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Abstract. This paper reviews current understanding of the internal rotation of the Sun. We sum-
marise the outcome of the latest helioseismic measurementsof the angular velocity profile, and
review existing dynamical models of rotation in the convection zone and in the radiative zone be-
neath. Finally, we discuss preliminary results along a new line of investigation.
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INTRODUCTION

Measurements of the surface solar differential rotation bysunspot tracking were first
performed1 by Carrington (1860). Sunspots are in fact seen to rotate with an angular
velocity which is typically a few per cent faster than that oftrue photospheric features
(Snodgrass, 1984), a result then attributed to the fact thatthey are anchored in more
rapidly rotating sub-photospheric layers. The development of helioseismic techniques
confirmed the existence of a near-surface shear layer, and revealed many other puzzling
dynamical features of the solar rotation profile.

The exquisite quality of recent helioseismic observationshas turned them into a
laboratory for the study of fluid dynamics at asymptoticallylarge or small values of
most characteristic numbers (eg. Reynolds number, Rayleigh number, Prandtl number).
Today, much of the theoretical focus is on understanding therotation profile of the Sun:
models are beginning to reach a point where quantitative comparisons with observations
can be made.

In this paper, we review recent progress on measuring and modelling the solar ro-
tation. Since detailed technical analyses of the subject have recently been published
elsewhere (cf. “The Solar Tachocline” edited by Hughes, Rosner & Weiss, 2007) we
select to address non-specialists by presenting a review ofthe key concepts and refer-
ring the reader to the adequate source where appropriate. Wethen propose a new line of
investigation concerning the dynamics of the radiative–convective interface, and present
preliminary results.

1 Carrington noted that spots underwent increasing retrograde “longitudinal drift” with latitude when
viewed from a frame rotating with a period of 25 days. He also noted the now well-known systematic
poleward flows in each hemisphere.



Source: MDI/SOI website

FIGURE 1. Internal solar angular velocityΩ/2π (contour labels in nHz) inferred by four different
inversion methods. The dashed circle indicates the base of the convection zone, and the tick marks at the
edge of the outer circle are at latitudes 15◦, 30◦, 45◦, 60◦, 75◦. The dark area indicates the region in the
Sun where no reliable inference can be made. Adapted from Schou et al. (1998), see original paper for
details.

HELIOSEISMIC OBSERVATIONS OF SOLAR ROTATION

Helioseismic inference of the internal rotation rate of theSun relies on measuring
the frequency difference between positively Doppler-shifted prograde sound waves and
their negatively Doppler-shifted retrograde counterparts. Robust techniques for invert-
ing thesefrequency splittingsinto a plausible angular velocity profileΩ(r,θ) were de-
veloped by Gough (1985) and applied to real solar data for thefirst time by Duvallet al.
(1984). Extensive reviews of helioseismic techniques and results are available elsewhere
(Gough & Thompson, 1991; Christensen-Dalsgaard, 2002; Thompsonet al.2003).

The long-term averaged and north-south symmetric solar rotation profile is shown in
Fig. 1. It is typically fitted to the simple smooth function

Ω(r,θ) = Ωeq(r)(1−a2(r)µ2
−a4(r)µ4) , whereµ = cosθ . (1)

Very close to the surface (atr = 0.995r⊙, wherer⊙ is the solar radius),Ωeq≃ 2.86×
10−6s−1, a2 ≃ 0.12 anda4 ≃ 0.17 (Schouet al. 1998). The angular velocity increases
with depth below the surface by a few percent down to about 0.9r⊙, in what is now
commonly referred to as the near-surface shear layer. The angular velocity profile from
there down to the base of the convection zone (located atrcz = 0.713r⊙) is roughly
constant on lines inclined by 25◦ from the polar axis (Gilman & Howe 2003). Just above
the radiative–convective interface (atr = 0.75r⊙) the rotation profile is consistent with
Ωeq≃ 2.90×10−6s−1, a2 ≃ 0.17 anda4 ≃ 0.08.



Further down, the radiative interior appears to be in a stateof uniform rotation:
Ω(r,θ) ≃ Ωrz ≃ 2.70× 10−6s−1 at all latitudes and radii below about 0.67r⊙. A thin
shear layer, the solar tachocline (Spiegel & Zahn, 1992), separates these two dynam-
ically distinct regions. It is generally agreed that the width of the tachocline∆ is no
greater than 4% of the solar radius near the equator. The detection of a possible lati-
tudinal variation of∆ remains controversial (Charbonneauet al. 1999, Basu & Antia,
2003). The shear disappears in mid-latitudes (around about30◦) where the rotation of
the radiative interior matches that of the convection zone.

A detailed review of the observed properties of the convection zone and the solar
tachocline outlined above is given by Christensen-Dalsgaard & Thompson (2007), in-
cluding recent detections of quasi-periodic spatio-temporal variations in the solar rota-
tion profile2.

It is probably fair to say that not a single of the observations reported here has
been explained in any quantitative sense. The nature of the near-surface shear layer, its
width and amplitude, have not yet been seriously addressed.Numerical simulations are
shedding light on the processes involved in the equatorial acceleration of the convection
zone (see below), but there again the amplitude of the observed latitudinal shear remains
poorly constrained. The origin and structure of the solar tachocline is perhaps the
greatest puzzle of all, and while models abound few are genuinely self-consistent and
have graduated from qualitative to quantitative in terms ofreproducing at the same time
the observed thickness of the tachocline and the value of theinternal rotation rateΩrz of
the bulk of the radiative zone.

MODELS OF ROTATION IN THE SOLAR CONVECTION ZONE

The outer 30% in radius of the solar interior is in a state of turbulent convection. The
convective turnover timescale near the surface is only a fewminutes (or in other words,
four orders of magnitude faster than the solar rotation) so that the granulation pattern
is more-or-less unaffected by rotational effects. The two timescales become comparable
deeper into the convection zone; convective giant cells areexpected to be rotationally
constrained and turbulent transport becomes markedly anisotropic. This effect is thought
to be the main cause for the observed equatorial acceleration of the solar convection
zone, although the complete picture is naturally much more complex. For extensive
reviews on the dynamics of the solar convection zone see Thompsonet al. (2003) and
Miesch (2005).

Any quasi-steady closed fluid dynamical system can in principle be understood in
terms of three equilibria: thermal energy balance, angular-momentum balance and fi-
nally momentum balance in the meridional direction. The first constrains the entropy
profile from the transport balance between turbulent motions and large-scale meridional
flows. The second equivalently constraints the angular velocity profile. The last closes
the system by relating the effect of large-scale body forces(the buoyancy force, which
is indirectly related to the entropy perturbations and the Coriolis force, which is related

2 These are not addressed in this paper but are nonetheless equally important and interesting.



to the angular velocity) to the divergence of the stress tensor. In many known systems, a
subset of these constraints typically dominates the dynamics; whether this is the case in
the solar convection zone can only be determined through numerical simulations.

Glatzmaier (1984) was the first to develop three-dimensional numerical models of
turbulent anelastic convection in a spherical shell, his work ultimately leading to the
development of the now widely used ASH code3 by Mieschet al. (2000). Early low-
resolution simulations achieved a state of “laminar” convection in which the dynam-
ics were essentially dominated by the Taylor-Proudman constraint4, namelyΩ ·∇u ≃ 0
whereu is the flow velocity. The typical angular velocity profiles predicted were char-
acteristically invariant along cylinders aligned with therotation axis, much unlike the
observed solar rotation profile. Throughout the years, increasingly high resolution simu-
lations have been permitted by the introduction of parallelcomputing on large numbers
of processors. Comparison between high and low resolution (“turbulent” and “laminar”)
simulations show a notable weakening of the Taylor-Proudman constraint and produced
angular velocity profiles closer to the observed ones (Miesch et al. 2000). However,
as argued by Brummell (2007), the turbulent cascade in the Sun extends well beyond
wavenumbers for which the eddy turnover time is comparable with the average rotation
rate, which is not the case in the ASH code simulations. What consequences this may
have on the model predictions is not well-understood.

To answer the question raised earlier, the latest results from the ASH code (see Mi-
esch, 2005; Mieschet al.2006) suggest that each of the three equilibria listed previously
could play an equally important role in determining the quasi-steady entropy and an-
gular momentum profile of the numerical simulations. This conclusion,if applicable to
the true convection zone, would suggest that transport by large-scale meridional flows is
as important as transport by turbulent motions. This has potentially far-reaching conse-
quences. It would imply firstly that the timescale for relaxation towards a quasi-steady-
state equilibrium is the meridional flow turnover time, which is of the order of a decade
or more; it is not yet numerically feasible to simulate the solar convection zone for such
a long time. Secondly, it also implies that the dynamics of the solar convection are in-
trinsically non-local and sensitively dependent on the physics near the domain “bound-
aries”: near the photosphere, on the dynamics of the granulation and near the radiative–
convective interface, on the dynamics of the tachocline. Neither of those are currently
well-modelled in the ASH code. Ongoing research is now focusing on improving the
boundary conditions to mimic the presence of a strongly stratified tachocline (through
imposed entropy fluctuations at the lower boundary for instance, see Mieschet al.2006)
and of the granulation (as reported by Miesch in this meeting, through stochastic noise
near the outer boundary), with some success.

A different approach to modelling the solar convection zonehas been pursued in paral-
lel for about as long as the numerical efforts described above. Building on the successful
formulation of mixing-length theory (Böhm-Vitense, 1958)which provides a plausible

3 Anelastic Spherical Harmonics
4 This constraint is related to the conservation of vorticityin the limit where the dominant momentum
balance is between pressure and Coriolis forces (i.e. when turbulent stresses or entropy fluctuations are
negligible)



parametrised prescription of the heat flux transported by small-scale turbulent motions,
many attempts have been made at modelling the equivalent transport of momentum by
turbulent Reynolds stresses5.

Closure models attempt to construct plausible prescriptions for the Reynolds stress
tensorR from heuristic arguments (first-order closure), or by solving a parametrised
evolution equation forR in parallel with the mean flow equations (second-order clo-
sure). Early attempts constructed a Reynolds stress tensorfrom correlations of linearly
unstable eigenmodes (Gough, 1978; Hathaway, 1984), with amplitudes selected to match
predictions of mixing-length theory. Other methods construct the Reynolds stress tensor
from dimensional analysis and geometrical arguments (Durney & Spruit, 1979; Kitchati-
nov & Ruediger, 1993).

Recently, Rempel (2005) carried out a systematic study of the solar rotation profile
using a first-order closure model. He was able to test not onlythe effect of the selection
of the unknown parameters on the predicted profile, but also that of the selection of the
background state. Notably, his work provided the first clearindication of the extent of
the influence of the tachocline on the rotation profile in the convection zone, highlighting
its role as an active boundary layer and to some extent, the futility of trying to model
the convection zonein detail without correctly dealing with the stably stratified region
below. Generally speaking, however, it must be noted that many Reynolds stress closure
models applied in the astrophysical context havenot been tested against systems for
which there exists either numerical or experimental data. Thus their absolute predictive
power is questionable. A second-order closure model of turbulent stresses has recently
been proposed by Ogilvie (2003) and was successfully testedagainst experimental
data of Couette-Taylor flows by Garaud & Ogilvie (2005). Preliminary analysis of
the performance of the model in the context of Rayleigh-Benard convection yields
promising results (Miller & Garaud, this volume).

MODELS OF ROTATION IN THE SOLAR RADIATIVE ZONE
AND THE TACHOCLINE

The transition from a nearly adiabatic to a strongly stratified background entropy gradi-
ent6 across the radiative–convective interface causes a dramatic change in the nature of
fluid motions: radial velocities in the radiative zone are rapidly damped so that turbulent
or wave-like flows are essentially horizontal, while the only large-scale flows allowed to
penetrate the interior have global turnover timescales longer than the thermal diffusion
time (eg.∼ 104 years across the depth of the tachocline).

The first model of the tachocline (Spiegel & Zahn 1992) originally proposed that

5 The components of the Reynolds stress tensorR are the quadratic correlationsRi j = u′iu
′

j where
the overbar denote a statistical, spatial or temporal mean with suitable mathematical properties. The
divergence of the stress tensor represents the mean effect of the small-scale motions on the momentum
equation.
6 The ratio N2/Ω2, whereN is the Brunt-Väisälä frequency, varies from a value of about−0.02 at
r = 0.715r⊙ to 5×104 at r = 0.71r⊙ (cf. Model S of Christensen-Dalsgaard, Gough & Thompson, 1991).



the two-dimensional nature of strongly stratified turbulence was in fact the cause of the
sharpness of the transition from the sustained latitudinalshear observed in the convection
zone to the near-uniform rotation of the radiative zone. By parametrising the effects of
the turbulent motion with an anisotropic viscosity7 they showed that the rotation profile
of the radiative zone could be qualitatively reproduced provided turbulent viscosity in
the latitudinal direction was orders of magnitude larger than in the vertical direction.
This idea is possibly the simplest and most pleasing that hasbeen proposed to date, and
has the added advantage of permitting strict quantitative predictions that can be directly
compared with observations. However, it has been criticized for its simplified treatment
of turbulent transport.

McIntyre (2003) reports that turbulent transport in a stratified fluid as measured in the
Earth’s stratosphere can only be reconciled with the conservation of potential vorticity8

whereas the parametrisation proposed by Spiegel & Zahn assumes the conservation of
angular momentum. In addition, Tobias, Diamond & Hughes (2007) showed that if the
turbulence is not strictly hydrodynamic (which is most likely the case of the Sun) then
tiny seed magnetic fields are amplified until turbulent Lorentz stresses exactly cancel
out turbulent Reynolds stresses, to the extent that the resulting transport properties
reduce to the original microscopic viscous momentum flux. These two papers illustrate
the difficulty in constructing a model that adequately predicts turbulent stresses in the
tachocline. Note that other hydrodynamic models of the tachocline have also been
proposed (notably involving the action of gravity waves) although none have yet reached
a stage where strict quantitative comparisons with helioseismic observations have been
made. The reader is referred to the review of Zahn (2007) for details.

Moving away from models which involve angular-momentum transport by Reynolds
stresses Gough & McIntyre (1998) argued that the presence ofa large-scale field within
the solar radiative zone is the only possible explanation for the observed uniform ro-
tation. Indeed, in the absence of diffusion, strong meridional flows or strong turbulent
motions, the longitudinal component of the magnetic induction equation suggests that
the field and the fluid must relax to a quasi-steady state ofisorotation which requires that
Ω should be constant along field lines (Ferraro, 1937). If the field is entirely confined
within the radiative zone then uniform rotation naturally ensues, but if field lines overlap
with the differentially rotating convection zone then the interior must also rotate differ-
entially: confining the field below the convection zone appears to be an essential part of
this class of models (McGregor & Charbonneau, 1999; see the review by Garaud, 2007a
for more details).

Gough & McIntyre proposed that nonlinear interactions withlarge-scaleflows driven
by turbulent stresses in the convection zone and burrowing into the radiative zone could
confine the field strictly below the base of the tachocline. Brun & Zahn (2006) and
Garaud (2007b) studied this idea numerically, the former using the time-dependent
ASH code and the latter with a steady-state code; both investigated the dynamics of the

7 The form of viscosity adopted is such that the momentum flux isthe product of the angular-velocity
gradient and a diagonal matrix whose vertical element differs, and is very much less than, the two equal
horizontal components.
8 The component of vorticity along the gradient of entropy.



radiative zone only, and the physics of the radiative–convective interface are modelled
through boundary conditions. Brun & Zahn considered a modelin which the interface
is represented as an impermeable and no-slip boundary rotating differentially with the
angular velocity profile of the convection zone. Starting with an initially confined dipolar
magnetic field, they found that the field lines inevitably always diffuse through the
interface and that the rotation profile of the interior evolves toward a differentially
rotating Ferraro state. They conclude that field confinementby the Gough & McIntyre
mechanism is not possible.

Garaud (2007b) recovers the same result under the same set ofboundary conditions.
However, she interprets the conclusion as a direct consequence of the artifical imper-
meability condition, which constrains the meridional flow velocities to scale as Ekman-
Hartman flows and limits their amplitude to very low values with an associated magnetic
Reynolds number well below unity. Since the Gough & McIntyremodel explicitly relies
on flows downwelling from the convective zone to confine the field, Garaud (2007b) also
tested another set of boundary conditions for which an imposed single-cell equatorward
meridional flow is pumped through the outer boundary. In thiscase, the flow velocities
remain high and field confinement appears to be possible but a different problem occurs
(see her Fig. 2): transport of negative angular momentum within the radiative zone from
high to low latitudes by the single-cell flow is so efficient that the predicted interior ve-
locity drops well-below the observed value. Thus the selection of the meridional flow
profile at the radiative–convective interface is crucial tothe angular-momentum balance
of the whole interior.

There are two important conclusions to draw from the outcomeof these simple
numerical simulations. Firstly, the dynamics of the radiative interior are sensitively
dependent on the assumed interfacial conditions, even on a mere qualitative level. One
may at this point reflect on the futility of trying to model theradiative interior and
the tachocline without correctly dealing with the convective region above. Secondly,
it illustrates the importance of simple specific quantitative diagnostics (such as for
example the value of the bulk rotation rate in the radiative zone) in addressing the
quality of a model: many existing theories of the tachocline, which satisfy themselves
with reproducing its broad qualitative properties, are seen to fail as soon as quantitative
comparisons with observations are made.

Finally, the question of whether the model proposed by Gough& McIntyre can indeed
explain the observed rotation profile in the radiative zone remains open. While it may
indeed hold the key to the field confinement problem, only detailed quantitative analyses
will reveal whether their model is the whole story, or only part of the story. A more
conclusive answer will (hopefully) be provided in a forthcoming paper.

A DIFFERENT LOOK AT THE TACHOCLINE

While models of the tachocline involving large-scale flows and large-scale fields are still
under investigation, we have also begun to revisit the problem from an alternative point
of view.

We first address the following question: in theabsenceof large-scale flows, what is the
fate of a large-scale poloidal field initially confined within the radiative zone? According



FIGURE 2. Left-hand side: Normalised magnetic energy integrated over a shell as a function of radius
at timet = 0 (solid line) and at a later time (dashed and dotted lines) corresponding to about one diffusion
time across the tachocline. The dashed line shows the energycontains in the largest-scale latitudinal mode
only while the dotted line shows the energy contained in all other modes. The vertical line marks the edge
of the convection zone. Right-hand side: a few selected magnetic field lines at the later time, showing
clearly the apparently confined large-scale field in the radiative interior, and the small-scale nature of the
field in the convection zone.

to the Cartesian-box simulations of Tobiaset al. (2001), one should still expect the bulk
of the field to remain confined below the convection zone. The interaction between
strong turbulent motions and magnetic fields leads to flux expulsion, whereby fields
on scales larger than the typical eddy-scale are shuffled outof the turbulent region.
While their simulations represent a small three-dimensional region along the radiative–
convective interface, we perform two-dimensional numerical simulations of the entire
interior, starting with a large-scale dipolar field initially entirely embedded within the
radiative zone9. The numerical algorithm has been modified from that of Rogers &
Glatzmaier (2005) to include magnetic fields. The system studied is non-rotating, which
guarantees the absence of any large-scale flows; dynamo action is also forbidden. The
strength of the magnetic field was chosen to be only a few tens of Gauss in the region
of the tachocline, so that the convective motions are only very weakly influenced by it.
The results are shown in Fig. 2. The right-hand figure revealsthe bimodal nature of the
internal field, with a large-scale and very slowly evolving dipolar component below the
overshoot layer, while any field line diffusing into the convection zone is very rapidly

9 Our system is geometrically different from the one studied by Tobiaset al. (2001). The dipolar nature
of the field garantees that thetotal magnetic flux through the radiative–convective interface (and any
a concentric surface) is identically zero, which is equivalent to their simulations. The difference lies
in the fact that in the absence of convective motions field lines would relax to a state with a non-zero
radial field nearly everywhere along the interface. Moreover, every single field line near the interface in
one hemisphere connects to its opposite-hemisphere “twin”somewhere in the deep and stably stratified
interior. Magnetic tension and buoyancy effects are very likely to play a role in the global field evolution
(Weiss, 2006).



advected, stretched and forced to reconnect with other fieldlines by the turbulent eddies.
The left-hand figure shows the magnetic energy in the lowest spatial mode (thel = 1
mode, varying as cosθ , as a dashed line), as well as that in higher-order modes (l = 2
to l = 800, as a dotted line). It illustrates both the partial confinement of the large-scale
field below the overshoot layer (note the reduction by three orders of magnitudes of the
amplitude of thel = 1 mode across the overshoot layer) and the transfer of most ofthe
magnetic energy to small-scales within the turbulent region.

The picture which emerges from these simulations is quite different from the one
implied by the numerical solutions reported in the previoussection. There, field lines
which connect to the outer boundary of the numerical domain (the radiative–convective
interface) are forced to rotate with the angular velocity ofthe convection zone at that
given latitude, hence the inevitable propagation of the shear into the radiative zone. Here,
our simulations show instead that field lines which enter theconvection zone are far
from static, and undergo vast horizontal excursions beforereconnecting with other field
lines in the overshoot layer. As a result, the large-scale field in the interior supports the
propagation ofstochasticallyexcited Alfvén waves, with associated angular-momentum
transport properties which are undoubtedly very different(eg. phase-mixing is likely to
be much more important).

Testing the consequence of these effects on the rotation profile of the solar interior is
extremely difficult. The only correct way of doing it would beto study the full three-
dimensional problem including both the radiative zone and the convection zone, for
a long-enough time to permit a quasi-steady equilibrium to be reached. This is not
numerically feasible in the foreseeable future.

Instead, we perform a preliminary investigation of the consequence ofassumingfield
confinement by turbulent overshoot on the dynamics of the radiative interior, focusing
on quantitative predictions for the angular velocity profile. The numerical model used
towards this goal is the same as the one used by Garaud (2007b)for which some results
were described in the previous section. However, in this case the boundary conditions on
the magnetic field are modified toBr = 0 andBφ = 0, whereBr andBφ are the radial and
azimuthal components of the magnetic field respectively; this artificial set of boundary
conditions supposedly mimics the destruction of the field atthe radiative–convective
interface. For the purpose of the following discussion it isalso important to note that
the equations solved use artificially enhanced diffusivities, as it is common in numerical
simulations. More precisely, the viscosity, magnetic diffusivity and thermal diffusivity
are those appropriate to a standard solar model, but uniformly multiplied by the same
constant factorf . We then seek to understand the asymptotic behaviour of the numerical
solutions asf → 1.

A typical outcome of the numerical simulations is shown in Fig. 3. The predicted
angular velocity profile naturally reproduces the existence of a tachocline for low enough
values of the magnetic diffusivity, as found by Ruediger & Kitchatinov10 (1997) using

10 Ruediger & Kitchatinov (1997) studied the effect of a fixed confined dipolar field on the differential
rotation. In their work, only the azimuthal components of the field and the flow are calculated, thus
neglecting meridional flows, their role in transporting angular momentum and their nonlinear interaction
with the field.



FIGURE 3. Numerical solution for the dynamics of the radiative zone with f = 5×107. The outer edge
of the computational domain is atr = 0.7r⊙, just slightly under the assumed position of the overshoot
layer. For this simulation, the boundary conditions applied at 0.7r⊙ are:ur = uθ = 0 anduφ = ucz where
ucz is the azimuthal velocity profile observed in the convectionzone. In the first panel, solid lines represent
counter-clockwise flow and dotted lines represent clockwise flow.

a reduced model with similar boundary conditions; a ubiquitous characteristic feature
of this type of model is the existence of slowly rotating polar regions throughout the
interior. Meridional flows are seen to be confined by the magnetic field to the region
of the tachocline instead of burrowing deeply into the radiative zone; this property was
predicted by Gough & McIntyre, and is required by observational limits on mixing of
chemical elements between the radiative and convective regions of the Sun.

The predicted value of the angular velocity profile in the interior Ωin can be used, as
mentioned earlier, as a simple diagnostic of angular momentum transport in the model11.
Since thelarge-scaledynamics of the system can be calculated exactly, quantitative
comparisons with observations can be made, and it had been our hope to identify
discrepancies with the observed profile as evidence for missing small-scale transport
in the model. As it turns out, the concept is indeed useful, but the conclusions we now
draw differ from those presented in Cambridge at the time of the meeting.

Fig. 4 shows the model predictions forΩin/Ωeq(rcz) as a function of the factorf ,
for three different values of the internal field strength. For the largest values off , the
magnetic field merely diffuses through the fluid without affecting it. As f decreases,
the nonlinear interaction between the field and the flows begins to dominate the interior
dynamics. SinceΩin is determined by the balance between advection by large-scale
meridional flows and Lorentz stresses we also show the dependence ofΩin on the
assumed dipolar field strength.

Preliminary results shown in Cambridge (eg. the open symbols on Fig. 4) were
consistent withΩin( f ) curves flattening out asf → 1, suggesting that the system may
be approaching an asymptotic solution. The asymptotic value of Ωin was argued to
be consistent with observations for a range of plausible values of the internal field,
and conclusions were drawn therefrom. However, more recentsimulations at higher
resolution and even lower values off show that the system enters a new regime instead
in which a super-rotating region appears near the inner core(see Fig. 4). We attribute

11 The observed interior angular velocityΩrz is roughly equal to 93% of the equatorial angular velocity at
the base of the convection zoneΩeq(rcz). For comparison, Spiegel & Zahn predict thatΩin = 0.91Ωeq(rcz)



FIGURE 4. On the left, we show the ratio of the angular velocityΩin measured on the inner boundary
at the equator to that of the outer boundary at the equator forthree different interior field strengths:
B0 ≃ 20G (diamonds),B0 ≃ 60G (circles) andB0 ≃ 600G (triangles) whereB0 is the amplitude of the
magnetic field at the pole atr = 0.7r⊙ that the solutions would have were they purely diffusive. The open
symbols are similar to those shown at the Cambridge meeting for a slightly different background state, and
the filled symbols are higher resolution simulations that were performed since. The open square marks
the parameters corresponding to the solution shown in the right-hand figure, which clearly illustrates the
emergence of a slightly super-rotating layer.

the emergence of this super-rotation to meridional flows burrowing from the outer
equatorial regions towards the interior and forced to deposit their angular momentum
before returning. These flows are preferentially aligned with the field lines and form
magneto-viscous internal layers scaling as(νη)1/4. This kind of dynamical behaviour
was already observed by Dormy, Cardin & Jault (1998) and by Garaud (2002) in the
context of an incompressible system, and it is in hindsight not entirely surprising to find
it here also.

Further analysis will be required to identify the role of these internal layers in this
kind of model. Whether they are likely to exist in the Sun is a different question: their
formation and maintenance relies on a fairly tenuous magneto-viscous balance of forces.
However, phase-mixing between field lines is likely to supersede the kind of dynamics
that these simple numerical solutions imply. This is already illustrated in Fig. 2, where
some of the effects of phase-mixing on the magnetic field itself can just be discerned
near the radiative core. The role of phase-mixing on solar roation is worth revisiting.
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