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Abstract

This paper deals with multi-agent networks performing optimal estimation tasks. Consider a network

of mobile agents with sensors that can take measurements of aspatial process in an environment of

interest. Using the measurements, one can construct a kriging interpolation of the spatial field over the

whole environment, with an associated prediction error at each point. We study the continuity properties

of the prediction error, and consider as global objective functions the maximum prediction error and

the generalized prediction variance. We study the network configurations that give rise to optimal field

interpolations. Specifically, we show how, as the correlation between any two different locations vanishes,

circumcenter and incenter Voronoi configurations become network configurations that optimize the

maximum prediction error and the generalized prediction variance, respectively. The technical approach

draws on tools from geostatistics, computational geometry, linear algebra, and dynamical systems.

I. I NTRODUCTION

Problem statement:Mobile sensor networks are envisioned to perform distributed sensing

and data fusion tasks in a wide range of scenarios, includingenvironmental monitoring, oceano-

graphic research, and distributed surveillance of critical infrastructures. This paper considers

mobile sensor networks performing optimal estimation of physical processes modeled as spatial

random fields. Standard interpolation techniques produce estimates of the spatial field at each

point of the environment of interest. When a measure of the accuracy of the estimate is available,

a natural objective is then to characterize those network configurations that give rise to optimal

estimates of the field. This is the problem that we consider inthis paper.
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Literature review: Kriging [1], [2] is a standard technique used in geostatistics to produce

estimates of spatial processes based on data collected at a finite number of locations. The main

advantage of kriging over other spatial interpolation methods is that it provides a measure of

the uncertainty associated to the estimator. The optimal design literature [3], [4] deals with the

problem of designing experiments to optimize the resultingstatistical estimation. Of particular

interest are the notions of G-optimality, minimizing the maximum prediction error, and D-

optimality, minimizing the generalized prediction variance.

The work [5] introduces performance metrics for optimal estimation in oceanographic research.

The works [6], [7] proposes distributed optimal estimationstrategies for deterministic fields,

when the measurements taken by individual agents are uncorrelated. In [8], the emphasis is on

finding optimal agent trajectories along a given interval oftime among a parameterized set of

trajectories. Here, instead, we focus on optimal network configurations for the estimation of

the random field at a single snapshot. In our technical approach, we have been inspired by [9],

which considers the problem of minimizing the maximum uncertainty over a discrete space

and shows that minimax configurations are asymptotically optimal as the correlation between

any two distinct points vanishes. Minimax configurations minimize the maximum distance to

the nearest agent from any point in space. Here, we make the connection to Voronoi partitions

of continuous spaces, which are a classical notion in computational geometry [10]. In [11],

circumcenter and incenter Voronoi configurations are defined, and various distributed motion

coordination algorithms are introduced which are guaranteed to asymptotically bring the network

to these desirable configurations.

Statement of contributions:In this paper, we consider two performance metrics for optimal

placement of mobile sensor networks based on kriging. We first characterize the continuity

properties of the mean-squared error of the simple kriging estimator as a function of the network

configuration. In the case of zero measurement error, this isnot trivial. Previous results in the

optimal design literature have avoided this problem by optimizing over a discrete set of possible

configurations, while we consider the continuous space of all agent locations within the region.

Next, we define our first optimality criterion, the maximum prediction error of the kriging

predictor, and study its critical points asymptotically, as the correlation between any two distinct

points vanishes. We define a second optimality criterion as aform of D-optimality, the generalized

variance of the kriging predictor within a bounded region, and study the critical points within the



same asymptotic framework. Our main results are showing that, for the simple kriging predictor,

circumcenter Voronoi configurations are asymptotically optimal for the maximum prediction

error over the environment, while incenter Voronoi configurations are asymptotically optimal

for the generalized variance. In general, it is difficult to obtain exactly the configurations that

optimize these objective functions. Our results are relevant to the extent that they guarantee

that, for scenarios with small enough correlation between distinct points, circumcenter and

incenter Voronoi configurations are optimal for appropriate measures of uncertainty. The network

can achieve these desirable network configurations by executing simple distributed dynamical

systems. Various simulations illustrate our results.

Organization: The paper is organized as follows. Section II introduces basic notions from

computational geometry and presents a brief overview of thekriging estimation procedure.

Section III states the problem of interest. We present our main results in Section IV on the

optimality of circumcenter and incenter Voronoi configurations. Section V presents simulations

to illustrate our results. Finally, Section VI gathers our conclusions and ideas for future work.

II. PRELIMINARIES

This section introduces various concepts which will be useful later on. Let us start by in-

troducing some notation for standard geometric objects. Let R, R>0 and R≥0 denote the set

of reals, positive reals and nonnegative reals, respectively. We are concerned with operations

on a compact and connected setD of Euclidean spaceRd, d ∈ N. For p, q ∈ R
d, we let

]p, q[= {λp + (1 − λ)q | λ ∈]0, 1[} denote theopen segmentwith extreme pointsp and q. For

p ∈ R
d andr ∈ R>0, we letB(p, r) denote theclosed ballof radiusr centered atp andB(p, r)

denote theopen ballof radiusr centered atp. We denote by|S| and∂S the cardinality and the

boundary of a setS, respectively. Aconvex polytopeis the convex hull of a finite point set. For

a bounded setS ⊂ R
d, we let CC(S) and CR(S) denote thecircumcenterand circumradius

of S, respectively, that is, the center and radius of the smallest-radius d-sphere enclosingS.

The incenter set ofS, denoted byIC(S), is the set of the centers of maximum-radiusd-spheres

contained inS. The inradius ofS, denoted byIR(S), is the common radius of these spheres.

We consider tuples or ordered sets of possibly coincident points, P = (p1, . . . , pn) ∈ (Rd)n.

We will refer to such an element as aconfiguration. Let P(S) (respectivelyF(S)) denote the

collection of subsets (respectively, finite subsets) ofS. We denote an element ofF(Rd) by



P = {p1, . . . , pn} ⊂ R
d, wherep1, . . . , pn are distinct points inRd. Let iF : (Rd)n → F(Rd)

be the natural immersion, i.e.,iF(P ) contains only the distinct points inP = (p1, . . . , pn). Note

that the cardinality ofiF(p1, . . . , pn) is in general less than or equal ton. Let Scoinc be the set

of all tuples in(Rd)n which contain at least one coincident pair of points, that is,

Scoinc = {(p1, . . . , pn) ∈ (Rd)n | pi = pj for somei, j ∈ {1, . . . , n}, i 6= j}.

Let ‖ · ‖ denote the Euclidean distance function onR
d. Define the distanced : R

d ×P(D) → R

from a point inR
d to a set of points inD by d(s,P) = inf

p∈P
{‖s − p‖}, and letmds : R

d×P(D) →

P(D) be theminimum distance setmap defined bymds(s,P) = {p ∈ P | ‖s − p‖ = d(s, P )}.

A. Voronoi partitions and multi-center problems

Here we present some relevant concepts on Voronoi diagrams and refer the reader to [10], [12]

for comprehensive treatments. Apartition of D is a collection ofn polygonsW = {W1, . . . ,Wn}

with disjoint interiors whose union isD. TheVoronoi partitionV(P ) = (V1(P ), . . . , Vn(P )) of D

generated by the pointsP = (p1, . . . , pn) is defined by

Vi(P ) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i} .

We say thatP is acircumcenter Voronoi configurationif pi = CC(Vi(P )), for all i ∈ {1, . . . , n},

and thatP is an incenter Voronoi configurationif pi ∈ IC(Vi(P )), for all i ∈ {1, . . . , n}. An

incenter Voronoi configuration isisolated if there exists a neighborhood around it inDn which

does not contain any other incenter Voronoi configuration.

Consider thedisk-coveringandsphere-packing multi-centerfunctions defined by

HDC(P ) = max
s∈D

{d(s, iF(P ))} ,

HSP(P ) = min
i6=j∈{1,...,n}

{1

2
‖pi − pj‖, d(pi, ∂D)

}

.

We are interested in the configurations that optimize these multi-center functions. The minimiza-

tion of HDC corresponds to minimizing the largest possible distance ofany point inD to one of

the agents’ locations given byp1, . . . , pn. We refer to it as the as themulti-circumcenter problem.

The maximization ofHSP corresponds to the situation where we are interested in maximizing the

coverage of the areaD in such a way that the radius of the generators do not overlap (in order



not to interfere with each other) or leave the environment. We refer to it as themulti-incenter

problem. It is useful to define theindex functionN : Dn → N as

N(P ) =
∣

∣

∣
argmin

pi 6=pj

{1

2
‖pi − pj‖, d(pi, ∂D)

}∣

∣

∣
.

B. Spatial prediction via simple kriging

This section reviews the geostatistical kriging procedurefor the estimation of spatial processes,

see e.g., [1], [13]. A random processZ is second-order stationaryif it has constant mean,

E(Z(s)) = µ, and its covariance is of the formCov(Z(p1), Z(p2)) = C(p1, p2), whereC :

R
d ×R

d → R is positive-definite and only depends on the differencep1 − p2. We will focus on

isotropic covariance functions, which satisfy

C(p1, p2) = g(‖p1 − p2‖),

for some decreasing functiong : R≥0 → R≥0. The covariance matrix of the set of points

p1, . . . , pn ∈ D is Σ = Σ(P ) = [C(pi, pj)]
n
i,j=1 ∈ R

n×n. When it is clear from the context, we

will use bold face to denote explicit dependence onP . We further definec : D ×Dn → R
n to

be the vector of covariances between a points ∈ D and the locations inP , i.e., c = c(s, P ) =

(C(s, p1), . . . , C(s, pn))T . Of particular use to us will be the associated correlation function,

ρ : R
d × R

d → [0, 1] defined by

ρ(p1, p2) =
C(p1, p2)

√

C(p1, p1)
√

C(p2, p2)
=

g(‖p1 − p2‖)

g(0)
.

Throughout the paper, we make the following assumptions on the model for the spatial random

processZ of interest. We assume thatZ is of the form

Z(s) = µ(s) + δ(s), s ∈ D, (1)

and that the mean functionµ is known. Also,δ is a zero-mean second-order stationary random

process with a known decreasing isotropic covariance function, g. We will further assume that

g is everywhere differentiable. Some examples of such functions are the exponential, cubic,

spherical, modified Bessel, and rational quadratic covariance functions.

Assume measurement datay = (Y (p1), . . . , Y (pn))T is corrupted with error such that

Y (pi) = Z(pi) + ǫi, ǫi
iid
∼ N

(

0, τ 2
)

, (2)



whereτ 2 ≥ 0. The assumption that the errorsǫi, i ∈ {1, . . . , n} are independent and identically

distributed corresponds to the fact that the robotic network is equipped with identical sensors.

The no-error scenario is the one most widely studied in the geostatistics literature. In the error

case, the covariance betweenY (pi) andY (pj) is given by

Cov(Y (pi), Y (pj)) =











C(pi, pj) + τ 2, if i = j,

C(pi, pj), if i 6= j.

Note that the covariance matrix ofP with respect to the noisy processY may be written

Στ = Στ (P ) = Σ + τ 2In, whereIn denotes then × n identity matrix. The no-error case is

recovered by settingτ 2 = 0.

The simple kriging predictorat s ∈ D is the predictor that minimizes the mean-squared pre-

diction errorσ2(s; p1, . . . , pn) = E(Z(s)− p(s; Y (p1), . . . , Y (pn)))2 among all linear predictors

of the form p(s; Y (p1), . . . , Y (pn)) =
∑n

i=1 liY (pi) + k. The explicit expression of the simple

kriging predictor ats ∈ D is

p̂SK(s; Y (p1), . . . , Y (pn)) = µ(s) + c
T
Σ

−1
τ (y − µ), (3)

whereµ = (µ(p1), . . . , µ(pn))T . The mean-squared prediction error ofp̂SK at s ∈ D is

σ2(s; p1, . . . , pn) = g(0) − c
T
Σ

−1
τ c. (4)

Note thatσ2 is invariant under permutations ofp1, . . . , pn.

III. PROBLEM STATEMENT

Consider a network ofn agents evolving in a convex polytopeD ⊂ R
d according to the

first-order dynamicṡpi = ui, i ∈ {1, . . . , n}. Assume each agent is equipped with a point-sized

footprint sensor, and can take a noisy measurementY (pi) as in (2) of the spatial processZ at

its current positionpi. A natural objective is to select locations to take measurements in such

a way as to minimize the uncertainty in the estimate of the spatial process. Here, we consider

objectives inspired by the notions of G- and D-optimality from optimal design [1], [3].

The maximum prediction erroris

M(p1, . . . , pn) = max
s∈D

σ2(s; p1, . . . , pn) = g(0) − min
s∈D

{cT
Σ

−1
τ c}. (5a)



Note thatM corresponds to a “worst-case scenario,” where we consider locations in the domain

with the maximum kriging mean-squared error. Let us make an important observation about the

well-posedness ofM. Under noisy measurements, i.e.,τ 2 > 0, the functionσ2 is well-defined for

any s ∈ D and (p1, . . . , pn) ∈ Dn. Indeed, the dependence ofσ2 on the network configuration

is continuous, and hence,M is also well-defined. However, when no measurement noise is

present, i.e.,τ 2 = 0, then the matrixΣτ = Σ in (4) is not invertible for network configurations

that belong toScoinc, and therefore, it is not clear what the value ofσ2 is. This problem is

carefully addressed in Appendix A, where it is shown that in the no measurement noise case,

σ2 is a continuous function of the network configuration under suitable technical conditions on

the covariance structure of the spatial field.

Before presenting the second objective function, we need to introduce some notions. Note

that the variance of the simple kriging predictor is equivalent to the variance of the expression

c
T
Σ

−1
τ c, while the generalized variance [14] is considered to be thedeterminant of the covariance

matrix Σ
−1
τ . Minimizing the determinant ofΣ−1

τ is equivalent to minimizing−|Στ |, where| · |

denotes the determinant. For discrete state spaces, it can be shown [9] that configurations which

maximize the minimum distance between agents asymptotically minimize −|Στ | in the limit of

near independence, but this results in configurations whichtends to place agents on the boundary

of D. Since we are only interested in predictions overD, we would like a notion of optimality

which penalizes agents too close to the boundary as it does agents too close to each other. This

can be achieved as follows. Letγ : D → R
d map a point inD to its mirror image reflected

across the nearest boundary ofD. Formally,

γ(s) ∈ s + 2
(

argmin
s∗∈∂D

{‖s∗ − s‖} − s
)

.

Note thatγ(s) is in general not unique, and is not a smooth function ofs. However,‖s− γ(s)‖

is smooth, and is the same for all values ofγ(s). Now consider minimizing the determinant of

the simple kriging predictor which would result if we had data from all agents as well as their

reflections. Thegeneralized prediction varianceis then

B(p1, . . . , pn) = − |Στ (p1, . . . , pn, γ(p1), . . . , γ(pn))| . (5b)

Note that sinceB does not require inversion of the covariance matrix, it is always well-posed.

Our main goal is to find network configurationsp1, . . . , pn that minimizeM andB.



IV. OPTIMAL NETWORK CONFIGURATIONS FOR SPATIAL PREDICTION

In this section, we provide several results that characterize the optimal network configurations

of the objective functionsM andB. In Section IV-A, we show that minima ofM cannot be

in Scoinc. This fact is useful in Section IV-B where we show that, for simple kriging, circumcenter

and incenter Voronoi configurations are asymptotically optimal for M andB, respectively.

A. Coincident configurations are not minima of the maximum prediction error

In this section, we will examine the effect of the location ofa subset of agents on the mean-

squared error terms. In particular we are interested in comparing σ2(s; P ) againstσ2(s; iF(P ))

for configurationsP ∈ Scoinc. The following lemma provides a useful decomposition ofσ2.

Lemma IV.1 The simple kriging mean-squared error function may be written in the form

σ2(s; P ) = σ2(s; P ) −

(

N (s, p1; P )
)2

σ2(p1; P ) + τ 2
, (6)

with N (s, p1; P ) = C(s, p1) − cT (s, P )Στ (P )−1c(p1, P ) and P = (p2, . . . , pn) ∈ Dn−1.

The proof of this fact follows from using [15, Proposition 8.2.4] for the inverse of a partitioned

symmetric matrix. Equation (6) may be applied repeatedly toisolate the effects of any subset

of locations inP .

Under the assumptions of Proposition A.3, we can extend the mean squared error function by

continuity to include configurations inScoinc. With a slight abuse of notation, in the case of no

measurement error, we will useσ2(s; P ) to denoteσ2(s; iF(P )) for P ∈ Scoinc.

Proposition IV.2 (Minima of M are not in Scoinc) Let P † ∈ Dn be a strict local minimum of

the mapP 7→ M(P ). Under the assumptions of Proposition A.3,P † 6∈ Scoinc.

Proof: We proceed by contradiction. AssumeP † ∈ Scoinc. Consider a configurationP ∈

Dn \Scoinc in a neighborhood ofP † such thatiF(P
†) ⊂ iF(P ). Let s, s† ∈ D such thatM(P ) =

σ2(s; P ) and M(P †) = σ2(s†; P †). Using Lemma IV.1 and Proposition A.3, one can deduce

thatσ2(s; P †) ≥ σ2(s; P ). By the definition ofM, σ2(s†; P †) ≥ σ2(s; P †). ThereforeM(P †) =

σ2(s†; P †) ≥ σ2(s; P †) ≥ σ2(s; P ) = M(P ), which is a contradiction.



B. Multi-center Voronoi configurations are asymptoticallyoptimal

Let us consider the objective functionsM andB introduced in Section III but with covariance

function Ck, k ∈ N. This is equivalent to considering the correlation,ρk. As k grows, the

correlation between distinct points inD vanishes. To ease the exposition, we denote byc
(k),

respectivelyΣ(k)
τ , the vectorc, respectively the matrixΣτ , with each element raised to the

kth power. We will also useM(k) andB(k) to denote the objective functionsM andB with

covariance functionCk, that is,

M(k)(p1, . . . , pn) = gk(0) − min
s∈D

{(c(k))T (Σ(k)
τ )−1

c
(k)},

B(k)(p1, . . . , pn) = −
∣

∣Σ(k)
τ (p1, . . . , pn, γ(p1), . . . , γ(pn))

∣

∣ .

Let us start by establishing a result on the cardinality of the minimum distance set. Let

Cmds : R
d ×Dn → R be defined by

Cmds(s, P ) = C(s, p) for anyp ∈ mds(s, P ).

Note thatCmds is well-defined.

Proposition IV.3 (Cardinality of minimum distance set) Let the covariance functionC be

continuous. ForP ∈ Dn \ Scoinc, one has

min
s∈D

{Cmds(s, P ) |mds(s, P )|} = min
s∈D

{Cmds(s, P )} .

Proof: We proceed by contradiction. If the statement is false, thenthere existss† ∈ D such

that s† ∈ argmins∈D {Cmds(s, P ) |mds(s, P )|}, and
∣

∣mds(s†, P )
∣

∣ > 1. Let p∗ ∈ mds(s†, P ), and

definer† = ‖s† − p∗‖. Note that

mds(s†, P ) ⊂ ∂B(s†, r†). (7)

Let s∗ ∈]s†, p∗[ such that‖s∗ − s†‖ < ǫ for some ǫ ∈ R>0 and let r∗ = ‖s∗ − p∗‖. By

construction,r∗ < r†. From (7), we deduce that
{

p ∈ P | p ∈ B(s∗, r∗)
}

= {p∗}, which leads

to |mds(s∗, P )| = 1. SinceC changes continuously with the distance between its arguments, it

is clear that we may chooseǫ small enough to result in

Cmds(s
∗, P ) |mds(s∗, P )| < Cmds(s

†, P )
∣

∣mds(s†, P )
∣

∣ ,

which is a contradiction.



We are now ready to prove one of the main results of the paper. The proof follows a similar

line of reasoning to [9].

Theorem IV.4 (Minima of M under near independence) LetPmcc ∈ Dn be a global minimizer

of the multi-circumcenter problem. Then, ask → ∞, Pmcc asymptotically globally optimizes

M(k), that is,M(k)(Pmcc) approaches a global minimum.

Proof: Note that minimizingM(k) is equivalent to finding the tuplesP which maximize

the functionL(k) : Dn → R defined as

L(k)(P ) = min
s∈D

{

(c(k)(s, P ))T (Σ(k)
τ (P ))−1(c(k)(s, P ))

}

.

Let λmin andλmax : Dn × R → R be such thatλmin(P, k), λmax(P, k) denote, respectively, the

minimum and the maximum eigenvalue ofΣ
(k)
τ (P ). We can see thatL(k)(P ) is bounded above

by λmax(P, k)
∑

p∈P C(s, p)2k and below byλmin(P, k)
∑

p∈P C(s, p)2k. For a givens, in terms

of the minimum distance set we can write
∑

p∈P

C(s, p)2k =
∑

p∈mds(s,P )

C(s, p)2k +
∑

p∈P\mds(s,P )

C(s, p)2k

= |mds(s, P )|Cmds(s, P )2k +
∑

p∈P\mds(s,P )

C(s, p)2k.

As k → ∞ the elements in the minimum distance set dominate, so we are left with
∑

p∈P

C(s, p)2k = |mds(s, P )|Cmds(s, P )2k + o(Cmds(s, P )2k).

Note from Proposition IV.3 that

min
s∈D

{|mds(s, P )|Cmds(s, P )} = min
s∈D

{Cmds(s, P )} ,

so we can write

min
s∈D

{

∑

p∈P

C(s, p)2k
}

= min
s∈D

{

Cmds(s, P )2k (1 + o(1))
}

.

Consider, then, comparing an arbitrary configurationP ∗ against a global minimizer ofHDC,

sayPmcc. In the zero measurement error case, by Proposition IV.2, wecan assume without loss

of generality thatP ∗ 6∈ Scoinc. Therefore, no matter what the value ofτ is, we can safely use

the eigenvalues of(Σ(k)
τ )−1 to provide bounds. Specifically,

L(k)(P ∗)

L(k)(Pmcc)
≤

λmax(P
∗, k)min

s∈D

{

Cmds(s, P
∗)2k (1 + o(1))

}

λmin(Pmcc, k)min
s∈D

{

Cmds(s, Pmcc)
2k (1 + o(1))

} . (8)



Note thatlimk→∞ Σ
(k)
τ (P ) = (g(0) + τ 2) In, soλmin(P, k) andλmax(P, k) both tend tog(0)+τ 2

for any configurationP . SincePmcc minimizes the maximum distance to any points ∈ D, it maxi-

mizes the minimum covariance, so for anyP ∈ Dn, mins∈D Cmds(s, P ) ≤ mins∈D Cmds(s, Pmcc).

Thus the ratio (8) is bounded by1 + o(1). Therefore, in the limit ask → ∞, minimizing M(k)

is equivalent to solving the multi-circumcenter problem.

Note that the proof of the theorem can be reproduced for localminimizers of the multi-

circumcenter problem to arrive at the following result.

Corollary IV.5 Let Pmcc ∈ Dn be a local minimizer of the multi-circumcenter problem. Then,

as k → ∞, Pmcc asymptotically optimizesM(k), that is,M(k)(Pmcc) approaches a minimum.

According to [11], under certain technical conditions, solutions to the multi-circumcenter

problem are circumcenter Voronoi configurations. Next, letus present a similar asymptotic result

for the generalized prediction variance.

Theorem IV.6 (Minima of B under near independence) Let Pmic ∈ Dn be a global maximizer

of the multi-incenter problem with lowest index. Then, ask → ∞, Pmic asymptotically globally

optimizesB(k), that is,B(k)(Pmic) approaches a global minimum.

Proof: Expanding the objective function for asymptotically dominant terms, we may write

B(k)(P ) = −(g(0)k + τ 2)2n +
(

g(0)k + τ 2
)2n−2

J (k)(P ) + o
(

(

g(0)k + τ 2
)2n−2

J (k)(P )
)

,

where

J (k)(P ) =
∑

i6=j

g(‖pi − pj‖)
2k +

n
∑

i,j=1

g(‖pi − γ(pj)‖)
2k +

∑

i6=j

g(‖γ(pi) − γ(pj)‖)
2k.

Asymptotically all but the largest terms inJ (k)(P ) will drop out, and minimizingB(k)(P )

becomes equivalent to minimizing those terms. The largest terms inJ (k)(P ) correspond to the

shortest distance between the locations of either the agents or their reflected images. For any

two agent locations,pi, pj ∈ D, and any of their reflectionsγ(pi), γ(pj) the minimum distance

between any two of the four points can be reduced tomin {‖pi − pj‖, ‖pi − γ(pi)‖, ‖pj − γ(pj)‖}

(note that this is not in general true for non-convex domains). Thus the shortest distance between

agents inP and their reflections may be expressed as2HSP(P ), though there may be multiple

pairs of the form(pi, pj) or (pi, γ(pi)) which satisfy the minimum distance criterion, i.e., the index



of P might be larger than1. Therefore we haveJ (k)(P ) = N(P )
(

g(2HSP(P ))2k
)

(1 + o(1)).

Consider comparing an arbitrary configuration,P ∗ ∈ Dn againstPmic. We have

J (k)(Pmic)

J (k)(P ∗)
=

N(Pmic)
(

g(2HSP(Pmic))
2k
)

(1 + o(1))

N(P ∗) (g(2HSP(P ∗))2k) (1 + o(1))
.

If P ∗ is not a global solution of the multi-incenter problem, we have HSP(Pmic) > HSP(P
∗),

and sinceg(·) is decreasing this gives us

lim
k→∞

J (k)(Pmic)

J (k)(P ∗)
= 0.

If on the other hand,P ∗ is a global solution of the multi-incenter problem, then, using the fact

that Pmic has the lowest index among all of them, we deduceJ(k)(Pmic)

J(k)(P ∗)
≤ 1 + o(1).

Note that the proof of the theorem can be reproduced for isolated local maximizers of the

multi-incenter problem to arrive at the following result.

Corollary IV.7 Let Pmic ∈ Dn be an isolated local maximizer of the multi-incenter problem.

Then, ask → ∞, Pmic asymptotically optimizesB(k), that is,B(k)(Pmic) approaches a minimum.

According to [11], under certain technical conditions, solutions to the multi-incenter problem

are incenter Voronoi configurations.

C. Distributed coordination algorithms

In this section, we present coordination algorithms that steer the network towards circumcenter

and incenter Voronoi configurations. We do this following the exposition in [11]. In light of

the results in Section IV-B, this enables the network to perform a spatial prediction which is

asymptotically optimal ask → ∞.

Let us assume each agent can move according to a first-order dynamical modelṗi = ui,

i ∈ {1, . . . , n}. Consider the following coordination algorithms

ṗi = CC(Vi(P )) − pi, (9a)

ṗi ∈ IC(Vi(P )) − pi, (9b)

for eachi ∈ {1, . . . , n}. Note that (9b) is a differential inclusion. We understand its solutions in

the Filippov sense [16]. Both coordination algorithms are Voronoi distributed, meaning that each

agent only requires information from its Voronoi neighborsin order to execute its control law.



The equilibrium points of the flow (9a) are the circumcenter Voronoi configurations, whereas

the equilibrium points of the flow (9b) are incenter Voronoi configurations. Furthermore, the

evolution ofHDC along (9a) is monotonically decreasing, while the evolution of HSP along (9b)

is monotonically increasing. The convergence properties of these coordination algorithms, as

well as alternative flows with similar distributed properties that can also be used to steer the

network to center Voronoi configurations, are studied in [11].

V. SIMULATIONS

With the aim of illustrating the results presented in Section IV, we performed simulations for

both objective functionsM andB with n = 5 agents. In our simulations, we used as domainD

the convex polygon with vertices{(0, 0.1), (2.5, 0.1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8), (2.7, 2.2),

(1.0, 2.4), (0.2, 1.3)} and as isotropic covariance the one defined viaC : R
2 × R

2 → R,

C(s1, s2) = e−
1
5
‖s1−s2‖. Note that, in simple kriging, the mean function does not play a role in

determining the optimal network configurations. Figure 1 shows the multicenter configurations

obtained with the flows (9).

(a) (b)

Fig. 1. Multi-center configurations found (a) using the flow (9a) and (b)using the flow (9b).

A. Analysis of simulations forM(k)

UsingM(1) we ran over1000 random trials, each time running a gradient descent algorithm,

and chose the local minimum configuration with the smallest value ofM(1) to be our approx-

imation of a global minimum. From this configurationP∗, we generated a multi-circumcenter

configuration using (9a), depicted in Figure 1(a). For increasing values ofk, we ran a gradient



descent ofM(k) to find the best local configuration nearP∗. For comparison, we also plotted

the performance of a random configuration which was not a local minimum. Figure 2 illustrates

the result in Theorem IV.4. At aroundk = 15, the performance of the circumcenter Voronoi
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Fig. 2. Value of M(k) for multi-circumcenter (solid), approximated global minimum (dashed),and random (dotted)

configurations of 5 agents for increasing values ofk. The covariance function is exponential.

configuration becomes almost identical to the one of the minimizer ofM(k).

B. Analysis of simulations forB(k)

UsingB(1) we ran over1000 random trials, each time running a gradient descent algorithm, and

chose the local minimum configuration with the smallest value of B(1) to be our approximation

of a global minimum. From this configurationP∗ we generated the multi-incenter configuration

using (9b), depicted in Figure 1(b). For increasing values of k, we ran a gradient descent ofB(k)

to find the best local configuration nearP∗. For comparison, we also plotted the performance

of a random configuration which was not a local minimum. Figure 3 illustrates the result

stated in Theorem IV.6. The performance of the minimizer ofB(k) and of the incenter Voronoi

configuration are almost identical from the beginning, eventhough at eachk the configurations

are different.

VI. CONCLUSIONS

We have used simple kriging as a metric for optimal placementof mobile sensor networks

estimating random fields. We have shown that under the assumption of near independence,

circumcenter configurations minimize the maximum prediction error and incenter configurations

minimize the generalized prediction variance. Under limited time or energy resources, or as a
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Fig. 3. Value ofB(k) for multi-incenter (solid), approximated global minimum (dashed), and random (dotted) configurations

of 5 agents for increasing values ofk. The covariance function is exponential. Although the performance of the global and

multi-incenter configurations look identical, the configurations are different at eachk.

starting point for further exploration, a group of robotic sensors might begin by moving toward

these configurations to start the estimation procedure.

Future work will explore: (i) regarding the asymptotic analysis, the determination of lower

and upper bounds on the parameterk that guarantee that multicenter Voronoi configurations

achieve a given a desired level of performance, (ii) the extension of the results of this paper to

similar error metrics for the universal kriging predictor,where the mean function is unknown,

and (iii) the characterization of the trajectories (ratherthan configurations) that provide optimal

estimates of the random field as agents reconfigure and take successive measurements over time.

Consideration will also be given to fields which change over time, and to distributed methods

for estimation and data fusion.
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APPENDIX A

CONTINUITY OF THE SIMPLE KRIGING MEAN-SQUARED PREDICTION ERROR

Here we prove our main continuity result for the simple kriging mean squared error function.

We will first need some supporting results. Leth ∈ R denote the distance between agent locations

p1 and p2, and we are interested in the behavior ofσ2 as h → 0. For any agent locationpi,

i ∈ (3, . . . , n) we would like a measure of the distance betweenpi andp1 in terms ofh, call it

hi ∈ R. To find hi, consider the triangle formed betweenpi, p1, andp2. Let ujk ∈ R
d denote

the unit vector from agentj to agentk, i.e.,

ujk =
pk − pj

‖pk − pj‖
.



Let uib denote the unit vector in the direction which bisects the angle betweenui1 andui2 (see

Figure 4). As in the figure, consider a pointp∗1 which is a distance of‖p1 − pi‖ from pi, but

h

p∗
1

pi

p2

p1

uib

ui2

u21

hi

Fig. 4. Triangle betweenpi, p1, andp2.

in the directionui2, and note thathi = ‖p∗1 − p2‖. Next, note that the projection of the vector

p∗1 − p2 onto uib is equal to the projection of the vectorp1 − p2 onto the vectoruib, so that we

may write

hiu
T
ibui2 = u

T
ibu21h

hi =
u

T
ibu21

uT
ibui2

h.

Note that in the limit asp1 → p2, hi → 0 anduib → ui2.

In the following treatment, we define a functionf : R
d → R to be directionally differentiable

at a pointa ∈ R
d if and only if the following limit exists for everyu ∈ R

d

Duf(a) = lim
h↓0

f(a + hu) − f(a)

h
.

This is a common notion in the optimization literature (see for example [17], [18]), where it

is sometimes referred to as weak directional differentiability. We will say that a functionf is

directionally differentiable onD if and only if Duf(a) exists for alla ∈ D and all u ∈ R
d.

Recall from Lemma IV.1 the definition ofP = (p2, . . . , pn) being the ordered set of agents in

P with the first agent removed. Now we are ready to present our results.



Lemma A.1 Letf1, f2 : R
d → R be directionally differentiable onD. LetF : R

d×R
d×Dn−1 →

R be defined as

F (p1, p2, P ) =
(f1(p1) − f1(p2))(f2(p1) − f2(p2))

σ2(p1, P )
.

Under the assumption thatg′(0) 6= 0 then

lim
p1→p2

F (p1, p2, P ) = 0.

Proof: First note that in the limit asp1 → p2, both the numerator and denominator of the

fraction tend to zero. With a little manipulation, we can rewrite F in terms ofh. Remembering

that c(p2, P ) is the first row of the matrixΣ(P ), and thatC(p1, p1) = C(p2, p2), we can write

F (p1, p2, P ) =
(f1(p1) − f1(p2))(f2(p1) − f2(p2))

(

cT (p1, P ) + cT (p2, P )
)

Σ(P )−1
(

c(p2, P ) − c(p1, P )
) . (10)

In terms ofg, we can write

c(p2, P ) − c(p1, P ) =















g(‖p2 − p2‖) − g(‖p1 − p2‖)

g(‖p2 − p3‖) − g(‖p1 − p3‖)

g(‖p2 − p4‖) − g(‖p1 − p4‖)
...















=

















g(0)−g(h)
h

h

g(‖p2−p3‖)−g(‖p1−p3‖)
h3

u
T
3b

u21

u
T
3b

u32
h

g(‖p2−p4‖)−g(‖p1−p4‖)
h4

u
T
4b

u21

u
T
4b

u42
h

...

















= −∆h,

where∆ ∈ R
n−1 is the vector

∆ =

















g(h)−g(0)
h

g(‖p2−p3‖+h3)−g(‖p2−p3‖)
h3

u
T
3b

u21

u
T
3b

u32

g(‖p2−p4‖+h4)−g(‖p2−p4‖)
h4

u
T
4b

u21

u
T
4b

u42

...

















.



Note that the limit ash → 0 corresponds to the limit asp1 → p2 along the straight line direction

u12, and that

lim
h→0

∆ =















g′(0)

u
T
32u21g

′(‖p2 − p3‖)

u
T
42u21g

′(‖p2 − p4‖)
...















.

Plugging this back intoF , we can write

F (p1, p2, P )

=
h2
(

(f1(p2+hu21)−f1(p2))
h

)(

(f2(p2+hu21)−f2(p2))
h

)

−h
(

cT (p1, P ) + cT (p2, P )
)

Σ(P )−1∆

=
h
(

(f1(p2+hu21)−f1(p2))
h

)(

(f2(p2+hu21)−f2(p2))
h

)

−
(

cT (p1, P ) + cT (p2, P )
)

Σ(P )−1∆
.

Note that for any directional unit vectoru ∈ R
d,

lim
p1→p2
alongu

F (p1, p2, P ) = (Duf1(p2)) (Duf2(p2))

(

lim
h→0

h

−
(

cT (p1, P ) + cT (p2, P )
)

Σ(P )−1∆

)

.

Regardless of the direction ofu, the numerator approaches zero. In the limit, the denominator

evaluates to

−2cT (p2, P )Σ(P )−1















g′(0)

u
T
32u21g

′(‖p2 − p3‖)

u
T
42u21g

′(‖p2 − p4‖)
...















= −2g′(0).

Since this is constant with respect to the direction of approach, as long asg′(0) 6= 0, we have

lim
p1→p2

F (p1, p2, P ) = 0.

Corollary A.2 Under the assumption of zero measurement error, ifg′(0) 6= 0 then

lim
p1→p2

σ2(s; P ) = σ2(s; P )



Proof: Using Lemma IV.1 we can write

σ2(s; P ) = σ2(s; P ) +

(

C(s, p1) − cT (s, P )Σ(P )−1c(p1, P )
)2

σ2(p1, P )

= σ2(s; P ) +

(

C(s, p1) − cT (s, P )Σ(P )−1δ − C(s, p2)
)2

σ2(p1, P )
,

whereδ = c(p1, P ) − c(p2, P ). Note that the second term here can be multiplied out as

(C(s, p1) − C(s, p2))
2

σ2(p1, P )
+ 2

(C(s, p1) − C(s, p2)) cT (s, P )Σ(P )−1δ

σ2(p1, P )
+

(

cT (s, P )Σ(P )−1δ
)2

σ2(p1, P )

SinceC is directionally differentiable everywhere, the first termfits the criteria of Lemma A.1,

and goes to zero in the limit. For the other two, note that

cT (s, P )Σ(P )−1δ =
n
∑

i=1

αi (C(p1, pi) − C(p2, pi)) ,

where theαi’s do not depend onp1. By Lemma A.1, for alli, j in (1, . . . , n) we can say

lim
p1→p2

(C(p1, pi) − C(p2, pi)) (C(s, p1) − C(s, p2))

σ2(p1, P )
= 0,

lim
p1→p2

(C(p1, pi) − C(p2, pi)) (C(p1, pj) − C(p2, pj))

σ2(p1, P )
= 0.

Thus all of the parts of our equation which depend onp1 go to zero in the limit and we are left

with

lim
p1→p2

σ2(s; P ) = σ2(s; P ).

We are now ready to present our main continuity result.

Proposition A.3 (Continuity of simple kriging predictor error) Let C : R
d ×R

d → R be an

isotropic covariance function,C(p1, p2) = g(‖p1 − p2‖), with g : R≥0 → R≥0 differentiable.

Assumeg′(0) 6= 0, and τ 2 = 0. Then, for eachs ∈ D, the mean-squared simple kriging

prediction error (p1, . . . , pn) 7→ σ2(s; p1, . . . , pn) is continuous. In addition, forP ∈ Scoinc we

haveσ2(s; P ) = σ2(s; iF(P )).

Proof: Let s ∈ D. Note thatσ2 is continuous whenP ∈ Dn \ Scoinc. Since the covariance

functionC is differentiable and hence continuous, it follows from (4)thatσ2 is continuous with

respect toP = (p1, . . . , pn) ∈ Dn except possibly where the matrixΣτ (P ) is not full rank.



Under the model (2) withτ 2 6= 0, we have thatΣτ is always full rank. Therefore, let us consider

the ideal sensor case in whichτ 2 = 0, Y (pi) = Z(pi), andΣτ (P ) = Σ(P ). Note thatΣ being

rank deficient corresponds precisely to the case whenP ∈ Scoinc. Let us then takeP † ∈ Scoinc.

It suffices to show that

lim
P→P †

σ2(s; P ) = σ2(s; iF(P
†)), (11)

whereP ∈ Dn \ Scoinc. We begin by considering the case in which only two agents sitat the

same location in the configurationP †. Sinceσ2 is invariant under permutations of the agents,

without loss of generality we can assume thatp
†
1 = p

†
2. Let thenP † = (p†1, P ). Since all points

in P are distinct, we have

lim
P→P †

σ2(s; P ) = lim
p1→p

†
1=p

†
2

σ2(s; P ).

Using Corollary A.2, we can write

lim
p1→p

†
1=p

†
2

σ2(s; P ) = σ2(s; P ). (12)

SinceP is a specific ordering ofiF(P
†), equation result (11) follows.

The case when more than two points inP † are coincident can be dealt with similarly. If

|iF(P
†)| = m ≤ n−2, we assume without loss of generality thatiF(P

†) = {p†m+1, . . . , p
†
n} using

the fact thatσ2 is invariant under permutations. Then, we have

lim
P→P †

σ2(s; P ) = lim
p1→p

†
1

lim
p2→p

†
2

. . . lim
pm→p

†
m

σ2(s; P ).

Repeatedly using (12), the limit above is well defined and, moreover, we conclude (11).


