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Constraints on angular momentum transport in the Sun from simula-
tions of the tachocline
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I present a new numerical tool for studying the interaction of meridional flows and magnetic fields, and study their role in
establishing angular-momentum balance in the solar radiative zone. Quantitative comparisons with helioseismic observa-
tions provide stringent constraints on existing models of the dynamics of the solar interior.
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1 Introduction

The tachocline is a thin shear layer located near the inter-
face between the uniformly rotating radiative zone and the
differentially rotating convective zone in the Sun. Indeed,
helioseismic observations (Schouet al. 1998; Gough 2007)
reveal that the base of the convection zone has an angular
velocity profileΩcz(θ) consistent with

Ωcz(θ) = Ωeq(1 − a cos2 θ − b cos4 θ) with

Ωeq = 2.9 × 10−6s−1, a = 0.17, b = 0.08 , (1)

where θ is the co-latitude, whereas less than 30,000 km
deeper (forr < 0.67r⊙) the radiative zone is rotating with
a constant angular velocity

Ωrz(θ) = 0.93Ωeq . (2)

The origin of this sharp transition has been a puzzle for
nearly two decades.

The solar tachocline is thought to be a permanent fea-
ture of the Sun, operating the dynamical transition between
the radiative and convective regions by slowly adjusting the
rotation rate of the interior to that of the surface as it is spun
down by magnetic braking (Spiegel 1972, 2007). Dynam-
ical processes in the tachocline are also thought to reduce
the gravitational settling of helium with respect to hydro-
gen (Elliott & Gough 1999), to enhance the circulation of
light elements (e.g. Li or Be) between the surface and their
nuclear-burning region, and last but not least, to play a key
role in the generation of the solar magnetic cycle (Parker,
1993).

There exist no self-consistent quantitative model of the
solar tachocline successfully capable of explaining helio-
seismic observations. At the heart of the problem is the dif-
ficulty in quantifying the turbulent hydromagnetic stresses
responsible for angular-momentum transport in this dynam-
ically complex region of the Sun.
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The equation governing the conservation of the angular-
momentumL = r sin θuφ = r2 sin2 θΩ can be written as
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whereρ is the density,u = (ur, uθ, uφ) is the flow velocity
in a spherical coordinate system(r, θ, φ), B = (Br, Bθ, Bφ)
is the magnetic field andν is the microscopic viscosity. In
this expression the flow and field are viewed as the sum of a
large-scale, slowly varying mean term and of a small-scale
rapidly varying perturbation (denoted by a prime). Equation
(3) explicitly reveals the angular-momentum flux to have
five essential contributions: advection by large-scale flows,
turbulent Reynolds stresses, large-scale and small-scaleLo-
rentz stresses and finally diffusion by microscopic viscos-
ity. There are many possible sources for turbulent trans-
port in the tachocline region: from the base of the convec-
tion zone downward, overshooting convective plumes, hy-
dromagnetic instabilities and finally nonlinear and linearwa-
ves of mixed nature. Quantifying their contribution to the to-
tal angular-momentum balance is a formidable task, which
has been undertaken by many using a variety of different
methods such as 2-D direct numerical simulations (Rogers
& Glatzmaier 2006, Rogers, Glatzmaier & Jones 2006, To-
bias et al. 2007), 3-D numerical simulations (Brummell,
Clune & Toomre 2002, Miesch 2003, Miesch, Gilman &
Dikpati 2007), quasi-nonlinear stability theory (Charbon-
neau, Dikati & Gilman 1999, Garaud 2001a) and finally
turbulence closure models (Rempel 2005, Leprovost & Kim
2006 and other articles by the same authors).

Here I approach the problem from a different angle, not-
ing that while turbulent and wave-induced hydromagnetic
stresses are difficult to quantify in parameter regimes appro-
priate for the tachocline, all of the other large-scale angular-
momentum transporters can be realistically simulated. By
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studying the difference between the model predictions and
helioseismic observations one may be able to constrain the-
ories of the remaining unknown stresses.

2 Model equations

In this paper I consider thelaminar and long-term dynamics
of the radiative zone under the influence of magnetic fields
and large-scale flows. For simplicity, I assume that the flow
and field are axially symmetric, in a quasi-steady state, and
that the perturbations to the background hydrostatic equi-
librium are small enough for linearization to be appropriate.
The system is then governed by the following equations:

2ρΩ × u = −∇p̃ − ρ̃∇Φ + j × B + f∇·Π

∇·(ρu) = 0

ρTu · ∇s = f∇·(k∇T̃ )

p̃

p
=

ρ̃

ρ
+

T̃

T

∇×(u × B) = f∇×(η∇×B)

∇·B = 0 (4)

representing respectively momentum, mass and thermal en-
ergy conservation, the equation of state, the induction equa-
tion and finally the solenoidal condition. Here,Ω is the
background angular velocity which, when integrated over
a sphere, has the same specific angular-momentum as that
of the convection zone. The thermodynamical quantitiesp,
s andT have their usual meaning,j is the current density,
Π is the viscous stress tensor, andΦ is the gravitational po-
tential. Finally,η is the magnetic diffusivity whilek is the
thermal conductivity.

Quantities denoted with overbars are spherically sym-
metric background quantities obtained by interpolating Mo-
del S of Christensen-Dalsgaard, Gough & Thompson (1991)
upon my own numerical mesh, and the diffusivitiesν, η and
k have been derived by Gough (2007). Note that the same
constant factorf multiplies all of the diffusive terms. This
artificially enhances the diffusivities to such a point where
thin boundary layers can be numerically resolved while pre-
serving solar values of the Prandtl number, magnetic Prandtl
number and Roberts number. I do not view it as turbulent
diffusivities, but strive instead to study the asymptotic be-
haviour of the solutions asf is gradually reduced to unity.

A detailed description of the numerical method of solu-
tion for this particular problem will be published in a forth-
coming paper; it is closely related to that described and used
in my PhD work (Garaud, 2001b; Garaud, 2002).

3 Model setup

Gough & McIntyre (1998) proposed the first self-consistent
magnetic tachocline model. They argue that the uniform
rotation of the bulk of the solar radiative zone cannot be
explained without the presence of a large-scale primordial

field, which must be entirely confined within the radiative
zone. Indeed, preventing magnetic field lines from over-
lapping with the convection zone is crucial since Alfvénic
angular-momentum transport could otherwise rapidly im-
pose a differentially rotating Ferraro state throughout the
interior (McGregor & Charbonneau, 1999). To confine the
field, Gough & McIntyre consider large-scale flows driven
by turbulent stresses within the convection zone, which are
known to burrow downwards into the radiative zone (Spiegel
& Zahn 1992; Garaud & Brummell, 2007). These flows are
thought to confine the primordial field below a very thin
diffusion layer located near the bottom of the tachocine.
Meanwhile, the field also prevents meridional flows from
burrowing too deeply into the radiative zone thereby satis-
fying observational limits on transport of light elements.

This idea can be tested using the equations and numeri-
cal method described in§2. There remains one important is-
sue to discuss, namely the selection of boundary conditions
that best represent the Gough & McIntyre model. Indeed,
since Gough & McIntyre consider the Sun as a whole, they
do not need to specify conditions near the radiative-convec-
tive interface. The current numerical model on the other
hand explicitly excludes the convection zone and overshoot
layer by considering only the dynamics of the radiative inte-
rior in the domainr ∈ [0.1, 0.7]r⊙; “interfacial” conditions
must be applied to represent the effect of the overshoot layer
on the underlying radiative zone. Since in any steady-state
numerical calculation the boundary conditions areessential
in determining the nature of the solutions, these must be se-
lected with the utmost care.

Boundary conditions on the inner core (forr < 0.1r⊙)
are chosen in such a way as to limit its artificial influence as
much as possible. Accordingly, it is assumed to be perfectly
thermally conducting by requiring that∇2T̃ = 0 within
and deriving matching conditions for̃T and its derivative at
the boundary. It is impermeable, and assumed to be entirely
stress-free. Finally, the magnetic field is assumed to diffuse
easily into the excluded inne sphere (∇2

B = 0 within) and
matches on to a point dipole asr → 0.

Boundary conditions near the base of the overshoot layer
are selected to mimic its effect on the radiative zone dynam-
ics. It seems natural to setuφ = r sin θΩcz(θ) atr = 0.7r⊙
whereΩcz(θ) is given in equation (1); following Garaud &
Brummell (2007), I also require thatρhur = κ∇T̃ at the
boundary (whereh is the specific enthalpy, andκ is the ther-
mal diffusivity). A variety of plausible prescriptions forur

anduθ at0.7r⊙ are now considered.

4 Model results

Fig. 1 is a typical simulation output when the outer bound-
ary of the domain is assumed to be impermeable and no-
slip (ur = uθ = 0 at the interface), for value of the con-
stantf = 108 which corresponds to an Ekman number
Eν = ν/r2

⊙Ωeq ≃ 10−8, and a magnetic Ekman number
Eη = η/r2

⊙Ωeq ≃ 10−5 (both well into the asymptotically
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Fig. 1 Example of numerical solution for impermeable and no-
slip conditions,f = 108 andBr(0.1r⊙, 0) = 2.2T. The top-left
quadrant shows selected meridional flow streamlines, with clock-
wise flow shown in dotted lines and counter-clockwise flow shown
in solid lines. The top-right quadrant shows the angular velocity
profile. The bottom-left quadrant shows the magnetic field lines,
and the bottom right quadrant shows the temperature perturba-
tions.

small regime). The strength of the magnetic field at the pole
on the inner boundary is about 2.2T, which in the absence
of flows would yield a field of about 70 G near the outer
boundary at the same latitude. In this particular setup, the
flows are induced by Ekman-Hartman pumping (Acheson &
Hide, 1973), and scale typically asur ∝ (EνEη/Λ)1/2uφ

whenBr 6= 0 (i.e. away from the equator) and asur ∝
(EνEη/Λ)1/4uφ whenBr → 0 (i.e. near the equator). Here,
Λ = v2

A/r2
⊙Ω2

eq wherevA is the Alfvén velocity. It is impor-
tant to note that the gradual reduction in the magnetic diffu-
sivity does not necessarily result in a concurrent increasein
the magnetic Reynolds number: here, I find that asf → 1
the meridional flow velocities rapidly decrease and fail to
confine the field. The radiative zone approaches a differen-
tially rotating state constrained by Ferraro isorotation with
the field, contrary to what is observed in the Sun.

It is possible to investigate instead situations where flows
are forced from the convection zone down into the radiative
zone as first suggested by Gough & McIntyre (1998) and
later by Kitchatinov & Ruediger (2006).

Gough & McIntyre consider flows with a significant ra-
dial component while the model of Kitchatinov & Ruediger
involves the latitudinal component of the flow only. In this
preliminary study, I select a combination of radial and lati-
tudinal forcing by setting1 ur(θ) = 102(1 − 3 cos2 θ)cm/s

1 The latitudinal component of this flow is equatorward, with an am-
plitude consistent with what one may expect of meridional flows within

anduθ(θ) = 103 sin θ cos θcm/s atr = 0.7r⊙. It is inter-
esting to note that for a wide range of boundary conditions
tested, a strong secondary circulation cell appears near the
equator so that the global structure of the flowwithin the
radiative zone is a two-cell circulation downwelling near
the pole and the equator, with upwelling in mid-latitudes
(see Fig. 2). The ubiquity of this somewhat surprising re-
sult is also seen in the work of Rieutord (2006) and Garaud
& Brummell (2007) in the case of purely hydrodynamic
flows, and remains to be fully explained. Thus in practise,
one should view the flows somewhat below the outer bound-
ary to downwell near both pole and equator, and upwell in
mid-latitudes as predicted by Gough & McIntyre.

Whenf is gradually reduced below1010 the magnetic
Reynolds numberRm = |ur(0)|r⊙/fη at the outer bound-
ary begins to exceed unity, and nonlinear interactions be-
tween the field and the large-scale flows can dominate the
tachocline dynamics. A gradual confinement of the field is
observed this time, notably more pronounced near the equa-
tor (where the field lines are already inclined with respect to
the vertical direction) than near the pole (where the field
lines remain mostly radial). However, one can also clearly
see that the angular velocity of the interior in this case is
dramatically lower than that of the surface, which is a con-
sequence of the advection of negative angular-momentum
from the polar regions to lower latitudes by the meridional
flows. The failure of this particular model setup to repro-
duce helioseismic inversions can be used to infer that a com-
bination of the following two statements must be true: (i)
the flow pattern at the radiative-convective interface differs
widely from the one assumed here and (ii) turbulent stresses
within the radiative zone are not negligible.

5 A quantitative look at models of the
tachocline

Helioseismic inversions provide stringent constraints onangular-
momentum transport in the solar interior, and in particular
in the tachocline. To zeroth order, any model should be able
to explain the near-uniform rotation of the solar radiative
zone. To first order, a good model must be able to explain
the value of the rotation rate of the interior (see equation
(2)). To this date there have been only two published at-
tempts at addressing the latter (Spiegel & Zahn 1992 and
Garaud 2002), and in both cases the model predictions dif-
fer significantly from the observed value. The difficulty of
the task lies, as mentioned earlier, partly in characteriza-
tion of the unknown turbulent stresses, but also in the fact
that angular-momentum advection by large-scale flows and
the long-range nature of magnetic forces both imply that
MHD models of the tachoclinecannot be local; the dynam-
ical structure of the radiative interior must be studied as a

the convection zone (Gileset al. 1997); theimposed radial component of
the flow downwells near the poles and upwells near the equator, with an
amplitude selected arbitrarily.
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Fig. 2 Same as Fig. 1 forf = 2× 109 and for the same internal
field strength, with an imposed large-scale meridional flow at the
radiative-convective interface (see main text). The counter-rotation
seen in the radiative zone is an unphysical consequence of the lin-
earization of the intertial terms in the momentum equation and of
the advection terms in the thermal energy equation. However, the
strong deceleration of the deep equatorial regions remainsa ubiq-
uitous feature of this model setup when the whole set of nonlinear
equations is solved.

whole2. The numerical tool that I have developed provides
a mean to do this and to test quantitatively various MHD
models of the tachocline against observations (e.g. of the
angular velocity profile and of chemical mixing within the
radiative zone). The results presented in§4 reveal some de-
ficiencies in existing models.

Recently, T. Rogers and I have revisited the issue of the
confinement of the primordial magnetic field through a dif-
ferent route. It has been known for many decades that the
interaction between large-scale fields and small-scale turbu-
lent fluid motions is far from trivial. An extensive study of
the nonlinear transport of magnetic fields near a radiative-
convective interface has been performed by Tobiaset al.
(2001) in Cartesian box simulations; their most striking con-
clusion is that regardless of the initial field configuration,
turbulent transport always acts in such a way as to relax the
system towards the same mean quasi-steady profile in which
the amplitude of the magnetic flux is much reduced in re-
gions of high turbulent kinetic energy. In other words, if the
field is initially located mostly in the convective region, then
it is actively pumped out of it, while if the field is initially
located mostly in the radiative region, then it remains con-
fined there by the turbulent motions. Following this idea T.
Rogers performed the first simulations of the same process

2 In fact, it would be preferable to study the combined dynamics of both
radiative and convective regions in one single system.

in what can be thought of as a complete meridional slice of
the Sun (including the radiative zone and most of the so-
lar convective zone). Her results show a very clear confine-
ment of the primordial field below the overshoot layer, with
a drop in the magnetic energy in the large-scale component
of the field by more than four orders of magnitudes between
the quiescent radiative regions just below 0.69r⊙ and the
fully turbulent regions around 0.73r⊙. To include this ef-
fect in my numerical simulations I have then replaced the
usual field boundary conditions withBr andBφ set to zero
at the outer boundary of the numerical domain. The result-
ing agreement between the model predictions in terms of
the interior angular velocity profile are in this case quite re-
markable. These findings, which were also presented in the
Potsdam workshop, are reported elsewhere in more detail
(Garaud & Rogers, 2007).

Acknowledgements. I gratefully acknowledge financial help from
NSF-AST-0607495 and from the organisers towards my participa-
tion in this Thinkshop. I also thank N. Brummell, G. Glatzmaier,
D. Gough, and T. Rogers for fruitful discussions as well as their
continued support. The numerical simulations were performed on
the Pleiades cluster at UCSC, purchased using an NSF-MRI grant.

References

Acheson, D. J. & Hide, R. 1973: Rep. Prog. Phys., 36, 159
Brummell, N. H., Clune, T. L. & Toomre, J. 2002: ApJ, 570, 825
Charbonneau, P., Dikpati, M., Gilman, P. A. 1999: ApJ, 528, 523
Christensen-Dalsgaard, J., Gough, D. O. & Thompson, M. J. 1991:

ApJ, 378, 413
Elliott, J. R. & Gough, D. O. 1999: ApJ, 516, 475
Garaud, P. 2001a: MNRAS, 324, 68
Garaud, P. 2001b: PhD Thesis
Garaud, P. 2002: MNRAS, 329, 1
Garaud, P. & Brummell, N. H. 2007: ApJ,submitted

(arXiv:0708.0258v1)
Garaud P. & Rogers, T. M. 2007: inUnsolved problems in Stellar

Astrophysics, CUP.
Gough, D. O. & McIntyre, M. E. 1998: Nature, 394, 755
Gough, D. O. 2007: inThe Solar Tachocline pp. 3–30, eds. D.

Hughes, R. Rosner & N. Weiss, CUP.
Kitchatinov, L. L. & Ruediger, G. 2006: A&A, 453, 329
Leprovost, N. & Kim, E.-J. 2006: A&A, 456, 617
MacGregor, K. B. & Charbonneau, P. 1999: ApJ, 519, 911
Miesch, M. S. 2003: ApJ, 586, 663
Miesch, M. S., Gilman, G. A. & Dikpati, M. 2007: ApJS, 168, 337
Parker, E. N. 1993: ApJ, 408, 707
Rempel, M. 2005: ApJ, 622, 1320
Rieutord, M. 2006: A&A, 451, 1025
Rogers, T. M. & Glatzmaier, G. A. 2005: ApJ, 620, 432
Rogers, T. M., Glatzmaier, G. A. & Jones, C. A. 2006: ApJ, 653,

765
Schou, J. it et al.: ApJ, 505, 390
Spiegel, E. A. 1972: inPhysics of the Solar System p. 61, ed. S.

Rasool, NASA SP-300.
Spiegel, E. A. 2007: inThe Solar Tachocline pp. 31–49, eds. D.

Hughes, R. Rosner & N. Weiss, CUP.
Spiegel, E. A. & Zahn, J.-P. 1992: A&A, 265, 106
Tobias, S.et al. 2007: this volume.

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org


