
Safe graph rearrangements for distributed connectivity of robotic networks

Michael Schuresko and Jorge Cortés

Abstract— This paper studies distributed algorithms for per-
forming graph rearrangements that preserve the connectivity
of a robotic network. Given a connected graph describing the
topology of the network, preserving a fixed set of edges while
performing a coordination task guarantees that connectivity
is maintained. However, the preservation of a fixed set of
edges often results in suboptimal and over-constrained robot
operation. This paper presents a distributed algorithm to
perform graph rearrangements that allow the robotic network
to transform its interconnection topology between any two trees.
We present a method for composing this algorithm with other
control algorithms, and make preference guarantees about the
choices of links to be preserved under the resulting composition.
We use these ideas to propose a distributed formation morphing
algorithm, and characterize its time complexity.

I. I NTRODUCTION

This paper considers the problem of maintaining connec-
tivity of a robotic network while performing a coordination
task. Given a group of robots and an interaction graph in-
duced by the set of robot positions, we identify the following
connectivity-related problems:

(i) How should the robots move so as to maximize some
desired measure of connectivity subject to some posi-
tion constraints?

(ii) Given a measure of the connectivity of the interaction
graph, a connectivity threshold, and some coordination
task, how should robots move to achieve the task
subject to the value of the measure of connectivity
never crossing the threshold?

We are motivated by the case in which the edge weights
of the graph represent some measure of inter-robot commu-
nication channel capabilities.

Literature review: In [1], convex optimization is used
to solve problem (i) in the presence of convex constraints
on the space of edge weights. A solution to (i) with non-
convex constraints is presented in [2]. An extension of
similar methods to provide a distributed algorithm for (i) is
presented in [3]. A commonly addressed sub-problem of (ii)
occurs when one is merely concerned with whether the graph
induced by the non-zero-weight edges of the interaction
graph is 1-connected. The solution to this problem proposed
in [4] allows for a general range of agent motions, but is
not distributed. A distributed solution to this sub-problem
appears in [5], but the solution as presented requires that the
robots maintain a fixed set of edges. If the configurations
the formation is to switch between are known in advance,

Michael Schuresko is with the Department of Applied Mathemat-
ics and Statistics, University of California, Santa Cruz, CA, USA,
mds@soe.ucsc.edu

Jorge Cort́es is with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA, USA,
cortes@ucsd.edu

then [6] provides a robust method for transitioning between
them. Many solutions exist which satisfy non-zero-edge 1-
connectivity for a specific task, among the most notable
is [7], in which connectivity-preserving motions are gener-
ated between pairs of formations. To our knowledge, there
are no solutions, distributed or otherwise, to problem (ii),
beyond those described above. Much of the related literature
deals with algorithms to repair a spanning tree after link
failure, rather than adjusting a spanning tree to allow agents
to break desired links. For a survey of such algorithms
see [8] and references contained therein. Finally, our techni-
cal approach uses the modeling framework proposed in [9]
to combine connectivity maintenance algorithms with other
control algorithms.

Statement of contributions:This paper introduces the
CONNECTIVITY MAINTENANCE ALGORITHM for dynam-
ically agreeing upon a subgraph (specifically, a tree) of a
proximity graph. Maintaining each edge of the tree maintains
connectivity of the robotic network. The advantage of the
proposed algorithm is that it allows for on-line topological re-
arrangements of the tree in a distributed manner. We analyze
the correctness of this algorithm, and show that the allowed
rearrangements are sufficient to allow configuration changes
between any two constraint trees. The paper also introduces
the notion ofinput-output control and communication law.
One can formally compose different input-output control
and communication laws to yield a coordination algorithm
whose execution can be characterized by studying the in-
dividual components. Our CONNECTIVITY MAINTENANCE

ALGORITHM is an example of an input-output control and
communication law, which, in Section IV, is composed with
another law to synthesize a formation morphing algorithm.
We show that given initial and final configurations, the
formation morphing algorithm steers the robotic network
from one to the other while maintaining connectivity in
the r-disk proximity graph. We also characterize the time
complexity of the algorithm, and present simulations that
confirm the theoretical analysis.

Organization: Section II introduces useful notions from
graph theory, proximity graphs, and the robotic network
model. Section III presents, and analyzes the CONNEC-
TIVITY MAINTENANCE ALGORITHM algorithm. Section IV
introduces the formation morphing algorithm, studies its
correctness, and analyzes its time complexity. Section V
presents simulations confirming our results and Section VI
presents our conclusions.

Notation: Throughout the paper,R, R≥0, andR>0 denote
the sets of reals, non-negative reals, and positive reals,
respectively. For a setS, F(S) denotes the collection of all
finite subsets ofS. Whenever we provide algorithm pseudo-

code, we usea ← b to mean “a is assigned a value ofb.”
We usef(n) ∈ O(g(n)) to mean that there existN0 ∈ N,
c ∈ R such thatf(n) < cg(n) for all n > N0; we use
f(n) ∈ Ω(g(n)) to mean that there existN0 ∈ N, c ∈ R such
that f(n) > cg(n) for all n > N0. Finally, f(n) ∈ Θ(g(n))
meansf(n) ∈ O(g(n))∩Ω(g(n)). We use∧ to mean “logical
and” and∨ to mean “logical or.”

II. PRELIMINARY DEVELOPMENTS

In this section, we review some useful notions from graph
theory and computational geometry. We also introduce a for-
mal model for robotic networks and coordination algorithms.

A. Graph-theoretic notions

Here, we recall some standard notions from graph the-
ory [10], [11], [12]. A directed graph, ordigraph, is a pair
of sets,G = (V,E), such thatE ⊆ V × V . Elements of
V andE are known as vertices and edges, respectively. An
undirected graph, or simplygraph, G = (V,E), consists of a
vertex setV and a setE of unordered pairs of vertices. Given
a digraph(V,E), one can define the associated underlying
undirected graph(V,E′) by setting (u, v) ∈ E implies
(u, v), (v, u) ∈ E′. A digraph (V ′, E′) is a subgraphof
a digraph(V,E) if V ′ ⊂ V and E′ ⊂ E; additionally, a
digraph(V ′, E′) is a spanningsubgraph if it is a subgraph
and V ′ = V . Two digraphs,G1 = (V1, E1) and G2 =
(V2, E2) are isomorphicif there exists a bijective functionf
mappingV1 onto V2 such that(i, j) ∈ E1 if and only if
(f(i), f(j)) ∈ E2. From this point on, for a graph onn nodes
(i.e., |V | = n) we assume without loss of generality that
V = Zn = {0, . . . , n−1}, thus allowing us to refer to “node
0,” etc. Given a graph,G = (V,E), the set of neighbors of
nodei ∈ V is N (i) = {j ∈ V | (i, j) ∈ E ∨ (j, i) ∈ E}.

A tree is a connected graph with no cycles. Adirected
tree T is a digraph whose underlying undirected graph is a
tree. In this paper, we only deal with directed rooted trees.In
a rooted tree, each edge connects achild nodei node to its
parentnodep

[i]
curr. The unique node with no parents is called

the root, and the distance in a tree from a nodei to the root
is called thedepth of i, denoted dp[i]T . Nodesi and j are
calledsiblings in a given tree if they have the same parent,
p
[i]
curr = p

[j]
curr. We sayi is a descendantof j, or equivalently

j is an ancestorof i, if there exists a sequence of nodes,
k1, · · · , kn such thatp[i]

curr = k1, p
[k1]
curr = k2, . . . , p

[kn]
curr = j.

B. Proximity graphs

We use proximity graphs as an abstraction of network
interconnection among spatially distributed agents. Proximity
graphs associate network topology with robot positions by
defining mappings from finite collections of points inRd

to graphs, e.g., see [13], [14]. ForP ∈ F(Rd), let G(P)
denote the set of undirected graphs whose vertex set is
some labeling of the elements inP. A proximity graph
G : F(Rd) → G(F(Rd)) associates toP ∈ F(Rd), |P| = n,
an undirected graph inG(P) with vertex set isomorphic to
Zn and edge setEG(P), whereEG : F(Rd)→ F(Zn × Zn).
For convenience, letiF : (Rd)n 7→ F(Rd) take a tuple
P = (p1, . . . , pn) of n points in R

d to the finite collection

P = {p1, . . . , pn} ∈ F(Rd). Thus, given a tuple of agent
positions,P , and a proximity graphG, G(iF(P)) is the graph
induced byP underG.

Definition 2.1 (Configuration):Given a proximity graph
G, let (T, P) be a pair consisting of a treeT on n nodes
and a vectorP ∈ (Rd)n of agent positions such thatT is a
spanning subgraph ofG(iF(P)). A G-configuration[(T, P)]
of n agents ind-dimensional space is the equivalence class
of (T, P) under the relation∼=rot defined by(T1, P1) ∼=rot

(T2, P2) if T1 = T2 and there is some bijective affine
transformation that mapsP1 onto P2.

When the proximity graph in question is clear, we simply
use the word “configuration.” Note thatG-configurations
exist only if G(iF(P)) is connected. We use[(T, P)] to
denote the equivalence class containing(T, P), and refer
to T as the “constraint tree.”

C. Robotic network model

We present our algorithms within the framework intro-
duced in [9] for synchronous robotic networks. For com-
pleteness, we present a brief account of the model here.

Definition 2.2 (Robotic network):A robotic networkS is
a tuple(I,A, Ecmm) consisting of

(i) I = {0, . . . , n−1}; theset of unique identifiers (UIDs);
(ii) A = {A[i]}i∈I , with A[i] = (X [i], U [i],X

[i]
0 , f), the

set of physical agents; hereX [i] is the state-space of
the ith control system andU [i] is the control space of
the ith control system;

(iii) Ecmm, the communication edge map, is a map from
∏

i∈I X [i] to the subsets ofI × I \ diag(I × I).

If A[i] = (X,U,X0, f) for all i ∈ I, then the robotic network
is calleduniform.

Next we introduce the notion of input-output control
and communication law. This notion is a generalization of
the concept ofcontrol and communications lawproposed
in [9], and aims at facilitating the composition of reusable
algorithmic components.

Definition 2.3: A (synchronous, static, uniform, feedback)
input-output control and communication lawCC for a uni-
form networkS consists of the sets:

(i) T = {tℓ}ℓ∈N0
⊂ R≥0, a communication schedule;

(ii) L, a communication language;
(iii) W [i] = W , i ∈ I, sets of values oflogic variables

w[i], i ∈ I;
(iv) W

[i]
0 ⊆W , i ∈ I, subsets ofallowable initial values;

(v) Win
[i] = Win, sets of values ofinput logic variables

win
[i], i ∈ I;

(vi) Win
[i]
0 ⊆Win, subsets ofallowable initial input values;

(vii) Wout
[i] = Wout, sets of values ofoutput logic variables

wout
[i], i ∈ I;

and of the maps:
(i) msg : T × X × W × Win × I → L, the message-

generation function;
(ii) stf : T×Win×W×Ln →W ×Wout the (input-output)

state-transition function;
(iii) ctl : R̄+ ×X ×X ×W ×Win × Ln → U , i ∈ I, the

control function.

For notational convenience, we often write an input-output
state-transition function, stf as the pair(stflv , stfout), where
stflv computes values inW and stfout in Wout. We will
sometimes call stfout the “output state transition function.”

By a control and communication lawwe mean an input-
output control and communication law with no inputs and no
outputs, i.e.,Win = ∅ = Wout. This definition is equivalent
to the definition put forth in [9]. When we refer to an
“evolution” of a robotic network, we mean the behavior of
the network starting from a valid initial state. The execution
of a control and communication law can be roughly described
as follows: at each communication round, each agents sends
messages to its neighbors according to the evaluation of msg.
With the messages received, each agent updates the value
of its logic variables using stf. In between communication
rounds, the motion of each agent motion is governed by ctl.
A precise description of an execution can be found in [9].

Definition 2.4: (Composition of input-output laws)The
composition of two input-output control and communication
laws CC1 and CC2, subject toCC2Wout = CC1Win and
CC1Wout = CC2Win, is a control and communications law,
CC1 ⊗ CC2 = (T, L,W,W0, msg, stf, ctl), with sets

T = CC1T = CC2T,

L = CC1L× CC2L,

W = CC1W × CC2Win × CC2W × CC1Win,

W0 = CC1W0 × CC2Win0 × CC2W0 × CC1Win0,

and functions

msg(t, x, w) = (CC1msg(t, x, CC1w, CC1win),

CC2msg(t, x, CC2w, CC2win)),

stf(t, w, l) = (CC1stf(t, CC1win, CC1w),

CC2stf(t, CC2win, CC2w)),

ctl(t, xtℓ
, x, w[i]) = CC1ctl(t, xtℓ

, x, CC1w, CC1win)

+ CC2ctl(t, xtℓ
, x, CC2w, CC2win).

In other words, the composition of two input-output
control and communication laws is the natural result of
substituting each law’s output for the other law’s input.

III. CONNECTIVITY MAINTENANCE ALGORITHM

This section introduces the CONNECTIVITY MAINTE-
NANCE ALGORITHM. Section III-A describes the algorithm
in detail and Section III-B analyzes its properties. The
algorithm by itself does not invoke either physical agents
or their mobility, and fits within common frameworks of
distributed algorithms, see e.g., [15]. We present it as an
input-output control and communication law as defined in
Section II-C.

A. Algorithm description

Given a uniform networkS with communication edge map
determined by a proximity graphG, the CONNECTIVITY

MAINTENANCE ALGORITHM is an input-output control and
communication lawCC for S consisting of the sets:

(i) T = {tℓ}ℓ∈N0
⊂ R≥0;

(ii) L = W ;

(iii) W = N
4 × Z2, i ∈ I, are sets of values of thelogic

variablesw[i] = (p
[i]
curr, dp[i]

est, phase[i], p[i]
next, I

[i]
par-less), i ∈

I, consisting of a parent identifierp[i]
curr, a “depth

estimate” dp[i]est, a round counter indicating the current
mode of the algorithm phase[i], a proposed next parent
p
[i]
next, and a boolean indicatorI[i]par-lessdenoting whether

i’s parentp[i]
curr had a strictly smaller depth estimate

than i as of the most recent communication round;
(iv) W

[i]
0 = {(p

[i]
curr, dp[i]

est, 0, p
[i]
curr, false)} ⊆ W , i ∈ I such

that p[i]
curr, i ∈ I, induces a connected treeT and dp[i]est

is the depth ofi in T ;
(v) Win, are sets of values ofinput logic variables, win

[i] :
Zn 7→ N∪{∞} which specify a preference for attach-
ing to one node over another. Ifwin

[i](k) < win
[i](j),

then nodei would prefer to attach tok over j. By
convention, any domain element on which the action
of the function is unspecified maps to∞.

(vi) For simplicity, we letwin0
[i] map eachj ∈ Zn to∞;

(vii) Wout = Zn are sets of values ofoutput logic variables
wout

[i] = p
[i]
curr for i ∈ I ;

and of the maps:

(i) function msg(t, x, (p
[id]
curr, dp[id]

est , phase[id]), win, j) =

(id, dp[id]
est , p

[id]
curr, p

[id]
next, I

[id]
par-less), where id is the unique

identifier of the sending agent;
(ii) function stflv(t, win, (p

[id]
curr, dp[id]

est , phase[id], p
[id]
next), l) as

defined in Table I;

function stflv(t, win, (p
[id]
curr, dp[id]est , phase[id], p[id]

next), l)

1: if phase[id] = 0 then

2: if p
[p

[id]
next]

next 6= p
[p

[id]
next]

curr and dp
[p

[id]
next]

est = dp[id]est and id >
max

{j | p
[j]
next=id∨j=p

[id]
next}

(j) /* If my

proposed parent is of my depth (dp
[p

[id]
next]

est = dp[id]est)and re-attaching

(p
[p

[id]
next]

next 6= p
[p

[id]
next]

curr) and my unique id is greater then that of both
my proposed parent, and any nodes that have proposed attaching
to me as a parent, then discard my proposed parent and keep my
current parent*/
then

3: return((p
[id]
curr, dp[id]est , (phase[id] + 1) mod 4), p

[id]
curr, I

[id]
par-less)

4: else
5: return((p

[id]
next, dp[id]est , (phase[id] + 1) mod 4), p

[id]
next, I

[id]
par-less)

6: if phase[id] = 1 then

7: Set dp[id]est ← dp[p
[id]
curr]

est + 1 /*Call this step the “update rule”*/
8: return((p

[id]
curr, dp[id]est , (phase[id] + 1) mod 4), p

[id]
next, I

[id]
par-less)

9: if phase[id] = 2 then
10: SetI[id]par-less← false

11: if dp[p
[id]
curr]

est < dp[id]est then
12: SetI[id]par-less← true

13: return((p
[id]
curr, dp[id]est , (phase[id] + 1) mod 4), p

[id]
next, I

[id]
par-less)

14: if phase[id] = 3 then
15: Let p

[id]
next ← argminwin(j)

{j ∈ N (id)|dp[j]est < dp[id]est or p
[j]
curr =

p
[id]
curr or dp[j]est = dp[id]est and I

[j]
par-less= true}

16: return((p
[id]
curr, dp[id]est , (phase[id] + 1) mod 4), p

[id]
next, I

[id]
par-less)

TABLE I

stflv FOR THECONNECTIVITY MAINTENANCE ALGORITHM.
(iii) function stfout(t, win, (p

[id]
curr, dp[id]

est , phase[id], p
[id]
next), l) =

p
[id]
curr.

(iv) ctl(t, xtℓ
, x, w,win) = 0.

Remark 3.1 (Re-attach operations):The CONNECTIVITY

MAINTENANCE ALGORITHM allows for two types of graph
re-arrangements:

(i) The first type of re-arrangement is are-attachof i to j

having dp[j]est < dp[i]
est. If agenti determines that it would

rather have its parent bej rather than its current parent
(via win

[i]), it first checks that dp[j]est < dp[i]
est (line 15

of Table I), notifies its current parentp[i]
curr and j of

the proposed move on the notification step (via msg),
and performs the topology rearrangement (line3 of
Table I) on the rearrangement step.

(ii) The second type of re-arrangement is are-attach of
i to j having dp[j]est = dp[i]

est. We show later that no
descendant ofi has a lesser depth estimate theni,
and that the rules concerningI[i]par-less prevent i from
attaching to a descendant with equal depth estimate.
The tie-breaking procedure of line2 in Table I ensures
that no cycles are created by simultaneous re-attach
operations between agents of equal depth estimate.•

B. Correctness analysis and reachability

In this section, we analyze the CONNECTIVITY MAINTE-
NANCE ALGORITHM. In particular, we show that connectiv-
ity is preserved throughout the execution of the algorithm,
and that for any two trees,T1 andT2, there is a sequence of
inputs that cause the algorithm to transformT1 ontoT2. For
convenience in the forthcoming analysis, we let rnd(t) ∈ N

be the number of times the assignment phase[i] ← 2 has been
made at timet. We denote the value of, say dp[i]

est at iteration
rnd(t) by dp[i]est(rnd(t)).

Theorem 3.2:The execution of CONNECTIVITY MAIN -
TENANCE ALGORITHM verifies that

• dp[i]
est(rnd(t)) ≤ dp[i]

est(rnd(t)− 1) + 1,

• dp[i]
est(rnd(t)) ≥ dp[p[i]

curr]
est (rnd(t)),

for all i ∈ {0, . . . , n−1}, where for convenience, dp[i]
est(r) =

dp[i]
T (t0) for all roundsr ≤ 0. Thus, at any timet ≥ 0, if k

is an ancestor ofi, then dp[i]est(rnd(t)) ≥ dp[k]
est(rnd(t)).

Proof: Note that7 of CONNECTIVITY MAINTENANCE

ALGORITHM is the only step where the value of dp[i]
est is

modified. We refer to this step as theupdate rule. We induct
on the current round, rnd(t). Let j bep

[i]
curr at iteration rnd(t).

This can only happen because either (i)j becamei’s parent
due to a re-attach or (ii)j wasi’s parent at rnd(t)−1. In case
(i), the re-attach requires dp[j]

est(rnd(t)−1) ≤ dp[i]
est(rnd(t)−1),

and this implies that dp[i]est(rnd(t)) ≤ dp[i]
est(rnd(t)−1)+1. In

case (ii), dp[i]est(rnd(t)−1) = dp[j]
est(rnd(t)−2)+1. The induc-

tion hypothesis implies that dp[j]
est(rnd(t)−1) ≤ dp[j]

est(rnd(t)−
2) + 1, and therefore dp[i]est(rnd(t)) ≤ dp[i]

est(rnd(t) − 1) + 1,
thus proving the first item. Eitheri has attached top[i]

curr

more recently than dp[p
[i]
curr]

est has changed, or, by the update

rule, dp[i]est(rnd(t)) ≥ dp[p[i]
curr]

est (rnd(t)− 1) + 1, from which we

get dp[i]est(rnd(t)) ≥ dp[p[i]
curr]

est (rnd(t)) which proves the second
item.

Theorem 3.3:At all times during the execution of CON-
NECTIVITY MAINTENANCE ALGORITHM, the graph in-
duced by the parent relation among the agents contains no
cycles (and is therefore a connected tree).

Proof: Any cycle in the graph must consist entirely
of agents having the same depth estimate (this follows

from dp[i]est ≥ dp[p[i]
curr]

est from Theorem 3.2 and the fact that

for a cycle, C,
∑

i∈C dp[i]
est− dp[p[i]

curr]
est = 0). During the 4

communication rounds leading up to the creation of any
cycle, all agents involved in the cycle must have the same
depth estimate as well, otherwise there exists either an agent

i ∈ C having dp[p
[i]
curr]

est > dp[i]
est, which violates Theorem 3.2, or

an agenti ∈ C having dp[p
[i]
next]

est > dp[i]
est, which is prohibited by

line 15 of CONNECTIVITY MAINTENANCE ALGORITHM.
When a cycle first appears, it must appear due to some

agent,i, connecting to a new parent,j, with the same depth
estimate. However, this new parent must, in turn, attach to an
agent of the same depth estimate. It cannot have had a parent
of the same depth estimate before the cycle was created, as
that would have setI[j]par-less = false and preventedi from
connecting toj. This argument can be carried all the way
around the cycle,C, and we can conclude that for each agent
k ∈ C, k attached to a new parent at the time the cycle was
formed.

Here we invoke the UID-based tie-breaking scheme of line
2, and note that some agent,i, in this cycle must have been
greater then either of its neighbors inC, which explicitly
triggers 3, preventing i from attaching top

[i]
next and thus

preventing the formation of a cycle.
Definition 3.4: An input-output control and communica-

tion law CCc is fully compatible with CONNECTIVITY

MAINTENANCE ALGORITHM if the following holds:

• Wout andWin of CCc match up, respectively, withWin

and Wout of CONNECTIVITY MAINTENANCE ALGO-
RITHM;

• The time schedule, output state transition function
(stfout), and control function ofCCc are such that the
control function is guaranteed never to induce a motion
which causes(i, p[i]

next) or (i, p
[i]
curr) to cease to be an edge

of the underlying proximity graph.
Corollary 3.5: The composition of CONNECTIVITY

MAINTENANCE ALGORITHM with a fully compatible
input-output control and communication law,CCc, is a
control and communication law with the property that any
robotic network which starts with a connected proximity
graph remains connected throughout its execution.

Proof: By Theorem 3.3, the graph induced by edges
of the form (i, p

[i]
curr) remains connected at all times. By

the conditions imposed by the notion of “fully compatible
with fully compatible withCONNECTIVITY MAINTENANCE

ALGORITHM”,

• each edge,(i, p[i]
curr), remains inG at all times

• and any time the network switchesp[i]
curr to p

[i]
next, it

remains connected.

Next, we show that the trees produced by this algorithm
are somehow better than an arbitrarily chosen tree.

Proposition 3.6:Suppose two nodes,i and j, are neigh-
bors in the current communication graph at some timetℓ
andI

[i]
par-less= I

[j]
par-less= true. Suppose further thatwin

[i](j) <

win
[i](k) for all k ∈ N (i) for tℓ ≤ t ≤ tℓ+4 andwin

[j](i) <

win
[j](m) for all m ∈ N (j) for all tℓ ≤ t ≤ tℓ+4. Then if i

and j remain neighbors inG for the next 4 communication
rounds, eitheri will be p

[j]
curr, or j will be p

[i]
curr.

Proof: At some point during the next 4 rounds,i will set
p
[i]
next← j andj will set p[j]

next← i (line 15 of CONNECTIVITY

MAINTENANCE ALGORITHM). If dp[j]
est < dp[i]

est then i will
attach toj since the tie-breaking scheme in lines2 - 5 does
not trigger unless dp[j]est = dp[i]

est. If dp[i]
est = dp[j]

est they will both
propose to attach to each-other, in which case node with the
smaller UID will attach to the node with the larger UID.

IV. FORMATION MORPHINGPROBLEM

Here, we illustrate the utility of the CONNECTIVITY

MAINTENANCE ALGORITHM introduced in Section III. We
design a coordination algorithm that allows the network to
move between any two different formations while maintain-
ing connectivity. We begin by formally stating the problem.

Definition 4.1 (Formation morphing problem):Given a
proximity graph, G, the formation morphing problem is
that of designing a distributed algorithm to compute motion
between two configurations,[(Ps, Ts)] and [(Ptarg, Ttarg)],
of n robots in d-dimensional space such that the graph
G(iF(P)) remains connected at all times and the network
reaches[(Ptarg, Ttarg)] in finite time.

Next, Section IV-A describes the algorithm in detail and
Section IV-B analyzes its correctness.

A. Algorithm framework and specification

In this section, we introduce the FORMATION MORPHING

ALGORITHM to solve the formation morphing problem. For
clarity, we use the symbolsai,1, . . . , ai,mi

, wheremi is the
depth of i in the target constraint tree,Ttarg, to denote the
ancestors ofi in Ttarg. We useai,1 to mean the parent ofi
in Ttarg, andai,mi

to mean the root ofTtarg.
Consider a uniform networkS with identifiers I =

{0, . . . , n − 1}, identical agents of the formA =
(R2, R2, R2, f(x, u) = u), and r-disk communication edge
mapEcmm, that is,i andj are connected if‖x[i]−x[j]‖ ≤ r.
We use several constants to specify values known a priori
and used by each agent’s control law, message generation
function, and state transition function. Pick some lower
numbersd1 < d2 ≤ r to be the distance constraints used in
practice, and let all robots knowd1 andd2 before executing
the algorithm. Each robot also knows its position(xfinal, yfinal)
in the final configuration;

A formation morphing input-output control and commu-
nication law overS consists of

(i) communication schedule equal to14ntcmm for n ∈ N.
This implies thattcmm is the time for CONNECTIVITY

MAINTENANCE ALGORITHM to go through all four
iterations in a cycle. We also choosevscale such that
4vscaletcmm < |d2 − d1|;

(ii) communication languageL = R
2 ×W [i];

(iii) logic variables,W [i] = Zn×{true, false}×Zn×N
3×

Z3, w[i] = (i, I
[i]
branch, n

[i]
chld, anc[i],M [i]

mode), where i is
the agent unique identifier,I[i]branch is a flag used to
indicate which stage of the algorithmi is executing and
n

[i]
chld is the number of children ofi in the target tree.

Each robot,i, will know enough about its ancestors in
the constraint tree,Ttarg, of the target configuration,
[(Ptarg, Ttarg)] to answer membership queries of the
form “is j an ancestor ofi?” and distance queries of the
form “given thatj is an ancestor ofi, how many edges
are in the shortest path fromi to j in Ttarg?” We show
in Theorem 4.2 that this information can be stored with
three integers which we denote by anc[i]. M

[i]
mode∈ Z3

is used to indicate to the control function which of
three motion modes to use:Mstay, Morigin andMu,v final,
corresponding to a stationary mode, a “move towards
origin” mode and a “move towards final configuration”
mode, respectively;

(iv) W
[i]
0 = {(i, false, n[i]

chld, anc[i],Mstay)} ⊂W [i];
(v) Win

[i] = Zn, where win
[i] = p

[i]
curr, indicates theith

robots parent in the constraint tree;
(vi) Win

[i]
0 such that the tree induced byp[i]

curr is a connected
spanning tree of the robotic network;

(vii) Wout
[i] = {wout

[i] : Zn 7→ Zn ∪ {∞}}, wherewout
[i] ∈

Wout
[i] is a ranking of which nearby robotsi would

prefer to be connected to;

and with the following functions

(i) the standard message generation function (i.e.,
msg(t, x[id], w[id], j) = (x[id], w[id]));

(ii) function stfout(t, x
[id], p

[id]
curr, (id, I

[id]
branch, anc[id],M

[id]
mode),

{lj | j ∈ Nid})

1: Let wout
[id] : Zn 7→ Zn ∪ {∞} be defined by

wout
[id](j)























∞, ‖x[j] − x[id]‖ > d1,

k, j = aid,k ∧ (I
[i]
branch= I

[j]
branch∨ j = p

[id]
curr),

mid + 1, j /∈ {aid,k | k ∈ 1 . . . mid} ∧ j = p
[p

[id]
curr]

curr ,

mid + 2, j /∈ {aid,k | k ∈ 1 . . . mid} ∧ j = p
[id]
curr,

∞, otherwise.

2: returnwout
[id]

In other words, if no member of{aid,k | k ∈
{1, . . . ,mid}} is available, id would prefer to attach to

p
[p[id]

curr]
curr , and if p[p[id]

curr]
curr is also not in reach, id will remain

attached top[id]
curr;

(iii) function stflv(t, p
[id]
curr, win

[id], w[id], {lj | j ∈ Nid}) as
defined in Table II;

(iv) the control function is ctl(x[id], w[id]) = 0 if M
[id]
mode =

Mstay, ctl(x[id], w[id]) = vscalevers(−x[id]) if M
[id]
mode =

Morigin, and ctl(x[id], w[id]) = vscalevers(xfinal−x[id]) if
M

[id]
mode = Mu,v final.

Next, we specify how the numbers anc[i] ∈ N
3 are

initialized.

Prior to running any control algorithms, perform
the following operations on the constraint tree,

function stflv(t, p
[id]
curr, win

[id], w[id], {lj | j ∈ Nid})

1: if ‖x[id] − x[p
[id]
curr]‖ ≥ d1 then

2: SetM [id]
mode←Mparent

3: else if I
[id]
branch 6= true then

4: if p
[id]
curr = aid,1 then

5: if eachj such thatp[j]
curr = id has sentI[j]branch = true and there

aren
[id]
chld suchj then

6: SetI[id]branch← true

7: M
[id]
mode←Morigin

8: else if I
[id]
branch= true then

9: M
[id]
mode←Mu,v final

10: return(id, I
[id]
branch, n

[id]
chld, anc[id], M [id]

mode)

TABLE II

stflv FOR FORMATION MORPHINGALGORITHM.

Ttarg, of [(Ptarg, Ttarg)]. Perform a depth-first search
on Ttarg. Mark each node,i, with the number of
nodesnvisit(i) visited before nodei and the number
of descendantsndesc(i) of i in the treeTtarg . Note
that nvisit(i) + ndesc(i) is the number of nodes
visited before the first node afteri that is not
an ancestor ofi is visited. Recalling thatmi is
the depth in the final target tree of nodei, let
anc[i] ← (nvisit(i), ndesc(i),mi).

Theorem 4.2:The numbers anc[i] ∈ N
3, i ∈ I, allow

FORMATION MORPHING ALGORITHM to answer queries
of the form “Is robot j ai,d in [(Ptarg, Ttarg)]?” using only
O(log(n)) bits of storage inO(1) time.

Note that storing a unique identifier for each robot re-
quiresO(log(n)) bits. The FORMATION MORPHINGALGO-
RITHM is the composition (in the sense of Definition 2.4)
of CONNECTIVITY MAINTENANCE ALGORITHM with the
formation morphing input-output law defined above.

B. Correctness analysis

We now establish the correctness of FORMATION MOR-
PHING ALGORITHM. Lemma 4.3 shows that we do not break
any edges in the constraint tree.

Lemma 4.3:While following FORMATION MORPHING

ALGORITHM composed with CONNECTIVITY MAINTE-
NANCE ALGORITHM, no two robots that are connected in
the constraint tree are everd2 apart.

Proof: Let robot i be the parent of robotj in the
constraint tree. Lett0 be the first instant of time at which
this edge is contained in the tree. Consider the distance
dij(t) = ‖x[i](t) − x[j](t)‖. If this edge is the result of
a re-attach event, thendij must have been less thand1

one round before the attach (by line15 of CONNECTIVITY

MAINTENANCE ALGORITHM, stfout of FORMATION MOR-
PHING ALGORITHM and the fact that the connect step is
one round later at line3 of CONNECTIVITY MAINTENANCE

ALGORITHM). By the definition ofvscale, j andi cannot have
moved more than‖d2 − d1‖ further apart in the intervening
round. If t0 is the initial creation of the spanning tree, then
we still have‖x[i](t0) − x[j](t0)‖ < d1. At every round of
communication one of two things happens. Ifdij(t) ≤ d1,
the robots cannot move more than2vscaletcmm further apart

before the next communication round. Sincevscale≤
d2−d1

2tcmm
,

dij will be less thand2 by the next communication round. On
the other hand, ifdij(t) > d1, robot j moves towardsx[i](t)
until the next communication round with velocityvscale. Since
i is moving with velocity at mostvscale, dij can be at most
2vscaletcmm − d1 away by the next communication round.
Since vscale ≤

d1

2tcmm
, dij will be smaller thand2 at next

communication round.
Lemma 4.4 and Lemma 4.5 establish that FORMATION

MORPHING ALGORITHM performs the necessary topology
re-arrangements for formation morphing.

Lemma 4.4:In the execution of FORMATION MORPHING

ALGORITHM for each robot,i, the following hold:

• For each descendant,j, of i, I
[i]
branch = true at timet1

implies I
[j]
branch= true for all t ≥ t1.

• I
[i]
branch = true implies for each descendant,j, of i in

Ttarg, p
[j]
curr = aj,1.

Proof: If any descendant,j, does not satisfyp[j]
curr =

aj,1, thenI
[j]
branch 6= true. Sincej cannot attach to any nodek

havingI
[k]
branch 6= I

[j]
branch, andI

[p[j]
curr]

branch cannot be set to true until
I
[j]
branch= true, no robot,k, in the path fromj to the root can

haveI
[k]
branch= true and neither cani.

If I
[i]
branch= true, each robotj which is a descendant ofi in

the constraint tree satisfiesp[j]
curr = aj,1. Each such robot must

also be a descendant ofi in the target tree, otherwise the path
from somej to i would contain a link fromk to p

[k]
curr where

p
[k]
curr 6= ak,1. Since each descendant,j, of i checks that it has

n
[j]
chld children before settingI[j]branch = true, and noj having

p
[j]
curr = aj,1 switches parents, the number of descendants of

i in the constraint tree at timet is equal to the number of
descendants in the target tree.

Lemma 4.5:Let diam(P (t0)) be the initial diameter of
the convex hull of the robot positions.

(i) Within O(diam(P (t0))
tcmmvscale

) rounds, each roboti is within
d1 of each robot in the current path fromi to ai,1, or
satisfiesp[i]

curr = ai,1.
(ii) Within 4K further rounds, each robot,i, is at depth

and depth estimate of at leastmin{dp[i]
Ttarg

,max{K −

2dp[i]
Ttarg

, 1}}.

Proof: Any robot i with I
[i]
branch 6= true moves towards

(0, 0). O(diam(P (t0))
tcmmvscale

) is the number of rounds required for
the robots to rendezvous under this behavior. Clearly the con-
dition ‖x[i]− k‖ < d1 holds for all i, andk havingI

[i]
branch=

I
[k]
branch = false before rendezvous occurs. Each robot,k,

along the path fromi to the root satisfiesI[k]
branch = false as

p
[i]
curr 6= ai,1. Each robotk along the path from the root toai,1

satisfiesI[k]
branch= false for the same reason. This finishes part

1. We prove part 2 by induction onK and dp[i]Ttarg
. As a base

case, whenK = 0, every non-root robot is at depth at least 1.
Assume true forK−1, thus after4(K−1) rounds, for each
of i’s final ancestors,ai,k (wherek is the final distance from
ai,k to i) was at depth at leastmin(dp[ai,k]

Ttarg
,max(K − 1 −

dp[ai,k]
Ttarg

, 1)) = min(dp[ai,k]
Ttarg

,max(K − dp[i]
Ttarg

+ (2k− 1), 1)).

If max(K − dp[i]
Ttarg

, 1) = 1 or if i is at its final depth,
there is nothing left to do, otherwise each ofi’s ancestors
is at a depth greater thani, or at its final position. This
means that the one ancestor ofi at i’s current depth and
depth estimate is in its final position, and line 2 of stf of
CONNECTIVITY MAINTENANCE ALGORITHM allows i to
make the connection, increase its depth by 1 and over the
next 4 rounds, increase its depth estimate to the proper value.

Lemma 4.6:Within dp[i]
Ttarg

(1+ 2d1

tcmmvscale
) rounds of the first

time I
[j]
branch is true for all j, whereTtarg is the topology of

the final configuration, each roboti is at its final position.
Proof: Let us induct on dp[i]Ttarg

. As a base case, the root

reaches its final position in zero rounds. Whenp
[i]
curr reaches

its final position, it stops, and within one more round,i is
within d1 of x[p[i]

curr] which is within a distance ofd1 of i’s
final position. It takesi at most 2d1

tcmmvscale
further rounds to

reach its final position.
These topology lemmas and Lemma 4.6 lead up to

Theorem 4.7 which establishes the correctness and time
complexity of FORMATION MORPHINGALGORITHM.

Theorem 4.7:Within O(
(diam(P (t0))+diam(Ttarg)d1

tcmmvscale
) rounds

FORMATION MORPHING ALGORITHM achieves formation
morphing, whereTtarg is the final tree in the target configu-
ration, and diam(Ttarg) is its graph diameter.

V. SIMULATION RESULTS

We have developed a custom java simulation engine for
robotic networks expressed in the formalism of [9]. We used
this framework to develop simulations and visualizations of
the FORMATION MORPHINGALGORITHM (Figure 1 shows
a sample execution). The source is available upon request.

(a) (b) (c)

Fig. 1. Plots show (a) the initial positions, (b) the paths taken by and
(c) the final configuration (including constraint tree) of anexecution of
FORMATION MORPHINGALGORITHM.

We further developed the simulator to run approximately
80000 runs of FORMATION MORPHING ALGORITHM with
initial and final configurations sampled randomly. In Figure2
we plot the actual task completion times of each of these runs
versus the function diam(P (t0)) + diam(Ttarg). Because of
the uniform time schedule, the number of communication
rounds required for completion is linearly related to the
time required for completion. From the graph one can see
a linear relationship between the worst completion times for
FORMATION MORPHING ALGORITHM and diam(P (t0)) +
diam(Ttarg), as fore-casted by our analysis, see Theorem 4.7.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced the CONNECTIVITY MAINTENANCE

ALGORITHM and shown its desirable properties as an exten-
sion to existing connectivity maintenance mechanisms for

2 4 6 8 10 12 14 16 18 20

0 grat)T(maid+))t(P(maid

0

2

4

6

8

10

12

14

16

18

A
ct

u
al

 t
im

e
fo

r
ta

sk
 t

o
co

m
p
le

te

Fig. 2. Comparison of the time complexity bound in Theorem 4.7
with actual running times of FORMATION MORPHINGALGORITHM under
random choices of initial and final configurations. Each point represents a
successful execution.

distributed control of robotic networks. We have used the
CONNECTIVITY MAINTENANCE ALGORITHM to create the
FORMATION MORPHINGALGORITHM, which is guaranteed
to perform formation morphing while maintaining network
connectivity. Finally, we have also characterized the perfor-
mance of this algorithm by analyzing the time complexity of
its execution as the number of agents grow.

Future work will improve the robustness of these algo-
rithms, while loosening the strict synchronization require-
ments currently in place. We will also explore the inter-
connection of the CONNECTIVITY MAINTENANCE ALGO-
RITHM with other algorithms to achieve more complex
coordination tasks. Natural candidates are multiple-leader
leader-follower behaviors, and sensor coverage tasks for
mobile sensor networks. We will also investigate the addition
of more operations to CONNECTIVITY MAINTENANCE AL-
GORITHM that still guarantee distributed correctness (e.g.,
“identity swap” operations between robots). Regarding the
FORMATION MORPHINGALGORITHM, we will explore the
incorporation of collision-free guarantees on its execution.

ACKNOWLEDGMENTS

This research was supported in part by NSF CAREER
Award ECS-0546871.

REFERENCES

[1] S. Boyd, “Convex optimization of graph Laplacian eigenvalues,” in
Proceedings of the International Congress of Mathematicians, vol. 3,
2006.

[2] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,”IEEE Transactions on
Automatic Control, vol. 51, no. 1, pp. 116–120, 2006.

[3] M. C. D. Gennaro and A. Jadbabaie, “Decentralized control of
connectivity for multi-agent systems,” inIEEE Conf. on Decision and
Control, San Diego, CA, Dec. 2006, pp. 3628–3633.

[4] M. M. Zavlanos and G. J. Pappas, “Controlling connectivity of
dynamic graphs,” inIEEE Conf. on Decision and Control, Seville,
Spain, 2005, pp. 6388–6393.

[5] G. Notarstefano, K. Savla, F. Bullo, and A. Jadbabaie, “Maintaining
limited-range connectivity among second-order agents,” inAmerican
Control Conference, Minneapolis, MN, June 2006, pp. 2124–2129.

[6] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control
of formations of nonholonomic mobile robots,”IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 905–908, 2001.

[7] D. P. Spanos and R. M. Murray, “Motion planning with wireless
network constraints,” inAmerican Control Conference, Portland, OR,
June 2005, pp. 87–92.

[8] F. C. Gaertner, “A Survey of Self-Stabilizing Spanning-Tree
Construction Algorithms,” Tech. Rep., 2003, available electronically at
http://infoscience.epfl.ch/search.py?recid=52545.

[9] S. Mart́ınez, F. Bullo, J. Cort́es, and E. Frazzoli, “Syn-
chronous robotic networks and complexity of control and com-
munication laws,” Jan. 2005, preprint. Available electronically at
http://arxiv.org/math.OC/0501499.

[10] R. Diestel,Graph Theory, 2nd ed., ser. Graduate Texts in Mathematics.
New York: Springer Verlag, 2000, vol. 173.

[11] C. D. Godsil and G. F. Royle,Algebraic Graph Theory, ser. Graduate
Texts in Mathematics. New York: Springer Verlag, 2001, vol. 207.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

[13] J. W. Jaromczyk and G. T. Toussaint, “Relative neighborhood graphs
and their relatives,”Proceedings of the IEEE, vol. 80, no. 9, pp. 1502–
1517, 1992.

[14] J. Cort́es, S. Mart́ınez, and F. Bullo, “Robust rendezvous for mobile
networks via proximity graphs in arbitrary dimensions,”IEEE Trans-
actions on Automatic Control, vol. 51, no. 8, pp. 1289–1298, 2006.

[15] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers, 1997.

