quasi-periodic spatio-teralpeariations in the solar rota-
tion profile?.

It is probably fair to say that not a single of the observadioaported here has
been explained in any quantitative sense. The nature ofdaesurface shear layer, its
width and amplitude, have not yet been seriously addredbaaerical simulations are
shedding light on the processes involved in the equatoc@dlaration of the convection
zone (see below), but there again the amplitude of the obdéatitudinal shear remains
poorly constrained. The origin and structure of the solahteline is perhaps the
greatest puzzle of all, and while models abound few are getyiself-consistent and
have graduated from qualitative to quantitative in termeepfoducing at the same time
the observed thickness of the tachocline and the value ahtbmal rotation rat€,, of
the bulk of the radiative zone.

MODELSOF ROTATION IN THE SOLAR CONVECTION ZONE

The outer 30% in radius of the solar interior is in a state obwlent convection. The
convective turnover timescale near the surface is only anffenutes (or in other words,
four orders of magnitude faster than the solar rotation)hed the granulation pattern
iIs more-or-less unaffected by rotational effects. The tiwwtcales become comparable
deeper into the convection zone; convective giant celleapected to be rotationally
constrained and turbulent transport becomes markedlptoc. This effect is thought
to be the main cause for the observed equatorial accelerafithe solar convection
zone, although the complete picture is naturally much mampiex. For extensive
reviews on the dynamics of the solar convection zone see phonet al. (2003) and
Miesch (2005).

Any quasi-steady closed fluid dynamical system can in poliecbe understood in
terms of three equilibria: thermal energy balance, angmamentum balance and fi-
nally momentum balance in the meridional direction. Thet fb@nstrains the entropy
profile from the transport balance between turbulent matemd large-scale meridional
flows. The second equivalently constraints the angularcigi@rofile. The last closes
the system by relating the effect of large-scale body fo(ttes buoyancy force, which
is indirectly related to the entropy perturbations and tleei@is force, which is related

2 These are not addressed in this paper but are nonetheleslyémportant and interesting.



to the angular velocity) to the divergence of the stressaes many known systems, a
subset of these constraints typically dominates the dyosimihether this is the case in
the solar convection zone can only be determined througlenaat simulations.

Glatzmaier (1984) was the first to develop three-dimendionanerical models of
turbulent anelastic convection in a spherical shell, hiskwdtimately leading to the
development of the now widely used ASH céd®sy Mieschet al. (2000). Early low-
resolution simulations achieved a state of “laminar” caim in which the dynam-
ics were essentially dominated by the Taylor-Proudmantcaing, namelyQ - COu ~ 0
whereu is the flow velocity. The typical angular velocity profilesegicted were char-
acteristically invariant along cylinders aligned with tra@ation axis, much unlike the
observed solar rotation profile. Throughout the yearsgasingly high resolution simu-
lations have been permitted by the introduction of paraiehputing on large numbers
of processors. Comparison between high and low resolutiarb(lent” and “laminar”)
simulations show a notable weakening of the Taylor-Proudomastraint and produced
angular velocity profiles closer to the observed ones (Mie=tcal. 2000). However,
as argued by Brummell (2007), the turbulent cascade in tmeeltends well beyond
wavenumbers for which the eddy turnover time is comparalile the average rotation
rate, which is not the case in the ASH code simulations. Wbasequences this may
have on the model predictions is not well-understood.

To answer the question raised earlier, the latest resuta the ASH code (see Mi-
esch, 2005; Miescét al.2006) suggest that each of the three equilibria listed presly
could play an equally important role in determining the gisdsady entropy and an-
gular momentum profile of the numerical simulations. Thisaasion,if applicable to
the true convection zone/ould suggest that transport by large-scale meridionaldlis
as important as transport by turbulent motions. This hasmi@lly far-reaching conse-
guences. It would imply firstly that the timescale for relaa towards a quasi-steady-
state equilibrium is the meridional flow turnover time, whis of the order of a decade
or more; it is not yet numerically feasible to simulate thasconvection zone for such
a long time. Secondly, it also implies that the dynamics efghlar convection are in-
trinsically non-local and sensitively dependent on thegatg/near the domain “bound-
aries”: near the photosphere, on the dynamics of the graanland near the radiative—
convective interface, on the dynamics of the tachoclinathee of those are currently
well-modelled in the ASH code. Ongoing research is now foi®n improving the
boundary conditions to mimic the presence of a stronglytifgd tachocline (through
imposed entropy fluctuations at the lower boundary for instasee Miescét al.2006)
and of the granulation (as reported by Miesch in this meetimpugh stochastic noise
near the outer boundary), with some success.

A different approach to modelling the solar convection zbagbeen pursued in paral-
lel for about as long as the numerical efforts described abBuilding on the successful
formulation of mixing-length theory (B6hm-Vitense, 1958hich provides a plausible

3 Anelastic Spherical Harmonics

4 This constraint is related to the conservation of vortidgitythe limit where the dominant momentum
balance is between pressure and Coriolis forces (i.e. winbnlent stresses or entropy fluctuations are
negligible)



parametrised prescription of the heat flux transported bglisstale turbulent motions,
many attempts have been made at modelling the equivalersptoat of momentum by
turbulent Reynolds stresses

Closure models attempt to construct plausible prescngtior the Reynolds stress
tensorR from heuristic arguments (first-order closure), or by sofva parametrised
evolution equation foR in parallel with the mean flow equations (second-order clo-
sure). Early attempts constructed a Reynolds stress témsorcorrelations of linearly
unstable eigenmodes (Gough, 1978; Hathaway, 1984), wighttes selected to match
predictions of mixing-length theory. Other methods camstithe Reynolds stress tensor
from dimensional analysis and geometrical arguments (Bu&Spruit, 1979; Kitchati-
nov & Ruediger, 1993).

Recently, Rempel (2005) carried out a systematic study eftiar rotation profile
using a first-order closure model. He was able to test not th@effect of the selection
of the unknown parameters on the predicted profile, but dlabdf the selection of the
background state. Notably, his work provided the first ciedication of the extent of
the influence of the tachocline on the rotation profile in thevection zone, highlighting
its role as an active boundary layer and to some extent, tiléyfwf trying to model
the convection zone detail without correctly dealing with the stably stratified region
below. Generally speaking, however, it must be noted thatynfeeynolds stress closure
models applied in the astrophysical context hae¢ been tested against systems for
which there exists either numerical or experimental dakausltheir absolute predictive
power is questionable. A second-order closure model oflerti stresses has recently
been proposed by Ogilvie (2003) and was successfully tesgaihst experimental
data of Couette-Taylor flows by Garaud & Ogilvie (2005). Pnehary analysis of
the performance of the model in the context of Rayleigh-Beér@onvection yields
promising results (Miller & Garaud, this volume).

MODELSOF ROTATION IN THE SOLAR RADIATIVE ZONE
AND THE TACHOCLINE

The transition from a nearly adiabatic to a strongly stratifbackground entropy gradi-
enf across the radiative—convective interface causes a di@otange in the nature of
fluid motions: radial velocities in the radiative zone angidly damped so that turbulent
or wave-like flows are essentially horizontal, while theyolarge-scale flows allowed to
penetrate the interior have global turnover timescalegdothan the thermal diffusion
time (eg.~ 10* years across the depth of the tachocline).

The first model of the tachocline (Spiegel & Zahn 1992) ordjy proposed that

> The components of the Reynolds stress terRaare the quadratic correlatiorgj = Tu’l where
the overbar denote a statistical, spatial or temporal meiim suitable mathematical properties. The
divergence of the stress tensor represents the mean efféd small-scale motions on the momentum
equation.

6 The ratioN2/Q2, whereN is the Brunt-Vaisala frequency, varies from a value of abeGt02 at
r=0.715. to 5x 10* atr = 0.71r., (cf. Model S of Christensen-Dalsgaard, Gough & Thompso81}1.9



the two-dimensional nature of strongly stratified turbalemvas in fact the cause of the
sharpness of the transition from the sustained latitudinear observed in the convection
zone to the near-uniform rotation of the radiative zone. Byametrising the effects of
the turbulent motion with an anisotropic viscogithey showed that the rotation profile
of the radiative zone could be qualitatively reproducedvigied turbulent viscosity in
the latitudinal direction was orders of magnitude largarthn the vertical direction.
This idea is possibly the simplest and most pleasing thabbas proposed to date, and
has the added advantage of permitting strict quantitatigdiptions that can be directly
compared with observations. However, it has been critetipe its simplified treatment
of turbulent transport.

Mclintyre (2003) reports that turbulent transport in a stied fluid as measured in the
Earth’s stratosphere can only be reconciled with the coasien of potential vorticit
whereas the parametrisation proposed by Spiegel & Zahnressthe conservation of
angular momentum. In addition, Tobias, Diamond & Hughe®{@&howed that if the
turbulence is not strictly hydrodynamic (which is most likéhe case of the Sun) then
tiny seed magnetic fields are amplified until turbulent Ldzestresses exactly cancel
out turbulent Reynolds stresses, to the extent that thdtirguransport properties
reduce to the original microscopic viscous momentum fluesehtwo papers illustrate
the difficulty in constructing a model that adequately pcesliurbulent stresses in the
tachocline. Note that other hydrodynamic models of the dakthe have also been
proposed (notably involving the action of gravity waveshalgh none have yet reached
a stage where strict quantitative comparisons with helkosie observations have been
made. The reader is referred to the review of Zahn (2007) étaits.

Moving away from models which involve angular-momentunmgort by Reynolds
stresses Gough & Mcintyre (1998) argued that the presenadasfie-scale field within
the solar radiative zone is the only possible explanatigrtfe observed uniform ro-
tation. Indeed, in the absence of diffusion, strong menédidlows or strong turbulent
motions, the longitudinal component of the magnetic inducequation suggests that
the field and the fluid must relax to a quasi-steady staigoodtation which requires that
Q should be constant along field lines (Ferraro, 1937). If thklfis entirely confined
within the radiative zone then uniform rotation naturalhsees, but if field lines overlap
with the differentially rotating convection zone then tiderior must also rotate differ-
entially: confining the field below the convection zone appé¢a be an essential part of
this class of models (McGregor & Charbonneau, 1999; seesthew by Garaud, 2007a
for more details).

Gough & Mclintyre proposed that nonlinear interactions Matige-scaleflows driven
by turbulent stresses in the convection zone and burrowittgthe radiative zone could
confine the field strictly below the base of the tachoclineurB& Zahn (2006) and
Garaud (2007b) studied this idea numerically, the formengishe time-dependent
ASH code and the latter with a steady-state code; both iigaget the dynamics of the

7 The form of viscosity adopted is such that the momentum flukésproduct of the angular-velocity
gradient and a diagonal matrix whose vertical element diffand is very much less than, the two equal
horizontal components.

8 The component of vorticity along the gradient of entropy.



radiative zone only, and the physics of the radiative—cotive interface are modelled
through boundary conditions. Brun & Zahn considered a madethich the interface
is represented as an impermeable and no-slip boundaryng@itferentially with the
angular velocity profile of the convection zone. Startinghven initially confined dipolar
magnetic field, they found that the field lines inevitably ajs diffuse through the
interface and that the rotation profile of the interior ewsvtoward a differentially
rotating Ferraro state. They conclude that field confinerbgrihe Gough & Mcintyre
mechanism is not possible.

Garaud (2007b) recovers the same result under the same lsetiodiary conditions.
However, she interprets the conclusion as a direct conseguef the artifical imper-
meability condition, which constrains the meridional floelacities to scale as Ekman-
Hartman flows and limits their amplitude to very low valueshnan associated magnetic
Reynolds number well below unity. Since the Gough & Mcintyredel explicitly relies
on flows downwelling from the convective zone to confine thiglfi&araud (2007b) also
tested another set of boundary conditions for which an ireg@sngle-cell equatorward
meridional flow is pumped through the outer boundary. In gaise, the flow velocities
remain high and field confinement appears to be possible hifeeetht problem occurs
(see her Fig. 2): transport of negative angular momentuiimvthe radiative zone from
high to low latitudes by the single-cell flow is so efficienatlthe predicted interior ve-
locity drops well-below the observed value. Thus the selacbf the meridional flow
profile at the radiative—convective interface is cruciatlte angular-momentum balance
of the whole interior.

There are two important conclusions to draw from the outcarhé¢hese simple
numerical simulations. Firstly, the dynamics of the ragmtinterior are sensitively
dependent on the assumed interfacial conditions, even oera qualitative level. One
may at this point reflect on the futility of trying to model tmadiative interior and
the tachocline without correctly dealing with the conveetregion above. Secondly,
it illustrates the importance of simple specific quanttatdiagnostics (such as for
example the value of the bulk rotation rate in the radiativee) in addressing the
quality of a model: many existing theories of the tachoglwwhich satisfy themselves
with reproducing its broad qualitative properties, arensiefail as soon as quantitative
comparisons with observations are made.

Finally, the question of whether the model proposed by Gdulyttintyre can indeed
explain the observed rotation profile in the radiative zogmains open. While it may
indeed hold the key to the field confinement problem, onlyitegt@juantitative analyses
will reveal whether their model is the whole story, or onlyrpaf the story. A more
conclusive answer will (hopefully) be provided in a fortincimg paper.

A DIFFERENT LOOK AT THE TACHOCLINE

While models of the tachocline involving large-scale flows éarge-scale fields are still
under investigation, we have also begun to revisit the groldrom an alternative point
of view.

We first address the following question: in thissencef large-scale flows, what is the
fate of a large-scale poloidal field initially confined witithe radiative zone? According
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FIGURE 2. Left-hand side: Normalised magnetic energy integrated awhell as a function of radius
attimet = 0 (solid line) and at a later time (dashed and dotted linesesponding to about one diffusion
time across the tachocline. The dashed line shows the energgins in the largest-scale latitudinal mode
only while the dotted line shows the energy contained inthlkomodes. The vertical line marks the edge
of the convection zone. Right-hand side: a few selected etagfield lines at the later time, showing
clearly the apparently confined large-scale field in theatig® interior, and the small-scale nature of the
field in the convection zone.

to the Cartesian-box simulations of Tobitsal. (2001), one should still expect the bulk
of the field to remain confined below the convection zone. Titeraction between
strong turbulent motions and magnetic fields leads to fluxubstpn, whereby fields
on scales larger than the typical eddy-scale are shufflecbbthie turbulent region.
While their simulations represent a small three-dimeraioegion along the radiative—
convective interface, we perform two-dimensional nunedrgimulations of the entire
interior, starting with a large-scale dipolar field initiakentirely embedded within the
radiative zon& The numerical algorithm has been modified from that of Reger
Glatzmaier (2005) to include magnetic fields. The systemistlis non-rotating, which
guarantees the absence of any large-scale flows; dynanom astalso forbidden. The
strength of the magnetic field was chosen to be only a few té@aass in the region
of the tachocline, so that the convective motions are onty weeakly influenced by it.
The results are shown in Fig. 2. The right-hand figure revieedbimodal nature of the
internal field, with a large-scale and very slowly evolvingaar component below the
overshoot layer, while any field line diffusing into the cextion zone is very rapidly

9 Our system is geometrically different from the one studigdibbiaset al. (2001). The dipolar nature
of the field garantees that thetal magnetic flux through the radiative—convective interfaged( any

a concentric surface) is identically zero, which is equewalto their simulations. The difference lies
in the fact that in the absence of convective motions fielddimould relax to a state with a non-zero
radial field nearly everywhere along the interface. Morepgeery single field line near the interface in
one hemisphere connects to its opposite-hemisphere “tsaniewhere in the deep and stably stratified
interior. Magnetic tension and buoyancy effects are vémli to play a role in the global field evolution
(Weiss, 2006).



advected, stretched and forced to reconnect with otherliredd by the turbulent eddies.
The left-hand figure shows the magnetic energy in the lowgstiad mode (thé = 1
mode, varying as cd$, as a dashed line), as well as that in higher-order mades2(
tol =800, as a dotted line). It illustrates both the partial carirent of the large-scale
field below the overshoot layer (note the reduction by threles of magnitudes of the
amplitude of thd = 1 mode across the overshoot layer) and the transfer of makeof
magnetic energy to small-scales within the turbulent negio

The picture which emerges from these simulations is quitkeréint from the one
implied by the numerical solutions reported in the previsastion. There, field lines
which connect to the outer boundary of the numerical donthia adiative—convective
interface) are forced to rotate with the angular velocityttté convection zone at that
given latitude, hence the inevitable propagation of thesimto the radiative zone. Here,
our simulations show instead that field lines which enterdbevection zone are far
from static, and undergo vast horizontal excursions befecennecting with other field
lines in the overshoot layer. As a result, the large-scald firethe interior supports the
propagation ostochasticallyexcited Alfvén waves, with associated angular-momentum
transport properties which are undoubtedly very diffe@gt phase-mixing is likely to
be much more important).

Testing the consequence of these effects on the rotatidiepobthe solar interior is
extremely difficult. The only correct way of doing it would be study the full three-
dimensional problem including both the radiative zone amel ¢convection zone, for
a long-enough time to permit a quasi-steady equilibrium ¢oréached. This is not
numerically feasible in the foreseeable future.

Instead, we perform a preliminary investigation of the @ansence oassumindield
confinement by turbulent overshoot on the dynamics of thatiad interior, focusing
on quantitative predictions for the angular velocity pmfifhe numerical model used
towards this goal is the same as the one used by Garaud (2fa0@¥id)ich some results
were described in the previous section. However, in this tias boundary conditions on
the magnetic field are modified B = 0 andB, = 0, whereB, andB,, are the radial and
azimuthal components of the magnetic field respectiveig; ditificial set of boundary
conditions supposedly mimics the destruction of the fieldhat radiative—convective
interface. For the purpose of the following discussion ialiso important to note that
the equations solved use atrtificially enhanced diffuseitas it is common in numerical
simulations. More precisely, the viscosity, magneticubivity and thermal diffusivity
are those appropriate to a standard solar model, but uniiyamltiplied by the same
constant factof. We then seek to understand the asymptotic behaviour ofuimerical
solutions ad — 1.

A typical outcome of the numerical simulations is shown ig.R. The predicted
angular velocity profile naturally reproduces the existeoica tachocline for low enough
values of the magnetic diffusivity, as found by Ruediger &dkiatinov® (1997) using

10 Ruediger & Kitchatinov (1997) studied the effect of a fixedhfioed dipolar field on the differential
rotation. In their work, only the azimuthal components o tiield and the flow are calculated, thus
neglecting meridional flows, their role in transporting atfeg momentum and their nonlinear interaction
with the field.
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FIGURE 3. Numerical solution for the dynamics of the radiative zonthvii=5 x 10’. The outer edge

of the computational domain is at= 0.7r, just slightly under the assumed position of the overshoot
layer. For this simulation, the boundary conditions appl¢Q7r, are:u, = ug = 0 anduy = uc; where

Ucz is the azimuthal velocity profile observed in the convectione. In the first panel, solid lines represent
counter-clockwise flow and dotted lines represent clocklizw.

a reduced model with similar boundary conditions; a ubimust characteristic feature
of this type of model is the existence of slowly rotating pakagions throughout the
interior. Meridional flows are seen to be confined by the mégrfeeld to the region
of the tachocline instead of burrowing deeply into the radezone; this property was
predicted by Gough & Mcintyre, and is required by observaidimits on mixing of
chemical elements between the radiative and convectivens@f the Sun.

The predicted value of the angular velocity profile in thesirar Q;,, can be used, as
mentioned earlier, as a simple diagnostic of angular monmemtansport in the model
Since thelarge-scaledynamics of the system can be calculated exactly, quawnétat
comparisons with observations can be made, and it had beehape to identify
discrepancies with the observed profile as evidence foringssmall-scale transport
in the model. As it turns out, the concept is indeed useful the conclusions we now
draw differ from those presented in Cambridge at the timdefrheeting.

Fig. 4 shows the model predictions f@%,/Qeq(rcz) as a function of the factof,
for three different values of the internal field strengthr Bee largest values of, the
magnetic field merely diffuses through the fluid without affeg it. As f decreases,
the nonlinear interaction between the field and the flowsrsetg dominate the interior
dynamics. Since;, is determined by the balance between advection by large-sca
meridional flows and Lorentz stresses we also show the depeedofQ;, on the
assumed dipolar field strength.

Preliminary results shown in Cambridge (eg. the open symbaol Fig. 4) were
consistent withQ;,(f) curves flattening out aé — 1, suggesting that the system may
be approaching an asymptotic solution. The asymptoticevaluQ;, was argued to
be consistent with observations for a range of plausibleeslof the internal field,
and conclusions were drawn therefrom. However, more resigntilations at higher
resolution and even lower values bshow that the system enters a new regime instead
in which a super-rotating region appears near the inner (s&e Fig. 4). We attribute

11 The observed interior angular veloci®y; is roughly equal to 93% of the equatorial angular velocity at
the base of the convection zof¥gy(rc,). For comparison, Spiegel & Zahn predict tlia§ = 0.91Qeq(r¢z)
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FIGURE 4. On the left, we show the ratio of the angular velodty, measured on the inner boundary
at the equator to that of the outer boundary at the equatothfee different interior field strengths:
Bo ~ 20G (diamonds)By ~ 60G (circles) andBy ~ 600G (triangles) wher8y is the amplitude of the
magnetic field at the pole at= 0.7r, that the solutions would have were they purely diffusivee Dipen
symbols are similar to those shown at the Cambridge meatireyglightly different background state, and
the filled symbols are higher resolution simulations thateygerformed since. The open square marks
the parameters corresponding to the solution shown in gig-fiand figure, which clearly illustrates the
emergence of a slightly super-rotating layer.

the emergence of this super-rotation to meridional flowsrdwing from the outer
equatorial regions towards the interior and forced to deggheir angular momentum
before returning. These flows are preferentially alignethwhe field lines and form
magneto-viscous internal layers scaling(asl)l/“. This kind of dynamical behaviour
was already observed by Dormy, Cardin & Jault (1998) and bsaGh (2002) in the
context of an incompressible system, and it is in hindsightemtirely surprising to find
it here also.

Further analysis will be required to identify the role of $keinternal layers in this
kind of model. Whether they are likely to exist in the Sun isiffedent question: their
formation and maintenance relies on a fairly tenuous magwistous balance of forces.
However, phase-mixing between field lines is likely to sgpée the kind of dynamics
that these simple numerical solutions imply. This is alye@ldstrated in Fig. 2, where
some of the effects of phase-mixing on the magnetic fieldfitsm just be discerned
near the radiative core. The role of phase-mixing on solatioo is worth revisiting.
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