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ABSTRACT

Meridional flows with velocities of a few meters per secone abbserved in the uppermost regions of the solar
convection zone. The amplitude and pattern of the flows ddepthe solar interior, in particular near the top
of the radiative region, are of crucial importance to a widege of solar magnetohydrodynamical processes. In
this paper, we provide a systematic study of the penetratidarge-scale meridional flows from the convection
zone into the radiative zone. In particular, we study the@§ of the assumed boundary conditions applied at
the convective-radiative interface on the deeper flows.ntysimplified analytical models in conjunction with
more complete numerical methods, we show that penetrafiireaconvectively-driven meridional flows into the
deeper interior is not necessarily limited to a shallow Ekrdapth but can penetrate much deeper, depending on
how the convective-radiative interface flows are modeled.

Subject headingshydrodynamics — method:numerical — method:analytical —n:8uerior

1. INTRODUCTION

Meridional flows in the solar interior have recently become
the focus of observational and theoretical attention. \Ratd
sub-surface flows with amplitudes of the order of a few tens
of meters per second have been detected with reliable ancura
down to about 0.85; (Gileset al. 1997). A globally equator-
ward return flow must exist deeper in the interior to guarante
mass conservation, but its amplitude and structure canlwamly
conjectured currently. This paper addresses the questioovo
deeply these meridional flows penetrate into the radiativeez
An understanding of these return meridional flows is of fun-
damental importance since their nature plays a crucialirole
many current theories for the internal magneto-hydrodyinam
of the Sun.

Firstly, meridional circulations have been argued to play a
central role in the operation of the global solar dynamo {eee
review by Charbonneau, 2005). In these models, the pretlicte
spatio-temporal behavior of the solar cycle depends Seslsit

on the assumed circulation pattern and speed. The chosien pos

tion for the return flow coupled with mass conservation sets t

velocity of the equatorward flow near the base of the convec-

tion zone and therefore controls the activity cycle periSin-
ilarly, the depth of penetration of the meridional flows it
radiative region determines where the toroidal magnetid fie
is generated, and therefore also influences the cycle paridd
the field amplitudes.

Secondly, meridional flows advect angular momentum, an
therefore play a key role in the global dynamical balancéef t
solar interior. For example, helioseismology has reve#hed
existence of a strong radial shear layer, now known as tla sol
tachocline (Browret al. 1989; Spiegel & Zahn, 1992; Hughes,
Rosner & Weiss, 2007), located precisely at the interface be
tween the radiative and convective regions. Quantitatiee-m

els of the tachocline have revealed a sensitive dependédnce o

the interior angular velocity profile on the derived or assdm
interfacial flows (Spiegel & Zahn, 1992; Gough & Mcintyre,
1998; Rempel, 2005; Garaud, 2007).

Finally, meridional flows also transport various chemical
species within the solar interior, with directly obsenalebn-

sequences. Near the base of the convection zone, mixing by
large-scale flows can prevent the gravitational settlingedium

with respect to hydrogen, leaving a noticeable signatutbeén
helioseismic sound-speed data (Elliott & Gough ,1999). iAdd
tional mixing below the convection zone in the main-segeenc
phase is also required by the observed surface abundances of
light elements such as lithium and beryllium, with plaugithle

same origin.

Flows with amplitudes on the order of tens of meters per sec-
ond are required to balance angular momentum transportby th
turbulent stresses throughout the convection zone (Miesah
2000). Since there exist no physical barrier between the con
vective and radiative regions, these convectively drivews$
may continue their downward progress somewhat beyond the
driving region into the radiative zone, thereby “penetrgtior
“overshooting” into the interior while retaining potentiasig-
nificant velocities. How far flows extend beyond their driyin
region is an essential question.

The problem has recently been addressed by Gilman & Mi-
esch (2004) (GMO04 hereafter) and by Mcintyre (2007). Using a
steady-state formalism, GM04 discuss the depth of peiatrat
of an existinglatitudinal flow into the radiative interior. They
argue that the source flow amplitude is rapidly damped in the
radiative interior within a shallow Ekman depth. This depth
ranges from a fraction of a kilometer, using microscopiaresl
of the viscosity, to a few tens of kilometers, using a turhtile

d value of the viscosity. Gilman and Miesch reach a strong con-

clusion, namely thatthe physics of the solar tachocline and
neighboring regions does not allow penetration of meridion
circulation originating in the solar convection zone beltve
overshoot layer” This could have dramatic consequences for
the magneto-hydrodynamics of the solar radiative zone.
However, steady-state solutions are sensitively depdrmfen
boundary conditions. GM04 solve the problem for the radia-
tive interior dynamics where the forcing is by purely latiinal
flows at the upper convective-radiative interface. They db n
consider interfacial forcing from flows generated by thdedif
ential rotation nor by direct radial pumping into the radiat
zone (only radial flows generated for mass conservation-in re
sponse to their latitudinal forcing). It is reasonable torads
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the question as to whether their strong conclusion remans a
plicable under more general circumstances.

In this paper, we therefore extend the work of GM04 to al-
low for greater generality in the source forcing flow, allowi
the possibility of azimuthal and radial flows in addition tet
latitudinal flows. We systematically examine the consegasn
of using these various sets of boundary conditions to mimic
the convective-radiative interface. We find that the mendi
flows can penetrate to significantly different depths, delpen
upon the choice of boundary conditions. The GM04 solution
can be recovered in special cases, but is typically overpeive
by other solutions when alternative assumptions are maaigt ab
the nature of the flows driven within the convection zone.

In what follows, we adopt a three-step approach to study the

penetration of meridional flows into the solar radiative on
Given the added difficulties inherent to spherical coortiina

systems, we first examine the problem in Cartesian geometry.

In 82, we study analytically the complete set of steadydine
pseudo-axisymmetric Boussinesq equations and explorde wi
range of boundary conditions that may possibly mimic the ef-
fects of the convection zone on the radiative zone. We system
atically discuss the solutions obtained, which are lineanloi-

nations of two fundamental modes of behavior. One of these

modes is a solution which varies rapidly on a typical shallow

Ekman scale as found by GM04, the other one is a more slowly

varying solution which can span the entire interior. In ortte
gain better insight into the physics of the system and inigart
ular the new solutions, in 83 we consider a simplified Carte-
sian Boussinesq model in which the solutions related to the E
man layers are artificially suppressed by neglecting theous
terms in the radial and latitudinal components of the momen-
tum equation. Finally, in 84, we relax the Cartesian cofrstra
and present numerical results for all of the various boupdar
conditions in a steady, linear, anelastic, spherical bigyax-
metric simulation of the solar radiative zone. We compaesé¢h
numerical results in spherical geometry with the analytica-
dictions from the Cartesian models, both in terms of theescfl
variation of the solutions, and in terms of their predictemhfl
velocities. While the spherical geometry as well as the non-
uniform background state necessarily add to the complefity
the problem, we find that the analytical scalings extractedhf
the Cartesian geometry models agree very well with the full

2.1. Model setup
The spherical geometry of the solar radiative zone as well as

the non-uniform background state (in terms of temperatoce a

density, viscosity and thermal conductivity for instanbe}th
preclude any attempt at solving the problem analyticallye W
postpone to 84 the presentation and discussion of the ctenple
numerical solution of the problem, and first consider a much
simplified “radiative zone” with rectangular geometry inr@ga
sian coordinate(y, z), and a uniform background temperature
gradient, viscosity and thermal conductivity. In this cdioate
system, thex-direction can be thought of as the azimuthal di-
rection withx € [0,27R], the y-direction is aligned with the
latitudinal direction and is limited tg € [0, 7R] and finally the
z-direction is the radial direction with< R. The poles are rep-
resented by = 0 andy = 7R while the equator is at = 7R/2.
The dimensional constaR represents the base of the convec-
tion zone, and = 0 the interior of the Sun. The system rotates
with angular velocity® = (0,0, ), and gravity is assumed to be
aligned with the rotation axis.

2.2. Model equations and general solution

The equations governing dynamical and thermal perturba-
tions to a stably stratified background assumed at rest are
the mass, momentum and thermal energy conservation equa-
tions. Using the Boussinesq approximation and assuming “ax
ial” symmetry (i.e.0/0x = 0), we first linearize these equations
in the thermal perturbations and flow velocities, then prbje
them onto the Cartesian coordinate system as
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whereu = (u,v,w) is the flow velocity,f is the temperature

0 +gad ,

numerical solutions. When more complex boundary conditions Perturbation, and are the viscosity and thermal diffusivity,

are taken into account, limits on the penetration of meridlo
flows into the radiative zone are much less stringent thavipre
ously claimed. The exact flow velocities and depth of peretra
tion achieved, however, depend sensitively on the actuaidbo
ary conditions selected. These results and conclusiondiswe
cussed in detail in 85.

2. A CARTESIAN MODEL

In all that follows we consider a stably stratified radiative
zone located beneath a turbulent convection zone, a tygiteal
uation encountered in all solar-type stars. Within the eation
zone, we assume that turbulent stresses drive large-soalg fl
in the azimuthal direction (i.e. a large-scale differentata-
tion) as well as in the meridional direction. The amplitudel a
spatial variation of the flows just above the convectiveatike

a =1/T whereT is the background temperature and finally,
gas = N? is the background buoyancy frequency. Note that the
viscous diffusion term in the radial component of the momen-
tum equation has been neglected in accordance with hytimsta
equilibrium; this does not affect in any way the conclusiohs
this paper.

While GM04 and Mclintyre (2007) neglected ti&g/dy?
terms in the viscous terms, we consider here for completenes
the full Laplacian. The additional terms are found to be nec-
essary in the light of the fact that some of the boundary kyer
in the system are large compared with the vertical size of the
domain. Neglecting these terms is not physically justife
mathematically transforms any slowly varying, standargaex
nential solutions into the rather unphysical secular lireedu-
tions described by Mcintyre (2007) (and neglected by GM04).

The hydrostatic equilibrium equation can be combined with
the latitudinal component of the momentum equation to yéeld

interface is assumed to be known. We then pose and solve thgyeneralized thermal-wind equation,

following question:What is the resulting flow pattern and ve-
locities in the underlying radiative zone?
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Seeking solutions with latitudinal dependence as sip/(R)
or cos(2y/R), and exponential vertical dependence as legp(
we obtain the characteristic equation
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where we have introduced two standard characteristic lhengt

scales " e 14
o= (3)" anao= (32)"".
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the first one being the standard Ekman depth and the second

representing a buoyancy-diffusion layer (GM04, Barcild®n
Pedlosky 1967).
It is possible to show (with some algebra) that in the limit

where R
16ntdz
(which is always true below the base of the convection zone)

then the eight solutions to equation (3)k;, +-ko, k3 and+tk,)
can be approximated by

>1,

2n
kl:ﬁa

d2 2n
o~z R

BD

kg = ?(ui)dgl . (6)
thus yielding four slowly varying exponential solutionsléted
to k; andky) in addition to four rapidly varying, oscillatory and
exponential solutions related t@ and ks which describe the
Ekman layers of the system. The Ekman solutions were found
and described by GM04. On the other hand, tHge and +k;
solutions differ from the (two) real solutions found by GM04

a discrepancy which can easily be traced back to the omitted

0?/9y? in their viscous diffusion terms.
It is interesting to note that

ko = PrBu— \/PrBu—kl, @)

whereD is the local densny scalehelghﬁr =v/k is the Prandtl
number and where the Burger numlaris defined as

ND) 2

o ®)

The Burger number in the solar radiative zone is estimatée to
aboutBu~ 2.5 x 10° usingQ2 =2.7 x 101, N=8x 104s%,
R=5x 10%m andD = 0.17R = 8.6 x 10°cm (see Gough,
2007). In laminar regions of the solar radiative zone, the mi
croscopic Prandtl number is of order = 2 x 1078, so that

k' ~ 5kt 9)
which is clearly of the order oR itself for large-scale forcing
(smalin).

Bu=

2.3. General solutions

Consider for instance the solution of (1) corresponding to
cos(2y/R) and sin(2y/R) variations in the azimuthal veloc-

ity:
u(x,y,2) = (ay €42 +ape™? + age?? + aye™? (10)
+ asel? + age 9 + ar€i? + age™?) cos(zgy >
+ (b]_eklz + bze_klz + bgekzz + b4e"kzz

+ bseK?Z + bee_K?Z + b7ek42 + bge_k“z) sin (2;)/) .

This corresponds to
v(x,y.2) = d [ (ki - K3) (s +aqe™7)
+ (K -K3) (ase* +age™)
+ (k) (a6 +age )| cos(zgy)

+ 02 [ (K —K5) (ba€?” +h,e7%7)
* (K16) (bsel**+bse ™)

+ (k2-K2) (b7ek"z+b8e"“‘z)]sin<22/) ., (11)

kq

wW(X,y,2) = dE |:k (kz ) (a3e|<22_a48—k22>
+ KL (1G-16) (ase-ase )
' % (ki-H) (ave““z-ase"“‘z)} Sm(zm
- [::l (K2 —K3) (g€ ~bse™?)
8 1G-16) (b -boe™)
* %(kf ki) (b7ek“z—b8e'k41)} cos(zR ) ,(12)
and finally

= _@ 1Z _ —ki1Z @ 27 _ —koz
0(x.y,2) = ga [(alek a€ )+kl (ag€" - aue™?)

o (e )+ (e )|
-

’ [( i€ -bye?) + £ (bl -byet?)
+ & (bs€"? —bge*e?) + kk; (b7ek42—b8e—'<42)]

2ny
. cos(R> , (13)
where one must bear in mind thif and k, depend on the
wavenumben/R of the forcing function.

2.4. Boundary conditions

To find the amplitude of each exponential term, one must ap-
ply the boundary conditions to the general solutions. A Kuic
look at the system shows that eight boundary conditionseare r
quired, which arise from conditions anv, w andé at both the
top and bottom of the domain.

We choose boundary conditionszt R to represent the ac-
tion of the convection zone on the underlying stably steedifi
and laminar radiative region. We require the continuity o t
radiative interior solution with the complete vector of eeities
at the base of the convection zone, so that

u(x,y, R) = Ucz(y) = (Ucz(Y), Vez(Y), Wez(Y)) (14)
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(where the meridional and azimuthal flows in the convection

zone are assumed to be axisymmetric). A simple reasonable

prescription for the flow velocities at the interface mighbt bor
instance,

2y

2)
Vez(Y) =Vosin (g) )
2y

2)

Uc(y) = —Uo COS(

Wez(Y) = ~Wo COS< (15)
The azimuthal forcing term,(y) represents a solar-like differ-
ential rotation (with slower-than-average rotation néarpoles
and faster-than-average rotation near the equattyif 0). The
latitudinal and radial forcing term&.(y) andwc,(y) represent

a single-cell flow in each hemisphere with independent verti
cal and latitudinal flow velocities. Whe¥, > 0 the flow is
equatorward at the boundary, whilé) > 0 guarantees inflow
in the high latitudes and outflow in the low latitudes. Notatth
since the problem studied is linear, and since any of thesthre
velocity components ofug,(y), vez(Y), Wez(y)) can be written as
a Fourier series in cos(@/R) and sin(2y/R), it is possible to
find the general solution of (1) for any set of imposed velesit

and
ayeaR -Uo
_ | ageeR )
A= agelR andC = 0 a7
a7e"4R 0
Similarly, the coefficientgb; }i-1 357 satisfy the systeriMB=D
with
b, gaR 0
_ b;:,esz _ Vodé2
B= beeloR andD = WodgZket (18)
bR 0

In the limit wherek, < ki < |ks|,|Ka| the solutions can be
simplified to yield
kg
ag ~ —Uge ™R |
K ke
as~Upt———
® 7 %k ka(ks—Ka)
kK2 ks
ar~Upt —— gkl
T ke ka(ke ko)

a3 ~Ug

e—k3R ,

(19)

The profiles chosen here contain only one Fourier componentand

for simplicity.

Near the bottom boundary, we would in principle like to
choose boundary conditions that have as little effect osdhe
tion as possible. In the real Sun they would instead be redlac
by regularity conditions at the origin. However, fitting btg
boundary conditions to the general solutions yields a8 8n-
ear system which is difficult to study analytically (eventwiihe
help of Maple or equivalent software). Thus in this sectian w
restrict our study to the case where the bottom boundary-is lo
cated az — —oo. This immediately implies that all of the even
{a&} and{b;} coefficients must be null. In 83 we revisit this
simplification, and suggest an easy way of deducing the solu-
tions in a geometry where the bottom boundary iz=a0 from
those in a semi-infinite domain. In 84 we verify our hypotkesi
against numerical results.

In what follows (82.5 and §2.6) we describe two possibsgitie
for the thermal boundary conditions at the convectiveatigk
interface.

2.5. Thermal boundary conditions of type 1: “perfectly”
conducting convection zone

The local heat flux through the boundary associated with the
perturbations is the sum of the conducted heat ftu&6,/0z
and the advected heat flghw, wherep is the background den-
sity, h is the background enthalpy, akd- pc,« is the thermal
conductivity (hereg, is the specific heat at constant pressure).

blﬁo,
Mo 1 Wo(kstka)

—_ e—sz
| d2ksks dZ kiksks '
(Mo 1 W Kk
| dZks(ks—ks)  dZkq ka(ks—ka)
(M 1 Wk
| dZ ka(ka—ks)  dZky ka(ks—ks)
We can now finally evaluate, for instance, the latitudinakflo
velocity within this rectangular radiative zone:
V(X,Y,2) ~ [—dgkiuoekz@ﬂ _qaee Kk yoery

Tk ks—ks
- dékfl;;klikisek“(z‘m] cos<2g>
+ (V°k4 ) é“‘(Z'R)} sin (Zg) .

ke Wb kska
—ks ki ks—ks

As expected from the linearity of the governing system equa-

tions (1), the meridional flow velocity in the radiative inte

] e_I%R ,

] e“R _ (20)

(21)

> de@R)

In a steady-state this local heat flux must be equal to zero, sois simply the sum of the three contributions arising from az-

that when the convection zone is perfectly conductkg(co)
the thermal boundary condition reducesitty 9z= 0.

Using this final boundary condition together with the ones
described in §82.4 we find that the remaining odd coefficients
{ai}i=1,357 satisfy the linear systetA = C with

1 1 1 1
0 K-k K-k K-k
=l o et ke iead (16)
k
¢ KKK

imuthal forcing only (with terms proportional tdy), latitudinal
forcing only (with terms proportional tbp) and radial forcing
only (with terms proportional td\p). In addition, each of these
three contributions is the sum of three terms, one with egpen
tial dependence ig2@R which corresponds to a very slowly
varying function of depth, and two complex conjugate terms
with exponential dependence @R and&““R associated
with the very rapidly decaying and oscillating Ekman saas.

We now compare the relative amplitudes of all of these terms
as a function of the parameters of the system. The amplitude
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of the rapidly decaying component of the solution arisiragir Thus the{a } coefficients are the same as in the previous sec-

azimuthal forcing only is tion, while in the limit wherek, < ki < |Ks|, K4
2
Uo | kska \FD _Heks\ v kiR
21,20 ~ v by ~ Woe ™,
WK, | keke| = V PrBUR"® (22) K
using the values ok; derived in equations (6) and (7), and bs ~ (_Vo+ H@k%Wo) eteR
where ksksy K3 d¢ ’
v 2dé (23) k4 e—ksR
VT 20 T B2 bs ~ - |Vo+tWo— (Heko—1)| ———— ,
RO R == o (ke D) 5
is the Ekman number. Similarly, the slowly decaying compo- ks g R
nent of the solution arising from azimuthal forcing only teas b7 ~ - {Vo *Wor - (Hokz - 1)] k)2’ (27)
amplitude 1 $/Ne
dBIGU, ~ 2E,Uo (24y  sothat ke
_ Uo ~
Given thatE, ~ 10718 near the base of the convection zone for ~ V(X.%:2) ~ {‘dékiuoekﬂz R ‘dékfkfz mek SR
microscopic values of the viscosity, within an Ekman length
the boundary both components of the solution are negligible - dékf% Keka elq(z—R)} cos<2y>
Similarly with the other forcing contributions, we conckid ko ka—ks R
that + |:<_V0k% + H@kgvvo) ekz(Z_R)
¢ latitudinal forcing drives meridional flows with a rapidly Kok Ky
decaying component which has an amplitge(with + (s Ky Hoko—1 kaesZR 08
no dependence on any of the other parameters of the sys- 0 WOE (Hekz=1) ks— Ky (28)
tem), while the slowly decaying component has an am- K alzR) 5
plitude proportional tcE, Vy. Thus, in agreement with + (Vo +\N03(H@k2—1)> ke } sin (y) )
the study of GM04, we find that within a few Ekman ki Ks—ks R

lengths, both are negligible for microscopic values of  For this new set of boundary conditions, azimuthal forcing
the viscosity. and latitudinal forcing yield the same solutions as in thevpr
ous section, while radial forcing drives meridional flowstwi
e radial forcing drives meridional flows with a rapidly de- g rapidly decaying component which has an amplitude propor-
caying component which has an amplitude proportional tional toWy(Hekz—1)/+/E, ., while the slowly decaying compo-
to Wo//E,, while the slowly decaying component has nent has an amplitude proportional tee/R)(R/D)2PrBu\.
an amplitude proportional t¢/E, Wo. Thus, in this par-  Note how in this case the slowly decaying component of the

ticular case we find that beyond a few Ekman lengths flow has an amplitude which is independent of the background
the slow mode retains a non-negligible amplitude of viscosityw.

about 108 times the imposed velocity. Indeed, for im-
posed meter per second flow velocities, the flows near 2.7. Discussion of the solutions

the top of the radiative zone could then be of the or- i i i
der of JE,Wp =~ 10°° centimeters per second, with an Using this Cartesian geometry model, we have shown that

overall turnover time of the order &//E, W ~ 1 Gyr. there exist solutions for meridional flows in the radiative i
While very slow, this can still provide mixing in the terior with significant amplitude throughout. These flows ca

tachocline on the stellar evolution and/or gravitational ©nly be present if driven by direct pumping into and out of the
settling timescale. radiative zone, that is, whem.,(y) has a significant amplitude _
on the boundary. Our study also shows that the actual ampli-

tude of the flows within the radiative zone depends sensjtive
on the thermal boundary conditions used. While it is not clear
which set of boundary conditions actually accurately repres

Dropping the assumption that the convection zone is a per-the true convective-radiative interface, it is not implalethat
fectly conducting fluid, we require instead tfat = c,x96/9z they may lie somewhere in between the two extreme cases stud-
which is equivalent t& w= k90/0z. ied. Thus itis also notimplausible that there may be sigaific

We can rewrite this new thermal boundary condition into the Penetration of the convective zone flows into the radiativesz
linear system$1A=C andMB = E whereM, A, BandC have  With typical turnover times shorter thagy\/E, Wo.

2.6. Thermal boundary conditions of type 2: no net perturbed
heat flux through the boundary

already been defined, and Our results extend the work of GM04, and naturally recover
their solutions in the limit where only latitudinal forcinig
0 taken into account. Note that GM04 do not specifically re-
E= Vodg2 (25) quire thatw be null on the convective-radiative interface, and
Wodz2ky® ' argue that any spatially varying latitudinal flow drives iedd
“WokZHe /dZky flows into and out of the boundary to guarantee mass conser-

whereHa is the potential temperature scaleheight vation. This is indeed correct, but one must keep in mind that
© P P 9 ov/dy = —0w/9dz only relates latitudinal variations imto the
g radial derivative ofw. Since the derivative is dominated at the

Ho == NZ (26) base of the convection zone by rapid variation on the Ekman

|-
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scale, the mass conservation equation in fact requireshbat
radial flows in the GMO04 solution have an amplitude of the or-
der ofWp =Vode/R. Itis therefore easy to see why their solution
yields negligible velocities for the slowly varying compeont of
the flow penetrating into the radiative zone.

Finally, it is crucial to note that since the momentum and en-
ergy equations in this study (and the preceding ones by GM04
and Mclintyre, 2007) have been linearized, the predicted am-
plitudes of the flows are linearly dependent on the imposed
flow velocities. In reality, this will only be true in the limi
where the typical amplitudes of the nonlinear advectiomger
(u-Vu for the momentum equation, and V@ for the energy
equation) are indeed much smaller than the corresponding li
ear terms (2 x u for the momentum equation amtv for the

We consider the system
ov  ow

_t— = ,
ay 0z

ap

0z
2Qu=-

=agf,

op

oy’
0%u 0%

%6 829>

4
072

- (29)

5W:I€<

energy equation). The nonlinear terms in the momentum equa-in which the viscous diffusion terms within the latitudircam-

tion for example guarantee that no unphysical countetitota

ponent of the momentum equation has now been removed. This

is allowed. The linearized equations on the other hand scaleSimplification is consistent with the assumptions of gespstic

arbitrarily with the imposed boundary conditions and dowll
counter-rotation for certain input parameters, e.g. if itme
posed differential rotation profilec,(y) is large enough or if
the meridional flows are too rapid (see Figure 5 for instance)
Similarly, the nonlinear terms in the energy equation goara
tee that the actual turnover time of the meridional flows cann
be lower than the local thermal diffusion time (over the thept
considered), while the linearized equations allow for aaj v
ues of the turnover time provided the imposed boundary flow
velocities are high enough.

From this linearized model, we can therefore say with rea-

equilibrium and, as we now prove, effectively filters out the
Ekman flows. The system can be reduced to a single partial
differential equation fou, for instance, as
d*u dg¢\ 9%u  d¢ 9
—+(1+—- | ——+t——F—=
ozt dip ) 0720y?  dgp oy*
Seeking exponential solutions Ziwith periodic behavior in
y as before yields the characteristic equation:

0. (30)

sonable confidence that meridional flows can indeed peretrat With solutions+K; and+K; with

into the radiative zone, provided their turnover time (tadly
estimated as(d)/d whered = R-z is the depth considered)
is longer than the local thermal diffusion time (estimated a
d?/k).

3. AREDUCED CARTESIAN MODEL

In? an? d2
(e-%) (¢~ Tas) o @)
2n
Ky = E = kj_ and
2n [ d2
Kg = — (E) = k2 . (32)
R\ d3,

Thus we recover only the slowly varying solutions of the prev
ous section.

3.2. General solutions
The flow solution to the above system for fixed latitudinal

One of the remaining issues that needs to be addressed igvavenumbenis

that of lower boundary. In the previous section, the high-
dimensionality of the solution space made it difficult to €on
sider the more realistic situation of a bottom boundary teda
atz= 0. While the Ekman solutions (associated withand

k4) decay inward/downward so quickly that the presence or ab-

2ny
R
2ny

s )33)

U(X,Y,2) = (A2 + Age™ 12+ Agee + A, e77) cos(

+ (B1€4% + Boe K12 + By 2 + B4e ¥4%) sin (

sence of a lower boundary cannot affect them, the slowly-vary which also yields

ing solutions do span the entire radiative region frorR down
to z=0; the location of the lower boundary is expected to have
some influence on their amplitude.

Here, we therefore focus on studying the slowly varying so-
lutions only by considering a system in which the Ekman flows
are filtered out. This is another way of reducing the dimen-
sionality of the solution space, and enables us to compare th
solutions in a semi-infinite domain to the solutions in a &nit
domain.

3.1. Reduced model equations

) = (K KE) (s A% o 2 )
+ 02 (KZ-KZ) (Bs€*? +B4e™%%) sin (?) (34)

<)

2ny
R)35)

and

Wik, ,2) = dé% (K2-K2) (Age~ A sin <2”y

2 Ki

—-d:s—

(KZ-KZ) (Bs€ - Bse™) cos<
3.3. Boundary conditions

The governing equations considered form what is apparently
a 6" order system in the direction, and require, in principle,



6 boundary conditions split between the top and bottom bound implying

aries. Naturally, one would like to impose boundary comdisi
onu, wandf (one at the top, one at the bottom for each vari-

able). Note that since the viscous terms have been neglected

in the equations for hydrostatic and geostrophic equilitorie-
spectively, one cannot impose a boundary conditiorv:othe
equations contain no stresses that could transfer the laoynd

information to the rest of the system. However, we see that

combining these equations only yields®darder partial differ-
ential equation fou. This implies that the 6 selected boundary
conditions must somehow be redundant, otherwise therdwiill
no solution to the system. In what follows, we therefore only
select boundary conditions farandw at the top and bottom
boundaries. Near the top boundary, we consider as before

U(X, y7 R) = uCZ(y) 1
W(X, Y, R) = Wez(Y) - (36)
When considering a bottom boundaryzat 0, we choose im-

permeable boundary conditions fer and stress-free boundary
conditions foru so that

ou

92 (xy0)
w(x,y,0)=0.

=0 ,
(37)

3.4. Solutions for a semi-infinite domain

When the bottom boundary is neaso, we find that
A= —er_KlR ,
A=A3=A4=0,
K Wb r
Ky (K2 -K2) d2 ’
Bz S B4 =0 ,
= 4K2 %e‘KZR
Ki(Kf-K3 dg = 7

B]_=

Bs (38)

so that K

V(x..2) = WP sin(yy) (39)

1

which illustrates again how radial forcing can yield nomeze
flow amplitudes penetrating deeply into the radiative zdhis.
important to note, however, that the predicted flow ampétisd
different from that found in 82. This might be attributed et
fact that when viscous effects are taken into account, ddmac
of the flow penetrating into the radiative zone is deflectad in
the very shallow Ekman layers.

3.5. Solutions for a finite domain
When the bottom boundary is locatedzat 0, we find that

Uo
AL = A= OShGR)
Az =A4=0,
B =B,=- Ko Wo coshKzR)
1T 72T Ky (KZ-K2) 02 2sinh;R) cosh:R)

~_ W 1

~  2d2K2 K;RcoshKiR) ’
Bg = B4: Kz % 1

Ki(K2—K2) d2 2sinh(zR)
w1

~ L 40
202KZ KiR (40)

W K coshKz2) sin(Kyy)

VYD = SRR K

~ Wo coshK,2) sin(Kyy) . (42)

KiR

3.6. Consequences

Comparing the expressions in equations (39) and (41), we
find that the slowly varying component of the meridional flow
in the case of a finite domain has an amplitude that/is&;R
times that of the semi-infinite domain case. The differeree b
tween the predicted amplitudes for the two geometricaksyst
(finite and semi-infinite domains) can easily be understood i
the light of the fact that the exponential solutions asdedia
with K; andK; decay on much longer lengthscales ti/an

Extrapolating this result to the full Cartesian problemdstu
ied in 82, we therefore predict that the slowly varying com-
ponents of the meridional flows (associated with khendk,
wavenumbers) should in fact have an amplitude that/lsR
times that given in (22) and (29); the Ekman components on
the other hand decay so rapidly that their amplitude shoatd n
be influenced by the presence of a lower boundary. We now re-
vise our estimates of §2.5 and §2.6 to predict that in the chse
type 1 boundary condition$¢/0z = 0 at the upper boundary)
then

e azimuthal forcing leads to meridional flows with a
rapidly decaying component with an amplitude propor-
tional to+/E, /PrBull, while the slowly decaying com-
ponent has an amplitude proportionaBgU,/+/PrBu.

e latitudinal forcing leads to meridional flows with a
rapidly decaying component with an amplitude propor-
tional toVy, while the slowly decaying component has
an amplitude proportional tB, Vo /+/PrBu.

e radial forcing leads to meridional flows with a rapidly
decaying component with an amplitude proportional to
Wo/+/E,, while the slowly decaying component has an

amplitude proportional tq/E, /PrBuW.

In the case of type 2 boundary conditions (whef®/0z=Tw

at the upper boundary) the flow velocities predicted in theeca
of azimuthal and latitudinal forcing are the same, whileiahd
forcing drives flows with a rapidly decaying component with
an amplitude proportional tab(Hek, —1)/+/E, and a slowly
decaying component which has an amplitude proportional to

(Ho/R)vPrBuw.

4. NUMERICAL SOLUTIONS IN A SPHERICAL SHELL
4.1. Model setup

To complete this axisymmetric study and illustrate our an-
alytical results numerically, we perform simulations ofviko
in the solar radiative zone subject to various boundary cond
tions. The governing equations for the numerical model are
derived by perturbing the spherically symmetric equatiofhs
stellar structure, moving to a rotating frame of referenod a
assuming that the velocity perturbations and thermodyocaimi
perturbations to the background spherically symmetritesiee
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small enough for linearization to be appropriate. Then

200 x u=-Vp-pVe+fVv-II,

V-(pu)=0,

pTu-Vs=fVv.(kVT),

E = 8 —+ l s

p T
whereu = (ur,Ug,Uy,) is the velocity field in a frame rotating
with angular velocity?, p, T, sandp are the standard thermo-
dynamical variablesk = pcy is the thermal conductivity]l is
the viscous stress tensor (which depends on the viscgsityd
® is the gravitational potential. Quantities denoted withsba
are background quantities, taken from the standard soldemo
of Christensen-Dalsgaast al. (1991), while the temperature,
pressure and density perturbations are denotes with tildes

This system is fully consistent with the Cartesian model
equations presented in §2, with the added sophisticatidheof
perfect gas equation of state and the anelastic approximati
instead of the simpler Boussinesq approximation. This firodi
cation is added so that the model equations are consistént wi
the level of approximation used, but does not affect thenaaifi
the solutions. The centrifugal force associated with thation
of the background state x Q x r has been removed to suppress
global Eddington-Sweet circulations, which are known tmbe
very small amplitude, but would otherwise play an important
role in this steady-state calculation (see the work of Géyrau
2002, for comparison). Perturbations in the gravitatigraaen-
tial are neglected in accordance with Cowling’s approxiorat
Note how both diffusion terms have been multiplied by the

same factoif. Since the typical Ekman number in the Sun (just
below the base of the convection zone) is of the order 6t%10
a unit value off would lead to Ekman layers about $@imes

(42)

size of the domain; the numerical method used is unable to re-

solve them. Using values df of the order of 10— 10° instead
inflates the Ekman layers artificially to 10times the size of

the domain or larger, which can then be fully resolved. As an

added bonus, varyind provides an easy way of varying the
effective viscosity and thermal conductivity without clgamy
the Prandtl number. As a result, the estimated valuds ahd
ko, are unchanged from the solar value (sitkgeonly depends
on the Prandtl number), whilk; andk, are a factor off1/2
smaller. As long ag < 10%, the hierarchyk, < k; < |Ks|, ||

is respected.

The numerical method of solution is based on the expansion

of the governing equations onto a spherical coordinateegayst
(r,0, ¢), followed by their projection onto Chebishev polynomi-

value of the Prandtl number.

In order to study in detail the effects of the boundary con-
ditions on the solutions, we study separately three casesewh
forcing is respectively in the azimuthal, latitudinal aratlial
directions only. In the case of radial forcing, we conside t
two boundary conditions studied in §2, namély/or is null
on the boundary, anddT /or = Tu.

The details of the expressions for the boundary conditions i
each case are given below.

4.2. Boundary conditions.

In all of the simulations performed, the lower boundary con-
ditions atr = 0.02r, are the following:

e impermeable condition on the radial velocity,

e stress-free conditions on the tangential velocitigand
U¢,

e conducting condition on the temperature: we assume
that the domain within 0.02 is a conducting solid
sphere, so that the temperature perturbations satisfy
V2T =0 within, and are regular at= 0. We solve this
equation with the requirement that— 0 asr — 0, and
derive a matching condition with the temperature fluc-
tuations at the interface.

Near the upper boundary (at 0.7r), we consider the fol-
lowing cases:

e azimuthal forcing only: in this case, we agt=uy =0
at the boundary (assuming no-slip conditions).
lowing the results from helioseismology, we sgf =

0.7r5 sindQ with Q = Qeq(1 - acogd - beost) - Q,
where Q = Qeq(1-a/5-3b/35) (Gilman, Morrow &
DelLuca, 1989)a=b=0.15 andQeq = 2.9 x 10%s71,
The temperature boundary conditiord$ /or = 0.

Fol-

o latitudinal forcing only: in this case we sat=u, =0
at the boundary, andy = Vysindcosd with Vo =1 m/s.
Note thatuy = 0 is guaranteed by settiraj=b = 0, in
which case the background angular velocitis Qeq=

2.9x 101, The temperature boundary condition is
oT /or =0.

o radial forcing only: in this case we sej = us = 0 at the
boundary andi, =Uy(1-3co$ ) with Up = 1cm/s. This

expression satisfies the global conservation of mass.
In this last case, two temperature boundary conditions

als Ty(cos), and finally, solution of the resulting ODE system
in r using a Newton-Raphson-Kantorovich algorithm. For more
detail, see Garaud (2001). The computational domain isdini
to the region of the radiative zone withire [0.02,0.7]ro. The
solution is found to be reasonably insensitive to the positf tudes of each component of the flow defined By, ¥, Wo) at
the lower boundary for this range of parameters. the boundary can be chosen arbitrarily. Here, they weretsdle
In order to study the dependence of the amplitude and depthas what may be plausible flow velocities in the lower regidins o
of penetration of the flows on the Ekman number (i.e. kgn  the convection zone.
andk,), we perform a series of simulations wiftranging from
10’ to 1. In order to verify the dependence of the amplitude
of the solutions ork,, we perform similar calculations with a
hypothetical Sun where the thermal conductivity in the ayst
of equations (42) is uniformly multiplied by a factor of four
throughout the interior, resulting in a Prandtl numberfaiglly with the Cartesian model predictions we study the variatibn
decreased by a factor of four compared with its solar valoe. | the latitudinal component of the meridional flay, both near
that casek; is two times smaller than in the case of the solar and far from the boundary, at a fixed latitude fairly closehte t

are explored as in 82, eithélT /Or = 0 (type 1) or
kOT JOr =T (type 2).

Note that since the governing equations are linear, the iampl

4.3. Results

This section summarizes the numerical results for the uario
simulations performed.
In order to compare quantitatively the numerical solutions
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Fic. 1.— Latitudinal velocity at a latitude of 80as a function of re-scaled depth below the convection zongr - 0.7r)/dg for the four types of boundary
conditions described in 84.2. In each of the four plots, tiEldines (and solid symbols) correspond to simulations \aitolar value of the Prandtl number, while
the dotted lines (and open symbols) correspond to simulatiithsa Prandtl number artificially reduced by a factor of foline symbols identify the value dfused
in the simulations: a circle correspondsfte 10°, a diamond tof = 10° and a triangle td = 107. For comparison, the forcing velocities at the latitude dgeed

are abouticz(80°) = 5200cm/syc-(80°) = 17cm/s andve(80°) = 0.9 cm/s.

polar regions. We select a high latitude of about 8hce the
Cartesian model applies best to systems in which the rotatio
axis and gravity are nearly aligned.

In Figure 1 we first focus on the region close to the upper
boundary in order to single out the Ekman solution. Each plot
corresponds to one of the four types of boundary conditions
studied, and showsgy(r) at a latitude of about 80 For clarity,
the depth below the convection zone is rescaled with the E
man depthde: thus, in each of the plots= (r —0.7r)/de. The
results for the solar value of the Prandtl number are shown in
solid lines, and those corresponding to the lower value ef th
Prandtl number (equivalently, a value efthat is four times
solar) are shown in the dotted lines. In each case, three run
are presented withi = 107, 10°, and 108 respectively and can
be identified with the symbols. It is immediately obviousnfro

k-

observing all of these plots that there is indeed a component

of the solution which decays and oscillates rapidly withtbep
below the convection zone on an Ekman lengthscale.  From
the conclusions of §3.6, we expect the amplitude of thistgipi
decaying solution to scale ag f/Pr in the case of azimuthal
forcing, to be of order of the forcing velocity for any valué o

f or Pr in the case of the latitudinal forcing, to scale as/&f

for radial forcing with type 1 boundary conditions and fipall

to scale asHk, —1)/+/T for radial forcing with type 2 bound-
ary conditions. Note that for solar values of the background

state and of the Prandtl number, using the standard model of

Christensen-Dalsgaast al. (1991),Hgk, ~ 0.8; for a Prandtl
number that is reduced by a factor of four, thégk, ~ 0.4.

The comparison between these predicted scalings and th
outcome of the numerical simulations is shown in Figure 2.
Here, the symbols represent the amplitude of the solutien de
fined as the maximum value achieved |by(r)| at the selected
latitude, for each of the simulations performed. The lines/s
the predicted scalings, using as a reference the amplitiithe o
solution for solar values of the Prandtl number and with10'.
Thus, for example, the solid line in the case of azimuthat-for
ing only is generated by the equation

1/2
A(f,Pro) = A(10,Pry) (107>

whereA(f, Prg) is the predicted amplitude of the other simula-
tions with solar values of the Prandtl number, a{(d0’, Pr.,)

(43)

is the numerically calculated reference amplitude of thHe-so
tion for f = 10’ and solar values of the Prandtl number. The
dotted line in the same panel is easily calculated as

1/2

A(f,0.25Pr) = 2A(107, Pry) <1o7 (44)

The solid and dotted lines in the three other panels are con-
structed in a similar fashion. It is quite clear that the ot
scalings fit the numerical solutions very well, except ppeha

in the case of radial forcing with type 2 boundary conditions
where the fit is only good to within a factor of order unity.
The origin of this discrepancy is not entirely clear, but ¢en

&artly traced back to non-ideal effects in the equation afest

(which affects the determination éfg) and to geometrical ef-
fects (which influence the value kf).

In order to compare the scalings of the slowly decaying com-
ponent of the flow with the numerical results, we now move to
Figure 3 and Figure 4 which focus on the behavior of the solu-
tion far from the boundary. Figure 3 shoyg(r)| at a latitude
of about 80 throughout the interior on a log-linear scale. The
information about the direction of the flow (poleward or equa
torward) is lost in this plot, with sign reversals appearamy
cusps in the curves pointing towareso. Note that it is possi-
ble to discern the presence of the Ekman layer close to the out
boundary for the larger values &f

A quick glance at the solutions in the deep radiative interio
reveals the behavior suggested by the Cartesian solutibifRs:
ferent assumptions concerning the boundary conditionks yie
very different predicted flow velocities. In particular, gan

%e seen that in the case of radial forcing with type 2 boundary

conditions (i.e.xdT /dr = Tu) the flows velocities are more-
or-less independent of, or in other words retain significant
amplitudes for any value of the background viscosity.

More quantitatively, from the conclusions of §3.6, we ex-
pect the amplitude of the slowly decaying solution to scale
as f/+/Pr in the case of azimuthal and latitudinal forcing,
to scale as,/f/Pr for radial forcing withdT /or = 0 and as
(He /R)V/Pr in the case of radial forcing with the type 2 temper-
ature boundary conditions. The comparison between the pre-
dicted scalings and the outcome of the numerical simulati®n
shown in Figure 4, using the same method as described earlier
in the case of the rapidly decaying component of the solution
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We can see that, as before, the predicted amplitudes agnge ve
well with the numerical solutions, except perhaps in the s
radial forcing with type 2 boundary conditions where a small
discrepancy remains.
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zone below.

We have attacked the problem via a Cartesian model, as oth-
ers have done before us, and then verified our results witle mor
complete numerical modeling in the correct geometry. Weshav

We therefore conclude that despite the simplified nature of extended previous work done by GM04 and Mclintyre (2007) by

the analytical analysis performed in 82 and §3, the resudts o
tained robustly predict the scalings of the numerical sohs
in full spherical geometry.

Finally, in order to provide better insight into the actualus
tions, we show in Figure 5 the global structure of the nunadric
results. In the left-hand-side of Figure 5, we show resoit$tfe
solar value of the Prandtl number (and therefore solar wabiie
ko, near the convective-radiative interface), while in thehtig
hand-side we show results for a quarter-times solar valdieeof
Prandtl number. All the plots were generated for a fixed value
of f =10 (and therefore 1Btimes solar values of the viscosity
corresponding to 10-times solar values dé; andks). The left
quadrants show contour-lines of the stream-function, otfer
words, streamlines of the flow while the right quadrants show
the angular velocity profile. The four aforementioned bound
ary conditions are explored: azimuthal forcing only, ladiinal
forcing only, radial forcing only with type 1 boundary condi
tions (@T /0r = 0) and radial forcing only with type 2 boundary
conditions 0T /0r =T u).

These numerical results illustrate graphically the bebravi
predicted by the Cartesian model. For example, the streasli
plotted all correspond to the same contours of the streatafun
tion, or in other words the same mass flux. It is therefore ob-
vious that the flows driven through latitudinal forcing amegn
ligible compared with the three other cases. The flows driven
by azimuthal forcing appear to be quite strong, although thi
is merely related to the fact that the linear velodity corre-
sponding to the imposed (solar) differential rotation isreno
than two orders of magnitude larger them at the same lati-
tudes. The flows driven by radial forcing are quite strong, in
particular given that the driving velocityy is at least one or-
der of magnitude lower thayy, at the same latitude. One can
also readily see that the flow velocities predicted usingt2p
thermal boundary conditions are much stronger than in tee ca
of type 1 thermal boundary conditions. The right-side quad-
rants reveal the effect of these meridional flows on angular m
mentum transport in the interior and show the angular vgloci
profile corresponding to the ultimate steady-state ackliene
the radiative interior should the Sun be left to evolve fomyma
flow turnover times under the same applied boundary condi-
tions. Since the turnover time can be considerably longan th

taking into account the full structure of the governing epres
and by examining the effect of boundary conditions on thae-sol
tions, or in other words, allowing a greater range of corivect
flows to act as sources for the flows in the radiative interior.

Within a linear formalism, we confirm that the flow pattern
in the radiative interior is a linear combination of two typef
solutions: &) a solution that decays away from the convective-
radiative interface on a short length-scale related to thadnh
depth, andlf) a solution that decays away from the interface
on a much longer length-scale associated with the strédtdita
of the radiative interior. Our more complete treatment & th
problem provides accurate expressions for the slowly varyi
solution. In addition, we find that theamplitudesof the rapidly
and slowly varying solutions depend sensitively on the choi
of dynamical and thermal interfacial forcing.

Forcing by azimuthal and latitudinal shear at the upper
boundary lead to both rapidly varying and slowly varying so-
lutions, but with amplitudes that are negligible outsidecw f
Ekman lengths. Forcing by direct radial pumping however
can generate flows which are significant outside the Ekman
boundary layer and indeed are sufficiently slowly-varyihgtt
they may maintain significant flow amplitudes across the whol
depth of the radiative zone. The selected thermal bounaary ¢
ditions at the convective-radiative interface are alsanfbto
have significant impact on the interior solution.

In this linear problem, full solutions can be built from com-
binations of the individual solutions obtained for eactietént
type of boundary forcing that we studied. Thus in principle w
should be able to determine the complete flow structure withi
the radiative interior. However, the problem lies in theeséibn
of the interfacial conditions. We know from helioseismalog
the amplitude of the average azimuthal flows existing near th
base of the convection zone, but know very little of the retir
the meridional flows or of the thermal conditions at that inte
face. Thus, without a complete model of the whole solar inte-
rior which includes the turbulent solar convection zone \ag ¢
only speculate upon the thermal and dynamical nature of the
convective-radiative interface. Instead, when studyirgcad
range ofplausibleboundary conditions we find that significant
penetration depths can be realized.

Previous work by GM04 focused on the effects of a latitudi-

the age of the Sun in most cases, these steady states woald nevnal source flow only. Our result is in accordance with thears f

in practise be achieved. However, they do reveal two poihts o
particular interest. Firstly, they illustrate how sensgtthe inte-
rior rotation rate is to the assumed or calculated flow stmegt
and therefore also to the assumed convective-radiatiesfaat
cial boundary conditions. Secondly, they reveal the pdssib
ity of unphysical counter-rotation permitted by the lineation

of the problem (see 83.6 for a discussion of this effect).sThi
should be taken as a cautionary warning for any linear stdidy o
flows and thermal perturbations in the solar radiative ioten
always perform a self-consistency check of the validityha t
linearization.

5. DISCUSSION AND CONCLUSION

We have studied the penetration of global-scale meridional
flows generated in the solar convection zone into the ragiati

this particular type of boundary condition, namely thatftbess
within the radiative interior are limited to an Ekman depth.
However, GM04 conclude that penetratiormlgzaysquenched.
Given our analytical and numerical results in the case oéioth
applied boundary conditions, we feel that this conclusttoo
strong. Other plausible models of the interface lead tcedff
ent results concerning the flow amplitudes within the imteri
Without better knowledge of the conditions at the convestiv
radiative interface, it is hard to predict precisely whagdgdap-
pen.

While realistic three-dimensional global models of the so-
lar interior combining radiative and convective regione aot
yet numerically achievable, turbulent closure models Hmaen
applied to model both azimuthal and meridional flows in most
of the solar interior (Kitchatinov & Ruediger, 2005; Rempel
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FiG. 5.— Global structure of the flow solutions in the radiatimeerior of the Sun subjected to a series of different boupdanditions at the convective-radiative
interface (ar = 0.7r), for fixed value off = 1(B. The left-hand-side set of plots shows solutions for a sadéire of the Prandtl number, while the right-hand-side
set of plots shows solutions for the case where the thermalwiivity is artificially increased by a factor of four. In@asets of plots, the streamlines are shown
in the left-quadrant; the solid lines show clockwise flowsile the dotted lines show counter-clockwise flows. Thetiedaangular velocity normalized by the
equatorial value at the convective-radiative interfacghiswn in the right-quadrant. The “white” region in the finat sf boundary conditions actually corresponds
to an unphysical counter-rotation. This is an artefact eflthearization of the problem, combined with the high flow wéies in the interior, which would not
occur should the fully nonlinear equations be considered.



2005).

Using such a model, Ruediger, Kitchatinov & Arlt
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in a quasi-steady state. As it was shown by Mclintyre (20038) th

(2005) studied the penetration of meridional flows into the assumption filters out any transient flows, which could in som

tachocline. By defining the penetration dejiif., asthe dis-

circumstances be of much larger amplitude than these steady

tance from the base of the convection zone to the location ofstate flows (see Spiegel & Zahn, 1992 for example). Therefore

the first reversal in y(r), they find thatDpen ~ +/E, and con-

our conclusions are likely to underestimate the actualaven

clude by agreeing with GM04 that the depth of penetration of time of transient meridional flows.

the flows in the interior is indeed limited to the Ekman solu-
tion. However, it is clear from our analysis tHage, as defined

by Ruediger, Kitchatinov & Arlt only measures the variatiain

Secondly, the momentum and thermal energy equation have
been linearized with the consequences described in §2ek-an
ample of which (the unphysical counter-rotation) is shown i

the rapidly decaying solution (which indeed must vary on an Figure 5. We do emphasize that in the real Sun nonlinear ef-
Ekman length). For example, inspection of Figure 1 shows tha fects would play a role in limiting the amplitude of the merid
at a first glance, all of the solutions appear to behave as Ek-ional and azimuthal flows penetrating into the radiativeezon
man solutions, while it is only by looking more closely at the Therefore our results are consistent with the standardrgheo

flows deep in the interior (in Figure 3) that one can identify t

presence of the slowly decaying solution with a relatively |

that no flows with turnover times faster than the thermaludiff
sion time are allowed into the radiative zone. This limite th

but nonetheless significant amplitude. We suggest thatrthe p  flow turnover time in the tachocline region to a few time$ 10

dictions of the closure models for flow velocities in the ne
could be revisited in the light of our analysis.

years, and into the deep interior to a few time$ géars.
Neither of these caveats, however, change the main conclu-

Finally, the governing equations in this work have been sim- sion of our analysis, which is that the penetration of mendi
plified using two major approximations, which must now be flows into the radiative interior is not necessarily limiteda

briefly addressed. Firstly, this study is assumes the flovieto

shallow Ekman depth.
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