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Abstract

This paper deals with multi-agent networks performing mojli estimation tasks. Consider a network
of mobile agents with sensors that can take measurementsspéteal process in an environment of
interest. Using the measurements, one can construct agrigierpolation of the spatial field over the
whole environment, with an associated prediction erromaheoint. We study the continuity properties
of the prediction error, and consider as global objectivecfions the maximum prediction error and
the generalized prediction variance. We study the networKigurations that give rise to optimal field
interpolations. Specifically, we show how, as the correfabietween any two different locations vanishes,
circumcenter and incenter Voronoi configurations becomvarl configurations that optimize the
maximum prediction error and the generalized predictiamanae, respectively. The technical approach

draws on tools from geostatistics, computational geométrgar algebra, and dynamical systems.

. INTRODUCTION

Problem statementMobile sensor networks are envisioned to perform distabusensing
and data fusion tasks in a wide range of scenarios, inclueitvgronmental monitoring, oceano-
graphic research, and distributed surveillance of cfitinkastructures. This paper considers
mobile sensor networks performing optimal estimation ofgital processes modeled as spatial
random fields. Standard interpolation techniques prodstienates of the spatial field at each
point of the environment of interest. When a measure of tharacg of the estimate is available,
a natural objective is then to characterize those networfigarations that give rise to optimal

estimates of the field. This is the problem that we considehis paper.
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Literature review: Kriging [1], [2] is a standard technique used in geostatsstio produce
estimates of spatial processes based on data collectedrateanfimber of locations. The main
advantage of kriging over other spatial interpolation rodthis that it provides a measure of
the uncertainty associated to the estimator. The optimsibdditerature [3], [4] deals with the
problem of designing experiments to optimize the resulstagistical estimation. Of particular
interest are the notions of G-optimality, minimizing the xamaum prediction error, and D-
optimality, minimizing the generalized prediction varcan

The work [5] introduces performance metrics for optimaireation in oceanographic research.
The works [6], [7] proposes distributed optimal estimat&mategies for deterministic fields,
when the measurements taken by individual agents are whatad. In [8], the emphasis is on
finding optimal agent trajectories along a given intervatiofe among a parameterized set of
trajectories. Here, instead, we focus on optimal networkfigarations for the estimation of
the random field at a single snapshot. In our technical approse have been inspired by [9],
which considers the problem of minimizing the maximum uteiety over a discrete space
and shows that minimax configurations are asymptoticallynegd as the correlation between
any two distinct points vanishes. Minimax configurationsiimiize the maximum distance to
the nearest agent from any point in space. Here, we make timeection to Voronoi partitions
of continuous spaces, which are a classical notion in coatipual geometry [10]. In [11],
circumcenter and incenter Voronoi configurations are ddfirmad various distributed motion
coordination algorithms are introduced which are guaethte asymptotically bring the network
to these desirable configurations.

Statement of contributionstn this paper, we consider two performance metrics for ogpltim
placement of mobile sensor networks based on kriging. We dinaracterize the continuity
properties of the mean-squared error of the simple krigstgrator as a function of the network
configuration. In the case of zero measurement error, thmtdrivial. Previous results in the
optimal design literature have avoided this problem byroing over a discrete set of possible
configurations, while we consider the continuous spacelaig®nt locations within the region.
Next, we define our first optimality criterion, the maximumegiction error of the kriging
predictor, and study its critical points asymptoticallg,the correlation between any two distinct
points vanishes. We define a second optimality criterionfasna of D-optimality, the generalized

variance of the kriging predictor within a bounded regiamg atudy the critical points within the



same asymptotic framework. Our main results are showing fimathe simple kriging predictor,
circumcenter Voronoi configurations are asymptoticallytimpl for the maximum prediction
error over the environment, while incenter Voronoi confggions are asymptotically optimal
for the generalized variance. In general, it is difficult totain exactly the configurations that
optimize these objective functions. Our results are reieva the extent that they guarantee
that, for scenarios with small enough correlation betwegstintt points, circumcenter and
incenter Voronoi configurations are optimal for approgiateasures of uncertainty. The network
can achieve these desirable network configurations by &regcsimple distributed dynamical
systems. Various simulations illustrate our results.

Organization: The paper is organized as follows. Section Il introducescbastions from
computational geometry and presents a brief overview of kiiging estimation procedure.
Section 1l states the problem of interest. We present ouinmasults in Section IV on the
optimality of circumcenter and incenter Voronoi configimas. Section V presents simulations

to illustrate our results. Finally, Section VI gathers oonclusions and ideas for future work.

[I. PRELIMINARIES

This section introduces various concepts which will be wiskfter on. Let us start by in-
troducing some notation for standard geometric objects.R.eR., and R-, denote the set
of reals, positive reals and nonnegative reals, respégtiée are concerned with operations
on a compact and connected $@tof Euclidean spac®?, d € N. For p,q € R?, we let
Ip,q[= {Ap+ (1 = X)g | X €]0,1[} denote theopen segmentvith extreme pointy and ¢. For
p € R¥ andr € R.(, we let B(p,r) denote theclosed ballof radiusr centered ap and B(p, )
denote theopen ballof radiusr centered ap. We denote by.S| and9S the cardinality and the
boundary of a seb, respectively. Aconvex polytopés the convex hull of a finite point set. For
a bounded set c R?, we let CC(S) and CR(S) denote thecircumcenterand circumradius
of S, respectively, that is, the center and radius of the smalehus d-sphere enclosing.
The incenter set of, denoted byIC(S), is the set of the centers of maximum-radilsspheres
contained inS. The inradius ofS, denoted byIR(.S), is the common radius of these spheres.

We consider tuples or ordered sets of possibly coincideit@al = (py,...,p,.) € (R,
We will refer to such an element ascanfiguration Let B(S) (respectivelyF(S)) denote the

collection of subsets (respectively, finite subsets)SofWe denote an element df(R?) by



P ={pi,...,pn} C R? wherep,,...,p, are distinct points irR?. Let ir : (RY)" — F(RY)
be the natural immersion, i.ex(P) contains only the distinct points iR = (ps,...,p,). Note
that the cardinality ofiz(p,...,p,) is in general less than or equal 0 Let Sgoinc be the set

of all tuples in(R%)" which contain at least one coincident pair of points, that is

Secoine = {(p1, - - -, pn) € (RY™ | p; = p; for somei,j € {1,...,n},i # j}.

Let || - || denote the Euclidean distance function®h Define the distancé : R? x 3(D) — R

from a point inR¢ to a set of points irD by d(s, P) = ig@{”s —p||}, and letmds : R xB(D) —
p

B(D) be theminimum distance sehap defined bynds(s,P) = {p € P | ||s — p|| = d(s, P)}.

A. Voronoi partitions and multi-center problems

Here we present some relevant concepts on Voronoi diagracheeter the reader to [10], [12]
for comprehensive treatments.partition of D is a collection ofn polygonsW = {W;, ..., W,}
with disjoint interiors whose union i®. TheVoronoi partitionV(P) = (V1(P),...,V,(P)) of D
generated by the point8 = (p,,...,p,) is defined by

ViP)={qa€D|llg—pill <lla—psll, Vi #i}.

We say thatP is acircumcenter Voronoi configuratioifl p;, = CC(V;(P)), foralli € {1,...,n},
and thatP is anincenter Voronoi configurationf p; € IC(V;(P)), for all i € {1,...,n}. An
incenter Voronoi configuration isolatedif there exists a neighborhood around it3iW which
does not contain any other incenter Voronoi configuration.

Consider thealisk-coveringand sphere-packing multi-centdunctions defined by

Hpc(P) = max{d(s, ix(P))} ,

seD

1
H P - i {— i — Mg 7d Z,GD }
se(P) = min  q5lpi = pjll,d(pi, 0D)

We are interested in the configurations that optimize thesé-center functions. The minimiza-
tion of Hpc corresponds to minimizing the largest possible distancangfpoint inD to one of
the agents’ locations given by, ..., p,. We refer to it as the as thaulti-circumcenter problem
The maximization of{sp corresponds to the situation where we are interested inmrmaixig the

coverage of the are® in such a way that the radius of the generators do not oveiaprder



not to interfere with each other) or leave the environmerg. Mé&fer to it as themulti-incenter

problem It is useful to define théendex functionN : D" — N as

N(P) = | argmin {%sz —pj||,d(pi,8D)H.

DPiFDPj

B. Spatial prediction via simple kriging

This section reviews the geostatistical kriging procedareghe estimation of spatial processes,
see e.g., [1], [13]. A random process is second-order stationaryf it has constant mean,
E(Z(s)) = u, and its covariance is of the fordov(Z(p;), Z(p2)) = C(p1,p2), WhereC' :
R? x R? — R is positive-definite and only depends on the differepce- p,. We will focus on

isotropic covariance functions, which satisfy

C(p17p2) = 9(”191 —p2||)7

for some decreasing functiop : R>, — Rs,. The covariance matrix of the set of points
pi,...,pn € Dis B = B(P) = [Cpi,p)]};—1 € R™™. When it is clear from the context, we
will use bold face to denote explicit dependenceonWe further define: : D x D" — R" to
be the vector of covariances between a peirt D and the locations irP, i.e.,c = ¢(s, P) =
(C(s,p1),...,C(s,p,))T. Of particular use to us will be the associated correlationcfion,
p:RYx R — [0,1] defined by

p(p1,p2) = Cp1,p2) _ g(llpr — p2l|)

N \/C(pl,pl)\/o(pmm) 9(0)
Throughout the paper, we make the following assumptionshemtodel for the spatial random

processZ of interest. We assume that is of the form
Z(s) = pu(s) +(s), seD, 1)

and that the mean functiom is known. Also,é is a zero-mean second-order stationary random
process with a known decreasing isotropic covariance ioimcg. We will further assume that

g is everywhere differentiable. Some examples of such fanstiare the exponential, cubic,
spherical, modified Bessel, and rational quadratic coveeidanctions.

Assume measurement daya= (Y (p1),...,Y (p,))? is corrupted with error such that

Y(pi) = Z(ps) + €, € <N (0, 72) , (2)



where7? > 0. The assumption that the errars i € {1,...,n} are independent and identically
distributed corresponds to the fact that the robotic netwerequipped with identical sensors.
The no-error scenario is the one most widely studied in thesigistics literature. In the error

case, the covariance betwegip;) andY (p;) is given by
C(pi7pj)+7—27 IfZ:ja

Note that the covariance matrix P with respect to the noisy process may be written

Cov(Y (p;),Y (p;)) =

3, =%, (P) = X+ 721I,, where I, denotes the: x n identity matrix. The no-error case is
recovered by setting? = 0.

The simple kriging predictorat s € D is the predictor that minimizes the mean-squared pre-
diction erroro?(s; p1,...,pn) = E(Z(s) — p(s; Y (p1),...,Y (pn)))? among all linear predictors
of the formp(s; Y (p1),....Y(pa)) = >, LY (pi) + k. The explicit expression of the simple
kriging predictor ats € D is

psk(s:Y (p1), ... Y(pn)) = pu(s) + "2 (y — p), 3)

wherep = (u(p1), ..., n(ps))T. The mean-squared prediction errorjgk at s € D is
o(s;p1, .., n) = 9(0) — ' e 4)

Note thato? is invariant under permutations of, ..., p,.

I1l. PROBLEM STATEMENT

Consider a network of, agents evolving in a convex polytog@ c R? according to the
first-order dynamic®; = u;, ¢ € {1,...,n}. Assume each agent is equipped with a point-sized
footprint sensor, and can take a noisy measureriiépt) as in (2) of the spatial process at
its current positiorp;. A natural objective is to select locations to take measergmin such
a way as to minimize the uncertainty in the estimate of theiapprocess. Here, we consider
objectives inspired by the notions of G- and D-optimalitgrifr optimal design [1], [3].

The maximum prediction errors

M(p1,...,pn) = max o?(s;p1y- -, on) = g(0) — I%%I{CTET_IC}. (5a)



Note thatM corresponds to a “worst-case scenario,” where we consagatibns in the domain
with the maximum kriging mean-squared error. Let us makengortant observation about the
well-posedness af1. Under noisy measurements, i.€2,> 0, the functions? is well-defined for
anys € D and(py,...,p,) € D" Indeed, the dependence @f on the network configuration
is continuous, and hence\! is also well-defined. However, when no measurement noise is
present, i.e.7? = 0, then the matrixX, = X in (4) is not invertible for network configurations
that belong toScoine and therefore, it is not clear what the value «fis. This problem is
carefully addressed in Appendix A, where it is shown that he ho measurement noise case,
o? is a continuous function of the network configuration undstable technical conditions on
the covariance structure of the spatial field.

Before presenting the second objective function, we needttoduce some notions. Note
that the variance of the simple kriging predictor is equewalto the variance of the expression
c"'> ¢, while the generalized variance [14] is considered to bal#terminant of the covariance
matrix ¥_'. Minimizing the determinant oE_' is equivalent to minimizing-|X.|, where| - |
denotes the determinant. For discrete state spaces, itecahdwvn [9] that configurations which
maximize the minimum distance between agents asymptigticahimize —|X| in the limit of
near independence, but this results in configurations wieictis to place agents on the boundary
of D. Since we are only interested in predictions oferwe would like a notion of optimality
which penalizes agents too close to the boundary as it daa#satpo close to each other. This
can be achieved as follows. Let: D — R? map a point inD to its mirror image reflected
across the nearest boundaryf Formally,

v(s) € s+ 2 (argmin {||s* — s} — s).
s*€0D
Note thaty(s) is in general not unique, and is not a smooth function.dflowever,||s — v(s)||
is smooth, and is the same for all valuesy@f). Now consider minimizing the determinant of
the simple kriging predictor which would result if we had aldtom all agents as well as their

reflections. Thegeneralized prediction variancs then

B(pb s 7pn) = = ’ZT(pla cee 7pn77(p1)7 s 77(1771))’ : (Sb)

Note that since3 does not require inversion of the covariance matrix, it i8agis well-posed.

Our main goal is to find network configuratiops, . . ., p,, that minimize M and B.



IV. OPTIMAL NETWORK CONFIGURATIONS FOR SPATIAL PREDICTION

In this section, we provide several results that charamdhe optimal network configurations
of the objective functions\M and B. In Section IV-A, we show that minima oM cannot be
in Seoine This fact is useful in Section 1V-B where we show that, fanple kriging, circumcenter

and incenter Voronoi configurations are asymptoticallyiropt for M and B, respectively.

A. Coincident configurations are not minima of the maximundipt®n error

In this section, we will examine the effect of the locationaofubset of agents on the mean-
squared error terms. In particular we are interested in esim@ o?(s; P) againsto?(s; ip(P))

for configurationsP € Scine. The following lemma provides a useful decompositionoéf

Lemma V.1 The simple kriging mean-squared error function may be wriitethe form
— W(sp;P)’

02(p1;ﬁ) + 72’

with N(s, p1; P) = C(s,p1) — L' (s, P)S.(P)tc(p1, P) and P = (py, ..., p,) € D" L.

(6)

The proof of this fact follows from using [15, Propositior281] for the inverse of a partitioned
symmetric matrix. Equation (6) may be applied repeatedlystdate the effects of any subset
of locations inP.

Under the assumptions of Proposition A.3, we can extend #s@nnsquared error function by
continuity to include configurations if..ne. With a slight abuse of notation, in the case of no

measurement error, we will usé€(s; P) to denoteo?(s;ip(P)) for P € Seoine.

Proposition 1V.2 (Minima of M are not in Seine) Let Pt € D" be a strict local minimum of

the mapP — M(P). Under the assumptions of Proposition A3, & Seoinc.

Proof: We proceed by contradiction. Assuni® € Sguine. Consider a configuratio®® €
D™\ Seoine in @ neighborhood of’" such thatix(P') C ip(P). Let s, s' € D such thatM (P) =
0?(s; P) and M(P") = o%(s'; PT). Using Lemma IV.1 and Proposition A.3, one can deduce
thato?(s; Pt) > o?(s; P). By the definition of M, o2(s'; PT) > o2(s; PT). ThereforeM(PT) =
o?(sT; PT) > o%(s; PT) > o?(s; P) = M(P), which is a contradiction. |



B. Multi-center Voronoi configurations are asymptoticadlgtimal

Let us consider the objective functiodd and B introduced in Section Il but with covariance
function C*, k € N. This is equivalent to considering the correlatigii, As k£ grows, the
correlation between distinct points iR vanishes. To ease the exposition, we denotecty;
respectivelyX¥), the vectore, respectively the matrixe,, with each element raised to the
kth power. We will also useM*) and B*) to denote the objective functionst and B with

covariance functiorC*, that is,

MPB(py,. . pa) = g"(0) — mig{(c(k))T(ES_k))—lc(k)},
se
B®(pr,....pa) == [E¥ (p1, ..o Dy v(p1)s - -7 (00))] -

Let us start by establishing a result on the cardinality af thinimum distance set. Let
Cras : R x D" — R be defined by

Chas(s, P) = C(s,p) for anyp € mds(s, P).

Note thatC',4 is well-defined.

Proposition 1V.3 (Cardinality of minimum distance set) Let the covariance functior' be

continuous. ForP € D™\ Sgoine; ONE has
min {Cunas (s, P) [mds(s, P)|} = min {Cuas(s, P)} -

Proof: We proceed by contradiction. If the statement is false, thene existss' € D such

that s' € argmin,cp, {Cinas(s, P) |mds(s, P)|}, and |mds(s', P)| > 1. Let p* € mds(s', P), and

definer’ = ||s" — p*||. Note that
mds(s', P) € 0B(s',r). (7)

Let s* €]sT,p*[ such that||s* — sT|| < ¢ for somee € R., and letr* = |s* — p*||. By
construction,r* < rf. From (7), we deduce thdtp € P | p € B(s*,7*)} = {p*}, which leads
to |mds(s*, P)| = 1. SinceC changes continuously with the distance between its argtsngn

is clear that we may choosesmall enough to result in
Chas(s™, P) |mds(s*, P)| < Cmds(sT, P) }mds(sT, P)| ,

which is a contradiction. [ |



We are now ready to prove one of the main results of the paper.pfoof follows a similar

line of reasoning to [9].

Theorem V.4 (Minima of M under near independence) Let P,,,.. € D™ be a global minimizer
of the multi-circumcenter problem. Then, &s— oo, P,.. asymptotically globally optimizes

M®) | that is, M*)(P,...) approaches a global minimum.

Proof: Note that minimizingM®) is equivalent to finding the tuple® which maximize

the functionL® : D" — R defined as

L®(P) = min {(c¥(s, P))T (S (P)) " (<" (s, P)) } -

seD
Let Apnin @and Apax - D" X R — R be such that\,i, (P, k), Amax(P; k) denote, respectively, the

minimum and the maximum eigenvalue Efk)(P). We can see that®)(P) is bounded above
by Amax (P, k) Y-, p C(s,p)** and below bydwin(P, k) 3
of the minimum distance set we can write

ZC(s,p) Z C(s,p)* + ZC’

peEP pEmds(s,P) peP\mds(s,P)

= |mds(s, P)| Cias(s, P)** + Z C(s,p)?
pEP\mds(s,P)
As k£ — oo the elements in the minimum distance set dominate, so weeérevith

ep C(s,p)?*. For a givens, in terms

> " C(s,p)* = |mds(s, P)| Ciugs (s, P)** + 0(Cras(s, P)**).
peP
Note from Proposition 1V.3 that

min {[mds(s, P)| Cas(s, P)} = min {Cras (s, P)}
SO we can write

: 2k _ : 2k
rglgl{;C(sﬁp) b= min {Cuas(s, P)™ (1 +0(1))}
p
Consider, then, comparing an arbitrary configuratidh against a global minimizer oHpc,

say P..... In the zero measurement error case, by Proposition 1V.2cameassume without loss
of generality thatP* ¢ S.oine. Therefore, no matter what the value ofis, we can safely use
the eigenvalues 0@5’“))‘1 to provide bounds. Specifically,

L®(P*) Amax (P, k)ISIéllr)l {Cras(s, P*)** (1 +0(1))}

< . 8
L(k)(Pmcc) N Amin(Pmcm k’)Hé%l {Cmds<57 Pmcc)2k (]- + 0(1)>} ( )




Note thatlimy_.. S (P) = (g(0) + 72) I,, S0 A (P, k) and Amax (P, k) both tend tog(0) + 72
for any configurationP. SinceP,,.. minimizes the maximum distance to any poirg D, it maxi-
mizes the minimum covariance, so for aRyc D", min,ep Chas(s, P) < mingep Cinds(S; Prce)-
Thus the ratio (8) is bounded by+ o(1). Therefore, in the limit ag — oo, minimizing M®*)
is equivalent to solving the multi-circumcenter problem. [ |
Note that the proof of the theorem can be reproduced for lagaimizers of the multi-

circumcenter problem to arrive at the following result.

Corollary 1V.5 Let P,.. € D™ be a local minimizer of the multi-circumcenter problem. The

ask — 00, Pue. asymptotically optimizes1*), that is, M*¥)(P,,..) approaches a minimum.

According to [11], under certain technical conditions,usimns to the multi-circumcenter
problem are circumcenter Voronoi configurations. Nextuepresent a similar asymptotic result

for the generalized prediction variance.

Theorem 1V.6 (Minima of B under near independence) Let P,,;. € D" be a global maximizer
of the multi-incenter problem with lowest index. Thenkas oo, Py asymptotically globally

optimizesB™®, that is, B*)(P,;.) approaches a global minimum.

Proof: Expanding the objective function for asymptotically doamhterms, we may write

2n—2 2n—2

BW(P) = —(g(0)* + )" + (9(0)* + 7)™ "B (P) + 0 ((9(0)’f +7°) J(k)(P)) :

where

TOP) =" glllp: = pi)* + D gl = v @)™ + Y (v e:) = 1))

i#j ij=1 i#j

Asymptotically all but the largest terms ii®)(P) will drop out, and minimizingB®*)(P)
becomes equivalent to minimizing those terms. The larggstd in.J*)(P) correspond to the
shortest distance between the locations of either the agentheir reflected images. For any
two agent locationsy;, p; € D, and any of their reflections(p;), v(p;) the minimum distance
between any two of the four points can be reducedio{||p;, — p;l, [lpi — v, lp; — ()| }
(note that this is not in general true for non-convex domainBus the shortest distance between
agents inP and their reflections may be expressed®a&p(P), though there may be multiple

pairs of the form(p;, p;) or (p;, v(p;)) which satisfy the minimum distance criterion, i.e., thegrd



of P might be larger tharl. Therefore we have/®)(P) = N(P) (g(2Hsp(P))**) (1 + o(1)).
Consider comparing an arbitrary configuratide, € D™ againstP,,;.. We have

J(k) (Prnic) _ N<Pmic) (9(2HSP<PmiC))2k) (1 + 0(1>>
JR(P*) N(P*) (9(2Hsp(P*))?") (1 + o(1))
If P* is not a global solution of the multi-incenter problem, wevd&{sp( Pnic) > Hsp(P*),

and sincey(-) is decreasing this gives us

. J(k)<Pmlc)
N TOTr
If on the other handP* is a global solution of the multi-incenter problem, theningsthe fact
1 (k) Pmic)
that P,,;. has the lowest index among all of them, we dedéﬁ% <1+o(1). [ |

Note that the proof of the theorem can be reproduced for testblébocal maximizers of the

multi-incenter problem to arrive at the following result.

Corollary IV.7 Let P,;. € D" be an isolated local maximizer of the multi-incenter proble

Then, ask — oo, Py asymptotically optimizeB™®), that is, B (P,;.) approaches a minimum.

According to [11], under certain technical conditions,ui@ns to the multi-incenter problem

are incenter Voronoi configurations.

C. Distributed coordination algorithms

In this section, we present coordination algorithms theg¢isthe network towards circumcenter
and incenter Voronoi configurations. We do this followinge texposition in [11]. In light of
the results in Section IV-B, this enables the network to quenf a spatial prediction which is
asymptotically optimal ag — oc.

Let us assume each agent can move according to a first-orseamiyal modelp;, = u;,

i € {1,...,n}. Consider the following coordination algorithms
pi = CC(Vi(P)) — pi, (9a)
pi € IC(Vi(P)) — i, (9b)
for eachi € {1,...,n}. Note that (9b) is a differential inclusion. We understatsdsolutions in

the Filippov sense [16]. Both coordination algorithms areovimi distributed, meaning that each

agent only requires information from its Voronoi neighborsorder to execute its control law.



The equilibrium points of the flow (9a) are the circumcenterovioi configurations, whereas
the equilibrium points of the flow (9b) are incenter Voronainfigurations. Furthermore, the
evolution of Hpc along (9a) is monotonically decreasing, while the evoluixd Hsp along (9b)

is monotonically increasing. The convergence propertiethese coordination algorithms, as
well as alternative flows with similar distributed propesithat can also be used to steer the

network to center Voronoi configurations, are studied in.[11

V. SIMULATIONS

With the aim of illustrating the results presented in Sectiid, we performed simulations for
both objective functions\1 and B with n = 5 agents. In our simulations, we used as donfain
the convex polygon with vertice§0,0.1), (2.5,0.1), (3.45,1.6), (3.5, 1.7), (3.45, 1.8), (2.7, 2.2),
(1.0,2.4),(0.2,1.3)} and as isotropic covariance the one defined @ia: R* x R? — R,
C(s1, s5) = e~sll=i==2ll_ Note that, in simple kriging, the mean function does noyarole in
determining the optimal network configurations. Figure bve the multicenter configurations
obtained with the flows (9).

() (b)
Fig. 1. Multi-center configurations found (a) using the flow (9a) anduhg the flow (9b).

A. Analysis of simulations fam*)

Using M) we ran overl000 random trials, each time running a gradient descent ahguorit
and chose the local minimum configuration with the smallestier of MY to be our approx-
imation of a global minimum. From this configuratidn,, we generated a multi-circumcenter

configuration using (9a), depicted in Figure 1(a). For iasieg values of;, we ran a gradient



descent ofM®) to find the best local configuration ne&. For comparison, we also plotted
the performance of a random configuration which was not d lm@amum. Figure 2 illustrates

the result in Theorem 1V.4. At aroundl = 15, the performance of the circumcenter Voronoi

© o o
A O @

max error

e
N

Fig. 2. Value of M® for multi-circumcenter (solid), approximated global minimum (dashed)d random (dotted)

configurations of 5 agents for increasing valuestofrhe covariance function is exponential.

configuration becomes almost identical to the one of the mier of M®*).

B. Analysis of simulations faB(*)

Using B we ran overl000 random trials, each time running a gradient descent algariand
chose the local minimum configuration with the smallest gadfi3") to be our approximation
of a global minimum. From this configuratiaf, we generated the multi-incenter configuration
using (9b), depicted in Figure 1(b). For increasing values, ave ran a gradient descent Bf*)
to find the best local configuration ne&y. For comparison, we also plotted the performance
of a random configuration which was not a local minimum. Feg& illustrates the result
stated in Theorem IV.6. The performance of the minimizeBdf and of the incenter Voronoi
configuration are almost identical from the beginning, etleugh at eaclt the configurations

are different.

VI. CONCLUSIONS

We have used simple kriging as a metric for optimal placensénmhobile sensor networks
estimating random fields. We have shown that under the asgmpf near independence,
circumcenter configurations minimize the maximum predicerror and incenter configurations

minimize the generalized prediction variance. Under kaiitime or energy resources, or as a



det er m nant

25 30 35 40

Fig. 3. Value of B%*) for multi-incenter (solid), approximated global minimum (dashed), a@mtiom (dotted) configurations
of 5 agents for increasing values bf The covariance function is exponential. Although the performance efgtbbal and

multi-incenter configurations look identical, the configurations are diftea¢ eachk.

starting point for further exploration, a group of robotensors might begin by moving toward
these configurations to start the estimation procedure.

Future work will explore: (i) regarding the asymptotic ayss$, the determination of lower
and upper bounds on the parametethat guarantee that multicenter Voronoi configurations
achieve a given a desired level of performance, (ii) theresiten of the results of this paper to
similar error metrics for the universal kriging predictarhere the mean function is unknown,
and (iii) the characterization of the trajectories (rattte&an configurations) that provide optimal
estimates of the random field as agents reconfigure and takessive measurements over time.
Consideration will also be given to fields which change owvereti and to distributed methods

for estimation and data fusion.
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APPENDIXA

CONTINUITY OF THE SIMPLE KRIGING MEAN-SQUARED PREDICTION ERROR

Here we prove our main continuity result for the simple kiggimean squared error function.

We will first need some supporting results. lke€ R denote the distance between agent locations

p; and p,, and we are interested in the behavioradfas h — 0. For any agent locatiop;,

i€ (3,...,n) we would like a measure of the distance betwpeandp, in terms ofh, call it

h; € R. To find h;, consider the triangle formed betwegp p;, andp,. Let uj;, € R denote

the unit vector from agent to agentk, i.e.,

Pk — Dy

uyp = ——2
T o — o4



Let u;, denote the unit vector in the direction which bisects thel@abgtweenu;; andu;, (see

Figure 4). As in the figure, consider a poipit which is a distance ofjp; — p;|| from p;, but

Fig. 4. Triangle betweep;, p1, andpa.

in the directionu;,, and note that; = ||pi — p2||. Next, note that the projection of the vector
p; — p2 onto uy, is equal to the projection of the vectpr — p, onto the vecton,,;,, so that we

may write

T T
hiujue = ujush

T
U;;U21

U-zz;uza
Note that in the limit a®; — ps, h; — 0 andu, — u;o.
In the following treatment, we define a functign. R? — R to be directionally differentiable

at a pointa € R? if and only if the following limit exists for everyu € R¢

Dufta) = L0 )

This is a common notion in the optimization literature (see éxample [17], [18]), where it
is sometimes referred to as weak directional differeniiigbiVe will say that a functionf is
directionally differentiable onD if and only if D, f(a) exists for alla € D and allu € R%
Recall from Lemma V.1 the definition oP = (p, ..., p,) being the ordered set of agents in

P with the first agent removed. Now we are ready to present agultse



Lemma A.1 Let fi, f, : R? — R be directionally differentiable o). Let F' : R¢xRYx D"~ —
R be defined as

F(py,ps, P) = (fi(p1) — flg?;();l(fzﬁ(;?l) — fg(pz)).

Under the assumption that(0) # 0 then

lim F(py,p2, P) =0.
pP1—p2
Proof: First note that in the limit ag; — p», both the numerator and denominator of the
fraction tend to zero. With a little manipulation, we can ritge/ F' in terms ofh. Remembering

that c(p,, P) is the first row of the matrixS(P), and thatC (p;, p1) = C(p2, p2), We can write

_(fl(p1) - Lﬁ(pQ))(_fZ(pl) - f2@2)) . (10)
c'(p1, P) + CT(Pzap)) (P (C(p27P) - C(Pl,P))

F(p17p27ﬁ) = (
In terms ofg, we can write

[ g(llp2 — pal)) — gl — pal)|

_ — gl = psll) = g(llpr = psl)
C 2,P — C 1,P =
e 1 S

(0)—g(h)
g hg A

T
g(llp2—p3lD)—g(llp1—ps|) us,u21
h3 ugbugg
g(llp2—pal)—g(|lp1 —pall) uiyu21
hy ufbu4z

= —Ah,

where A € R*! is the vector

g(h)—g(0)

h
9(|lp2—psll+h3)—g(|lp2—ps|) ul,uz1
A — h3 ul uz>
g(lp2—pall+ha)—g(llp2—pall) ui,u21

hy ufbu@




Note that the limit ag — 0 corresponds to the limit g5 — p, along the straight line direction
u;2, and that

9'(0)
wiruz g ([[p2 — psll)
wiruzg'([[p2 — pall)

lim A =

h—0

Plugging this back intd”, we can write

F(p17p27p>
B2 ((fl(p2+hu21)*f1(p2))) <(f2(p2+hu21)*f2(p2)))

—h (T(p1, P) + T(p2, P)) B(P)'A

h <(f1(p2+hu21)—f1(p2))> ((f2(p2+hu21)—f2(p2))>
h h

— (T (p1, P) + T (p2, P)) ©(P) 1A

Note that for any directional unit vectar € R?,

A, F(prpe, P) = (Dufiee) (Dufa(p2)) (%in (o P) + cTh<p2 P)) z(?)—m) |

Regardless of the direction af, the numerator approaches zero. In the limit, the denomminat
evaluates to

9'(0)
3ot ([[p2 — psll)

—2¢ (o, PYR(P) | BT = —2¢(0).
219 ([[p2 — pall)

Since this is constant with respect to the direction of apgio as long ag’(0) # 0, we have

lim F(py,p2, P) =0.

pP1—p2

Corollary A.2 Under the assumption of zero measurement erray,(if) # 0 then

lim o?(s; P) = o*(s; P)

pP1—p2



Proof: Using Lemma IV.1 we can write

ey — o2y 4 (Cl5p1) = (5. P)S(P) ' e(pr, P))”
e 2. P)
_ (s P) + (Cls,p1) — " (s, P)S(P) 16 — C(s,ps))”
7 0'2(]71,?)

whered = ¢(p1, P) — c¢(p2, P). Note that the second term here can be multiplied out as

Y

Syve TS /S 2
(C(s,p1) = C(s,p2))” L 9(Cls,p1) = Os p2)) (5, P)R(P) 70 (c"(s. P)E(P)'9)
Uz(pbP) UQ(plap) 02(]717[3)
SinceC' is directionally differentiable everywhere, the first tefits the criteria of Lemma A.1,

and goes to zero in the limit. For the other two, note that

(s, P)2(P)7'6 = Z a; (C(pr,pi) — Cpa2,pi))

where theo;’s do not depend om,. By Lemma A.1, for alli,j in (1,...,n) we can say
lim (C(p1,pi) — Cp2,pi)) (C(s,p1) — C(s,p2)) —0
P1—p2 o2(py, P) ’
i (C@1pi) = Cp2, i) (Clprips) = Cloapy)) _
pP1—p2 0'2 (ph ?) '

Thus all of the parts of our equation which dependpergo to zero in the limit and we are left
with

lim o?(s; P) = o*(s; P).

P1—p2

We are now ready to present our main continuity result.

Proposition A.3 (Continuity of simple kriging predictor error) LetC : R? x R? — R be an
isotropic covariance functionC'(p,p2) = g(|lp1 — p2l|), with g : Ry — Ry, differentiable.
Assumeg’(0) # 0, and 7> = 0. Then, for eachs € D, the mean-squared simple kriging
prediction error (pi,...,p,) — 02(s;p1,...,ps) IS continuous. In addition, fo? € Sgoinc We
haveo?(s; P) = o2(s;ip(P)).

Proof: Let s € D. Note thato? is continuous wher® € D"\ Soine. Since the covariance
function C is differentiable and hence continuous, it follows from (dato? is continuous with

respect toP = (p1,...,p,) € D" except possibly where the matriX, (P) is not full rank.



Under the model (2) with? # 0, we have that. is always full rank. Therefore, let us consider
the ideal sensor case in whiefi = 0, Y(p;) = Z(p;), andZ.(P) = 3(P). Note thaty being
rank deficient corresponds precisely to the case when Seoine. Let us then takeP’ € Seoine.
It suffices to show that
Pli_)rr]iT o%(s; P) = o*(s;ip(P")), (11)

where P € D"\ Scoine. We begin by considering the case in which only two agentsitsthe
same location in the configuratiaR!. Sinceo? is invariant under permutations of the agents,
without loss of generality we can assume that= pl. Let thenP! = (p!, P). Since all points
in P are distinct, we have

F}LH;T o?(s; P) = pl_l)iplEn:p2 o?(s; P).

Using Corollary A.2, we can write

lim  o%(s; P) = o*(s; P). (12)
pL1—p]=p}

Since P is a specific ordering ofz(P"), equation result (11) follows.

The case when more than two points /i are coincident can be dealt with similarly. If
lig(P)| = m < n—2, we assume without loss of generality thatP") = {p/ .,,...,p}} using
the fact thato? is invariant under permutations. Then, we have

lim o%(s; P) = lim lim ... lim o?(s; P).
P—Pf P1—Pl P2—=Ph  Pm—Din

Repeatedly using (12), the limit above is well defined and,eoeer, we conclude (11). m



