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ABSTRACT

Meridional flows with velocities of a few meters per second are observed in the uppermost regions of the solar
convection zone. The amplitude and pattern of the flows deeper in the solar interior, in particular near the top
of the radiative region, are of crucial importance to a wide range of solar magnetohydrodynamical processes. In
this paper, we provide a systematic study of the penetrationof large-scale meridional flows from the convection
zone into the radiative zone. In particular, we study the effects of the assumed boundary conditions applied at
the convective-radiative interface on the deeper flows. Using simplified analytical models in conjunction with
more complete numerical methods, we show that penetration of the convectively-driven meridional flows into the
deeper interior is not necessarily limited to a shallow Ekman depth but can penetrate much deeper, depending on
how the convective-radiative interface flows are modeled.
Subject headings:hydrodynamics — method:numerical — method:analytical — Sun:interior

1. INTRODUCTION

Meridional flows in the solar interior have recently become
the focus of observational and theoretical attention. Poleward
sub-surface flows with amplitudes of the order of a few tens
of meters per second have been detected with reliable accuracy
down to about 0.85r⊙ (Gileset al. 1997). A globally equator-
ward return flow must exist deeper in the interior to guarantee
mass conservation, but its amplitude and structure can onlybe
conjectured currently. This paper addresses the question of how
deeply these meridional flows penetrate into the radiative zone.
An understanding of these return meridional flows is of fun-
damental importance since their nature plays a crucial rolein
many current theories for the internal magneto-hydrodynamics
of the Sun.

Firstly, meridional circulations have been argued to play a
central role in the operation of the global solar dynamo (seethe
review by Charbonneau, 2005). In these models, the predicted
spatio-temporal behavior of the solar cycle depends sensitively
on the assumed circulation pattern and speed. The chosen posi-
tion for the return flow coupled with mass conservation sets the
velocity of the equatorward flow near the base of the convec-
tion zone and therefore controls the activity cycle period.Sim-
ilarly, the depth of penetration of the meridional flows intothe
radiative region determines where the toroidal magnetic field
is generated, and therefore also influences the cycle periodand
the field amplitudes.

Secondly, meridional flows advect angular momentum, and
therefore play a key role in the global dynamical balance of the
solar interior. For example, helioseismology has revealedthe
existence of a strong radial shear layer, now known as the solar
tachocline (Brownet al. 1989; Spiegel & Zahn, 1992; Hughes,
Rosner & Weiss, 2007), located precisely at the interface be-
tween the radiative and convective regions. Quantitative mod-
els of the tachocline have revealed a sensitive dependence of
the interior angular velocity profile on the derived or assumed
interfacial flows (Spiegel & Zahn, 1992; Gough & McIntyre,
1998; Rempel, 2005; Garaud, 2007).

Finally, meridional flows also transport various chemical
species within the solar interior, with directly observable con-

sequences. Near the base of the convection zone, mixing by
large-scale flows can prevent the gravitational settling ofhelium
with respect to hydrogen, leaving a noticeable signature inthe
helioseismic sound-speed data (Elliott & Gough ,1999). Addi-
tional mixing below the convection zone in the main-sequence
phase is also required by the observed surface abundances of
light elements such as lithium and beryllium, with plausibly the
same origin.

Flows with amplitudes on the order of tens of meters per sec-
ond are required to balance angular momentum transport by the
turbulent stresses throughout the convection zone (Mieschet al.
2000). Since there exist no physical barrier between the con-
vective and radiative regions, these convectively driven flows
may continue their downward progress somewhat beyond the
driving region into the radiative zone, thereby “penetrating” or
“overshooting” into the interior while retaining potentially sig-
nificant velocities. How far flows extend beyond their driving
region is an essential question.

The problem has recently been addressed by Gilman & Mi-
esch (2004) (GM04 hereafter) and by McIntyre (2007). Using a
steady-state formalism, GM04 discuss the depth of penetration
of an existinglatitudinal flow into the radiative interior. They
argue that the source flow amplitude is rapidly damped in the
radiative interior within a shallow Ekman depth. This depth
ranges from a fraction of a kilometer, using microscopic values
of the viscosity, to a few tens of kilometers, using a turbulent
value of the viscosity. Gilman and Miesch reach a strong con-
clusion, namely that“the physics of the solar tachocline and
neighboring regions does not allow penetration of meridional
circulation originating in the solar convection zone belowthe
overshoot layer”. This could have dramatic consequences for
the magneto-hydrodynamics of the solar radiative zone.

However, steady-state solutions are sensitively dependent on
boundary conditions. GM04 solve the problem for the radia-
tive interior dynamics where the forcing is by purely latitudinal
flows at the upper convective-radiative interface. They do not
consider interfacial forcing from flows generated by the differ-
ential rotation nor by direct radial pumping into the radiative
zone (only radial flows generated for mass conservation in re-
sponse to their latitudinal forcing). It is reasonable to address
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the question as to whether their strong conclusion remains ap-
plicable under more general circumstances.

In this paper, we therefore extend the work of GM04 to al-
low for greater generality in the source forcing flow, allowing
the possibility of azimuthal and radial flows in addition to the
latitudinal flows. We systematically examine the consequences
of using these various sets of boundary conditions to mimic
the convective-radiative interface. We find that the meridional
flows can penetrate to significantly different depths, depending
upon the choice of boundary conditions. The GM04 solution
can be recovered in special cases, but is typically overpowered
by other solutions when alternative assumptions are made about
the nature of the flows driven within the convection zone.

In what follows, we adopt a three-step approach to study the
penetration of meridional flows into the solar radiative zone.
Given the added difficulties inherent to spherical coordinate
systems, we first examine the problem in Cartesian geometry.
In §2, we study analytically the complete set of steady, linear,
pseudo-axisymmetric Boussinesq equations and explore a wide
range of boundary conditions that may possibly mimic the ef-
fects of the convection zone on the radiative zone. We system-
atically discuss the solutions obtained, which are linear combi-
nations of two fundamental modes of behavior. One of these
modes is a solution which varies rapidly on a typical shallow
Ekman scale as found by GM04, the other one is a more slowly
varying solution which can span the entire interior. In order to
gain better insight into the physics of the system and in partic-
ular the new solutions, in §3 we consider a simplified Carte-
sian Boussinesq model in which the solutions related to the Ek-
man layers are artificially suppressed by neglecting the viscous
terms in the radial and latitudinal components of the momen-
tum equation. Finally, in §4, we relax the Cartesian constraint
and present numerical results for all of the various boundary
conditions in a steady, linear, anelastic, spherical but axisym-
metric simulation of the solar radiative zone. We compare these
numerical results in spherical geometry with the analytical pre-
dictions from the Cartesian models, both in terms of the scale of
variation of the solutions, and in terms of their predicted flow
velocities. While the spherical geometry as well as the non-
uniform background state necessarily add to the complexityof
the problem, we find that the analytical scalings extracted from
the Cartesian geometry models agree very well with the full
numerical solutions. When more complex boundary conditions
are taken into account, limits on the penetration of meridional
flows into the radiative zone are much less stringent than previ-
ously claimed. The exact flow velocities and depth of penetra-
tion achieved, however, depend sensitively on the actual bound-
ary conditions selected. These results and conclusions aredis-
cussed in detail in §5.

2. A CARTESIAN MODEL

In all that follows we consider a stably stratified radiative
zone located beneath a turbulent convection zone, a typicalsit-
uation encountered in all solar-type stars. Within the convection
zone, we assume that turbulent stresses drive large-scale flows
in the azimuthal direction (i.e. a large-scale differential rota-
tion) as well as in the meridional direction. The amplitude and
spatial variation of the flows just above the convective-radiative
interface is assumed to be known. We then pose and solve the
following question:What is the resulting flow pattern and ve-
locities in the underlying radiative zone?

2.1. Model setup

The spherical geometry of the solar radiative zone as well as
the non-uniform background state (in terms of temperature and
density, viscosity and thermal conductivity for instance)both
preclude any attempt at solving the problem analytically. We
postpone to §4 the presentation and discussion of the complete
numerical solution of the problem, and first consider a much
simplified “radiative zone” with rectangular geometry in Carte-
sian coordinates (x,y,z), and a uniform background temperature
gradient, viscosity and thermal conductivity. In this coordinate
system, thex-direction can be thought of as the azimuthal di-
rection with x ∈ [0,2πR], the y-direction is aligned with the
latitudinal direction and is limited toy∈ [0,πR] and finally the
z-direction is the radial direction withz≤ R. The poles are rep-
resented byy = 0 andy = πR while the equator is aty = πR/2.
The dimensional constantR represents the base of the convec-
tion zone, andz= 0 the interior of the Sun. The system rotates
with angular velocityΩ = (0,0,Ω), and gravity is assumed to be
aligned with the rotation axis.

2.2. Model equations and general solution

The equations governing dynamical and thermal perturba-
tions to a stably stratified background assumed at rest are
the mass, momentum and thermal energy conservation equa-
tions. Using the Boussinesq approximation and assuming “ax-
ial” symmetry (i.e.∂/∂x = 0), we first linearize these equations
in the thermal perturbations and flow velocities, then project
them onto the Cartesian coordinate system as

∂v
∂y

+
∂w
∂z

= 0 ,

−2Ωv = ν

(

∂2u
∂y2

+
∂2u
∂z2

)

,

2Ωu = −
∂p
∂y

+ν

(

∂2v
∂y2

+
∂2v
∂z2

)

,

0 = −
∂p
∂z

+ gαθ ,

βw = κ

(

∂2θ

∂y2
+

∂2θ

∂z2

)

, (1)

where u = (u,v,w) is the flow velocity,θ is the temperature
perturbation,ν andκ are the viscosity and thermal diffusivity,
α = 1/T whereT is the background temperature and finally,
gαβ = N2 is the background buoyancy frequency. Note that the
viscous diffusion term in the radial component of the momen-
tum equation has been neglected in accordance with hydrostatic
equilibrium; this does not affect in any way the conclusionsof
this paper.

While GM04 and McIntyre (2007) neglected the∂2/∂y2

terms in the viscous terms, we consider here for completeness
the full Laplacian. The additional terms are found to be nec-
essary in the light of the fact that some of the boundary layers
in the system are large compared with the vertical size of the
domain. Neglecting these terms is not physically justified,and
mathematically transforms any slowly varying, standard expo-
nential solutions into the rather unphysical secular linear solu-
tions described by McIntyre (2007) (and neglected by GM04).

The hydrostatic equilibrium equation can be combined with
the latitudinal component of the momentum equation to yielda
generalized thermal-wind equation,

2Ω
∂u
∂z

+αg
∂θ

∂y
= ν

∂

∂z

(

∂2v
∂y2

+
∂2v
∂z2

)

. (2)



3

Seeking solutions with latitudinal dependence as sin(2ny/R)
or cos(2ny/R), and exponential vertical dependence as exp(kz),
we obtain the characteristic equation

(

k2 −
4n2

R2

)

[

k2

(

k2 −
4n2

R2

)2

+
k2

d4
E

−
4n2

R2d4
BD

]

= 0 , (3)

where we have introduced two standard characteristic length-
scales

dE =
( ν

2Ω

)1/2
anddBD =

(νκ

N2

)1/4
, (4)

the first one being the standard Ekman depth and the second
representing a buoyancy-diffusion layer (GM04, Barcildon&
Pedlosky 1967).

It is possible to show (with some algebra) that in the limit
where

R4d8
BD

16n4d12
E

≫ 1 , (5)

(which is always true below the base of the convection zone)
then the eight solutions to equation (3) (±k1,±k2,±k3 and±k4)
can be approximated by

k1 =
2n
R

,

k2 ≃
d2

E

d2
BD

2n
R

,

k3,4 ≃
√

2
2

(1± i)d−1
E , (6)

thus yielding four slowly varying exponential solutions (related
to k1 andk2) in addition to four rapidly varying, oscillatory and
exponential solutions related tok3 and k4 which describe the
Ekman layers of the system. The Ekman solutions were found
and described by GM04. On the other hand, the±k1 and±k2
solutions differ from the (two) real solutions found by GM04,
a discrepancy which can easily be traced back to the omitted
∂2/∂y2 in their viscous diffusion terms.

It is interesting to note that

k2 =
√

PrBu
n
D

=
√

PrBu
R

2D
k1 , (7)

whereD is the local density scaleheight,Pr = ν/κ is the Prandtl
number and where the Burger numberBu is defined as

Bu=

(

ND
RΩ

)2

. (8)

The Burger number in the solar radiative zone is estimated tobe
aboutBu≃ 2.5×103 usingΩ = 2.7×10−6s−1, N = 8×10−4s−1,
R = 5× 1010cm andD = 0.17R = 8.6× 109cm (see Gough,
2007). In laminar regions of the solar radiative zone, the mi-
croscopic Prandtl number is of orderPr = 2×10−6, so that

k−1
2 ≃ 5k−1

1 , (9)
which is clearly of the order ofR itself for large-scale forcing
(smalln).

2.3. General solutions

Consider for instance the solution of (1) corresponding to
cos(2ny/R) and sin(2ny/R) variations in the azimuthal veloc-
ity:

u(x,y,z) =
(

a1ek1z + a2e−k1z+ a3ek2z + a4e−k2z (10)

+ a5ek3z+ a6e−k3z+ a7ek4z+ a8e−k4z
)

cos

(

2ny
R

)

+
(

b1ek1z + b2e−k1z+ b3ek2z + b4e−k2z

+ b5ek3z+ b6e−k3z+ b7ek4z+ b8e−k4z
)

sin

(

2ny
R

)

.

This corresponds to

v(x,y,z) = d2
E

[(

k2
1 − k2

2

)(

a3ek2z+ a4e−k2z
)

+
(

k2
1 − k2

3

)(

a5ek3z + a6e−k3z
)

+
(

k2
1 − k2

4

)(

a7ek4z + a8e−k4z
)]

cos

(

2ny
R

)

+ d2
E

[(

k2
1 − k2

2

)(

b3ek2z+ b4e−k2z
)

+
(

k2
1 − k2

3

)(

b5ek3z + b6e−k3z
)

+
(

k2
1 − k2

4

)(

b7ek4z + b8e−k4z
)]

sin

(

2ny
R

)

, (11)

w(x,y,z) = d2
E

[

k1

k2

(

k2
1 − k2

2

)(

a3ek2z − a4e−k2z
)

+
k1

k3

(

k2
1 − k2

3

)(

a5ek3z− a6e−k3z
)

+
k1

k4

(

k2
1 − k2

4

)(

a7ek4z− a8e−k4z
)

]

sin

(

2ny
R

)

− d2
E

[

k1

k2

(

k2
1 − k2

2

)(

b3ek2z − b4e−k2z
)

+
k1

k3

(

k2
1 − k2

3

)(

b5ek3z− b6e−k3z
)

+
k1

k4

(

k2
1 − k2

4

)(

b7ek4z− b8e−k4z
)

]

cos

(

2ny
R

)

, (12)

and finally

θ(x,y,z) = −
2Ω

gα

[

(

a1ek1z − a2e−k1z
)

+
k2

k1

(

a3ek2z− a4e−k2z
)

+
k2

2

k1k3

(

a5ek3z− a6e−k3z
)

+
k2

2

k1k4

(

a7ek4z− a8e−k4z
)

]

· sin

(

2ny
R

)

+
2Ω

gα

[

(

b1ek1z− b2e−k1z
)

+
k2

k1

(

b3ek2z − b4e−k2z
)

+
k2

2

k1k3

(

b5ek3z− b6e−k3z
)

+
k2

2

k1k4

(

b7ek4z− b8e−k4z
)

]

· cos

(

2ny
R

)

, (13)

where one must bear in mind thatk1 and k2 depend on the
wavenumbern/R of the forcing function.

2.4. Boundary conditions

To find the amplitude of each exponential term, one must ap-
ply the boundary conditions to the general solutions. A quick
look at the system shows that eight boundary conditions are re-
quired, which arise from conditions onu, v, w andθ at both the
top and bottom of the domain.

We choose boundary conditions atz= R to represent the ac-
tion of the convection zone on the underlying stably stratified
and laminar radiative region. We require the continuity of the
radiative interior solution with the complete vector of velocities
at the base of the convection zone, so that

u(x,y,R) = ucz(y) = (ucz(y),vcz(y),wcz(y)) (14)
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(where the meridional and azimuthal flows in the convection
zone are assumed to be axisymmetric). A simple reasonable
prescription for the flow velocities at the interface might be, for
instance,

ucz(y) = −U0 cos

(

2y
R

)

,

vcz(y) = V0 sin

(

2y
R

)

,

wcz(y) = −W0 cos

(

2y
R

)

. (15)

The azimuthal forcing termucz(y) represents a solar-like differ-
ential rotation (with slower-than-average rotation near the poles
and faster-than-average rotation near the equator ifU0 > 0). The
latitudinal and radial forcing termsvcz(y) andwcz(y) represent
a single-cell flow in each hemisphere with independent verti-
cal and latitudinal flow velocities. WhenV0 > 0 the flow is
equatorward at the boundary, whileW0 > 0 guarantees inflow
in the high latitudes and outflow in the low latitudes. Note that
since the problem studied is linear, and since any of the three
velocity components of (ucz(y),vcz(y),wcz(y)) can be written as
a Fourier series in cos(2ny/R) and sin(2ny/R), it is possible to
find the general solution of (1) for any set of imposed velocities.
The profiles chosen here contain only one Fourier component
for simplicity.

Near the bottom boundary, we would in principle like to
choose boundary conditions that have as little effect on thesolu-
tion as possible. In the real Sun they would instead be replaced
by regularity conditions at the origin. However, fitting eight
boundary conditions to the general solutions yields an 8×8 lin-
ear system which is difficult to study analytically (even with the
help of Maple or equivalent software). Thus in this section we
restrict our study to the case where the bottom boundary is lo-
cated atz→ −∞. This immediately implies that all of the even
{ai} and{bi} coefficients must be null. In §3 we revisit this
simplification, and suggest an easy way of deducing the solu-
tions in a geometry where the bottom boundary is atz= 0 from
those in a semi-infinite domain. In §4 we verify our hypothesis
against numerical results.

In what follows (§2.5 and §2.6) we describe two possibilities
for the thermal boundary conditions at the convective-radiative
interface.

2.5. Thermal boundary conditions of type 1: “perfectly”
conducting convection zone

The local heat flux through the boundary associated with the
perturbations is the sum of the conducted heat flux−k∂θ/∂z
and the advected heat fluxρhw, whereρ is the background den-
sity, h is the background enthalpy, andk = ρcpκ is the thermal
conductivity (herecp is the specific heat at constant pressure).

In a steady-state this local heat flux must be equal to zero, so
that when the convection zone is perfectly conducting (k→∞)
the thermal boundary condition reduces to∂θ/∂z= 0.

Using this final boundary condition together with the ones
described in §2.4 we find that the remaining odd coefficients
{ai}i=1,3,5,7 satisfy the linear systemMA = C with

M =









1 1 1 1
0 k2

1 − k2
2 k2

1 − k2
3 k2

1 − k2
4

0 k2
1−k2

2
k2

k2
1−k2

3
k3

k2
1−k2

4
k4

k2
1 k2

2 k2
2 k2

2









(16)

and

A =









a1ek1R

a3ek2R

a5ek3R

a7ek4R









andC =







−U0
0
0
0






. (17)

Similarly, the coefficients{bi}i=1,3,5,7 satisfy the systemMB= D
with

B =









b1ek1R

b3ek2R

b5ek3R

b7ek4R









andD =







0
V0d−2

E
W0d−2

E k−1
1

0






. (18)

In the limit wherek2 ≪ k1 ≪ |k3|, |k4| the solutions can be
simplified to yield

a1 ≃U0
k2

2

k2
1

e−k1R ,

a3 ≃ −U0e−k2R ,

a5 ≃U0
k2

1

k2

k4

k3(k3 − k4)
e−k3R ,

a7 ≃U0
k2

1

k2

k3

k4(k4 − k3)
e−k4R , (19)

and

b1 ≃ 0 ,

b3 ≃
[

−
V0

d2
E

1
k3k4

+
W0

d2
E

(k3 + k4)
k1k3k4

]

e−k2R ,

b5 ≃
[

−
V0

d2
E

1
k3(k3 − k4)

+
W0

d2
Ek1

k4

k3(k3 − k4)

]

e−k3R ,

b7 ≃
[

−
V0

d2
E

1
k4(k4 − k3)

+
W0

d2
Ek1

k3

k4(k4 − k3)

]

e−k4R . (20)

We can now finally evaluate, for instance, the latitudinal flow
velocity within this rectangular radiative zone:

v(x,y,z) ≃
[

−d2
Ek2

1U0ek2(z−R) − d2
Ek2

1
U0

k2

k4k3

k3 − k4
ek3(z−R) (21)

− d2
Ek2

1
U0

k2

k3k4

k4 − k3
ek4(z−R)

]

cos

(

2y
R

)

+
[(

−V0
k2

1

k3k4
+W0

k1(k3 + k4)
k3k4

)

ek2(z−R)

+
(

V0
k3

k3 − k4
−

W0

k1

k4k3

k3 − k4

)

ek3(z−R)

+
(

V0
k4

k4 − k3
−

W0

k1

k3k4

k4 − k3

)

ek4(z−R)

]

sin

(

2y
R

)

.

As expected from the linearity of the governing system equa-
tions (1), the meridional flow velocity in the radiative interior
is simply the sum of the three contributions arising from az-
imuthal forcing only (with terms proportional toU0), latitudinal
forcing only (with terms proportional toV0) and radial forcing
only (with terms proportional toW0). In addition, each of these
three contributions is the sum of three terms, one with exponen-
tial dependence inek2(z−R) which corresponds to a very slowly
varying function of depth, and two complex conjugate terms
with exponential dependence inek3(z−R) andek4(z−R) associated
with the very rapidly decaying and oscillating Ekman solutions.

We now compare the relative amplitudes of all of these terms
as a function of the parameters of the system. The amplitude



5

of the rapidly decaying component of the solution arising from
azimuthal forcing only is

d2
Ek2

1
U0

k2

∣

∣

∣

∣

k3k4

k3 − k4

∣

∣

∣

∣

≃
√

8Eν

PrBu
D
R

U0 (22)

using the values ofki derived in equations (6) and (7), and
where

Eν =
ν

R2Ω
=

2d2
E

R2
(23)

is the Ekman number. Similarly, the slowly decaying compo-
nent of the solution arising from azimuthal forcing only hasan
amplitude

d2
Ek2

1U0 ≃ 2EνU0 (24)

Given thatEν ≃ 10−16 near the base of the convection zone for
microscopic values of the viscosity, within an Ekman lengthof
the boundary both components of the solution are negligible.

Similarly with the other forcing contributions, we conclude
that

• latitudinal forcing drives meridional flows with a rapidly
decaying component which has an amplitudeV0 (with
no dependence on any of the other parameters of the sys-
tem), while the slowly decaying component has an am-
plitude proportional toEνV0. Thus, in agreement with
the study of GM04, we find that within a few Ekman
lengths, both are negligible for microscopic values of
the viscosity.

• radial forcing drives meridional flows with a rapidly de-
caying component which has an amplitude proportional
to W0/

√
Eν , while the slowly decaying component has

an amplitude proportional to
√

EνW0. Thus, in this par-
ticular case we find that beyond a few Ekman lengths
the slow mode retains a non-negligible amplitude of
about 10−8 times the imposed velocity. Indeed, for im-
posed meter per second flow velocities, the flows near
the top of the radiative zone could then be of the or-
der of

√
EνW0 ≃ 10−6 centimeters per second, with an

overall turnover time of the order ofR/
√

EνW0 ≃ 1 Gyr.
While very slow, this can still provide mixing in the
tachocline on the stellar evolution and/or gravitational
settling timescale.

2.6. Thermal boundary conditions of type 2: no net perturbed
heat flux through the boundary

Dropping the assumption that the convection zone is a per-
fectly conducting fluid, we require instead thathw= cpκ∂θ/∂z.
which is equivalent toTw= κ∂θ/∂z.

We can rewrite this new thermal boundary condition into the
linear systemsMA = C andMB = E whereM, A, B andC have
already been defined, and

E =







0
V0d−2

E
W0d−2

E k−1
1

−W0k2
2HΘ/d2

Ek1






, (25)

whereHΘ is the potential temperature scaleheight

HΘ =
T
β

=
g

N2
. (26)

Thus the{ai} coefficients are the same as in the previous sec-
tion, while in the limit wherek2 ≪ k1 ≪ |k3|, |k4|

b1 ≃ −
HΘk2

2

d2
Ek3

1

W0e−k1R ,

b3 ≃
(

−
V0

k3k4
+

HΘk2
2

k3
1

W0

)

e−k2R

d2
E

,

b5 ≃ −
[

V0 +W0
k4

k1
(HΘk2 − 1)

]

e−k3R

k3(k3 − k4)d2
E

,

b7 ≃ −
[

V0 +W0
k3

k1
(HΘk2 − 1)

]

e−k4R

k4(k4 − k3)d2
E

, (27)

so that

v(x,y,z) ≃
[

−d2
Ek2

1U0ek2(z−R) − d2
Ek2

1
U0

k2

k4k3

k3 − k4
ek3(z−R)

− d2
Ek2

1
U0

k2

k3k4

k4 − k3
ek4(z−R)

]

cos

(

2y
R

)

+
[(

−
V0k2

1

k3k4
+

HΘk2
2

k1
W0

)

ek2(z−R)

+
(

V0 +W0
k4

k1
(HΘk2 − 1)

)

k3ek3(z−R)

k3 − k4
(28)

+
(

V0 +W0
k3

k1
(HΘk2 − 1)

)

k4ek4(z−R)

k4 − k3

]

sin

(

2y
R

)

.

For this new set of boundary conditions, azimuthal forcing
and latitudinal forcing yield the same solutions as in the previ-
ous section, while radial forcing drives meridional flows with
a rapidly decaying component which has an amplitude propor-
tional toW0(HΘk2−1)/

√
Eν , while the slowly decaying compo-

nent has an amplitude proportional to (HΘ/R)(R/D)2PrBuW0.
Note how in this case the slowly decaying component of the
flow has an amplitude which is independent of the background
viscosityν.

2.7. Discussion of the solutions

Using this Cartesian geometry model, we have shown that
there exist solutions for meridional flows in the radiative in-
terior with significant amplitude throughout. These flows can
only be present if driven by direct pumping into and out of the
radiative zone, that is, whenwcz(y) has a significant amplitude
on the boundary. Our study also shows that the actual ampli-
tude of the flows within the radiative zone depends sensitively
on the thermal boundary conditions used. While it is not clear
which set of boundary conditions actually accurately represents
the true convective-radiative interface, it is not implausible that
they may lie somewhere in between the two extreme cases stud-
ied. Thus it is also not implausible that there may be significant
penetration of the convective zone flows into the radiative zone,
with typical turnover times shorter thanR/

√
EνW0.

Our results extend the work of GM04, and naturally recover
their solutions in the limit where only latitudinal forcingis
taken into account. Note that GM04 do not specifically re-
quire thatw be null on the convective-radiative interface, and
argue that any spatially varying latitudinal flow drives radial
flows into and out of the boundary to guarantee mass conser-
vation. This is indeed correct, but one must keep in mind that
∂v/∂y = −∂w/∂z only relates latitudinal variations inv to the
radial derivative ofw. Since the derivative is dominated at the
base of the convection zone by rapid variation on the Ekman
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scale, the mass conservation equation in fact requires thatthe
radial flows in the GM04 solution have an amplitude of the or-
der ofW0 =V0dE/R. It is therefore easy to see why their solution
yields negligible velocities for the slowly varying component of
the flow penetrating into the radiative zone.

Finally, it is crucial to note that since the momentum and en-
ergy equations in this study (and the preceding ones by GM04
and McIntyre, 2007) have been linearized, the predicted am-
plitudes of the flows are linearly dependent on the imposed
flow velocities. In reality, this will only be true in the limit
where the typical amplitudes of the nonlinear advection terms
(u ·∇u for the momentum equation, andu ·∇θ for the energy
equation) are indeed much smaller than the corresponding lin-
ear terms (2Ω×u for the momentum equation andβw for the
energy equation). The nonlinear terms in the momentum equa-
tion for example guarantee that no unphysical counter-rotation
is allowed. The linearized equations on the other hand scale
arbitrarily with the imposed boundary conditions and do allow
counter-rotation for certain input parameters, e.g. if theim-
posed differential rotation profileucz(y) is large enough or if
the meridional flows are too rapid (see Figure 5 for instance).
Similarly, the nonlinear terms in the energy equation guaran-
tee that the actual turnover time of the meridional flows cannot
be lower than the local thermal diffusion time (over the depth
considered), while the linearized equations allow for any val-
ues of the turnover time provided the imposed boundary flow
velocities are high enough.

From this linearized model, we can therefore say with rea-
sonable confidence that meridional flows can indeed penetrate
into the radiative zone, provided their turnover time (typically
estimated asv(d)/d whered = R− z is the depth considered)
is longer than the local thermal diffusion time (estimated as
d2/κ).

3. A REDUCED CARTESIAN MODEL

One of the remaining issues that needs to be addressed is
that of lower boundary. In the previous section, the high-
dimensionality of the solution space made it difficult to con-
sider the more realistic situation of a bottom boundary located
at z = 0. While the Ekman solutions (associated withk3 and
k4) decay inward/downward so quickly that the presence or ab-
sence of a lower boundary cannot affect them, the slowly vary-
ing solutions do span the entire radiative region fromz= Rdown
to z= 0; the location of the lower boundary is expected to have
some influence on their amplitude.

Here, we therefore focus on studying the slowly varying so-
lutions only by considering a system in which the Ekman flows
are filtered out. This is another way of reducing the dimen-
sionality of the solution space, and enables us to compare the
solutions in a semi-infinite domain to the solutions in a finite
domain.

3.1. Reduced model equations

We consider the system

∂v
∂y

+
∂w
∂z

= 0 ,

∂p
∂z

= αgθ ,

2Ωu = −
∂p
∂y

,

−2Ωv = ν

(

∂2u
∂y2

+
∂2u
∂z2

)

,

βw = κ

(

∂2θ

∂y2
+

∂2θ

∂z2

)

, (29)

in which the viscous diffusion terms within the latitudinalcom-
ponent of the momentum equation has now been removed. This
simplification is consistent with the assumptions of geostrophic
equilibrium and, as we now prove, effectively filters out the
Ekman flows. The system can be reduced to a single partial
differential equation foru, for instance, as

∂4u
∂z4

+
(

1+
d4

E

d4
BD

)

∂2u
∂z2∂y2

+
d4

E

d4
BD

∂4u
∂y4

= 0 . (30)

Seeking exponential solutions inz with periodic behavior in
y as before yields the characteristic equation:

(

k2 −
4n2

R2

)(

k2 −
4n2

R2

d4
E

d4
BD

)

= 0 , (31)

with solutions±K1 and±K2 with

K1 =
2n
R

= k1 and

K2 =
2n
R

(

d2
E

d2
BD

)

= k2 . (32)

Thus we recover only the slowly varying solutions of the previ-
ous section.

3.2. General solutions

The flow solution to the above system for fixed latitudinal
wavenumbern is

u(x,y,z) =
(

A1eK1z + A2e−K1z+ A3eK2z + A4e−K2z
)

cos

(

2ny
R

)

+
(

B1eK1z + B2e−K1z+ B3eK2z + B4e−K2z
)

sin

(

2ny
R

)

(33)

which also yields

v(x,y,z) = d2
E

(

K2
1 − K2

2

)(

A3eK2z + A4e−K2z
)

cos

(

2ny
R

)

+ d2
E

(

K2
1 − K2

2

)(

B3eK2z + B4e−K2z
)

sin

(

2ny
R

)

(34)

and

w(x,y,z) = d2
E

K1

K2

(

K2
1 − K2

2

)(

A3eK2z− A4e−K2z
)

sin

(

2ny
R

)

− d2
E

K1

K2

(

K2
1 − K2

2

)(

B3eK2z− B4e−K2z
)

cos

(

2ny
R

)

(35)

3.3. Boundary conditions

The governing equations considered form what is apparently
a 6th order system in thez direction, and require, in principle,



7

6 boundary conditions split between the top and bottom bound-
aries. Naturally, one would like to impose boundary conditions
on u, w andθ (one at the top, one at the bottom for each vari-
able). Note that since the viscous terms have been neglected
in the equations for hydrostatic and geostrophic equilibrium re-
spectively, one cannot impose a boundary condition onv: the
equations contain no stresses that could transfer the boundary
information to the rest of the system. However, we see that
combining these equations only yields a 4th order partial differ-
ential equation foru. This implies that the 6 selected boundary
conditions must somehow be redundant, otherwise there willbe
no solution to the system. In what follows, we therefore only
select boundary conditions foru andw at the top and bottom
boundaries. Near the top boundary, we consider as before

u(x,y,R) = ucz(y) ,

w(x,y,R) = wcz(y) . (36)

When considering a bottom boundary atz = 0, we choose im-
permeable boundary conditions forw, and stress-free boundary
conditions foru so that

∂u
∂z

∣

∣

∣

∣

(x,y,0)

= 0 ,

w(x,y,0) = 0 . (37)

3.4. Solutions for a semi-infinite domain

When the bottom boundary is near−∞, we find that

A1 = −U0e−K1R ,

A2 = A3 = A4 = 0 ,

B1 = −
K2

K1(K2
1 − K2

2)
W0

d2
E

e−K1R ,

B2 = B4 = 0 ,

B3 =
K2

K1(K2
1 − K2

2)
W0

d2
E

e−K2R , (38)

so that

v(x,y,z) =
K2

K1
W0eK2(z−R) sin(K1y) , (39)

which illustrates again how radial forcing can yield non-zero
flow amplitudes penetrating deeply into the radiative zone.It is
important to note, however, that the predicted flow amplitude is
different from that found in §2. This might be attributed to the
fact that when viscous effects are taken into account, a fraction
of the flow penetrating into the radiative zone is deflected into
the very shallow Ekman layers.

3.5. Solutions for a finite domain

When the bottom boundary is located atz= 0, we find that

A1 = A2 = −
U0

2cosh(K1R)
,

A3 = A4 = 0 ,

B1 = B2 = −
K2

K1(K2
1 − K2

2)
W0

d2
E

cosh(K2R)
2sinh(K2R)cosh(K1R)

≃ −
W0

2d2
EK2

1

1
K1Rcosh(K1R)

,

B3 = B4 =
K2

K1(K2
1 − K2

2)
W0

d2
E

1
2sinh(K2R)

≃ W0

2d2
EK2

1

1
K1R

, (40)

implying

v(x,y,z) =
W0

sinh(K2R)
K2

K1
cosh(K2z)sin(K1y)

≃ W0

K1R
cosh(K2z)sin(K1y) . (41)

3.6. Consequences

Comparing the expressions in equations (39) and (41), we
find that the slowly varying component of the meridional flow
in the case of a finite domain has an amplitude that is 1/K2R
times that of the semi-infinite domain case. The difference be-
tween the predicted amplitudes for the two geometrical systems
(finite and semi-infinite domains) can easily be understood in
the light of the fact that the exponential solutions associated
with K1 andK2 decay on much longer lengthscales thanR.

Extrapolating this result to the full Cartesian problem stud-
ied in §2, we therefore predict that the slowly varying com-
ponents of the meridional flows (associated with thek1 andk2
wavenumbers) should in fact have an amplitude that is 1/k2R
times that given in (22) and (29); the Ekman components on
the other hand decay so rapidly that their amplitude should not
be influenced by the presence of a lower boundary. We now re-
vise our estimates of §2.5 and §2.6 to predict that in the caseof
type 1 boundary conditions (∂θ/∂z= 0 at the upper boundary)
then

• azimuthal forcing leads to meridional flows with a
rapidly decaying component with an amplitude propor-
tional to

√

Eν/PrBuU0, while the slowly decaying com-
ponent has an amplitude proportional toEνU0/

√
PrBu.

• latitudinal forcing leads to meridional flows with a
rapidly decaying component with an amplitude propor-
tional toV0, while the slowly decaying component has
an amplitude proportional toEνV0/

√
PrBu.

• radial forcing leads to meridional flows with a rapidly
decaying component with an amplitude proportional to
W0/

√
Eν , while the slowly decaying component has an

amplitude proportional to
√

Eν/PrBuW0.

In the case of type 2 boundary conditions (whereκ∂θ/∂z= Tw
at the upper boundary) the flow velocities predicted in the case
of azimuthal and latitudinal forcing are the same, while radial
forcing drives flows with a rapidly decaying component with
an amplitude proportional toW0(HΘk2 − 1)/

√
Eν and a slowly

decaying component which has an amplitude proportional to
(HΘ/R)

√
PrBuW0.

4. NUMERICAL SOLUTIONS IN A SPHERICAL SHELL

4.1. Model setup

To complete this axisymmetric study and illustrate our an-
alytical results numerically, we perform simulations of flows
in the solar radiative zone subject to various boundary condi-
tions. The governing equations for the numerical model are
derived by perturbing the spherically symmetric equationsof
stellar structure, moving to a rotating frame of reference and
assuming that the velocity perturbations and thermodynamical
perturbations to the background spherically symmetric state are
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small enough for linearization to be appropriate. Then

2ρΩ×u = −∇p̃− ρ̃∇Φ+ f∇·Π ,

∇· (ρu) = 0 ,

ρTu ·∇s= f∇· (k∇T̃) ,

p̃
p

=
ρ̃

ρ
+

T̃

T
, (42)

whereu = (ur ,uθ,uφ) is the velocity field in a frame rotating
with angular velocityΩ, ρ, T, s andp are the standard thermo-
dynamical variables,k = ρcpκ is the thermal conductivity,Π is
the viscous stress tensor (which depends on the viscosityν) and
Φ is the gravitational potential. Quantities denoted with bars
are background quantities, taken from the standard solar model
of Christensen-Dalsgaardet al. (1991), while the temperature,
pressure and density perturbations are denotes with tildes.

This system is fully consistent with the Cartesian model
equations presented in §2, with the added sophistication ofthe
perfect gas equation of state and the anelastic approximation
instead of the simpler Boussinesq approximation. This modifi-
cation is added so that the model equations are consistent with
the level of approximation used, but does not affect the nature of
the solutions. The centrifugal force associated with the rotation
of the background stateΩ×Ω×r has been removed to suppress
global Eddington-Sweet circulations, which are known to beof
very small amplitude, but would otherwise play an important
role in this steady-state calculation (see the work of Garaud,
2002, for comparison). Perturbations in the gravitationalpoten-
tial are neglected in accordance with Cowling’s approximation.

Note how both diffusion terms have been multiplied by the
same factorf . Since the typical Ekman number in the Sun (just
below the base of the convection zone) is of the order of 10−16,
a unit value off would lead to Ekman layers about 10−8 times
size of the domain; the numerical method used is unable to re-
solve them. Using values off of the order of 107 − 109 instead
inflates the Ekman layers artificially to 10−4 times the size of
the domain or larger, which can then be fully resolved. As an
added bonus, varyingf provides an easy way of varying the
effective viscosity and thermal conductivity without changing
the Prandtl number. As a result, the estimated values ofk1 and
k2 are unchanged from the solar value (sincek2 only depends
on the Prandtl number), whilek3 and k4 are a factor off 1/2

smaller. As long asf ≪ 1015, the hierarchyk2 ≪ k1 ≪ |k3|, |k4|
is respected.

The numerical method of solution is based on the expansion
of the governing equations onto a spherical coordinate system
(r,θ,φ), followed by their projection onto Chebishev polynomi-
alsTn(cosθ), and finally, solution of the resulting ODE system
in r using a Newton-Raphson-Kantorovich algorithm. For more
detail, see Garaud (2001). The computational domain is limited
to the region of the radiative zone withinr ∈ [0.02,0.7]r⊙. The
solution is found to be reasonably insensitive to the position of
the lower boundary for this range of parameters.

In order to study the dependence of the amplitude and depth
of penetration of the flows on the Ekman number (i.e. onk3
andk4), we perform a series of simulations withf ranging from
107 to 109. In order to verify the dependence of the amplitude
of the solutions onk2, we perform similar calculations with a
hypothetical Sun where the thermal conductivity in the system
of equations (42) is uniformly multiplied by a factor of four
throughout the interior, resulting in a Prandtl number artificially
decreased by a factor of four compared with its solar value. In
that case,k2 is two times smaller than in the case of the solar

value of the Prandtl number.
In order to study in detail the effects of the boundary con-

ditions on the solutions, we study separately three cases where
forcing is respectively in the azimuthal, latitudinal and radial
directions only. In the case of radial forcing, we consider the
two boundary conditions studied in §2, namely∂T̃/∂r is null
on the boundary, andκ∂T̃/∂r = Tur .

The details of the expressions for the boundary conditions in
each case are given below.

4.2. Boundary conditions.

In all of the simulations performed, the lower boundary con-
ditions atr = 0.02r⊙ are the following:

• impermeable condition on the radial velocity,

• stress-free conditions on the tangential velocitiesuθ and
uφ,

• conducting condition on the temperature: we assume
that the domain within 0.02r⊙ is a conducting solid
sphere, so that the temperature perturbations satisfy
∇2T̃ = 0 within, and are regular atr = 0. We solve this
equation with the requirement thatT̃ → 0 asr → 0, and
derive a matching condition with the temperature fluc-
tuations at the interface.

Near the upper boundary (atr = 0.7r⊙), we consider the fol-
lowing cases:

• azimuthal forcing only: in this case, we setur = uθ = 0
at the boundary (assuming no-slip conditions). Fol-
lowing the results from helioseismology, we setuφ =
0.7r⊙ sinθΩ̃ with Ω̃ = Ωeq(1 − acos2θ − bcos4θ) − Ω,
where Ω = Ωeq(1 − a/5 − 3b/35) (Gilman, Morrow &
DeLuca, 1989),a = b = 0.15 andΩeq = 2.9× 10−6s−1.
The temperature boundary condition is∂T̃/∂r = 0.

• latitudinal forcing only: in this case we setur = uφ = 0
at the boundary, anduθ = V0 sinθcosθ with V0 = 1 m/s.
Note thatuφ = 0 is guaranteed by settinga = b = 0, in
which case the background angular velocity isΩ = Ωeq=
2.9× 10−6s−1. The temperature boundary condition is
∂T̃/∂r = 0.

• radial forcing only: in this case we setuθ = uφ = 0 at the
boundary andur =U0(1−3cos2θ) with U0 = 1cm/s. This
expression satisfies the global conservation of mass.
In this last case, two temperature boundary conditions
are explored as in §2, either∂T̃/∂r = 0 (type 1) or
κ∂T̃/∂r = Tur (type 2).

Note that since the governing equations are linear, the ampli-
tudes of each component of the flow defined by (U0,V0,W0) at
the boundary can be chosen arbitrarily. Here, they were selected
as what may be plausible flow velocities in the lower regions of
the convection zone.

4.3. Results

This section summarizes the numerical results for the various
simulations performed.

In order to compare quantitatively the numerical solutions
with the Cartesian model predictions we study the variationof
the latitudinal component of the meridional flowuθ, both near
and far from the boundary, at a fixed latitude fairly close to the
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FIG. 1.— Latitudinal velocity at a latitude of 80◦ as a function of re-scaled depth below the convection zoneξ = (r − 0.7r⊙)/dE for the four types of boundary
conditions described in §4.2. In each of the four plots, the solid lines (and solid symbols) correspond to simulations witha solar value of the Prandtl number, while
the dotted lines (and open symbols) correspond to simulationswith a Prandtl number artificially reduced by a factor of four.The symbols identify the value off used
in the simulations: a circle corresponds tof = 109, a diamond tof = 108 and a triangle tof = 107. For comparison, the forcing velocities at the latitude considered
are aboutucz(80◦) = 5200cm/s,vcz(80◦) = 17cm/s andwcz(80◦) = 0.9 cm/s.

polar regions. We select a high latitude of about 80◦ since the
Cartesian model applies best to systems in which the rotation
axis and gravity are nearly aligned.

In Figure 1 we first focus on the region close to the upper
boundary in order to single out the Ekman solution. Each plot
corresponds to one of the four types of boundary conditions
studied, and showsuθ(r) at a latitude of about 80◦. For clarity,
the depth below the convection zone is rescaled with the Ek-
man depthdE: thus, in each of the plotsξ = (r −0.7r⊙)/dE. The
results for the solar value of the Prandtl number are shown in
solid lines, and those corresponding to the lower value of the
Prandtl number (equivalently, a value ofκ that is four times
solar) are shown in the dotted lines. In each case, three runs
are presented withf = 107, 108, and 109 respectively and can
be identified with the symbols. It is immediately obvious from
observing all of these plots that there is indeed a component
of the solution which decays and oscillates rapidly with depth
below the convection zone on an Ekman lengthscale. From
the conclusions of §3.6, we expect the amplitude of this rapidly
decaying solution to scale as

√

f/Pr in the case of azimuthal
forcing, to be of order of the forcing velocity for any value of
f or Pr in the case of the latitudinal forcing, to scale as 1/

√
f

for radial forcing with type 1 boundary conditions and finally,
to scale as (HΘk2 −1)/

√
f for radial forcing with type 2 bound-

ary conditions. Note that for solar values of the background
state and of the Prandtl number, using the standard model of
Christensen-Dalsgaardet al. (1991),HΘk2 ≃ 0.8; for a Prandtl
number that is reduced by a factor of four, thenHΘk2 ≃ 0.4.

The comparison between these predicted scalings and the
outcome of the numerical simulations is shown in Figure 2.
Here, the symbols represent the amplitude of the solution de-
fined as the maximum value achieved by|uθ(r)| at the selected
latitude, for each of the simulations performed. The lines show
the predicted scalings, using as a reference the amplitude of the
solution for solar values of the Prandtl number and withf = 107.
Thus, for example, the solid line in the case of azimuthal forc-
ing only is generated by the equation

Â( f ,Pr⊙) = Â(107,Pr⊙)

(

f
107

)1/2

(43)

whereÂ( f ,Pr⊙) is the predicted amplitude of the other simula-
tions with solar values of the Prandtl number, andÂ(107,Pr⊙)

is the numerically calculated reference amplitude of the solu-
tion for f = 107 and solar values of the Prandtl number. The
dotted line in the same panel is easily calculated as

Â( f ,0.25Pr⊙) = 2Â(107,Pr⊙)

(

f
107

)1/2

(44)

The solid and dotted lines in the three other panels are con-
structed in a similar fashion. It is quite clear that the predicted
scalings fit the numerical solutions very well, except perhaps
in the case of radial forcing with type 2 boundary conditions
where the fit is only good to within a factor of order unity.
The origin of this discrepancy is not entirely clear, but canbe
partly traced back to non-ideal effects in the equation of state
(which affects the determination ofHΘ) and to geometrical ef-
fects (which influence the value ofk2).

In order to compare the scalings of the slowly decaying com-
ponent of the flow with the numerical results, we now move to
Figure 3 and Figure 4 which focus on the behavior of the solu-
tion far from the boundary. Figure 3 shows|uθ(r)| at a latitude
of about 80◦ throughout the interior on a log-linear scale. The
information about the direction of the flow (poleward or equa-
torward) is lost in this plot, with sign reversals appearingas
cusps in the curves pointing towards−∞. Note that it is possi-
ble to discern the presence of the Ekman layer close to the outer
boundary for the larger values off .

A quick glance at the solutions in the deep radiative interior
reveals the behavior suggested by the Cartesian solutions:dif-
ferent assumptions concerning the boundary conditions yield
very different predicted flow velocities. In particular, itcan
be seen that in the case of radial forcing with type 2 boundary
conditions (i.e.κ∂T̃/∂r = Tur ) the flows velocities are more-
or-less independent off , or in other words retain significant
amplitudes for any value of the background viscosity.

More quantitatively, from the conclusions of §3.6, we ex-
pect the amplitude of the slowly decaying solution to scale
as f/

√
Pr in the case of azimuthal and latitudinal forcing,

to scale as
√

f/Pr for radial forcing with∂T̃/∂r = 0 and as
(HΘ/R)

√
Pr in the case of radial forcing with the type 2 temper-

ature boundary conditions. The comparison between the pre-
dicted scalings and the outcome of the numerical simulations is
shown in Figure 4, using the same method as described earlier
in the case of the rapidly decaying component of the solution.



10

FIG. 2.— Comparison of the scaling of the amplitude of the rapidly decaying solution with the model predictions for the same four types of boundary conditions.
For each simulation performed (i.e. for each type of boundary condition, for each value off and of the Prandtl number considered), the symbols show the maximum
value of|uθ(r)| found numerically at the latitude considered; note that the same coding is used as in Figure 1. The solid and dotted lines shows the predicted scaling
of this amplitude as a function off for solar values of the Prandtl number and a quarter-times solar value of the Prandtl number respectively. The amplitude of the
solution for solar values of the Prandtl number withf = 107 is used as the reference amplitude.

FIG. 3.— Latitudinal velocity of flows below the convection zoneas a function of radius for the four types of boundary conditions described in §4.2. The line and
symbol coding are the same as in Figure 1.

FIG. 4.— Comparison of the scaling of the amplitude of the slowly decaying solution with the model predictions for the same four types of boundary conditions.
For each simulation performed (i.e. for each type of boundary condition, for each value off and of the Prandtl number considered), the symbols show the value of
|uθ(0.5r⊙)| found numerically at the latitude considered; again, the samecoding is used. The solid and dotted lines shows the predicted scaling of this amplitude
as a function off for solar values of the Prandtl number and a quarter-times solar value of the Prandtl number respectively. The amplitude of the solution for solar
values of the Prandtl number withf = 107 is used as the reference amplitude.
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We can see that, as before, the predicted amplitudes agree very
well with the numerical solutions, except perhaps in the case of
radial forcing with type 2 boundary conditions where a small
discrepancy remains.

We therefore conclude that despite the simplified nature of
the analytical analysis performed in §2 and §3, the results ob-
tained robustly predict the scalings of the numerical solutions
in full spherical geometry.

Finally, in order to provide better insight into the actual solu-
tions, we show in Figure 5 the global structure of the numerical
results. In the left-hand-side of Figure 5, we show results for the
solar value of the Prandtl number (and therefore solar values of
k2 near the convective-radiative interface), while in the right-
hand-side we show results for a quarter-times solar value ofthe
Prandtl number. All the plots were generated for a fixed value
of f = 108 (and therefore 108-times solar values of the viscosity
corresponding to 10−4-times solar values ofk3 andk4). The left
quadrants show contour-lines of the stream-function, or inother
words, streamlines of the flow while the right quadrants show
the angular velocity profile. The four aforementioned bound-
ary conditions are explored: azimuthal forcing only, latitudinal
forcing only, radial forcing only with type 1 boundary condi-
tions (∂T̃/∂r = 0) and radial forcing only with type 2 boundary
conditions (κ∂T̃/∂r = Tur ).

These numerical results illustrate graphically the behavior
predicted by the Cartesian model. For example, the streamlines
plotted all correspond to the same contours of the streamfunc-
tion, or in other words the same mass flux. It is therefore ob-
vious that the flows driven through latitudinal forcing are neg-
ligible compared with the three other cases. The flows driven
by azimuthal forcing appear to be quite strong, although this
is merely related to the fact that the linear velocityU0 corre-
sponding to the imposed (solar) differential rotation is more
than two orders of magnitude larger thanV0 at the same lati-
tudes. The flows driven by radial forcing are quite strong, in
particular given that the driving velocityW0 is at least one or-
der of magnitude lower thanV0 at the same latitude. One can
also readily see that the flow velocities predicted using type 2
thermal boundary conditions are much stronger than in the case
of type 1 thermal boundary conditions. The right-side quad-
rants reveal the effect of these meridional flows on angular mo-
mentum transport in the interior and show the angular velocity
profile corresponding to the ultimate steady-state achieved in
the radiative interior should the Sun be left to evolve for many
flow turnover times under the same applied boundary condi-
tions. Since the turnover time can be considerably longer than
the age of the Sun in most cases, these steady states would never
in practise be achieved. However, they do reveal two points of
particular interest. Firstly, they illustrate how sensitive the inte-
rior rotation rate is to the assumed or calculated flow structure,
and therefore also to the assumed convective-radiative interfa-
cial boundary conditions. Secondly, they reveal the possibil-
ity of unphysical counter-rotation permitted by the linearization
of the problem (see §3.6 for a discussion of this effect). This
should be taken as a cautionary warning for any linear study of
flows and thermal perturbations in the solar radiative interior to
always perform a self-consistency check of the validity of the
linearization.

5. DISCUSSION AND CONCLUSION

We have studied the penetration of global-scale meridional
flows generated in the solar convection zone into the radiative

zone below.
We have attacked the problem via a Cartesian model, as oth-

ers have done before us, and then verified our results with more
complete numerical modeling in the correct geometry. We have
extended previous work done by GM04 and McIntyre (2007) by
taking into account the full structure of the governing equations
and by examining the effect of boundary conditions on the solu-
tions, or in other words, allowing a greater range of convective
flows to act as sources for the flows in the radiative interior.

Within a linear formalism, we confirm that the flow pattern
in the radiative interior is a linear combination of two types of
solutions: (a) a solution that decays away from the convective-
radiative interface on a short length-scale related to the Ekman
depth, and (b) a solution that decays away from the interface
on a much longer length-scale associated with the stratification
of the radiative interior. Our more complete treatment of the
problem provides accurate expressions for the slowly varying
solution. In addition, we find that theamplitudesof the rapidly
and slowly varying solutions depend sensitively on the choice
of dynamical and thermal interfacial forcing.

Forcing by azimuthal and latitudinal shear at the upper
boundary lead to both rapidly varying and slowly varying so-
lutions, but with amplitudes that are negligible outside a few
Ekman lengths. Forcing by direct radial pumping however
can generate flows which are significant outside the Ekman
boundary layer and indeed are sufficiently slowly-varying that
they may maintain significant flow amplitudes across the whole
depth of the radiative zone. The selected thermal boundary con-
ditions at the convective-radiative interface are also found to
have significant impact on the interior solution.

In this linear problem, full solutions can be built from com-
binations of the individual solutions obtained for each different
type of boundary forcing that we studied. Thus in principle we
should be able to determine the complete flow structure within
the radiative interior. However, the problem lies in the selection
of the interfacial conditions. We know from helioseismology
the amplitude of the average azimuthal flows existing near the
base of the convection zone, but know very little of the nature of
the meridional flows or of the thermal conditions at that inter-
face. Thus, without a complete model of the whole solar inte-
rior which includes the turbulent solar convection zone we can
only speculate upon the thermal and dynamical nature of the
convective-radiative interface. Instead, when studying abroad
range ofplausibleboundary conditions we find that significant
penetration depths can be realized.

Previous work by GM04 focused on the effects of a latitudi-
nal source flow only. Our result is in accordance with theirs for
this particular type of boundary condition, namely that theflows
within the radiative interior are limited to an Ekman depth.
However, GM04 conclude that penetration isalwaysquenched.
Given our analytical and numerical results in the case of other
applied boundary conditions, we feel that this conclusion is too
strong. Other plausible models of the interface lead to differ-
ent results concerning the flow amplitudes within the interior.
Without better knowledge of the conditions at the convective-
radiative interface, it is hard to predict precisely what does hap-
pen.

While realistic three-dimensional global models of the so-
lar interior combining radiative and convective regions are not
yet numerically achievable, turbulent closure models havebeen
applied to model both azimuthal and meridional flows in most
of the solar interior (Kitchatinov & Ruediger, 2005; Rempel,
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FIG. 5.— Global structure of the flow solutions in the radiative interior of the Sun subjected to a series of different boundary conditions at the convective-radiative
interface (atr = 0.7r⊙), for fixed value off = 108. The left-hand-side set of plots shows solutions for a solarvalue of the Prandtl number, while the right-hand-side
set of plots shows solutions for the case where the thermal conductivity is artificially increased by a factor of four. In each sets of plots, the streamlines are shown
in the left-quadrant; the solid lines show clockwise flows, while the dotted lines show counter-clockwise flows. The relative angular velocity normalized by the
equatorial value at the convective-radiative interface isshown in the right-quadrant. The “white” region in the final set of boundary conditions actually corresponds
to an unphysical counter-rotation. This is an artefact of the linearization of the problem, combined with the high flow velocities in the interior, which would not
occur should the fully nonlinear equations be considered.
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2005). Using such a model, Ruediger, Kitchatinov & Arlt
(2005) studied the penetration of meridional flows into the
tachocline. By defining the penetration depthDpen as the dis-
tance from the base of the convection zone to the location of
the first reversal in uθ(r), they find thatDpen∼

√
Eν and con-

clude by agreeing with GM04 that the depth of penetration of
the flows in the interior is indeed limited to the Ekman solu-
tion. However, it is clear from our analysis thatDpen as defined
by Ruediger, Kitchatinov & Arlt only measures the variationof
the rapidly decaying solution (which indeed must vary on an
Ekman length). For example, inspection of Figure 1 shows that
at a first glance, all of the solutions appear to behave as Ek-
man solutions, while it is only by looking more closely at the
flows deep in the interior (in Figure 3) that one can identify the
presence of the slowly decaying solution with a relatively low
but nonetheless significant amplitude. We suggest that the pre-
dictions of the closure models for flow velocities in the interior
could be revisited in the light of our analysis.

Finally, the governing equations in this work have been sim-
plified using two major approximations, which must now be
briefly addressed. Firstly, this study is assumes the flows tobe

in a quasi-steady state. As it was shown by McIntyre (2007) this
assumption filters out any transient flows, which could in some
circumstances be of much larger amplitude than these steady-
state flows (see Spiegel & Zahn, 1992 for example). Therefore
our conclusions are likely to underestimate the actual turnover
time of transient meridional flows.

Secondly, the momentum and thermal energy equation have
been linearized with the consequences described in §2.7, anex-
ample of which (the unphysical counter-rotation) is shown in
Figure 5. We do emphasize that in the real Sun nonlinear ef-
fects would play a role in limiting the amplitude of the merid-
ional and azimuthal flows penetrating into the radiative zone.
Therefore our results are consistent with the standard theory
that no flows with turnover times faster than the thermal diffu-
sion time are allowed into the radiative zone. This limits the
flow turnover time in the tachocline region to a few times 105

years, and into the deep interior to a few times 107 years.
Neither of these caveats, however, change the main conclu-

sion of our analysis, which is that the penetration of meridional
flows into the radiative interior is not necessarily limitedto a
shallow Ekman depth.

REFERENCES

Barcildon, V. & Pedlosky, J., 1967, J. Fluid. Mech., 29, 609
Brown, T. M., Christensen-Dalsgaard, J. Dziembowsky, W. A.,Goode, P.,

Gough, D. O. & Morrow, C. A., 1989, ApJ, 343, 526
Brun, A. S., Turck-Chièze, S. & Zahn, J.-P., 1999, ApJ, 525, 1032
Charbonneau, P., 2005, Living Reviews in Solar Physics.
Christensen-Dalsgaard, J., Gough, D. O. & Thompson, M. J., 1991, ApJ, 378,

413
Elliott, J. R. & Gough, D. O., 1999, ApJ, 516, 475
Garaud, P., 2001, PhD Thesis

available from http://www.ams.ucsc.edu/∼pgaraud/
Garaud, P., 2002, MNRAS, 335, 707
Garaud, P. & Rogers, T., 2007, in proceedings of the meeting “Unsolved

Problems in Stellar Astrophysics”, held in Cambridge, July 2007.

Giles, P. M., Duvall, T. L., Jr., Scherrer, P. H. & Bogart, R. S, 1997, Nature,
390, 52

Gilman, P. A., Morrow, C. A., & DeLuca, E. E., 1989, ApJ, 338, 528
Gilman, P. A. & Miesch, M. S., 2004, ApJ, 611, 568
Gough, D. O. & McIntyre, M. E., 1998, Nature, 394, 755
Hughes, D. W., Rosner, R. & Weiss, N. O., 2007,The Solar Tachocline, CUP.
McIntyre, M. E., 2007. inThe Solar Tachocline, pp. 183-212, eds. Hughes, D.

W., Rosner, R. & Weiss, CUP.
Miesch, M. S., Elliott, J. R., Toomre, J., Clune, T. L., Glatzmaier, G. A. &

Gilman, P. A., 2000, ApJ, 532, 593
Rempel, M., 2005, ApJ, 622, 1320
Spiegel, E. A. & Zahn, J.-P., 1992, A&A, 265, 106


