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Abstract— This paper studies distributed algorithms for per-
forming graph rearrangements that preserve the connectivity
of a robotic network. Given a connected graph describing the
topology of the network, preserving a fixed set of edges while
performing a coordination task guarantees that connectivity
is maintained. However, the preservation of a fixed set of
edges often results in suboptimal and over-constrained robot
operation. This paper presents a distributed algorithm to
perform graph rearrangements that allow the robotic network
to transform its interconnection topology between any two trees
We present a method for composing this algorithm with other
control algorithms, and make preference guarantees about the
choices of links to be preserved under the resulting composition.
We use these ideas to propose a distributed formation morphing

then [6] provides a robust method for transitioning between
them. Many solutions exist which satisfy non-zero-edge 1-
connectivity for a specific task, among the most notable
is [7], in which connectivity-preserving motions are gener
ated between pairs of formations. To our knowledge, there
are no solutions, distributed or otherwise, to problem, (ii)
beyond those described above. Much of the related litexatur
deals with algorithms to repair a spanning tree after link
failure, rather than adjusting a spanning tree to allow &gen
to break desired links. For a survey of such algorithms
see [8] and references contained therein. Finally, ourrtiech
cal approach uses the modeling framework proposed in [9]

algorithm, and characterize its time complexity. to combine connectivity maintenance algorithms with other

. INTRODUCTION control algorithms.

This paper considers the problem of maintaining conne% Statement of contributionsThis paper introduces the

tivity of a robotic network while performing a coordination . ONNECTIVITY MAINTENANCE ALGOR'T.".'M for dynam-

task. Given a group of robots and an interaction graph ir{—caHY agreeing upon a.s'ubgraph (specifically, a tree) Of a
duced by the set of robot positions, we identify the follogvin proximity graph. Maintaining each edge of the tree mairstain
connectivity-related problems: ' connectivity of the robotic network. The advantage of the

. _ roposed algorithm is that it allows for on-line topolodioe:
@) HOV\.’ should the robots move so as t_o maximize SomErrangements of the tree in a distributed manner. We analyze
c_leswed measure of connectivity subject to some POSthe correctness of this algorithm, and show that the allowed
_ tion constraints? - . . _rearrangements are sufficient to allow configuration change
(i) Given a measure C.)f the connectivity of the Interaction, o een any two constraint trees. The paper also introduces
graph, a connectivity threshold, and some coordinatio e notion ofinput-output control and communication law
task_, how should robots move to achieve the _ta_s ne can formally compose different input-output control
subject to t_he value of the measure of CONNECIVItY 4 communication laws to yield a coordination algorithm
never crossing the threshold? whose execution can be characterized by studying the in-
We are motivated by the case in which the edge weight§yidual components. Our @INECTIVITY MAINTENANCE
of the graph represent some measure of inter-robot CoOmmpy sorITHM is an example of an input-output control and

nication channel capabilities. o communication law, which, in Section IV, is composed with
Literature review: In [1], convex optimization is used another law to synthesize a formation morphing algorithm.
to solve problem (i) in the presence of convex constrainigye show that given initial and final configurations, the
on the space of edge weights. A solution to (i) with nonfoymation morphing algorithm steers the robotic network
convex constraints is presented in [2]. An extension Ofom one to the other while maintaining connectivity in
similar met_hods to provide a distributed algorithm for §) | the r-disk proximity graph. We also characterize the time
presented in [3]. A commonly addressed sub-problem of (igomplexity of the algorithm, and present simulations that
occurs when one is merely concerned with whether the graplynfirm the theoretical analysis.
induced by the non-zero-weight edges of the interaction oyganization: Section Il introduces useful notions from
graph is 1-connected. The solution to this proble_:m propos_eg}aph theory, proximity graphs, and the robotic network
in [4] allows for a general range of agent motions, but isnodel. Section 1 presents, and analyzes theNGEC-
appears in [5], but the solution as presented requires ftieat tiniroduces the formation morphing algorithm, studies its

robots maintain a fixed set of edges. If the configurationgorrectness, and analyzes its time complexity. Section V
the formation is to switch between are known in advancéyesents simulations confirming our results and Section VI
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code, we user « b to mean % is assigned a value @f” P = {pi,...,p,} € F(R?). Thus, given a tuple of agent
We usef(n) € O(g(n)) to mean that there exis¥, € N, positions,P, and a proximity grapl§;, G(ir(P)) is the graph
¢ € R such thatf(n) < cg(n) for all n > Ny; we use induced byP underg.

f(n) € Q(g(n)) to mean that there exigfy € N, ¢ € R such Definition 2.1 (Configuration):Given a proximity graph
that f(n) > cg(n) for all n > Ny. Finally, f(n) € ©(g(n)) G, let (T, P) be a pair consisting of a tre€ on n nodes
meansf(n) € O(g(n))NQ(g(n)). We useA to mean “logical and a vectorP € (R4)" of agent positions such thét is a

and” andV to mean “logical or.” spanning subgraph @ (ix(P)). A G-configuration[(T, P)]
of n agents ind-dimensional space is the equivalence class
Il PRELIMINARY DEVELOPMENTS of (T, P) under the relatior; defined by(T}, P,) S

In this section, we review some useful notions from grapliTs, P) if 73 = T, and there is some bijective affine
theory and computational geometry. We also introduce a fotransformation that map®; onto P.
mal model for robotic networks and coordination algorithms When the proximity graph in question is clear, we simply
. ) use the word “configuration.” Note thaf-configurations
A. Graph-theoretic notions exist only if G(iz(P)) is connected. We us§T, P)] to
Here, we recall some standard notions from graph thetenote the equivalence class containifig ), and refer
ory [10], [11], [12]. A directed graph, odigraph, is a pair to T as the “constraint tree.”
of sets,G = (V, E), such thatE C V x V. Elements of ,
V and E are known as vertices and edges, respectively, Afy- Robotic network model
undirected graph, or simplgraph, G = (V, E), consists ofa ~ We present our algorithms within the framework intro-
vertex sefi” and a sef? of unordered pairs of vertices. Given duced in [9] for synchronous robotic networks. For com-
a digraph(V, E), one can define the associated underlyingleteness, we present a brief account of the model here.
undirected graph(V,E’) by setting (u,v) € E implies Definition 2.2 (Robotic network)A robotic networks is
(u,v), (v,u) € E'. A digraph (V’, E’) is a subgraphof a tuple(I, A, Ecmm) consisting of
a digraph(V, E) if V! C V and E’ C E; additionally, a (i) I ={0,...,n—1}; theset of unique identifiers (UIDs)
digraph (V', E') is a spanningsubgraph if it is a subgraph (i) A = {All},c;, with All = (xU1 Ul x1 £) the

and V' = V. Two digraphs,G; = (Vi,Ey) and G, = set of physical agentdiere X! is the state-space of
(V2, E-) areisomorphicif there exists a bijective functioff the ith control system and@ ! is the control space of
mapplng V1 onto V5 such that(l,j) € FE; if and only if the :th control system;

(f(i), f(4)) € Eo. From this point on, for a graph aanodes  (jii) E,nm the communication edge mags a map from

(i.e., [V| = n) we assume without loss of generality that Hieme to the subsets of x I\ diag(1 x I).

V =7y ={0,...,n—1}, thus allowing us to refer to “node ¢ 1) _ x 7 x for all i ;
U . = (X, U, Xo, € I, then the robotic network
0,” etc. Given a graphG = (V, E), the set of neighbors of is calledl(miform 0 /) !
nodei € V' is N'(i) = {JdE V| E]”j)_ E Ev (J’IZ) Ed?;}' 4 Next we introduce the notion of input-output control
A treeis a connected graph with no cycles. dvected 5,4 communication law. This notion is a generalization of

tree T'is a digraph whose underlying.undirected graph is the concept ofcontrol and communications lawroposed
tree. In this paper, we only deal W|th.d|rected'rooted trda,es. in [9], and aims at facilitating the composition of reusable
a rooted tree, each edge connecishdd nodei node to its algorithmic components

parentnodeptir. The unique node with no parents is called pefinjtion 2.3: A (synchronous, static, uniform, feedback)
theroot, and the distance in a tree from a node® the oot j,nyt-output control and communication la@¢ for a uni-

is called thedepthof 7, denoted d@]. Nodesi and j are  torm networkS consists of the sets:

c‘[a}]lleism&_l]lng\;c,\;n a g|.v.en t:jee if thdey h?ye the sa_meI palrent, () T = {te}een, C Rso, @ communication schedule;
pearr = peur- We sayi is a descendanof j, or equivalently (i) I, a communication language:

J is anancestorof i, if there exists a sequence of nodes,(i”) I/I}“] — W iel sets of vall’Jes ofogic variables
ki, Ky such thatplly = ki, pitl = ko, ... plinl = ;. Wil ier ’

B. Proximity graphs (iv) Wél]_g W, i € I, subsets ofllowable initial values

[l _ i i

We use proximity graphs as an abstraction of network V) Z]V'“[l] i_ev}/'m, sets of values ofput logic variables
interconnection among spatially distributed agents. iPmay (vi) m}” (] c W-, subsets ofllowable initial input values
graphs associate network topology with robot positions vaii) W'”O[i]; V[;] sets of values obutout logic variables
defining mappings from finite collections of points Rf oy I‘f“t’ putiog
to graphs, e.g., see [13], [14]. F®® € F(R%), let G(P) Wout ™, © € 1
denote the set of undirected graphs whose vertex set §8d of the maps:
some labeling of the elements iR. A proximity graph () msg: T x X x W x Wi, x I — L, the message-

G : F(RY) — G(F(RY)) associates t® € F(RY), |P| = n, __generation function .
an undirected graph ifi:(P) with vertex set isomorphic to (i) Stf : T x Win x W x L™ — W x Woy the (input-output)
7, and edge sefg(P), where&s : F(RY) — F(Z, x Z,). state-transition function

For convenience, lety : (R%)" — F(R?) take a tuple (iil) Ctl : Ry x X x X x W x Win x L" — U, i € I, the
P = (p1,...,pn) of n points inR? to the finite collection control function



For notational convenience, we often write an input-output(ii) W = N* x Z,, i e 1, are sets of values of thegic

state-transition function, stf as the pdstfy, stfou), where
stfy, computes values iV and stfy in Woy. We will
sometimes call sif; the “output state transition function.”

By a control and communication lawe mean an input-
output control and communication law with no inputs and no
outputs, i.e..Win = 0 = Wy This definition is equivalent
to the definition put forth in [9]. When we refer to an
“evolution” of a robotic network, we mean the behavior of
the network starting from a valid initial state. The exeonti
of a control and communication law can be roughly described

(iv)

as follows: at each communication round, each agents sends
messages to its neighbors according to the evaluation of msgV)
With the messages received, each agent updates the value

of its logic variables using stf. In between communication

rounds, the motion of each agent motion is governed by ctl.

A precise description of an execution can be found in [9].
Definition 2.4: (Composition of input-output lawd)he

composition of two input-output control and communication (Vi)

laws CC, and CC,, subject toCCoWoy = CC1 Wi, and
CC1Wout = CCoWin, is a control and communications law,
CC,®CCy = (T, L, W, Wy, msg stf, ctl), with sets
T =CC,T = CC,T,
L= CClL X CCQ
W = CC1W x CCoWin x CCoW x CC1 W,
Wo

iny

= CCL Wy X CCaWing X CCoWo X CC1Wino,

(vii)

variablesw!i = (Pcurn dpest: phaséi apniextv pi;r—lesg' IS

1, consistrncj; of a parent |dentlflepcurr, a “depth
estimate” dps, a round counter indicating the current
mode of the algorithm pha%b a proposed next parent

P and a boolean mdrcatdiégIr lessdenoting whether

i's parentpCUrr had a strictly smaller depth estimate
thani as of the most recent communication round,;
Wi = {(pl, dpl, 0, plr false} € W, i € I such
that p&lrr, i € I, induces a connected trgé and dp%st

is the depth ofi in T

Win, are sets of values afiput logic variables wi, [ :
Z., — NU{oo} which specify a preference for attach-
ing to one node over another. i, (k) < winl?(5),
then nodei would prefer to attach td: over j. By
convention, any domain element on which the action
of the function is unspecified maps to.

For simplicity, we letwin,[?! map eachj € Z, to ~;
Wout = Z,, are sets of values ajutput logic variables
Wo tM = péurr forie I ;

and of the maps:
(i) function msqt, z, (plah, dpl¥l, phasé?), wi, §)

d d d
(id,d pgsl ) p([:lur]’r» pr[1|e1<tv ]Ir[)a]r les

identifier of the sendin

J, where id is the unique
agent,

(i) function sthy (¢, win, (P, dp!Y), phasél, pid) 1) as

defined in Table I;

and functions

function stf, (¢, win, (pcun-, dpesi »

Jid] lid]

phaséd, prs)), 1)

1: if phaséd = 0 then

msqt, x,w) = (CCymsdt, x,CCiw,CCrwin),
CCnggt,x,CCQw,CCQwin)), o
stf(t, w, ) = (CC;stf(t, CCwin, CCrw),
CCQStf(t CCQ’LUin,CCQ’LU))
ctl(t, x4, , x, wl ) CCyctl(t, ¢, x,CCLw, CCrwin)
+ CCoctl(t, zt,, x,CCow, CCowip).

In other words, the composition of two input-output
control and communication laws is the natural result of 5.
substituting each law’s output for the other law’s input. 4

5:
I11. CONNECTIVITY MAINTENANCE ALGORITHM 6

This section introduces the GRNECTIVITY MAINTE- 7.

NANCE ALGORITHM. Section IlI-A describes the algorithm | 8:

in detail and Section IlI-B analyzes its properties. The 9: i
algorithm by itself does not invoke either physical agentslo:

or their mobility, and fits within common frameworks of

11:

distributed algorithms, see e.g., [15]. We present it as anz:
input-output control and communication law as defined in;s-
Section 1I-C. 14: i
. A 15:

A. Algorithm description
Given a uniform networlS with communication edge map | 4¢.

determined by a proximity graply, the GONNECTIVITY

if phaséd = 1 then

f

=

[plo)
it Prext®
max

dpl¥ and id >

[id]
7& p[p?l’EX‘] and dé};r;exl]
j [*1f my

{j ‘Pne —idvi= 1’[ ]}(J)
proposed parent is of my depth éﬁ@?XJ = dpes[)and re-attaching

(pn’;';fx'} # pcﬁ?fx']) and my unique id is greater then that of both
my proposed parent, and any nodes that have proposed atgchi
to me as a parent, then discard my proposed parent and kegp my
current parent/

then )
return ((phak, dpl¥ | (phasé?) + 1) mod 4), pih, ]Iég]r esd
else
d d o Jid]
return ((pl9l, dpl) | (phaséd) + 1) mod 4), pldl, 1 p'ar osd

d] P dp[Pcurr] +1

Set d
return ( (pcglr, dpelgt] )
phasédl = 2 then

[id]
Set]Ipalr |ess «— false

[*Call this step the update rule®/

(phasé + 1) mod 4), Pr[mlm Hpar lesd

if dpepcurr < dpl¥ then
Set]I,[)g]r less < true

return ((pl%y, dpl9) | (phaséd) +

phaséd = 3 then y

Let Phok — argmin,, {7 € N (id)|dptly < dpig]

Pl or drg =dp¥ and1V! = true}

peSt par-less™ )
return ((pl, dpl) | (phasé + 1) mod 4), pid), 109

+ 1) mod 4), pggxn i)

par- Iesg

or pr[:u]rr =

par- Iesg

MAINTENANCE ALGORITHM is an input-output control and
communication lawCC for S consisting of the sets:

() T ={te}ren, C Rxo;
(i) L=W:

stfy FOR THECONNECTIVITY MAIN
(l”) fUI’]CtIOn Stfout(t wm, pcurr,

TABLE |
F&]ANCE ALGORIT M.

] pestvphasé »pnext) l)

Peurr-



(iv) cti(t,zy,, z, w, win) = 0.

Remark 3.1 (Re-attach operationsjhe CONNECTIVITY
MAINTENANCE ALGORITHM allows for two types of graph
re-arrangements:

(i) The first type of re-arrangement isre-attachof i to j

having d[gst < dpgflP If agenti determines that it would

rather have its parent berather than its current parent

(via winl), it first checks that dg < dpil; (line 15
of Table 1), naotifies its current parenﬂﬁ]Jrr and j of

Theorem 3.3:At all times during the execution of @\-
NECTIVITY MAINTENANCE ALGORITHM, the graph in-
duced by the parent relation among the agents contains no
cycles (and is therefore a connected tree).

Proof: Any cycle in the graph must consist entirely
of agents having the same depth estimate (this follows

: @]
from dde’gt > dp,[e’;?"] from Theorﬂn 3.2 and the fact that
for a cycle,C, >, dplil, — dpZe = 0). During the 4
communication rounds leading up to the creation of any

the proposed move on the notification step (via msggycle, all agents involved in the cycle must have the same

and performs the topology rearrangement (leof
Table 1) on the rearrangement step.

(i) The second type of re-arrangement isreaattach of
i to j having dg = dpll,
descendant of has a lesser depth estimate thgn

and that the rules concernirik‘ﬂr_Iess preventi from

depth estimate a}s] well, otherwise there exists either antage
1 € C having d;ﬁiﬁtﬂ"] >d [Z_]t, which violates Theorem 3.2, or
an agent € C having dé”;f*d > dpggt, which is prohibited by

We show later that No |ine 15 of CONNECTIVITY MAINTENANCE ALGORITHM.

When a cycle first appears, it must appear due to some
agent,i, connecting to a new parent, with the same depth

attaching to a descendant with equal depth estimatgsiimate. However, this new parent must, in turn, attachto a
The tie-breaking procedure of lirein Table | ensures  4gent of the same depth estimate. It cannot have had a parent
that no cycles are created by simultaneous re-attagfj the same depth estimate before the cycle was created, as

operations between agents of equal depth estimate. i+ \would have seil”’ _

B. Correctness analysis and reachability
In this section, we analyze theGBINECTIVITY MAINTE-

parless = false and prevented from
connecting toj. This argument can be carried all the way
around the cycle(’, and we can conclude that for each agent
k € C, k attached to a new parent at the time the cycle was

NANCE ALGORITHM. In particular, we show that connectiv- formed.
ity is preserved throughout the execution of the algorithm, Here we invoke the UID-based tie-breaking scheme of line
and that for any two treed); andT>, there is a sequence of 2, and note that some agent,in this cycle must have been

inputs that cause the algorithm to transfo¥fmonto 75. For
convenience in the forthcoming analysis, we let(mnds N
be the number of times the assignment pHase 2 has been
made at time. We denote the value of, say@pat iteration
md(t) by da(rd(t)).

Theorem 3.2:The execution of ONNECTIVITY MAIN-
TENANCE ALGORITHM verifies that

o dpil(md(t)) < dpl(md(t) — 1) + 1,

« dpll(md(1)) > dpl) (mdl1)),
forall i € {0,...,n— 1}, where for convenience, &(T) =
dp[{;] (to) for all roundsr < 0. Thus, at any time > 0, if &
is an ancestor of, then d[ﬁit(rnd(t)) > dpg;]t(rnd(t)).

Proof: Note that7 of CONNECTIVITY MAINTENANCE

ALGORITHM is the only step where the value of gdpis
modified. We refer to this step as thpdate rule We induct
on the current round, rrid). Let j be peyr at iteration mdt).
This can only happen because eitherj(ecamei’s parent
due to a re-attach or (ii) wasi's parent at rnﬁb? —1.In case
(i), the re-attach requires élb(rnd(t)—l) < dpeeg(rnd(t)—1),
and this implies that dﬁt(rnd(t)P < dpbl(md(t) = 1)+ 1. In
case (ii), déﬂt(rnd(t) —-1) = dpgst(rnd(t) —2)+1. The induc-
tion hypothesis implies that ;ﬂ;(rnd(t)fl) < dpgs]t(rnd(t)f
2) + 1, and therefore (ﬁit(rnd(t)) < dp@t(rnd(t) —-1)+1,
thus proving the first item. Eithei has attached tgli,

greater then either of its neighbors @, which explicitly
triggers 3, preventing: from attaching tOpLﬂxt and thus
preventing the formation of a cycle. ]
Definition 3.4: An input-output control and communica-
tion law CC,. is fully compatible with CONNECTIVITY
MAINTENANCE ALGORITHM if the following holds:

o Wout and Wi, of CC. match up, respectively, withi,
and Wyt of CONNECTIVITY MAINTENANCE ALGO-
RITHM;

o The time schedule, output state transition function
(stfouy), and control function ofCC,. are such that the
control function is guaranteed never to induce a motion
which causesi, pﬁgxt) or (i, p([;ﬂrr) to cease to be an edge
of the underlying proximity graph.

Corollary 3.5: The composition of ONNECTIVITY
MAINTENANCE ALGORITHM with a fully compatible
input-output control and communication law;C., is a
control and communication law with the property that any
robotic network which starts with a connected proximity
graph remains connected throughout its execution.

Proof: By Theorem 3.3, the graph induced by edges
of the form (z’,pg]m) remains connected at all times. By
the conditions imposed by the notion of “fully compatible
with fully compatible withCONNECTIVITY MAINTENANCE
ALGORITHM",

[i] .
more recently than ciﬁfi] has changed, or, by the update « each edge(z‘,p[cﬂ”), remains inG at all times

rule, ddil(md(t)) > dpé’;%ﬁ]"] (rd(t) — 1) + 1, from which we

get dpﬂt(rnd(t)) > dp[e@%ﬁ]"](rnd(t)) which proves the second

item. [ |

. and any time the network switchasiy to plil, it
remains connected.



Next, we show that the trees produced by this algorithm (ii) communication languagé = R2? x Wli:

are somehow better than an arbitrarily chosen tree.

Proposition 3.6: Suppose two nodes,and j, are neigh-
bors in the current communication graph at some titne
and]lpar ess= [nr1ess= (rUE. Suppose further thati, (j) <
winl (k) for all k € N(i) for t, <t < tyyq andwinb! (i) <
winll(m) for all m € N'(5) for all t, <t < t,,4. Then ifi
and j remain neighbors i for the next 4 communication
rounds, either will be p[c{}rr, or j will be péﬂrr.

~ Proof: At some point during the next 4 roundsyill set
p,[féxt — 7 andj will setp,[ﬂxt — i (line 15 of COlNNECTIVITY
MAINTENANCE ALGORITHM). If dpest < dpgSt then i will
attach toj since the tie- breaklng scheme |n lines 5 does

not trigger unless dﬂt dpest, If dpest_ dpest they will both

propose to attach to each-other, in which case node with the

smaller UID will attach to the node with the larger UIDm

IV. FORMATION MORPHINGPROBLEM

Here, we illustrate the utility of the @NNECTIVITY
MAINTENANCE ALGORITHM introduced in Section Ill. We
design a coordination algorithm that allows the network to
move between any two different formations while maintain-
ing connectivity. We begin by formally stating the problem.

Definition 4.1 (Formation morphing problemfGiven a

proximity graph, G, the formation morphing problem is (vii)

that of designing a distributed algorithm to compute motion
between two configurations(Ps,Ts)] and [(Parg, Ttarg)],
of n robots in d-dimensional space such that the graph

G(ir(P)) remains connected at all times and the networR

reaches(Parg, Trarg)] In finite time.
Next, Section IV-A describes the algorithm in detail and
Section IV-B analyzes its correctness.

A. Algorithm framework and specification

In this section, we introduce theORMATION MORPHING
ALGORITHM to solve the formation morphing problem. For
clarity, we use the symbols,; 1, ..., a; ,, wherem; is the
depth of in the target constraint tred,, to denote the
ancestors of in Tiag. We usea;; to mean the parent of
in Tiarg, anda; ,,, to mean the root offjarg.

Consider a uniform networkS with identifiers I
{0,...,n — 1}, identical agents of the formA
(R%,R? R?, f(x,u) = u), andr-disk communication edge
map Femm, that is,i andj are connected if 2! — 2| < r.

We use several constants to specify values known a priori
and used by each agent’'s control law, message generation

function, and state transition function. Pick some lower
numbersd; < dy < r to be the distance constraints used in
practice, and let all robots knod;, andd, before executing
the algorithm. Each robot also knows its posit{afinar, Yfinal)
in the final configuration;
A formation morphing input-output control and commu-
nication law overS consists of
(i) communication schedule equal 0utcmm for n € N.
This implies thattcmm, is the time for @NNECTIVITY
MAINTENANCE ALGORITHM to go through all four
iterations in a cycle. We also choose;,e such that
4vscaldemm < |d2 - d1|;

(iii) logic variables, W = 7Z,, x {true, false} X Zn x N3 x
Zs, wll = (i, HLr]anch nll and!, MY ), wherei is
the agent unique |dent|f|eELb,]anch is a flag used to
indicate which stage of the algorithinis executing and
n([:ltlld is the number of children of in the target tree.
Each robot;, will know enough about its ancestors in
the constraint tree7iaq, Of the target configuration,
[(Parg, Trarg)] t0 answer membership queries of the
form “is j an ancestor of?” and distance queries of the
form “given thatj is an ancestor of, how many edges
are in the shortest path froito j in Tig?” We show

in Theorem 4.2 that this information can be stored with
three integers which we denote by &hclM, . € Z3

is used to indicate to the control function which of
three motion modes to US&7say, Morigin aNd My,y final,
corresponding to a stationary mode, a “move towards
origin” mode and a “move towards final configuration”

mode respectlveI?/ " i
anc”, Msay)} C W

W0 = {(i,false nchld,
VVmH = Z,, where w1l = pgum |nd|cates theith

robots parent in the constraint tree,

Wm([}] such that the tree induced b%rr is a connected
spanning tree of the robotic network;

Wout[i] = {wout[i] : L — L U {00}, wherewg,l! €
Woul” is a ranking of which nearby robotswould
prefer to be connected to;

nd with the following functions

(i) the standard message generation function (i.e.,
msg(t, 2[4 wld] 5) = (29 4l

(iv)

v)

(vi)

(i) function stu(t, 2l (0,1, and®) A9,
{l; 17 € Nia})
1 Let wou® : Z, — 7Z, U {cc} be defined by
wout[id] (])
00, [l — 20| > dy,
k, 5 = aia A (Thanen= ThbnenV 7 = Phan),
mig +1, j ¢ {aar|kel...ma}Aj :pc[:ﬁgg’]’]7
mia+2, j ¢ {aiax | ke, mia}Aj=pli
0, otherwise
2: return wou ¥
In other words, if nho member ofaiqr | k& €

{1,...,miq}} is available, id would prefer to attach to
li
ppw”] and if p&e s also not in reach, id will remain

curr curr
attached t(pcum

(iii) function sty (¢, phar, winl¥, wld {1, | j € Ng}) as
defined in Table II;

(iv) the control function is ctleld, 4y =
Mstay, ctl(z9, wlid) = ygeqevers(— x['d])
Morigin, and Ct(m[ld] w[id]) = UscaIeVeTS Tfinal —
M[ Mu v final-

mode —
Next, we specify how the numbers dhce N° are

0if MY —
if M t?

"T"cﬂ

initialized.

Prior to running any control algorithms, perform
the following operations on the constraint tree,



function stfy (¢, Pl i [i] g lic] Al 15 € Niad)

if [|2ld — 2 [p&in] | > dy then
setm
: else if]I['ranch;é true then
id
if peurr = aig,1 then
if eachj such thatpgu]rr =
aren[ﬁid suchj then
d]
[Idlsetﬂbranch
[mo e Morlgln
: else if I d] nch = true then
id
Mr[rlto]de — My, final _
: return(id, Hgiﬂnm Eﬁﬂd, and'd],Mr[#é]de)

— M, parent

S-‘.":‘?w!\?!—.‘

id has sent’]

pranch = true and there

«— true

© o N2

TABLE Il
stfy, FORFORMATION MORPHINGALGORITHM.

Tiarg: Of [(Parg, Trarg)]. Perform a depth-first search
on Tiag. Mark each nodej, with the number of
nodesn,isit(7) visited before node and the number
of descendantsgesd?) of i in the treeTiay . Note
that nyisit(i) + ngesd?) is the number of nodes
visited before the first node after that is not
an ancestor ofi is visited. Recalling thatn; is
the depth in the final target tree of node let
and — (nyisit(1), ndesd?), m;).

Theorem 4.2:The numbers ané ¢ N3, i € I, allow
FORMATION MORPHING ALGORITHM to answer queries
of the form “Is robotj a;q N [(Parg Ttarg)]?” Using only
O(log(n)) bits of storage inD(1) time.

Note that storing a unique identifier for each robot re- o

quiresO(log(n)) bits. The ORMATION MORPHINGALGO-

RITHM is the composition (in the sense of Definition 2. 4)p

of CONNECTIVITY MAINTENANCE ALGORITHM with the
formation morphing input-output law defined above.

B. Correctness analysis
We now establish the correctness cb®vATION MOR-

PHING ALGORITHM. Lemma 4.3 shows that we do not break

any edges in the constraint tree.
Lemma 4.3:While following FORMATION MORPHING
ALGORITHM composed with ONNECTIVITY MAINTE-

NANCE ALGORITHM, no two robots that are connected in

the constraint tree are evep apart.
Proof: Let robot: be the parent of roboj in the
constraint tree. Lety be the first instant of time at which

this edge is contained in the tree. Consider the distan

dij(t) = ||lzll(t) — 2VI(t)|. If this edge is the result of
a re-attach event, thed;; must have been less thah
one round before the attach (by lin® of CONNECTIVITY
MAINTENANCE ALGORITHM, stf,,: of FORMATION MOR-

one round later at lin@8 of CONNECTIVITY MAINTENANCE
ALGORITHM). By the definition ofvscge 7 @ndi cannot have

moved more tharid; — d: || further apart in the intervening »cq s true

round. If ¢y is the initial creation of the spanning tree, then
we still have||zll(tg) — 2l (t)|| < di. At every round of
communication one of two things happensdjf(t) < di,

the robots cannot move more th&ngcadcmm further apart detarg 1) = min(dp[}f;:

before the next communication round. Singgye <
d;; will be less thani, by the next communication round. On
the other hand, ifl;;(t) > d;, robotj moves towards:1’l (¢)
until the next communication round with velocity.ae Since
i is moving with velocity at mostscae d;; can be at most
2Uscaldemm — d1 away by the next communication round.
Since vscge < Qt , di; will be smaller thand, at next
communication round [ ]

Lemma 4.4 and Lemma 4.5 establish thaRMATION
MORPHING ALGORITHM performs the necessary topology
re-arrangements for formation morphing.

Lemma 4.4:In the execution of BRMATION MORPHING
ALGORITHM for each robot;, the following hold:

» For each descendant, of 4, ng]anch = true at timet,

implies Ht[J]anch: true for all ¢ > ¢;.
o 1 r]anch = true implies for each descendant, of 4 in

d2 d1
2tem

Ttarg: pcurr = Qj1- _
Proof: If any descendantj, does not satisfyp[c{,]rr =
a1, then]ijranch?é true. Sincej cannot attach to any node

having ]Ibranch;é ranch andﬂtﬁf‘;;'ch cannot be set to true until
HEanch_ true, no robotk, in the path from; to the root can
have]ILanch_ true and neither can

If ]Ibr]anch: true, each robof which is a descendant éfin
the constraint tree satlsflogu n = aj,1. Each such robot must
also be a descendantoih the target tree, othervwse the path
from somey to ¢ would contain a link fromk to pcurr where
curr # ay,1. Since each descendamt of 1 checks that it has
ngyg children before settln@branch_ true, and noj having
fm = a;,; switches parents, the number of descendants of
in the constraint tree at timeis equal to the number of
descendants in the target tree. ]

Lemma 4.5:Let diam(P(tp)) be the initial diameter of
the convex hull of the robot positions.
(i) Within O(d'am(P(tO))) rounds, each robot is within

d; of each ro%ot in the current path froimo a; 1, or

satlsﬁeSpcdrr =a;].
(i) Within 4 K further rounds, each robot is at depth
and depth estimate of at Ieastm{de ,max{K —

2, 113
Proof: Any robot with I ranchi’é true moves towards

(0,0). O(w) is the number of rounds required for

é@e robots tomFenciezvous under this behavior. Clearly time co

dition ||zl — k|| < d; holds for alli, andk havmg]ILr]Elnch

Ipanch = false before rendezvous occurs Each robet,

along the path from to the root sausﬁeﬁbranch— false as

pcurr # a; 1. Each robot along the path from the root o, ;
PHING ALGORITHM and the fact that the connect step 'Ssatlsﬁes]ILr]

-nch = false for the same reason. This finishes part
1. We prove part 2 by induction oR” and dép] As a base
case, wheri’ = 0, every non-root robot is at depth atleast 1.
for — 1, thus afterd(K — 1) rounds, for each
Mof i’s final ancestorsy, ,, (wherek is the final distance from
a; r to i) was at depth at |ea$t11n(dpn;g’“],max(K -1-

D max(K —dpfl + (2K —1),1)).

targ



If max(K — dpjl 1) = 1 or if i is at its final depth, .
there is nothing left to do, otherwise each i ancestors
is at a depth greater thai or at its final position. This
means that the one ancestor ioft i's current depth and
depth estimate is in its final position, and line 2 of stf of
CONNECTIVITY MAINTENANCE ALGORITHM allows i to
make the connection, increase its depth by 1 and over the
next 4 rounds, increase its depth estimate to the propeevalu
[ |
Lemma 4.6:Within dp[}] (1+ 24 ) rounds of the first

tar temmUscal
4] 9 ¢ seale 2 4 6 10 12 14 16 18 20

time I, is true for all j, where Tiaq is the topology of diafn(P(tU))+dmm(TW)

the final configuration, each robetis at its final position. ~ Fig. 2.~ Comparison of the time complexity bound in Theorem 4.7
with actual running times of BRMATION MORPHINGALGORITHM under

Proof: Let us induct on d%‘a,g- As a base case, the root random choices of initial and final configurations. Each po@presents a

reaches its final position in zero rounds. Whe, reaches successful execution.
its final position, it stops, and within one more rounds

. 14 . . L . B
within d; of zlesn which is within a distance ofl, of i'S  yisipyted control of robotic networks. We have used the
final position. It takesi at most T—

oSt K Tonmveeae [UTINET TOUNAS 10 o\ N ECTIVITY MAINTENANCE ALGORITHM to create the

reach its final position. FORMATION MORPHINGALGORITHM, which is guaranteed
These topology lemmas and Lemma 4.6 lead up @) nerform formation morphing while maintaining network

Theorem 4.7 which establishes the correctness and t'”ﬂSnnectivity. Finally, we have also characterized the qerf

complexity of FOR_MA_‘T'ON '}{',ggﬁ}j‘?giﬁa@o%?“"- mance of this algorithm by analyzing the time complexity of
Theorem 4.7:Within  O( - #9=) rounds  ji5 execution as the number of agents grow.

temmUscale

FORMATION MORPHING ALGORITHM achieves formation  ytyre work will improve the robustness of these algo-

morphing, wherelay is the final tree in the target configu- rithms, while loosening the strict synchronization reguir

ration, and diarfiltarg) is its graph diameter. ments currently in place. We will also explore the inter-
V. SIMULATION RESULTS connection of the GNNECTIVITY MAINTENANCE ALGO-

. ) . . RITHM with other algorithms to achieve more complex
We have developed a custom java simulation engine fQiyo gination tasks. Natural candidates are multipledead

robotic networks expressed in the formalism of [9]. We usefbaqer-follower behaviors, and sensor coverage tasks for

this framework to develop simulations and visualizatiofis o pije sensor networks. We will also investigate the aditi
the FORMATION MORPHINGALGORITHM (Figure 1 shows

) _ ) of more operations to GNNECTIVITY MAINTENANCE AL-

a sample execution). The source is available upon requesk; oy that still guarantee distributed correctness (e.g.,
: “identity swap” operations between robots). Regarding the

FORMATION MORPHINGALGORITHM, we will explore the

incorporation of collision-free guarantees on its exemuti

Actual time for task to complete
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