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This article considers discontinuous dynamical systems. By discontinuous we mean
that the vector field defining the dynamical system can be a discontinuous function of the state.
Specifically, we consider dynamical systems of the form

ẋ(t) = X(t, x(t)),

with X : R × Rd → Rd, d ∈ N. For each fixed t ∈ R, the function x 7→ X(t, x) is not necessarily
continuous.

Discontinuous dynamical systems arise in a large number of applications. In opti-
mal control problems, open-loop bang-bang controllers switch discontinuously between extremum
values of the bounded inputs to generate minimum-time trajectories from one state to another.
Thermostats implement closed-loop bang-bang controllers to regulate room temperature. In nons-
mooth mechanics, the evolution of rigid bodies is subject to velocity jumps and force discontinuities
as a result of friction and impacts. The robotic manipulation of objects with mechanical contacts
or the motion of vehicles in land, aerial and underwater terrains are yet two more examples where
discontinuities naturally occur from the interaction with the environment.

Other times discontinuities are engineered by design. This is the case, for instance,
in the stabilization of control systems. The theory of sliding mode control has developed a sys-
tematic approach to the design of discontinuous feedback controllers for stabilization. A result
due to Brockett [1, 2, 3] implies that many control systems, including driftless systems, cannot be
stabilized by means of continuous state-dependent feedbacks. As a result, one is forced to con-
sider either time-dependent or discontinuous feedbacks. The application of Milnor’s theorem to



the characterization of the domain of attraction of an asymptotically stable vector field (see [2])
implies that, in environments with obstacles, globally stabilizing controllers must be necessarily
discontinuous. In behavior-based robotics, researchers seek to induce global emerging behaviors in
the overall network by prescribing interaction rules among individual robots. Simple laws such as
“move away from the closest other robot or environmental boundary” give rise to discontinuous dy-
namical systems. In optimization problems, the design of gradient-like continuous-time algorithms
to optimize nonsmooth objective functions often gives rise to discontinuous dynamical systems.
The range of applications where discontinuous systems have been employed goes beyond control,
robotics and mechanics, and includes examples from linear algebra, queuing theory, cooperative
control and a large etcetera. The interested reader can find in the literature more exotic examples.

Independently of the particular application in mind, one always faces similar questions
when dealing with discontinuous dynamical systems. The most basic one is the notion of solution.
Since the vector field is discontinuous, continuously differentiable curves that satisfy the associated
dynamical system do not exist in general, and we must face the issue of identifying a suitable notion
of solution. A look into the literature reveals that there is not a unique answer to this question.
Depending on the specific problem at hand, authors have used different notions. Let us comment
on this in more detail.

Caratheodory solutions are the most natural generalization of the classical notion of
solution. Roughly speaking, one proceeds by allowing classical solutions not to follow the direction
of the vector field at a few time instants. However, Caratheodory solutions do not exist in many
of the applications detailed above. The reason is that their focus on the value of the vector field at
each specific point makes them too rigid to cope with the discontinuities.

Filippov and Krasovskii solutions, instead, make use of the concept of differential inclu-
sion. To define a differential inclusion, one makes use of set-valued maps. Just as a (standard) map
takes a point in some space to a point in some other space, a set-valued map takes a point in some
space to a set of points in some other space. Note that a (standard) map can be seen as a set-valued
map that takes points to singletons, that is, sets comprised of a single point. A differential inclusion
is then an equation that specifies that the state derivative must belong to a set of directions, rather
than be the specific direction determined by the vector field. This flexibility is key in providing
general conditions on the vector field under which Filippov and Krasovskii solutions exist. These
solution notions play a key role in many of the applications mentioned above, including mechanics
with friction and sliding mode control.

However, the Brockett’s impossibility theorem also holds when solutions are understood
in either the Filippov or the Krasovskii sense. The notion of sample-and-hold solution turns out to
be the appropriate one to circumvallate Brockett’s theorem, and establish the equivalence between
asymptotic controllability and feedback stabilization. Euler solutions are –very much like in the
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case in which X is continuous– useful in establishing existence results, and in characterizing basic
mathematical properties of the dynamical system.

Other notions that can be found in the literature include the ones proposed by Her-
mes [4, 5], Ambrosio [6], Sentis [7], and Yakubovich-Leonov-Gelig [8] solutions, see Table 1. The
Russian literature is full of different notions of solutions for discontinuous systems, see [8, Sec-
tion 1.1.3]. The notions of Caratheodory, Euler, sample-and-hold, Filippov and Krasovskii solutions
are compared in [9]. The notions of Hermes, Filippov and Krasovskii solutions are compared in [5].
The notions of Caratheodory, Euler and Sentis solutions are compared in [10]. For reasons of space
and relevance, we have chosen to focus here on Caratheodory, Filippov and sample-and-hold solu-
tions. Most of the discussion regarding Filippov solutions can be easily transcribed to Krasovskii
solutions.

Notion of solution References

Caratheodory [11]
Filippov [11]
Krasovskii [12]
Euler [11, 13]
Sample-and-hold [14]
Hermes [4, 5]
Sentis [7, 10]
Ambrosio [6]
Yakubovich-Leonov-Gelig [8]

Table 1. Several notions of solution for discontinuous dynamics. Depending on the specific
problem, some notions give more physically meaningful solution trajectories than others.

Once the notion of solution has been settled, there are a number of natural questions
that follow, including uniqueness, continuous dependence with respect to initial conditions, stability
and asymptotic convergence. Here, we pay special attention to the uniqueness of solutions and to
the stability analysis. For ordinary differential equations, it is well-known that the continuity of the
vector field does not guarantee uniqueness of solutions. Likewise, for discontinuous vector fields,
uniqueness of solutions is not guaranteed in general either –no matter what notion of solution is
chosen. Along the discussion, we report a number of sufficient conditions for uniqueness. We also
present results specifically tailored to piecewise continuous vector fields and differential inclusions.

The lack of uniqueness of solutions generally requires a little bit of extra analysis
because, if we try to establish a specific property of a dynamical system, we need to take into
account the possibly multiple solutions starting from each initial condition. This multiplicity leads
us to consider standard concepts like invariance or stability together with the adjectives weak and
strong. Roughly speaking, “weak” is used when the specific property is satisfied by at least one
solution starting from each initial condition. On the other hand, “strong” is used when the specific
property is satisfied by all solutions starting from each initial condition.
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We present weak and strong stability results for discontinuous dynamical systems and
differential inclusions. As we justify later in the example of the nonsmooth harmonic oscillator,
the family of smooth Lyapunov functions is not rich enough to handle the stability analysis of
discontinuous systems. This fact leads naturally to the study of tools from nonsmooth analysis.
In particular, we pay special attention to the concepts of generalized gradient of locally Lipschitz
functions and proximal subdifferential of lower semicontinuous functions. Building on these notions,
one can establish weak and strong monotonic properties of candidate Lyapunov functions along the
solutions of discontinuous dynamical systems. These results are later key in providing suitable
generalizations of Lyapunov stability theorems and the LaSalle Invariance Principle. We illustrate
the applicability of these results in a class of nonsmooth gradient flows.

There are two ways of invoking the stability results presented here when dealing with
control systems: (i) by choosing a specific input function and considering the resulting dynamical
system, or (ii) by associating to the control system the set-valued map that maps each state to
the set of all vectors generated by the allowable inputs, and considering the resulting differential
inclusion. The latter viewpoint allows to consider the full range of possibilities of the control
system viewed as a whole, since it does not necessarily focus on a particular choice of controls.
This approach also allows us to use nonsmooth stability tools developed for differential inclusions
in the analysis of control systems. We explore this idea in detail later in the article.

The topics treated here could be explored in more detail. Given the large body of
work on discontinuous systems and the limited space of the article, we have tried to provide a clear
exposition of a few useful and important results. Additionally, there are various relevant issues that
are left out in the exposition. An incomplete list includes the study of the continuous dependence of
solutions with respect to initial conditions, the characterization of robustness properties, converse
Lyapunov theorems, and measure differential inclusions. The interested reader may consult [3, 11,
13, 15, 16, 17] and references therein to further explore these topics. Also, we do not cover any
viability theory, see [18], discuss notions of solution for systems that involve both continuous and
discrete time, see, for instance [19, 20, 21], or consider numerical methods for discontinuous systems
and differential inclusions, see for example [22, 23, 24].

The article is organized as follows. We start by reviewing the basic results on exis-
tence and uniqueness of (continuously differentiable) solutions of ordinary differential equations.
We also provide several examples of the different situations that arise when the vector field fails
to satisfy the required smoothness properties. Next, we introduce three representative examples
of discontinuous systems: the brick on a frictional ramp, the nonsmooth harmonic oscillator and
the “move-away-from-closest-neighbor” interaction law. We then introduce various notions of solu-
tion for discontinuous systems, discuss existence and uniqueness results, and present various useful
tools for analysis. In preparation for the statement of stability results, we introduce the generalized
gradient and the proximal subdifferential notions from nonsmooth analysis, and present various
tools for their explicit computation. Then, we develop analysis results to characterize the stability
and asymptotic convergence properties of the solutions of discontinuous dynamical systems. We
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illustrate these nonsmooth stability results in various examples, paying special attention to gradi-
ent systems. We end the article with some concluding remarks. Throughout the discussion, we
interchangeably use “differential equation,” “dynamical system,” and “vector field.”

Two final remarks regarding non-autonomous differential equations and the domain of
definition of the vector fields. Most of the exposition contained here can be carried over to the
time-dependent setting, generally by treating time as a parameter. To simplify the presentation,
we have chosen to discuss non-autonomous vector fields only when introducing the various notions
of solution for discontinuous systems. The rest of the presentation focuses on autonomous vector
fields. Likewise, for simplicity, we have chosen to consider vector fields defined over the whole
Euclidean space, although most of the exposition here can be carried out in a more general setup.

Ordinary Differential Equations: Existence and Uniqueness of

Solutions, and Some Counterexamples

In this section, we review some of the basic results on existence and uniqueness of
solutions for ordinary differential equations (ODEs). We also present examples that do not verify
the hypotheses of these results but still enjoy existence and uniqueness of solutions, as well as other
examples that do not enjoy such desirable properties.

Existence of solutions

Let X : R×Rd → Rd be a (non-autonomous) vector field, and consider the differential
equation on Rd

ẋ(t) = X(t, x(t)). (1)

A point x∗ ∈ Rd is an equilibrium of the differential equation if 0 = X(t, x∗) for all t ∈ R. A
solution of (1) on [t0, t1] is a continuously differentiable map γ : [t0, t1] → Rd such that γ̇(t) =
X(t, γ(t)). Usually, we refer to γ as a solution with initial condition γ(t0) = x0. If the vector
field is autonomous, that is, does not depend explicitly on time, then without loss of generality
we take t0 = 0. A solution is maximal if it cannot be extended, that is, if it is not the result of
the truncation of another solution with a larger interval of definition. Note that the interval of
definition of a maximal solution might be right half-open.

Essentially, continuity of the vector field suffices to guarantee the existence of solutions,
as the following result states.
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Proposition 1. Let X : R × Rd → Rd. Assume that (i) for each t ∈ R, the map
x 7→ X(t, x) is continuous, (ii) for each x ∈ Rd, the map t 7→ X(t, x) is measurable, and (iii) X
is locally bounded, that is, for all (t, x) ∈ R × Rd, there exist ε ∈ (0,∞) and an integrable function
m : [t, t + δ] → (0,∞) such that ‖X(s, y)‖2 ≤ m(s) for all s ∈ [t, t + δ] and all y ∈ B(x, ε). Then,
for any (t0, x0) ∈ R × Rd, there exists a solution of (1) with initial condition x(t0) = x0.

For autonomous vector fields, Proposition 1 takes a simpler form: X : Rd → Rd must
simply be continuous in order to have at least a solution starting from any given initial condition.
As the following example shows, if the vector field is discontinuous, then solutions of (1) might not
exist.

Discontinuous vector field with non-existence of solutions

Consider the autonomous vector field X : R → R,

X(x) =

{
−1, x > 0,

1, x ≤ 0.
(2)

This vector field is discontinuous at 0 (see Figure 1(a)). The associated dynamical system ẋ(t) =
X(x(t)) does not have a solution starting from 0. That is, there does not exist a continuously
differentiable map γ : [0, t1] → R such that γ̇(t) = X(γ(t)) and γ(0) = 0. Otherwise, if such a
solution exists, then γ̇(0) = 1, and γ̇(t) = −1 for any positive t sufficiently small, which contradicts
the fact that γ̇ is continuous.

However, the following example shows that the lack of continuity of the vector field
does not necessarily preclude the existence of solutions.

Discontinuous vector field with existence of solutions

Consider the autonomous vector field X : R → R,

X(x) = − sign(x) =





−1, x > 0,

0, x = 0,

1, x < 0.

(3)
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Figure 1. Discontinuous –(a) and (b)– and not-locally Lipschitz –(c) and (d)– vector fields.
The vector fields in (a) and (b) do not verify the hypotheses of Proposition 1, and therefore
the existence of solutions is not guaranteed. The vector field in (a) has no solution starting
from 0. However, the vector field in (b) has a solution starting from any initial condition. The
vector fields in (c) and (d) do not verify the hypotheses of Proposition 2, and therefore the
uniqueness of solutions is not guaranteed. The vector field in (c) has two solutions starting
from 0. However, the vector field in (d) has a unique solution starting from any initial condition.

This vector field is discontinuous at 0 (see Figure 1(b)). However, the associated dynamical sys-
tem ẋ(t) = X(x(t)) has a solution starting from each initial condition. Specifically, the maximal
solutions are

For x(0) > 0, γ : [0, x(0)) → R, γ(t) = x(0) − t,
For x(0) = 0, γ : [0,∞) → R, γ(t) = 0,
For x(0) < 0, γ : [0,−x(0)) → R, γ(t) = x(0) + t.

The difference between the vector fields (2) and (3) is minimal (they are equal up to
the value at 0), and yet the question of the existence of solutions has a different answer for each of
them. We see later how considering a different notion of solution can reconcile the answers given
to the existence question for these vector fields.

Uniqueness of solutions

Next, let us turn our attention to the issue of uniqueness of solutions. Here and in what
follows, (right) uniqueness means that, if there exist two solutions with the same initial condition,
then they coincide on the intersection of their intervals of existence. Formally, if γ1 : [t0, t1] → Rd

and γ2 : [t0, t2] → Rd are solutions of (1) with γ1(t0) = γ2(t0), then uniqueness means that
γ1(t) = γ2(t) for all t ∈ [t0, t1] ∩ [t0, t2] = [t0, min{t1, t2}]. The following result provides a sufficient
condition for uniqueness.
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Proposition 2. Under the hypotheses of Proposition 1, further assume that for all
x ∈ Rd, there exist ε ∈ (0,∞) and an integrable function Lx : R → (0,∞) such that

(X(t, y) − X(t, y′))T (y − y′) ≤ Lx(t) ‖y − y′‖2
2, (4)

for all y, y′ ∈ B(x, ε) and all t ∈ R. Then, for any (t0, x0) ∈ R × Rd, there exists a unique solution
of (1) with initial condition x(t0) = x0.

Equation (4) is usually referred to as a one-sided Lipschitz condition. In particular,
it is not difficult to see that locally Lipschitz vector fields (see the sidebar “Locally Lipschitz
Functions”) verify this condition. The opposite is not true (as an example, consider the vector field
X : R → R defined by X(x) = x log(|x|) for x 6= 0 and X(0) = 0, which verifies the one-sided
Lipschitz condition (4) around 0, but is not locally Lipschitz at 0). Locally Lipschitzness is the
most common requirement invoked to guarantee uniqueness of solution. As Proposition 2 shows,
uniqueness is indeed guaranteed under slightly more general conditions.

The following example shows that, if the hypotheses of Proposition 2 are not verified,
then solutions might not be unique.

Continuous, not locally Lipschitz vector field with non-uniqueness of solutions

Consider the autonomous vector field X : R → R,

X(x) =
√
|x|. (5)

This vector field is continuous everywhere, and locally Lipschitz on R \ {0} (see Figure 1(c)). Even
more, X does not verify equation (4) in any neighborhood of 0. The associated dynamical system
ẋ(t) = X(x(t)) has two maximal solutions starting from 0, namely,

γ1 : [0,∞) → R, γ1(t) = 0,

γ2 : [0,∞) → R, γ2(t) = t2/4.

However, there are cases where the hypotheses of Proposition 2 are not verified, and the differential
equation still enjoys uniqueness of solution, as the following example shows.

Continuous, not locally Lipschitz vector field with uniqueness of solutions
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Consider the autonomous vector field X : R → R,

X(x) =





−x log x, x > 0,

0, x = 0,

x log(−x), x < 0.

(6)

This vector field is continuous everywhere, and locally Lipschitz on R \ {0} (see Figure 1(d)). Even
more, X does not verify equation (4) in any neighborhood of 0. However, the associated dynamical
system ẋ(t) = X(x(t)) has a unique solution starting from each initial condition. Specifically, the
maximal solution is

For x(0) > 0, γ : [0,∞) → R, γ(t) = exp(log x(0) exp(−t)),
For x(0) = 0, γ : [0,∞) → R, γ(t) = 0,
For x(0) < 0, γ : [0,∞) → R, γ(t) = − exp(log(−x(0)) exp(t)).

Note that the statement of Proposition 2 prevents us from applying it to discontinuous
vector fields, since solutions are not even guaranteed to exist. However, the discontinuous vector
field (3) verifies the one-sided Lipschitz condition around any point, and indeed, the associated
dynamical system enjoys uniqueness of solutions. A natural question is then to ask under what
conditions discontinuous vector fields have a unique solution starting from each initial condition.
Of course, the answer to this question relies on the notion of solution itself. We explore in detail
these questions in the section entitled “Notions of Solution for Discontinuous Dynamical Systems.”

Examples of Discontinuous Dynamical Systems

In this section we present three more examples of discontinuous dynamical systems.
These examples, together with the ones discussed in above, motivate the extension of the classical
notion of (continuously differentiable) solution for ordinary differential equations, which is the
subject of the next section.

Brick on a frictional ramp

Consider a brick sliding on a ramp, an example taken from [16]. As the brick moves
down, it experiments a friction force in the opposite direction as a result of the contact with the
ramp (see Figure 2(a)). Coulomb’s friction law is the most accepted model of friction available.
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Figure 2. Brick sliding on a frictional ramp. The plot in (a) shows the physical quantities used
to describe the example. The plot in (b) shows the one-dimensional phase portraits of (7)
corresponding to values of the friction coefficient between 0 and 4, with a constant ramp
incline of π/6.

In its simplest form, it says that the friction force is bounded in magnitude by the normal contact
force times the coefficient of friction.

The application of Coulomb’s law to the brick example gives rise to the equation of
motion

m
dv

dt
= mg sin θ − νmg cos θ sign(v), (7)

where m and v are the mass and velocity of the brick, respectively, g is the constant of gravity, θ is
the incline of the ramp, and ν is the coefficient of friction. The right-hand side of this equation is
clearly a discontinuous function of v. Figure 2(b) shows the phase plot of this system for different
values of the friction coefficient.

Depending on the magnitude of the friction force, one may observe in real experiments
that the brick stops and stays stopped. In other words, the brick attains v = 0 in finite time, and
stays with v = 0 for certain period of time. The classical solutions of this differential equation do
not exhibit this type of behavior. To see this, note the similarity of (7) and (3). In order to explain
this type of physical evolutions, we need then to understand the discontinuity of the equation, and
expand our notion of solution beyond the classical one.
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Nonsmooth harmonic oscillator

Arguably, the harmonic oscillator is one of the most encountered examples in text-
books of periodic behavior in physical systems. Here, we introduce a nonsmooth version of it,
following [25]. Consider a mechanical system with two degrees of freedom, evolving according to

ẋ1(t) = sign(x2(t)),

ẋ2(t) = − sign(x1(t)).

The phase portrait of this system is plotted in Figure 3(a).
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Figure 3. Nonsmooth harmonic oscillator. The plot in (a) shows the phase portrait on [−1, 1]2

of the vector field (x1, x2) 7→ (sign(x2),− sign(x1)), and the plot in (b) shows the contour plot
on [−1, 1]2 of the function (x1, x2) 7→ |x1| + |x2|.

By looking at the equations of motion, (0, 0) is the unique equilibrium point of the
system. Regarding other initial conditions, it seems clear how the system evolves while not in any
of the coordinate axes. However, things are not so clear on the axes. If we perform a discretization
of the equations of motion, and make the time stepsize smaller and smaller, we find that the
trajectories look closer and closer to the set of diamonds plotted in Figure 3. These diamonds
correspond to the level sets of the function (x1, x2) 7→ |x1| + |x2|. This observation is analogous
to the fact that the level sets of the function (x1, x2) 7→ x2

1 + x2
2 correspond to the trajectories of

the classical harmonic oscillator. However, the diamond trajectories are clearly not continuously
differentiable, so to consider them as valid solutions we need a different notion of solution than the
classical one.

11



“Move-away-from-closest-neighbor” interaction law

Consider n nodes p1, . . . , pn evolving in a convex polygon Q according to the inter-
action rule “move-away-from-closest-neighbor.” Formally, let S = {(p1, . . . , pn) ∈ Qn | pi =
pj for some i 6= j}, and consider the nearest-neighbor map N : Qn \ S → Qn defined by

Ni(p1, . . . , pn) ∈ argmin{‖pi − q‖2 | q ∈ ∂Q ∪ {p1, . . . , pn} \ {pi}},

where ∂Q denotes the boundary of Q. Note that Ni(p1, . . . , pn) is one of the closest nodes to pi,
and that the same point can be the closest neighbor to more than one node. Now, consider the
“move-away-from-closest-neighbor” interaction law defined by

ṗi =
pi −Ni(p1, . . . , pn)

‖pi −Ni(p1, . . . , pn)‖2
, i ∈ {1, . . . , n}. (8)

Clearly, changes in the nearest-neighbor map induce discontinuities in the dynamical system. Fig-
ure 4 shows two instances where these discontinuities occur.

(a) (b)

Figure 4. “Move-away-from-closest-neighbor” interaction law. The plots in (a) and (b) show
two examples of how infinitesimal changes in a node location give rise to different closest neigh-
bors (either polygonal boundaries or other nodes) and hence completely different directions of
motion.

To analyze this dynamical system, we need to understand how the discontinuities affect
its evolution. It seems reasonable to postulate that the set Qn \ S remains invariant under this
flow, that is, that nodes never run into each other, but we need to extend our notion of solution
–and redefine our notion of invariance accordingly– in order to ensure it.
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Notions of Solution for Discontinuous Dynamical Systems

In the previous sections, we have seen that the usual notion of solution for ordinary
differential equations is too restrictive when considering discontinuous vector fields. Here, we
explore other notions of solution to reconcile the mismatch. In general, one may think that a good
way of taking care of the discontinuities of the differential equation (1) is by allowing solutions
to violate it (that is, do not follow the direction specified by X) at a few time instants. The
precise mathematical notion corresponding to this idea is that of Caratheodory solution, which we
introduce next.

Caratheodory solutions

A Caratheodory solution of (1) defined on [t0, t1] ⊂ R is an absolutely continuous map
γ : [t0, t1] → Rd such that γ̇(t) = X(t, γ(t)) for almost every t ∈ [t0, t1]. The sidebar “Absolutely
continuous functions” reviews the notion of absolutely continuous function, and examines some of
their properties. Arguably, this notion of solution is the most natural candidate for a discontinuous
system (indeed, Caratheodory solutions are also called classical solutions).

Consider, for instance, the vector field X : R → R defined by

X(x) =





1, x > 0,
1
2 , x = 0,

−1, x < 0.

This vector field is discontinuous at 0. The associated dynamical system ẋ(t) = X(x(t)) does not
have a (continuously differentiable) solution starting from 0. However, it has two Caratheodory
solutions starting from 0, namely, γ1 : [0,∞) → R, γ1(t) = t, and γ2 : [0,∞) → R, γ2(t) = −t.
Note that both γ1 and γ2 violate the differential equation only at t = 0, that is, γ̇i(0) 6= X(γi(0)),
for i = 1, 2.

However, the good news are over soon. The physical motions observed in the brick
sliding on a frictional ramp example, where the brick slides for a while and then stays stopped, are
not Caratheodory solutions. The discontinuous vector field (2) does not admit any Caratheodory
solution starting from 0. The “move-away-from-closest-neighbor” interaction law is yet another
example where Caratheodory solutions do not exist either, as we show next.
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“Move-away-from-closest-neighbor” interaction law for one agent moving in a square

For the “move-away-from-closest-neighbor” interaction law, consider one agent moving
in the square environment [−1, 1]2 ⊂ R2. Since no other agent is present in the square, the agent
just moves away from the closest polygonal boundary, according to the vector field

X(x1, x2) =





(−1, 0), −x1 < x2 ≤ x1,

(0, 1), x2 < x1 ≤ −x2,

(1, 0), x1 ≤ x2 < −x1,

(0,−1), −x2 ≤ x1 < x2.

(9)

Since on the diagonals of the square, {(a, a) ∈ [−1, 1]2 | a ∈ [−1, 1]} ∪ {(a,−a) ∈ [−1, 1]2 | a ∈
[−1, 1]}, the “move-away-from-closest-neighbor” interaction law takes multiple values, we have
chosen one of them in the definition of X. Figure 5 shows the phase portrait. The vector field
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Figure 5. Phase portrait of the “move-away-from-closest-neighbor” interaction law for one
agent moving in the square [−1, 1]2 ⊂ R2. Note that there is no Caratheodory solution starting
from an initial condition in the diagonals of the square.

X is discontinuous on the diagonals. It is precisely when the initial condition belongs to these
diagonals that the dynamical system ẋ(t) = X(x(t)) does not admit any Caratheodory solution.

Sufficient conditions for the existence of Caratheodory solutions

Specific conditions under which Caratheodory solutions exist have been carefully iden-
tified in the literature, see for instance [11], and are known as Caratheodory conditions. Actually,
they turn out to be a slight generalization of the conditions stated in Proposition 1, as the following
result shows.
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Proposition 3. Let X : R × Rd → Rd. Assume that (i) for almost all t ∈ R, the map
x 7→ X(t, x) is continuous, (ii) for each x ∈ Rd, the map t 7→ X(t, x) is measurable, and (iii) X is
locally essentially bounded, that is, for all (t, x) ∈ R × Rd, there exist ε ∈ (0,∞) and an integrable
function m : [t, t + δ] → (0,∞) such that ‖X(s, y)‖2 ≤ m(s) for all s ∈ [t, t + δ] and almost all
y ∈ B(x, ε). Then, for any (t0, x0) ∈ R×Rd, there exists a Caratheodory solution of (1) with initial
condition x(t0) = x0.

Note that in the autonomous case, the assumptions of this result amount to ask the
vector field to be continuous. This requirement is no improvement with respect to Proposition 1,
since we already know that in the continuous case, continuously differentiable solutions exist. Be-
cause of this reason, various authors have explored conditions for the existence of Caratheodory
solutions specifically tailored to autonomous vector fields. For reasons of space, we do not go into
details here. The interested reader may consult [26] to find that directional continuous vector fields
admit Caratheodory solutions, and [27] to learn about patchy vector fields, a special family of
autonomous, discontinuous vector fields that also admit Caratheodory solutions.

Caratheodory solutions can also be defined for differential inclusions, instead of differ-
ential equations. The sidebars “Set-valued Maps” and “Differential Inclusions and Caratheodory
Solutions” explain how in detail.

Given the limitations of the notion of Caratheodory solution, an important research
thrust in the theory of differential equations has been the identification of more flexible notions
of solution for discontinuous vector fields. Let us discuss various alternatives, and illustrate their
advantages and disadvantages.

Filippov solutions

As we have seen when considering the existence of Caratheodory solutions starting from
a desired initial condition, focusing on the specific value of the vector field at the initial condition
might be too shortsighted. Due to the discontinuities of the vector field, things can be very differ-
ent arbitrarily close to the initial condition, and this mismatch might indeed make impossible to
construct a solution. The vector field in (2) and the “move-away-from-closest-neighbor” interaction
law are instances of this situation.

What if, instead of focusing on the value of the vector field at each point, we somehow
consider how the vector field looks like around each point? The idea of looking at a neighborhood
of each point is at the core of the notion of Filippov solution [11]. A closely related notion is that
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of Krasovskii solution (to ease the exposition, we do not deal with the latter here. The interested
reader is referred to [9, 12]).

The mathematical treatment to formalize this “neighborhood” idea uses set-valued
maps. Let us discuss it informally for an autonomous vector field X : Rd → Rd. Filippov’s idea is
to associate a set-valued map to X by looking at the neighboring values of X around each point.
Specifically, for x ∈ Rd, one evaluates the vector field X on the points belonging to B(x, δ), the
open ball centered at x of radius δ > 0. We examine the result when δ gets closer to 0 by performing
this operation for increasingly smaller δ. For further flexibility, we may exclude any set of measure
zero in the ball B(x, δ) when evaluating X, so that the outcome is the same for two vector fields
that only differ by a set of measure zero.

Mathematically, the previous paragraph can be summarized as follows. For X : R ×
Rd → Rd, define the Filippov set-valued map F [X] : R × Rd → B(Rd) by

F [X](t, x) =
⋂

δ>0

⋂

µ(S)=0

co{X(t, B(x, δ) \ S)}, (t, x) ∈ R × Rd.

In this formula, co denotes convex closure, and µ denotes the Lebesgue measure. Because of the
way the Filippov set-valued map is defined, its value at a point is actually independent of the value
of the vector field at that specific point. Note that this definition also works for maps of the form
X : R × Rd → Rm, where d and m are not necessarily equal.

Let us compute this set-valued map for the vector fields (2) and (3). First of all, note
that since both vector fields only differ at 0 (that is, at a set of measure zero), their associated
Filippov set-valued maps are identical. Specifically, F [X] : R → B(R) with

F [X](x) =





−1, x > 0,

[−1, 1], x = 0,

1, x < 0.

Now we are ready to handle the discontinuities in the vector field X. We do so substi-
tuting the differential equation ẋ(t) = X(t, x(t)) by the differential inclusion

ẋ(t) ∈ F [X](t, x(t)), (10)

and considering the solutions of the latter, as defined in the sidebar “Differential Inclusions and
Caratheodory Solutions.” A Filippov solution of (1) defined on [t0, t1] ⊂ R is a solution of the
differential inclusion (10), that is, an absolutely continuous map γ : [t0, t1] → Rd such that γ̇(t) ∈
F [X](t, γ(t)) for almost every t ∈ [t0, t1], see the sidebar “Differential Inclusions and Caratheodory
solutions.” Because of the way the Filippov set-valued map is defined, note that any vector field
that differs from X in a set of measure zero has the same set-valued map, and hence the same set
of solutions. The next result establishes mild conditions under which Filippov solutions exist.
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Proposition 4. For X : R×Rd → Rd measurable and locally essentially bounded, there
exists at least a Filippov solution of (1) starting from any initial condition.

The hypotheses of this proposition on the vector field guarantee that the associated
Filippov set-valued map verifies all hypothesis of Proposition S1, and hence the existence of solutions
follows. As an application of this result, since the autonomous vector fields in (2) and (3) are
bounded, Filippov solutions exist starting from any initial condition. Both vector fields have the
same (maximal) solutions. Specifically,

For x(0) > 0, γ : [0,∞) → R, γ(t) = |x(0) − t|+,
For x(0) = 0, γ : [0,∞) → R, γ(t) = 0,
For x(0) < 0, γ : [0,∞) → R, γ(t) = |x(0) + t|−.

Following a similar line of reasoning, one can show that the physical motions observed
in the brick sliding on a frictional ramp example, where the brick slides for a while and then stays
stopped, are indeed Filippov solutions. Similar computations can be made for the “move-away-
from-closest-neighbor” interaction law to show that Filippov solutions exist starting from any initial
condition, as we show next.

“Move-away-from-closest-neighbor” interaction law for one agent in a square –revisited

Consider again the discontinuous vector field for one agent moving in a square under
the “move-away-from-closest-neighbor” interaction law. The corresponding set-valued map F [X] :
[−1, 1]2 → B(R2) is given by

F [X](x1, x2) =





{(y1, y2) ∈ R2 | |y1 + y2| ≤ 1, |y1 − y2| ≤ 1}, (x1, x2) = (0, 0),

{(−1, 0)}, −x1 < x2 < x1,

{(y1, y2) ∈ R2 | y1 + y2 = −1, y1 ∈ [−1, 0]}, 0 < x2 = x1,

{(0, 1)}, x2 < x1 < −x2,

{(y1, y2) ∈ R2 | y1 − y2 = −1, y1 ∈ [−1, 0]}, 0 < −x1 = x2,

{(1, 0)}, x1 < x2 < −x1,

{(y1, y2) ∈ R2 | y1 + y2 = 1, y1 ∈ [0, 1]}, x2 = x1 < 0,

{(0,−1)}, −x2 < x1 < x2,

{(y1, y2) ∈ R2 | y1 − y2 = 1, y1 ∈ [0, 1]}, 0 < x1 = −x2.
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According to Proposition 4, since X is bounded, Filippov solutions exist. In particular, the solutions
starting from any point in a diagonal are nice straight lines flowing along the diagonal itself and
reaching (0, 0). For example, the maximal solution γ : [0,∞) → R2 starting from (a, a) ∈ R2 is

t 7→ γ(t) =

{
(a − sign(a)t, a − sign(a)t), t ≤ |a|,
(0, 0), t ≥ |a|.

Note that the behavior of this solution is quite different from what one might expect by looking at
the vector field at the points of continuity. Indeed, the solution slides along the diagonals, following
a convex combination of the limiting values of X around them, rather the direction specified by X
itself. We study in more detail this type of behavior in the section entitled “Piecewise continuous
vector fields and sliding motions.”

Relationship between Caratheodory and Filippov solutions

One may pose the question: how are Caratheodory and Filippov solutions related? The
answer is that not much. An example of a vector field for which both notions of solution exist but
Filippov solutions are not Caratheodory solutions is given in [27]. The converse is not true either.
For instance, the vector field

X(x) =

{
1, x 6= 0,

0, x = 0,

has t 7→ 0 as a Caratheodory solution starting from 0. However, the associated Filippov set-valued
map is F [X] : R → B(R), F [X](x) = {1}, and hence the unique Filippov solution starting from
0 is t 7→ t. On a related note, Caratheodory solutions are always Krasovskii solutions (but the
converse is not true, see [9]).

Computing the Filippov set-valued map

In general, computing the Filippov set-valued map can be a daunting task. The
work [28] develops a calculus that simplifies its calculation. We summarize here some useful facts.

Consistency. For X : Rd → Rd continuous at x ∈ Rd,

F [X](x) = {X(x)}. (11)
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Sum rule. For X1, X2 : Rd → Rm locally bounded at x ∈ Rd,

F [X1 + X2](x) ⊂ F [X1](x) + F [X2](x). (12)

Moreover, if one of the vector fields is continuous at x, then equality holds.

Product rule. For X1 : Rd → Rm and X2 : Rd → Rn locally bounded at x ∈ Rd,

F [(X1, X2)](x) ⊂ F [X1](x) × F [X2](x). (13)

Moreover, if one of the vector fields is continuous at x, then equality holds;

Chain rule. For Y : Rd → Rn continuously differentiable at x ∈ Rd with rank n, and
X : Rn → Rm locally bounded at Y (x) ∈ Rn,

F [X ◦ Y ](x) = F [X](Y (x)). (14)

Matrix transformation rule. For X : Rd → Rm locally bounded at x ∈ Rd and
Z : Rd → Rd×m continuous at x ∈ Rd,

F [Z X](x) = Z(x)F [X](x). (15)

Similar expressions can be developed for non-autonomous vector fields.

We conclude this section with an alternative description of the Filippov set-valued map.
For X : R × Rd → Rd measurable and locally essentially bounded, one can show that, for each
t ∈ R, there exists St ⊂ Rd of measure zero such that

F [X](t, x) = co{ lim
i→∞

X(t, xi) | xi → x , xi 6∈ S ∪ St},

where S is any set of measure zero. As we see later when discussing nonsmooth functions, this
description has a remarkable parallelism with the notion of generalized gradient of a locally Lipschitz
function.

Piecewise continuous vector fields and sliding motions

When dealing with discontinuous dynamics, one often encounters vector fields that are
continuous everywhere except at a surface of the state space. Indeed, the examples of discontinuous
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vector fields that we have introduced so far all fall into this situation. This problem can be naturally
interpreted by considering two continuous dynamical systems, each one defined on one side of the
surface, glued together to give rise to a discontinuous dynamical system on the overall state space.
Here, we analyze the properties of the Filippov solutions in this sort of (quite common) situations.

Let us consider a piecewise continuous vector field X : Rd → Rd. Here, by piecewise
continuous we mean that there exists a finite collection of disjoint domains D1, . . . ,Dm ⊂ Rd (that
is, open and connected sets) that partition Rd (that is, Rd = ∪m

k=1Dk) such that the vector field
X is continuous on each Dk, for k ∈ {1, . . . , m}. More general definitions are also possible (by
considering, for instance, non-autonomous vector fields), but we restrict our attention to this one
for simplicity. Clearly, a point of discontinuity of X must belong to one of the boundaries of the
sets D1, . . . ,Dm. Let us denote by SX ⊂ ∂D1∪ . . .∪∂Dm the set of points where X is discontinuous.
Note that SX has measure zero.

The Filippov set-valued map associated with X takes a particularly simple expression
for piecewise continuous vector fields, namely,

F [X](x) = co{ lim
i→∞

X(xi) | xi → x , xi 6∈ SX}.

This set-valued map can be easily computed as follows. At points of continuity of X, that is,
for x 6∈ SX , we deduce F [X](x) = {X(x)}, using the consistency property (11). At points of
discontinuity of X, that is, for x ∈ SX , one can prove that F [X](x) is a convex polyhedron in Rd

with vertices of the form

X|Dk
(x) = lim

i→∞
X(xi), with xi → x, xi ∈ Dk, xi 6∈ SX ,

for some k ∈ {1, . . . , m}.

As an illustration, let us consider the systems in the section “Examples of discontinuous
dynamical systems.”

The vector field in the brick sliding on a frictional ramp example is piecewise continuous,
with D1 = {v ∈ R | v > 0} and D2 = {v ∈ R | v < 0}. Its associated Filippov set-valued map
F [X] : R → R,

F [X](v) =





{g(sin θ − ν cos θ)}, v > 0,

{g(sin θ − d ν cos θ) | d ∈ [−1, 1]}, v = 0,

{g(sin θ + ν cos θ)}, v < 0,

is singleton-valued outside SX = {0}, and a closed segment at 0.
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The discontinuous “move-away-from-closest-neighbor” vector field for one agent moving
in the square X : [−1, 1]2 → R2 is piecewise continuous, with

D1 = {(x1, x2) ∈ [−1, 1]2 | − x1 < x2 < x1}, D2 = {(x1, x2) ∈ [−1, 1]2 | x2 < x1 < −x2},
D3 = {(x1, x2) ∈ [−1, 1]2 | x1 < x2 < −x1}, D4 = {(x1, x2) ∈ [−1, 1]2 | − x2 < x1 < x2}.

Its Filippov set-valued map, described in the section “Move-away-from-closest-neighbor interaction
law for one agent in a square –revisited,” maps points outside SX = {(a, a) ∈ [−1, 1]2 | a ∈
[−1, 1]} ∪ {(a,−a) ∈ [−1, 1]2 | a ∈ [−1, 1]} to singletons, points in SX \ {(0, 0)} to closed segments,
and (0, 0) to a square polygon.

The nonsmooth harmonic oscillator also falls into this category. The vector field
X : R2 → R2, X(x1, x2) = (sign(x2),− sign(x1)), is continuous on each one of the quadrants
{D1,D2,D3,D4}, with

D1 = {(x1, x2) ∈ R2 | x1 > 0, x2 > 0}, D2 = {(x1, x2) ∈ R2 | x1 > 0, x2 < 0},
D3 = {(x1, x2) ∈ R2 | x1 < 0, x2 < 0}, D4 = {(x1, x2) ∈ R2 | x1 < 0, x2 > 0},

and discontinuous on SX = {(x1, 0) | x1 ∈ R} ∪ {(0, x2) | x2 ∈ R}. Therefore, X is piecewise
continuous. Its Filippov set-valued map F [X] : R2 → B(R2) is given by

F [X](x1, x2) =





{(sign(x2),− sign(x1))}, x1 6= 0 and x2 6= 0,

[−1, 1] × {− sign(x1)}, x1 6= 0 and x2 = 0,

{sign(x2)} × [−1, 1], x1 = 0 and x2 6= 0,

[−1, 1] × [−1, 1], x1 = 0 and x2 = 0.

Let us now discuss what happens on the points of discontinuity of the vector field
X : Rd → Rd. Let x ∈ SX belong to just two boundary sets, x ∈ ∂Di ∩ ∂Dj , for some i, j ∈
{1, . . . , m}. In this case, one can see that F [X](x) = co{X|Di

(x), X|Dj
(x)}. We consider the

following possibilities: (i) if all the vectors belonging to F [X](x) point in the direction of Di, then
any Filippov solution that reaches SX at x continues its motion in Di (see Figure 6(a)); (ii) likewise,
if all the vectors belonging to F [X](x) point in the direction of Dj , then any Filippov solution that
reaches SX at x continues its motion in Dj (see Figure 6(b)); and (iii) however, if a vector belonging
to F [X](x) is tangent to SX , then either Filippov solutions start at x and leave SX immediately
(see Figure 6(c)), or there exists Filippov solutions that reach the set SX at x, and stay in SX

afterward (see Figure 6(d)).

The latter kind of trajectories are called sliding motions, since they slide along the
boundaries of the sets where the vector field is continuous. This is the type of behavior that we saw
in the example of the “move-away-from-closest-neighbor” interaction law. Sliding motions can also
occur along points belonging to the intersection of more than two sets in D1, . . . ,Dm. The theory
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Figure 6. Piecewise continuous vector fields. The dynamical systems are continuous on D1

and D2, and discontinuous at SX . In cases (a) and (b), Filippov solutions cross the set of
discontinuity. In case (c), there are two Filippov solutions starting from points in SX . Finally,
in case (d), Filippov solutions that reach SX continue its motion sliding along it.
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of sliding mode control builds on the existence of this type of trajectories to design stabilizing
feedback controllers. These controllers induce sliding surfaces with the right properties in the state
space so that the closed-loop system is stable. The interested reader is referred to [29, 30] for a
detailed discussion.

The solutions of piecewise continuous vector fields in (i) and (ii) above occur frequently
in state-dependent switching dynamical systems. Consider, for instance, the case of two unstable
dynamical systems defined on the whole state space. It is conceivable that, by identifying an
appropriate switching surface, one can synthesize a stable discontinuous dynamical system on the
overall state space. The interested reader may consult [31] and references therein to further explore
this topic.

Uniqueness of Filippov solutions

In general, discontinuous dynamical systems do not have unique Filippov solutions.
As an example, consider the vector field X : R → R, X(x) = sign(x). For any x0 ∈ R \ {0},
there is a unique Filippov solution starting from x0. Instead, there are three (maximal) solutions
γ1, γ2, γ3 : [0,∞) → R starting from x(0) = 0, specifically

t 7→ γ1(t) = −t, t 7→ γ2(t) = 0, t 7→ γ3(t) = t.

The situation depicted in Figure 6(c) is yet another qualitative example where multiple Filippov
solutions exist starting from the same initial condition.

In this section, we provide two complementary uniqueness results for Filippov solutions.
The first result considers the Filippov set-valued map associated with the discontinuous vector field,
and identifies conditions that allow to apply Proposition S2 to the resulting differential inclusion.

Proposition 5. Let X : R × Rd → Rd be measurable and locally essentially bounded.
Assume that for all (t, x) ∈ R × Rd, there exist LX(t), ε ∈ (0,∞) such that for almost every
y, y′ ∈ B(x, ε), one has

(X(t, y) − X(t, y′))T (y − y′) ≤ Lx(t) ‖y − y′‖2
2. (16)

Assume that the resulting function t 7→ LX(t) is integrable. Then, for any (t0, x0) ∈ R × Rd, there
exists a unique Filippov solution of (1) with initial condition x(t0) = x0.

Let us apply this result to an example. Consider the vector field X : R → R defined by

X(x) =

{
1, x ∈ Q,

−1, x 6∈ Q.
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Note that this vector field is discontinuous everywhere in R. The associated Filippov set-valued
map F [X] : R → R is F [X](x) = {−1} (since Q has measure zero in R, the value of the vector
field at rational points does not play any role in the computation of F [X]). Clearly, equation (16)
is verified for all y, y′ 6∈ Q. Therefore, there exists a unique solution starting from each initial
condition (more precisely, the curve γ : [0,∞) → R, t 7→ γ(t) = x(0) − t).

In general, the Lipschitz-type condition (16) is somewhat restrictive. This assertion
is justified by the observation that, in dimension higher than one, piecewise continuous vector
fields (arguably, the simpler class of discontinuous vector fields) do not verify the hypotheses of
Proposition 5. We carefully explain why in the sidebar “Piecewise Continuous Vector Fields.”
Figure S1 shows an example of a piecewise continuous vector field with unique solutions starting
from each initial condition. However, this uniqueness cannot be guaranteed via Proposition 5.

Next, the following result identifies sufficient conditions for uniqueness specifically tai-
lored for piecewise continuous vector fields.

Proposition 6. Let X : Rd → Rd be a piecewise continuous vector field, with Rd =
D1 ∪ D2. Let SX = ∂D1 = ∂D2 be the point set where X is discontinuous, and assume SX is C2

(that is, around a neighborhood of any of its points, the set can be expressed as the zero level set of
twice continuously differentiable functions). Further assume that X|Di

is continuously differentiable

on Di, for i ∈ {1, 2}, and that X|D1
−X|D2

is continuously differentiable on SX . If for each x ∈ SX ,

either X|D1
(x) points in the direction of D2, or X|D2

(x) points in the direction of D1, then there

exists a unique Filippov solution of (1) starting from each initial condition.

Note that the hypothesis on X already guarantees uniqueness of solution on each of
the domains D1 and D2. Roughly speaking, the additional assumptions on X along SX take care of
guaranteeing that uniqueness is not disrupted by the discontinuities. Under the stated assumptions,
when reaching SX , Filippov solutions might cross it or slide along it. Situations like the one depicted
in Figure 6(c) are ruled out.

As an application of this result, let us consider the systems in the section “Examples
of discontinuous dynamical systems.”

For the brick sliding on a frictional ramp example, at v = 0, the vector X|D1
(0) points

in the direction of D2, and the vector X|D2
(0) points in the direction of D1. Proposition 6 then

ensures that there exists a unique solution starting from each initial condition;

For the discontinuous vector field for one agent moving in the square [−1, 1]2 under
the “move-away-from-closest-neighbor” interaction law, it is convenient to define D5 = D1. Then,
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at any (x1, x2) ∈ ∂Di ∩ ∂Di+1 \ {(0, 0)}, with i ∈ {1, . . . , 4}, the vector X|Di
(x1, x2) points in

the direction of Di+1, and the vector X|Di+1
(x1, x2) points in the direction of Di, see Figure 5.

Moreover, there is only one solution (the equilibrium one) starting from (0, 0). Therefore, using
Proposition 6, we conclude that uniqueness of solutions holds;

For the nonsmooth harmonic oscillator, it is also convenient to define D5 = D1. Then,
we can write that, for any (x1, x2) ∈ ∂Di ∩ ∂Di+1 \ {(0, 0)}, with i ∈ {1, . . . , 4}, the vector
X|Di

(x1, x2) points in the direction of Di+1, see Figure 3(a). Moreover, there is only one solu-

tion (the equilibrium one) starting from (0, 0). Therefore, using Proposition 6, we conclude that
uniqueness of solutions holds.

Proposition 6 can be also applied to piecewise continuous vector fields with an arbitrary
number of partitioning domains, provided that set where the vector field is discontinuous is com-
posed of a disjoint union of surfaces resulting from the pairwise intersection of the boundaries of two
domains. Other versions of this result can also be stated for non-autonomous piecewise continuous
vector fields, and for situations when more than two domains intersect at points of discontinuity.
The interested reader is referred to [11, Theorem 4 at page 115].

Solutions of control systems with discontinuous input functions

Let X : R×Rd ×U → Rd, with U ⊂ Rm the space of admissible controls, and consider
the control equation on Rd,

ẋ(t) = X(t, x(t), u(t)). (17)

At first sight, the most natural way of identifying a notion of solution of this equation would seem
to be as follows: select a control input, either open-loop u : R → U , closed-loop u : Rd → U , or a
combination of both u : R × Rd → U , and then consider the resulting non-autonomous differential
equation. In this way, one is back to confronting the question posed above, that is, suitable notions
of solution for a discontinuous differential equation.

There are at least a couple of important alternatives to this approach that have been
considered in the literature. We discuss them next.

Solutions via differential inclusions
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In a similar way as we have done so far, one may associate to the original control
system (17) a differential inclusion, and build on it to define the notion of solution. This approach
goes as follows: define the set-valued map G[X] : R × Rd → B(Rd) by

G[X](t, x) = {X(t, x, u) | u ∈ U}.

In other words, the set-valued map captures all the directions in Rd that can be generated with
controls belonging to U . Consider now the differential inclusion

ẋ(t) ∈ G[X](t, x(t)). (18)

A solution of (17) defined on [t0, t1] ⊂ R is a solution of the differential inclusion (18), that is,
an absolutely continuous map γ : [t0, t1] → Rd such that γ̇(t) ∈ G[X](t, γ(t)) for almost every
t ∈ [t0, t1].

Clearly, given u : R → U , any Caratheodory solution of the control system is also
a solution of the associated differential inclusion. Alternatively, one can show [11] that, if X is
continuous and U is compact, the converse is also true. Considering the differential inclusion has
the advantage of not focusing the attention on any particular control input, and therefore allows
to comprehensively study and understand the properties of the control system as a whole.

Sample-and-hold solutions

Here we introduce the notion of sample-and-hold solution for control systems [32]. As
we see later, this notion plays a key role in the stabilization question for asymptotically controllable
systems.

A partition of the interval [t0, t1] is a strictly increasing sequence π = {s0 = t0 < s1 <
· · · < sN = t1}. Note that the partition does not need to be finite, and that one can define the notion
of partition of [t0,∞) similarly. The diameter of π is diam(π) = sup{si − si−1 | i ∈ {1, . . . , N}}.
Given a feedback law u : R × Rd → U and a partition π of [t0, t1], a π-solution of (17) defined on
[t0, t1] ⊂ R is the map γ : [t0, t1] → Rd recursively defined as follows: for i ∈ {1, . . . , N − 1}, the
curve [ti−1, ti] ∋ t 7→ γ(t) is a Caratheodory solution of the differential equation

ẋ(t) = X(t, x(t), u(ti−1, x(ti−1))).

Roughly speaking, the control is held fixed throughout each interval of the partition at the value
corresponding to the state at the beginning of the interval, and then the corresponding differential
equation is solved, which explains why π-solutions are also referred to as sample-and-hold solutions.
From our previous discussion on Caratheodory solutions, it is not difficult to derive conditions on
the control system for the existence of π-solutions. Indeed, existence of π-solutions is guaranteed

26



if (i) for all u ∈ U ⊂ Rm and almost all t ∈ R, the map x 7→ X(t, x, u) is continuous, (ii) for all
u ∈ U ⊂ Rm and all x ∈ Rd, the map t 7→ X(t, x, u) is measurable, and (iii) for all u ∈ U ⊂ Rm,
(t, x) → X(t, x, u) is locally essentially bounded.

Generalized sample-and-hold solutions of (17) are defined in [9] as the uniform limit of
a sequence of π-solutions of (17) as diam(π) → 0. Interestingly, in general, generalized sample-and-
hold solutions are not Caratheodory solutions, although conditions exist under which the inclusion
holds, see [9].

Nonsmooth Analysis

It should come at no surprise to the reader that, if we have “gone discontinuous” with
differential equations, we now “go nonsmooth” with the candidate Lyapunov functions. When
examining the stability properties of discontinuous differential equations and differential inclusions,
there are additional reasons to consider nonsmooth Lyapunov functions. The nonsmooth harmonic
oscillator is a good example of what we mean, because it does not admit any smooth Lyapunov
function. To see why, recall that all the Filippov solutions of the discontinuous system are periodic
(see Figure 3). If such a smooth function exists, it necessarily has to be constant on each diamond.
Therefore, since the level sets of the function are necessarily one-dimensional, each diamond would
be a level set, which contradicts the fact that the function is smooth. This observation, taken
from [9], is a simple illustration that our efforts to consider nonsmooth Lyapunov functions when
considering discontinuous dynamics are not gratuitous.

In this section we discuss two tools from nonsmooth analysis: generalized gradients and
proximal subdifferentials, see for instance [13, 33]. As with the concept of solution of discontinuous
differential equations, the literature is full of generalized derivative notions for the case when a
function fails to be differentiable. These notions include, in addition to the two considered in this
section, generalized (super or sub) differentials, (upper or lower, right or left) Dini derivatives, and
contingent derivatives. The interested reader is referred to [13, 15, 34, 35] and references therein
for a complete account. Here, we have chosen to focus on the notions of generalized gradients and
proximal subdifferentials because of their important role on providing applicable stability tools for
discontinuous differential equations. The functions considered here are always defined on a finite-
dimensional Euclidean space, but we note that these objects are actually well-defined in Banach
and Hilbert spaces.
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Generalized gradients of locally Lipschitz functions

From Rademacher’s Theorem [33], locally Lipschitz functions are differentiable almost
everywhere (in the sense of Lebesgue measure). When considering a locally Lipschitz function as
a candidate Lyapunov function, this statement may rise the following question: if the gradient
of a locally Lipschitz function exists almost everywhere, should we really care for those points
where it does not exist? Conceivably, the solutions of the dynamical systems under study stay
almost everywhere away from the “bad” points where we do not have any gradient of the function.
However, such assumption turns out not to be true in general. As we show later, there are cases
when the solutions of the dynamical system insist on staying on the “bad” points forever. In that
case, having some sort of gradient information is helpful.

Let f : Rd → R be a locally Lipschitz function. If Ωf denotes the set of points in Rd at
which f fails to be differentiable, and S denotes any set of measure zero, the generalized gradient
∂f : Rd → B(Rd) of f is defined by

∂f(x) = co{ lim
i→∞

∇f(xi) | xi → x , xi 6∈ S ∪ Ωf}.

From the definition, the generalized gradient at a point provides convex combinations of all the
possible limits of the gradient at neighboring points (where the function is in fact differentiable).
Note that this definition coincides with ∇f(x) when f is continuously differentiable at x. Other
equivalent definitions of the generalized gradient can be found in [33].

Let us compute the generalized gradient in a particular case. Consider the locally
Lipschitz function f : R → R, f(x) = |x|. The function is differentiable everywhere except for 0.
Actually, ∇f(x) = 1 for x > 0 and ∇f(x) = −1 for x < 0. Therefore, we deduce

∂f(0) = co{1,−1} = [−1, 1].

Computing the generalized gradient

As one might imagine, the computation of the generalized gradient of a locally Lipschitz
function is not an easy task in general. In addition to the “brute force” approach, there are a
number of results that can help us compute it. Many of the standard results that are valid for
usual derivatives have their counterpart in this setting. We summarize some of them here, and
refer the reader to [13, 33] for a complete exposition.
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Dilation rule. For f : Rd → R locally Lipschitz at x ∈ Rd and s ∈ R, the function sf
is locally Lipschitz at x, and

∂(sf)(x) = s ∂f(x). (19)

Sum rule. For f1, f2 : Rd → R locally Lipschitz at x ∈ Rd, and any scalars s1, s2 ∈ R,
the function s1f1 + s2f2 is locally Lipschitz at x, and

∂
(
s1f1 + s2f2

)
(x) ⊂ s1∂f1(x) + s2∂f2(x). (20)

Moreover, if f1 and f2 are regular at x, and s1, s2 ∈ [0,∞), then equality holds and s1f1 + s2f2 is
regular at x.

Product rule. For f1, f2 : Rd → R locally Lipschitz at x ∈ Rd, the function f1f2 is
locally Lipschitz at x, and

∂
(
f1f2

)
(x) ⊂ f2(x)∂f1(x) + f1(x)∂f2(x). (21)

Moreover, if f1 and f2 are regular at x, and f1(x), f2(x) ≥ 0, then equality holds and f1f2 is regular
at x.

Quotient rule. For f1, f2 : Rd → R locally Lipschitz at x ∈ Rd, with f2(x) 6= 0, the
function f1/f2 is locally Lipschitz at x, and

∂
(f1

f2

)
(x) ⊂ f2(x)∂f1(x) − f1(x)∂f2(x)

f2
2 (x)

. (22)

Moreover, if f1 and −f2 are regular at x, and f1(x) ≥ 0, f2(x) > 0, then equality holds and f1/f2

is regular at x.

Chain rule. For h : Rd → Rm, with each component locally Lipschitz at x ∈ Rd, and
g : Rm → R locally Lipschitz at h(x) ∈ Rm, the function g ◦ h is locally Lipschitz at x, and

∂
(
g◦h

)
(x) ⊂ co

{ m∑

k=1

αkζk | (α1, . . . , αm) ∈ ∂g(h(x)), (ζ1, . . . , ζm) ∈ ∂h1(x)×· · ·×∂hm(x)
}

. (23)

Moreover, if g is regular at h(x), each component of h is regular at x, and every element of ∂g(h(x))
belongs to [0,∞)d, then equality holds and g ◦ h is regular at x.

Let us highlight here a particularly useful result from [33, Proposition 2.3.12] concerning
the generalized gradient of max and min functions.
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Proposition 7. Let fk : Rd → R, k ∈ {1, . . . , m} be locally Lipschitz functions at
x ∈ Rd and consider the functions

fmax(x
′) = max{fk(x

′) | k ∈ {1, . . . , m}}, fmin(x
′) = min{fk(x

′) | k ∈ {1, . . . , m}}.

Then,

(i) fmax and fmin are locally Lipschitz at x,

(ii) if Imax(x
′) denotes the set of indexes k for which fk(x

′) = fmax(x
′), we have

∂fmax(x) ⊂ co{∂fi(x) | i ∈ Imax(x)}, (24)

and if fi, i ∈ Imax(x), is regular at x, then equality holds and fmax is regular at x,

(iii) if Imin(x
′) denotes the set of indexes k for which fk(x

′) = fmin(x
′), we have

∂fmin(x) ⊂ co{∂fi(x) | i ∈ Imin(x)}, (25)

and if −fi, i ∈ Imin(x), is regular at x, then equality holds and −fmin is regular at x.

As a consequence of this result, the maximum of a finite set of continuously differentiable
functions is a locally Lipschitz and regular function, and its generalized gradient is easily computable
at each point as the convex closure of the gradients of the functions that attain the maximum at that
particular point. As an example, the function f1(x) = |x| can be re-written as f1(x) = max{x,−x}.
Both x 7→ x and x 7→ −x are continuously differentiable, and hence locally Lipschitz and regular.
Therefore, according to Proposition 7(i) and (ii), so is f1, and its generalized gradient is

∂f1(x) =





{1}, x > 0,

[−1, 1], x = 0,

{−1}, x < 0,

(26)

which is the same result that we obtained earlier by direct computation.

Note that the minimum of a finite set of regular functions is in general not regular. A
simple example is given by f2(x) = min{x,−x} = −|x|, which is not regular at 0, as we showed in
the sidebar “Regular Functions.” However, according to Proposition 7(i) and (iii), this fact does
not mean that its generalized gradient cannot be computed. Indeed, one has

∂f2(x) =





{−1}, x > 0,

[−1, 1], x = 0,

{1}, x < 0.

(27)
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Critical points and directions of descent

A critical point of f : Rd → R is a point x ∈ Rd such that 0 ∈ ∂f(x). The maxima
and minima of locally Lipschitz functions are critical points according to this definition. As an
example, x = 0 is a minimum of f(x) = |x|, and indeed one verifies that 0 ∈ ∂f(0).

When the function f is continuously differentiable, the gradient ∇f provides the direc-
tion of maximum ascent (respectively, −∇f provides the direction of maximum descent). When
considering locally Lipschitz functions, however, one faces the following question: given that the
generalized gradient is a set of directions, rather than a single one, which one are the right ones
to choose? Without loss of generality, we restrict our discussion to directions of descent, since a
direction of descent of −f corresponds to a direction of ascent of f , and f is locally Lipschitz if
and only if −f is locally Lipschitz.

Let Ln : B(Rd) → B(Rd) be the set-valued map that associates to each subset S of Rd

the set of least-norm elements of its closure S. If the set S is convex, then the set Ln(S) reduces
to a singleton and we note the equivalence Ln(S) = projS(0). For a locally Lipschitz function f ,
consider the generalized gradient vector field Ln(∂f) : Rd → Rd

x 7→ Ln(∂f)(x) = Ln(∂f(x)).

It turns out that Ln(∂f)(x) is a direction of descent at x ∈ Rd. More precisely, following [33], one
finds that if 0 6∈ ∂f(x), then there exists T > 0 such that

f(x − t Ln(∂f)(x)) ≤ f(x) − t

2
‖Ln(∂f)(x)‖2

2 , 0 < t < T. (28)

Minimum distance to polygonal boundary

Let Q ⊂ R2 be a convex polygon. Consider the minimum distance function smQ : Q →
R from any point within the polygon to its boundary defined by

smQ(p) = min{‖p − q‖2 | q ∈ ∂Q}.

Note that the value of smQ corresponds to the radius of the largest disk contained in the polygon
with center p. Moreover, this function is locally Lipschitz on Q. To show this, simply rewrite the
function as

smQ(p) = min{dist(p, e) | e edge of Q},
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where dist(p, e) denotes the Euclidean distance from the point p to the edge e. Let us consider the
generalized gradient vector field corresponding to this function (if one prefers to have a function
defined on the whole space, as we have been using in this section, one can easily extend the definition
of smQ outside Q by setting smQ(p) = −min{‖p − q‖2 | q ∈ ∂Q} for p 6∈ Q, and proceed with the
discussion). Applying Proposition 7(iii), we deduce that − smQ is regular on Q and its generalized
gradient is

∂ smQ(p) = co{ne | e edge of Q such that smQ(p) = dist(p, e)}, p ∈ Q,

where ne denotes the unit normal to the edge e pointing toward the interior of Q. Therefore,
at points p in Q where there is a unique edge e of Q which is closest to p, the function smQ

is differentiable, and its generalized gradient vector field is given by Ln(smQ)(p) = ne. Note that
this vector field corresponds to the “move-away-from-closest-neighbor” interaction law for one agent
moving in the polygon! At points p of Q where various edges {e1, . . . , em} are at the same minimum
distance to p, the function smQ is not differentiable, and its generalized gradient vector field is given
by the least-norm element in co{ne1

, . . . ,nem}. If p is not a critical point, 0 does not belong to the
latter set, and the least-norm element points in the direction of the bisector line between two of
the edges in {e1, . . . , em}. Figure 7 shows a plot of the generalized gradient vector field of smQ on
the square Q = [−1, 1]2. Note the similarity with the plot in Figure 5.

1

1

.5

.5

0

0

−.5

−.5
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−1

Figure 7. Generalized gradient vector field. The plot shows the generalized gradient vector
field of the minimum distance to polygonal boundary function smQ : Q → R on the square
[−1, 1]2. The vector field is discontinuous on the diagonals of the square.

Indeed, one can characterize [36] the critical points of smQ as

0 ∈ ∂ smQ(p) if and only if p belongs to the incenter set of Q.
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The incenter set of Q is composed of the centers of the largest-radius disks contained in Q. In
general, the incenter set is not a singleton (think, for instance, of a rectangle), but a segment.
However, one can also show that if 0 ∈ interior(∂ smQ(p)), then the incenter set of Q is the
singleton {p}.

Nonsmooth gradient flows

Given a locally Lipschitz function f : Rd → R, one can define the nonsmooth analog of
the classical gradient flow of a differentiable function as

ẋ(t) = −Ln(∂f)(x(t)). (29)

According to (28), unless the flow is already at a critical point, −Ln(∂f)(x) is always a direction
of descent at x. Note that this nonsmooth gradient vector field is discontinuous, and therefore
we have to specify the notion of solution that we consider. In this case, we select the Filippov
notion. Since f is locally Lipschitz, Ln(∂f) = ∇f almost everywhere. A remarkable fact [28] is
that the Filippov set-valued map associated with the nonsmooth gradient flow of f is precisely the
generalized gradient of the function, that is,

Filippov set-valued map of nonsmooth gradient. For f : Rd → R locally Lip-
schitz, the Filippov set-valued map F [Ln(∂f)] : Rd → B(Rd) of the nonsmooth gradient of f is
equal to the generalized gradient ∂f : Rd → B(Rd) of f ,

F [Ln(∂f)](x) = ∂f(x), x ∈ Rd.

As a consequence of this result, note that the discontinuous system (29) is equivalent
to the differential inclusion

ẋ(t) ∈ −∂f(x(t)).

How can we analyze the asymptotic behavior of the trajectories of this system? When the func-
tion f is differentiable, the LaSalle Invariance Principle allows us to deduce that, for functions with
bounded level sets, the trajectories of the gradient flow asymptotically converge to the set of critical
points. The key tool behind this result is being able to establish that the value of the function de-
creases along the trajectories of the system. This behavior is formally expressed through the notion
of Lie derivative. We discuss later suitable generalizations of the notion of Lie derivative to the
nonsmooth case. These notions allow us, among other things, to study the asymptotic convergence
properties of the trajectories of nonsmooth gradient flows.
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Proximal subdifferentials of lower semicontinuous functions

A complementary set of nonsmooth analysis tools to deal with Lyapunov functions is
given by proximal subdifferentials. This concept has the advantage of being defined for a larger
class of functions, namely, lower semicontinuous (instead of locally Lipschitz) functions. General-
ized gradients provide us with directional descent information, that is, directions along which the
function decreases. The price we pay by using proximal subdifferentials is that explicit descent
directions are in generally not known to us. Proximal subdifferentials, however, still allow us to
reason about the monotonic properties of the function, which as we show later, turns out to be
sufficient to provide stability results.

A function f : Rd → R is lower semicontinuous at x ∈ Rd if for all ε ∈ (0,∞), there
exists δ ∈ (0,∞) such that f(y) ≥ f(x)−ε, for y ∈ B(x, δ). In this article, we restrict our attention
to real-valued lower semicontinuous functions. Lower semicontinuous functions with extended real
values are considered in [13]. A function f : Rd → R is upper semicontinuous at x ∈ Rd if −f
is lower semicontinuous at x. Note that f is continuous at x if and only if f is both upper and
lower semicontinuous at x. For a lower semicontinuous function f : Rd → R, a vector ζ ∈ Rd is a
proximal subgradient of f at x ∈ Rd if there exist σ, δ ∈ (0,∞) such that for all y ∈ B(x, δ),

f(y) ≥ f(x) + ζ(y − x) − σ2‖y − x‖2
2. (30)

The set of all proximal subgradients of f at x is the proximal subdifferential of f at x, and de-
noted ∂P f(x). The proximal subdifferential at x is always convex. However, it is not necessarily
open, closed, bounded or nonempty. Geometrically, the definition of proximal subgradient can be
interpreted as follows. Equation (30) is equivalent to saying that, around x, the function y 7→ f(y)
majorizes the quadratic function y 7→ f(x) + ζ(y − x) − σ2‖y − x‖2

2. In other words, there exists a
parabola that locally fits under the graph of f at (x, f(x)). This geometric interpretation is indeed
very useful for the explicit computation of the proximal subdifferential.

Let us compute the proximal subdifferential in two particular cases. Consider the
locally Lipschitz functions f1, f2 : R → R, f1(x) = |x| and f2(x) = −|x|. Using the geometric
interpretation of (30), it is not difficult to see that

∂P f1(x) =





{1}, x < 0,

[−1, 1], x = 0,

{−1}, x > 0,

∂P f2(x) =





{−1}, x < 0,

∅, x = 0,

{1}, x > 0.

Compare this result with the generalized gradients of f1 in (26) and of f2 in (27).

Unlike the case of generalized gradients, the proximal subdifferential may not coincide
with ∇f(x) when f is continuously differentiable. The function f : R → R, x 7→ −|x|3/2, is
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continuously differentiable, but ∂P f(0) = ∅. In fact, [37] provides an example of a continuously
differentiable function on R which has an empty proximal subdifferential almost everywhere. How-
ever, it should be noted that the density theorem (cf. [13, Theorem 3.1]) states that the proximal
subdifferential of a lower semicontinuous function is always nonempty in a dense set of its domain
of definition.

On the other hand, the function f : R → R, f(x) =
√
|x| provides an example where

proximal subdifferentials are more useful than generalized gradients. The function is continuous
at 0, but not locally Lipschitz at 0, which precisely corresponds to its global minimum. Hence
the generalized gradient does not help us here. The function is lower semicontinuous, and has a
well-defined proximal subdifferential,

∂P f(x) =





{
1
2

1√
x

}
, x > 0,

R, x = 0,{
− 1

2
1√
−x

}
, x < 0.

If f : Rd → R is locally Lipschitz at x ∈ Rd, then the proximal subdifferential of f
at x is bounded. In general, the relationship between the generalized gradient and the proximal
subdifferential of a function f locally Lipschitz at x ∈ Rd is expressed by

∂f(x) = co{ lim
n→∞

ζn ∈ Rd | ζn ∈ ∂P f(xn) and lim
n→∞

xn = x}.

Computing the proximal subdifferential

As with the generalized gradient, the computation of the proximal subdifferential gra-
dient of a lower semicontinuous function is not straightforward in general. Here we provide some
useful results following the exposition in [13].

Dilation rule. For f : Rd → R lower semicontinuous at x ∈ Rd and s ∈ (0,∞), the
function sf is lower semicontinuous at x, and

∂P (sf)(x) = s ∂P f(x). (31)

Sum rule. For f1, f2 : Rd → R lower semicontinuous at x ∈ Rd, the function f1 + f2

is lower semicontinuous at x, and

∂P f1(x) + ∂P f2(x) ⊂ ∂P

(
f1 + f2

)
(x). (32)
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Moreover, if either f1 or f2 are twice continuously differentiable, then equality holds.

Chain rule. For either h : Rd → Rm linear and g : Rm → R lower semicontinuous
at h(x) ∈ Rm, or h : Rd → Rm locally Lipschitz at x ∈ Rd and g : Rm → R locally Lipschitz
at h(x) ∈ Rm, the following holds: for ζ ∈ ∂P (g ◦ h)(x) and any ε ∈ (0,∞), there exist x̃ ∈ Rd,
ỹ ∈ Rm, and γ ∈ ∂P g(ỹ) with max{‖x̃ − x‖2, ‖ỹ − h(x)‖2} < ε such that ‖h(x̃) − h(x)‖2 < ε and

ζ ∈ ∂P (〈γ, h(·)〉)(x̃) + εB(0, 1). (33)

The statement of the chain rule above shows one of the characteristic features when
dealing with proximal subdifferentials: in many occasions, arguments and results are expressed
with objects evaluated at points in a neighborhood of the specific point of interest, rather than at
the point itself.

The computation of the proximal subdifferential of twice continuously differentiable
functions is particularly simple. For f : Rd → R twice continuously differentiable on U ⊂ Rd open,
one has

∂P f(x) = {∇f(x)}, for all x ∈ U. (34)

This simplicity also works for continuously differentiable convex functions, as the following result
states.

Proposition 8. Let f : Rd → R be lower semicontinuous and convex, and let x ∈ Rd.
Then,

(i) ζ ∈ ∂P f(x) if and only if f(y) ≥ f(x) + ζ(y − x), for all y ∈ Rd;

(ii) the map x 7→ ∂P f(x) takes nonempty, compact and convex values, and is upper semicontinu-
ous and locally bounded;

(iii) if, in addition, f is continuously differentiable, then ∂P f(x) = {∇f(x)}, for all x ∈ Rd;

Regarding critical points, if x is a local minimum of a lower semicontinuous function
f : Rd → R, then 0 ∈ ∂P f(x). Conversely, if f is lower semicontinuous and convex, and 0 ∈ ∂P f(x),
then x is a global minimum of f . If one is interested in maxima, then instead of the notions of lower
semicontinuous functions, convex functions and proximal subdifferentials, one needs to consider
upper semicontinuous functions, concave functions and proximal superdifferentials, respectively
(see [13]).
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Gradient differential inclusions

In general, one cannot define a nonsmooth gradient flow associated to a lower semicon-
tinuous function, because, as we have observed above, the proximal subdifferential might be empty
almost everywhere. However, following Proposition 8(ii), we can associate a nonsmooth gradient
flow to functions that are lower semicontinuous and convex, as we briefly discuss next following [38].

Let f : Rd → R be lower semicontinuous and convex. Consider the gradient differential
inclusion

ẋ(t) ∈ −∂P f(x(t)). (35)

Using the properties of the proximal subdifferential stated in Proposition 8(ii), existence of solutions
of this differential inclusion is guaranteed by Proposition S1. Moreover, uniqueness of solutions can
also be established. To show this, let x, y ∈ Rd, and take ζ1 ∈ −∂P f(x) and ζ2 ∈ −∂P f(y). Using
Proposition 8(i), we have

f(y) ≥ f(x) − ζ1(y − x), f(x) ≥ f(y) − ζ2(x − y).

From here, we deduce −ζ1(y − x) ≤ f(y) − f(x) ≤ −ζ2(y − x), and therefore (ζ2 − ζ1)(y − x) ≤ 0,
which, in particular, implies that the set-valued map x 7→ −∂P f(x) verifies the one-sided Lipschitz
condition (S2). Proposition S2 guarantees then uniqueness of solutions.

Once we know that solutions exist and are unique, the next natural question is to
understand their asymptotic behavior. To analyze it, we need to introduce tools specifically tailored
for this nonsmooth setting that allow us to establish, among other things, the monotonic behavior
of the function f along the solutions. We tackle this task in the next two sections.

Nonsmooth Stability Analysis

In this section, we present tools to study the stability properties of discontinuous dy-
namical systems. Unless explicitly mentioned otherwise, the stability notions employed here cor-
respond to the usual ones for differential equations, see, for instance [39]. The presentation of the
results focuses on the setup of autonomous differential inclusions,

ẋ(t) ∈ F(x(t)), (36)

where F : Rd → B(Rd). Throughout the section, we assume that the set-valued map F verifies
the hypothesis of Proposition S1, so that the existence of solutions of the differential inclusion is
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guaranteed. From our previous discussion, it should be clear that the setup of differential inclusions
has a direct application to the scenario of discontinuous differential equations and control systems.
The results presented here can be easily made explicit for the notions of solution introduced earlier
(for instance, for Filippov solutions, by taking F = F [X]), and we leave this task to the reader.

Before proceeding with our exposition, let us make a couple of remarks. The first one
concerns the wordings “strong” and “weak.” As we already observed, solutions of discontinuous
systems are generally not unique. Therefore, when considering properties such as Lyapunov stability
or invariance, one needs to specify if one is paying attention to a particular solution starting from
an initial condition (“weak”) or to all the solutions starting from an initial condition (“strong”). As
an example, a set M ⊂ Rd is weakly invariant for (36) if for each x0 ∈ M , M contains a maximal
solution of (36) with initial condition x0. Similarly, M ⊂ Rd is strongly invariant for (36) if for
each x0 ∈ M , M contains all maximal solutions of (36) with initial condition x0.

The second remark concerns the notion of limit point of solutions of the differential
inclusion. A point x ∈ Rd is a limit point of a solution γ of (36) if there exists a sequence {tn}n∈N

such that γ(tn) → x as n → ∞. We denote by Ω(γ) the set of limit points of γ. Under the
hypothesis of Proposition S1, Ω(γ) is a weakly invariant set. Moreover, if the solution γ lies in a
bounded domain, then Ω(γ) is nonempty, bounded, connected, and γ(t) → Ω(γ) as t → ∞, see [11].

Stability analysis via generalized gradients of nonsmooth Lyapunov functions

In this section, we discuss nonsmooth stability analysis results that invoke locally Lip-
schitz functions and their generalized gradients. We have chosen a number of important results
taken from different sources in the literature. The discussion presented here does not intend to be
a comprehensive account of such a vast topic, but rather serve as a motivation to further explore it.
The interested reader may consult the books [3, 11] and the journal papers [25, 40, 41] for further
reference.

Lie derivatives and monotonicity

A common theme in stability analysis is the possibility of establishing the monotonic
evolution along the trajectories of the system of a candidate Lyapunov function. Mathematically,
the evolution of a function along trajectories is captured by the notion of Lie derivative. Our first
task here is then to generalize this notion to the setup of discontinuous systems following [25], see
also [40, 41].
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Given a locally Lipschitz function f : Rd → R and a set-valued map F : Rd → B(Rd),
the set-valued Lie derivative L̃Ff : Rd → B(R) of f with respect to F at x is defined as

L̃Ff(x) = {a ∈ R | there exists v ∈ F(x) such that ζT v = a, for all ζ ∈ ∂f(x)}. (37)

If F takes convex and compact values, for each x ∈ Rd, L̃Ff(x) is a closed and bounded interval
in R, possibly empty. If f is continuously differentiable at x, then L̃Ff(x) = {(∇f)T v | v ∈ F(x)}.
The importance of the set-valued Lie derivative stems from the fact that it allows us to study how
the function f evolves along the solutions of a differential inclusion without having to obtain them
in closed form. Specifically, we have the following result.

Proposition 9. Let γ : [t0, t1] → Rd be a solution of the differential inclusion (36),
and let f : Rd → R be a locally Lipschitz and regular function. Then

(i) the composition t 7→ f(γ(t)) is differentiable at almost every t ∈ [t0, t1], and

(ii) the derivative of t 7→ f(γ(t)) verifies

d

dt

(
f(γ(t))

)
∈ L̃Ff(γ(t)) for almost every t ∈ [t0, t1]. (38)

Given a discontinuous vector field X : Rd → Rd, consider the solutions of (1) in the
Filippov sense. In that case, with a little abuse of notation, we denote L̃Xf = L̃F [X]f . Note that if

X is continuous at x, then F [X](x) = {X(x)}, and therefore, L̃Xf(x) corresponds to the singleton
{LXf(x)}, the usual Lie derivative of f in the direction of X at x.

Let us illustrate the importance of this result in an example.

Monotonicity in the nonsmooth harmonic oscillator

For the nonsmooth harmonic oscillator, consider the locally Lipschitz and regular map
f : R2 → R, f(x1, x2) = |x1| + |x2| (recall that Figure 3(b) shows the contour plot of f). Let us
determine how the function evolves along the solutions of the dynamical system by looking at the
set-valued Lie derivative. First, we compute the generalized gradient of f . To do so, we rewrite the
function as f(x1, x2) = max{x1,−x1} + max{x2,−x2}, and apply Proposition 7(ii) and the sum
rule to find

∂f(x1, x2) =





{(sign(x1), sign(x2))}, x1 6= 0 and x2 6= 0,

{sign(x1)} × [−1, 1], x1 6= 0 and x2 = 0,

[−1, 1] × {sign(x2)}, x1 = 0 and x2 6= 0,

[−1, 1] × [−1, 1], x1 = 0 and x2 = 0.
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With this information, we are ready to compute the set-valued Lie derivative L̃Xf : R2 → B(R) as

L̃Xf(x1, x2) =





{0}, x1 6= 0 and x2 6= 0,

∅, x1 6= 0 and x2 = 0,

∅, x1 = 0 and x2 6= 0,

{0}, x1 = 0 and x2 = 0.

From this equation and (38), we conclude that the function f is constant along the solutions of the
discontinuous dynamical system. Indeed, the level sets of the function f are exactly the diamond
figures described by the solutions of the system.

Stability results

The above discussion on monotonicity is the stepping stone to provide stability results
using locally Lipschitz functions and generalized gradient information. Proposition 9 provides a
criterion to determine the monotonic behavior of the solutions of discontinuous dynamics along
locally Lipschitz functions. This result, together with the right “positive definite” assumptions
on the candidate Lyapunov function allows us to synthesize checkable stability tests. We start
by formulating the natural extension of Lyapunov stability theorem for ODEs. In this and in
forthcoming statements, it is convenient to adopt the convention max ∅ = −∞.

Theorem 1. Let F : Rd → B(Rd) be a set-valued map satisfying the hypothesis of
Proposition S1. Let x∗ be an equilibrium of the differential inclusion (36), and let D ⊂ Rd be a
domain with x∗ ∈ D. Let f : Rd → R such that

(i) f is locally Lipschitz and regular on D;

(ii) f(x∗) = 0, and f(x) > 0 for x ∈ D \ {x∗};

(iii) max L̃Ff(x) ≤ 0 for all x ∈ D.

Then, x∗ is a strongly stable equilibrium of (36). In addition, if (iii) above is substituted by

(iii)’ max L̃Ff(x) < 0 for all x ∈ D \ {x∗},

then x∗ is a strongly asymptotically stable equilibrium of (36).
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Let us apply this result to the nonsmooth harmonic oscillator. The function (x1, x2) →
|x1|+ |x2| verifies hypothesis (i)-(iii) of Theorem 1 on D = Rd. Therefore, we conclude that 0 is a
strongly stable equilibrium. From the phase portrait in Figure 3(a), it is clear that 0 is not strongly
asymptotically stable. The reader is invited to use Theorem 1 to deduce that the nonsmooth
harmonic oscillator under dissipation, with vector field (x1, x2) 7→ (sign(x2),− sign(x1)− 1

2 sign(x2)),
has 0 as a strongly asymptotically stable equilibrium.

Another important result in the theory of differential equations is the LaSalle Invariance
Principle. In many situations, this principle allows us to figure out the asymptotic convergence
properties of the solutions of a differential equation. Here, we build on our previous discussion to
present a generalization to differential inclusions (36) and nonsmooth Lyapunov functions. Needless
to say, this principle is also suitable for discontinuous differential equations. The formulation is
taken from [25], and slightly generalizes the one presented in [40].

Theorem 2. Let F : Rd → B(Rd) be a set-valued map satisfying the hypothesis of
Proposition S1, and let f : Rd → R be a locally Lipschitz and regular function. Let S ⊂ Rd be
compact and strongly invariant for (36), and assume that max L̃Ff(x) ≤ 0 for all x ∈ S. Then,
any solution γ : [t0,∞) → Rd of (36) starting at S converges to the largest weakly invariant set M
contained in

S ∩ {x ∈ Rd | 0 ∈ L̃Ff(x)}.

Moreover, if the set M is a finite collection of points, then the limit of all solutions starting at S
exists and equals one of them.

Let us show next an application of this result to nonsmooth gradient flows.

Nonsmooth gradient flows revisited

Consider the nonsmooth gradient flow (29) of a locally Lipschitz function f . Assume
further that the function f is regular. Let us examine how the function evolves along the solutions
of the flow using the set-valued Lie derivative. Given x ∈ Rd, let a ∈ L̃−Ln(∂f)f(x). By definition,
there exists v ∈ F [−Ln(∂f)](x) = −∂f(x) such that

a = ζT v, for all ζ ∈ ∂f(x).

Since the equality holds for any element in the generalized gradient of f at x, we may choose in
particular ζ = −v ∈ ∂f(x). Therefore,

a = (−v)T v = −‖v‖2
2 ≤ 0.
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From this equation, we conclude that the elements of L̃−Ln(∂f)f all belong to (−∞, 0], and therefore,
from equation (38), the function f monotonically decreases along the solutions of its nonsmooth
gradient flow.

The application of the Lyapunov stability theorem and the LaSalle Invariance Principle
above gives now rise to the following nice nonsmooth counterpart of the classical smooth results [42]
for gradient flows.

Stability of nonsmooth gradient flows. Let f be a locally Lipschitz and regular
function. Then, the strict minima of f are strongly stable equilibria of the nonsmooth gradient
flow of f . Furthermore, if the level sets of f are bounded, then the solutions of the nonsmooth
gradient flow asymptotically converge to the set of critical points of f .

As an illustration, consider the nonsmooth gradient flow of − smQ (the minimum dis-
tance to polygonal boundary function). Uniqueness of solutions for this flow can be guaranteed via
Proposition 6. Regarding convergence, the application of the above result on the stability of nons-
mooth gradient flows guarantee that solutions converge asymptotically to the incenter set. Indeed,
one can show [36] that the incenter set is attained in finite time, and hence convergence occurs
to individual points. In all, one can interpret the nonsmooth gradient flow as a “sphere-packing
algorithm,” in the sense that, starting from any initial point, it monotonically maximizes the radius
of the largest disk contained in the polygon (that is, smQ!) until it reaches an incenter point. An
illustration of this fact is shown in Figure 8.

Figure 8. From left to right, evolution of the nonsmooth gradient flow of the function − smQ in
a convex polygon. At each snapshot, the value of smQ is the radius of the largest disk (plotted
in light gray) contained in the polygon with center at the current location. The flow converges
in finite time to the incenter set, that for this polygon, is a singleton.

What if, instead, one is interested in packing more than one sphere within the polygon,
say for example n spheres? It turns out that the “move-away-from-closest-neighbor” interaction law
is a discontinuous dynamical system that solves this problem, where the solutions are understood
in the Filippov sense. The interested reader is referred to [36] for various discontinuous dynamical
systems that solve this and other exciting geometric optimization problems.
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Finite-time convergent gradient flows of smooth functions

General results on finite-time convergence for discontinuous dynamical systems can be
found in [28, 43]. Here, we briefly discuss the finite-convergence properties of a class of nonsmooth
gradient flows.

Let f : Rd → R be a continuously differentiable function, with bounded level sets. As we
have mentioned before, the solutions of the gradient flow ẋ(t) = −∇f(x(t)) converge asymptotically
toward the set of critical points of f . However, they cannot reach them in finite time. Here, we
slightly modify the gradient flow to turn it into two different nonsmooth flows that achieve finite-
time convergence.

Consider the discontinuous differential equations

ẋ(t) = − ∇f(x(t))

‖∇f(x(t))‖2
, (39)

ẋ(t) = − sign(∇f(x(t))), (40)

where ‖ · ‖2 denotes the Euclidean distance and sign(x) = (sign(x1), . . . , sign(xd)) ∈ Rd. We
understand the solutions of these systems in the Filippov sense. The nonsmooth vector field (39)
always moves in the direction of the gradient with unit speed. The nonsmooth vector field (40),
instead, specifies the direction of motion via a binary quantization of the direction of the gradient.
For these discontinuous systems, one can establish the following result.

Finite-time convergence of nonsmooth gradient flows. Let f : Rd → R be a
twice continuously differentiable function. Let S ⊂ Rd be compact and strongly invariant for (39)
(resp., for (40)). If the Hessian of f is positive definite at each critical point of f in S, then each
solution of (39) (resp. (40)) starting from S converges in finite time to a minimum of f .

The proof of this result builds on the stability tools presented in this section. Specifi-
cally, the LaSalle Invariance Principle can be used to establish convergence toward the set of critical
points of the function. To establish finite-time convergence, one derives bounds on the evolution
of the function along the solutions of the discontinuous dynamics using the set-valued Lie deriva-
tive. This analysis also allows to provide upper bounds on the convergence time. The interested
reader is referred to [43] for a more comprehensive exposition of results that guarantee finite-time
convergence of general discontinuous dynamics.

Finite-time consensus
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Arguably, the ability to reach consensus, or agreement, upon some (a priori unknown)
quantity is critical for any multi-agent system. Network coordination problems require individual
agents to agree on the identity of a leader, jointly synchronize their operation, decide which specific
pattern to form, balance the computational load or fuse consistently the information gathered
on some spatial process. Here, we briefly comment on two discontinuous algorithms that achieve
consensus in finite time, following [43].

Consider a network of n agents with states p1, . . . , pn ∈ R. Let G = ({1, . . . , n}, E) be
an undirected graph with n vertices, describing the topology of the network. Two agents pi and
pj agree if and only if pi = pj . The disagreement function ΦG : Rn → [0,∞) quantifies the group
disagreement

ΦG(p1, . . . , pn) =
1

2

∑

(i,j)∈E

(pj − pi)
2.

It is known [44] that, if the graph is connected, the gradient flow of ΦG achieves consensus with an
exponential rate of convergence. Actually, agents agree on the average value of their initial states
–this is called average consensus. Regarding the nonsmooth gradient flows (39) and (40) of ΦG, if
G is connected, the first one achieves average consensus in finite time, and the second one achieves
consensus on the average of the maximum and the minimum of the initial states in finite time,
see [43].

Stability analysis via proximal subdifferentials of nonsmooth Lyapunov functions

This section presents stability tools for differential inclusions using lower semicontinuous
functions as candidate Lyapunov functions. We make use of proximal subdifferentials to study the
monotonic evolution of the candidate Lyapunov functions along the solutions of the differential
inclusions. As in the previous section, we have chosen to present a few representative and useful
results. We refer the interested reader to [13, 45] for a more detailed exposition.

Lie derivatives and monotonicity

Let D ⊂ Rd be a domain. A lower semicontinuous function f : Rd → R is weakly
nonincreasing on D for a set-valued map F : Rd → B(Rd) if for any x ∈ D, there exists a solution
γ : [t0, t1] → Rd of the differential inclusion (36) starting at x and lying in D that satisfies

f(γ(t)) ≤ f(γ(0)) = f(x) for all t ∈ [t0, t1].
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If in addition, f is continuous, then being weakly nonincreasing is equivalent to the property of
having a solution starting at x such that t 7→ f(γ(t)) is monotonically nonincreasing on [t0, t1].

Similarly, a lower semicontinuous function f : Rd → R is strongly nonincreasing on
D for a set-valued map F : Rd → B(Rd) if for any x ∈ D, all solutions γ : [t0, t1] → Rd of the
differential inclusion (36) starting at x and lying in D satisfy

f(γ(t)) ≤ f(γ(0)) = f(x) for all t ∈ [t0, t1].

Note that being strongly nonincreasing is equivalent to the property of having t 7→ f(γ(t)) be
monotonically nonincreasing on [t0, t1] for all solutions γ of the differential inclusion.

Given a set-valued map F : Rd → B(Rd) taking nonempty, compact values, and a lower
semicontinuous function f : Rd → R, the lower and upper set-valued Lie derivatives LFf,LFf :
Rd → B(R) of f with respect to F at x are defined by, respectively

LFf(x) = {a ∈ R | there exists ζ ∈ ∂P f(x) such that a = min{ζT v | v ∈ F(x)}},
LFf(x) = {a ∈ R | there exists ζ ∈ ∂P f(x) such that a = max{ζT v | v ∈ F(x)}},

If, in addition, F takes convex values, then for each ζ ∈ ∂P f(x), the set {ζT v | v ∈ F(x)} is a
closed interval of the form [min{ζT v | v ∈ F(x)}, max{ζT v | v ∈ F(x)}]. Note that the lower and
upper set-valued Lie derivatives at a point x might be empty.

The lower and upper set-valued Lie derivatives play a similar role for lower semicontinu-
ous functions to the one played by the set-valued Lie derivative L̃Ff for locally Lipschitz functions.
These objects allow us to study how the function f evolves along the solutions of a differential
inclusion without having to obtain them in closed form. Specifically, we have the following result.
In this and in forthcoming statements, it is convenient to adopt the convention sup ∅ = −∞.

Proposition 10. Let F : Rd → B(Rd) be a set-valued map satisfying the hypothesis of
Proposition S1, and consider the associated differential inclusion (36). Let f : Rd → R be a lower
semicontinuous function, and D ⊂ Rd open. Then,

(i) The function f is weakly nonincreasing on D if and only if

supLFf(x) ≤ 0, for all x ∈ D;

(ii) If, in addition, either F is locally Lipschitz on D, or F is continuous on D and f is locally
Lipschitz on D, then f is strongly nonincreasing on D if and only if

supLFf(x) ≤ 0, for all x ∈ D.
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Let us illustrate this result in a particular example.

Cart on a circle

Consider, following [45, 46], the driftless control system on R2

ẋ1 = (x2
1 − x2

2)u,

ẋ2 = 2x1x2u,

with u ∈ R. The phase portrait of the vector field (x1, x2) 7→ g(x1, x2) = (x2
1 −x2

2, 2x1x2) is plotted
in Figure 9(a).
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Figure 9. Cart on a circle. The plot in (a) shows the phase portrait of the vector field
(x1, x2) 7→ (x2

1 − x2
2, 2x1x2), the plot in (b) shows its integral curves, and the plot in (c) shows

the contour plot of the function 0 6= (x1, x2) 7→ x2
1
+x2

2√
x2
1
+x2

2
+|x1|

, (0, 0) 7→ 0.

Alternatively, consider the associated set-valued map F : R2 → B(R2) defined by
F(x1, x2) = {g(x1, x2)u | u ∈ R}. Note that F does not take compact values. Therefore, instead
of considering F , we take any nondecreasing map σ : [0,∞) → [0,∞), and define the set-valued
map Fσ : R2 → B(R2) given by Fσ(x1, x2) = {g(x1, x2)u ∈ R2 | |u| ≤ σ(‖(x1, x2)‖2)}.

Consider the locally Lipschitz function f : R2 → R,

f(x1, x2) =





x2
1
+x2

2√
x2
1
+x2

2
+|x1|

, x 6= 0,

0, x = 0.
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The level set curves of this function are depicted in Figure 9(b). Let us determine how f evolves
along the solutions of the control system by using the lower and upper set-valued Lie derivatives.
First, let us compute the proximal subdifferential of f . Using the fact that f is twice continuously
differentiable on the open right and left half-planes, together with the geometric interpretation of
proximal subgradients, we obtain

∂P f(x1, x2) =





{(
− x2

1
+x2

2
−2x1

√
x2
1
+x2

2

x2
1
+x2

2
+x1

√
x2
1
+x2

2

,
x2(2x1+

√
x2
1
+x2

2
)

(x1+
√

x2
1
+x2

2
)2

)}
, x1 > 0,

∅, x1 = 0,{(
x2
1
+x2

2
+2x1

√
x2
1
+x2

2

x2
1
+x2

2
−x1

√
x2
1
+x2

2

,
x2(−2x1+

√
x2
1
+x2

2
)

(x1−
√

x2
1
+x2

2
)2

)}
, x1 < 0.

With this information, we compute the set

{ζT v | ζ ∈ ∂P f(x1, x2), v ∈ Fσ(x1, x2)} =





{
u

(x2
1
+x2

2
)2

x2
1
+x2

2
+x1

√
x2
1
+x2

2

| |u| ≤ σ(‖(x1, x2)‖2)
}
, x1 > 0,

∅, x1 = 0,
{
− u

(x2
1
+x2

2
)2

x2
1
+x2

2
−x1

√
x2
1
+x2

2

| |u| ≤ σ(‖(x1, x2)‖2)
}
, x1 < 0.

We are now ready to compute the lower and upper set-valued Lie derivatives as

LFf(x1, x2) =




−σ(‖(x1, x2)‖2)

(x2
1
+x2

2
)3/2√

x2
1
+x2

2
+|x1|

, x1 6= 0,

−∞, x1 = 0,

LFf(x1, x2) =





σ(‖(x1, x2)‖2)
(x2

1
+x2

2
)3/2√

x2
1
+x2

2
+|x1|

, x1 6= 0,

−∞, x1 = 0.

Therefore supLFf(x1, x2) ≤ 0, for all (x1, x2) ∈ R2. Using now Proposition 10(i), we deduce that
the function f is weakly nonincreasing on R2. Since f is continuous, this fact is equivalent to saying
that there exists a choice of control input u such that the solution γ of the resulting dynamical
system satisfies that t 7→ f(γ(t)) is monotonically nonincreasing.

Stability results

The results presented in the previous section establishing the monotonic behavior of
lower semicontinuous functions allow us to provide tools for stability analysis. We present here an
exposition parallel to the one for locally Lipschitz functions and generalized gradients. We start by
presenting a result on Lyapunov stability.

Theorem 3. Let F : Rd → B(Rd) be a set-valued map satisfying the hypothesis of
Proposition S1. Let x∗ be an equilibrium of the differential inclusion (36), and let D ⊂ Rd be a
domain with x∗ ∈ D. Let f : Rd → R and assume that
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(i) F is continuous on D and f is locally Lipschitz on D, or F is locally Lipschitz on D and f
is lower semicontinuous on D, and f is continuous at x∗;

(ii) f(x∗) = 0, and f(x) > 0 for x ∈ D \ {x∗};

(iii) supLFf(x) ≤ 0 for all x ∈ D.

Then, x∗ is a strongly stable equilibrium of (36). In addition, if (iii) above is substituted by

(iii)’ supLFf(x) < 0 for all x ∈ D \ {x∗},

then x∗ is a strongly asymptotically stable equilibrium of (36).

A similar result can be stated for weakly stable equilibria substituting (i) by “(i’) f is
continuous on D,” and the upper set-valued Lie derivative by the lower set-valued Lie derivative in
(iii) and (iii’). Note that, if the differential inclusion (36) has unique solutions starting from any
initial condition, then the notions of strong and weak stability coincide, and it is sufficient to verify
the simpler requirements of the result for weak stability.

In a similar way to the case of continuous differential equations, global asymptotic
stability can be established by requiring the Lyapunov function f to be continuous and radially
unbounded. Indeed, this type of global results are commonly invoked when dealing with the stabi-
lization of control systems by referring to control Lyapunov functions [45] or Lyapunov pairs [13].
Two lower semicontinuous functions f, g : Rd → R are a Lyapunov pair for an equilibrium x∗ ∈ Rd

if they satisfy that f(x), g(x) ≥ 0 for x ∈ Rd, and g(x) = 0 if and only if x = x∗; f is radially
unbounded, and moreover,

supLFf(x) ≤ −g(x), for all x ∈ Rd.

If an equilibrium x∗ of (36) admits a Lyapunov pair, then one can show that there exists at least
one solution starting from any initial condition that asymptotically converges to the equilibrium,
see [13].

As an application of this discussion and the version of Theorem 3 for weak stability,
consider the cart on a circle example. Setting x∗ = (0, 0) and D = R2, and taking into account our
previous computation of the lower set-valued Lie derivative, we conclude that (0, 0) is a (globally)
weakly asymptotically stable equilibrium.

We now turn our attention to the extension of LaSalle Invariance Principle for differ-
ential inclusions using lower semicontinuous functions and proximal subdifferentials.
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Theorem 4. Let F : Rd → B(Rd) be a set-valued map satisfying the hypothesis of
Proposition S1, and let f : Rd → R. Assume either F is continuous and f is locally Lipschitz, or
F is locally Lipschitz and f is continuous. Let S ⊂ Rd be compact and strongly invariant for (36),
and assume that supLFf(x) ≤ 0 for all x ∈ S. Then, any solution γ : [t0,∞) → Rd of (36)
starting at S converges to the largest weakly invariant set M contained in

S ∩ {x ∈ Rd | 0 ∈ LFf(x)}

Moreover, if the set M is a finite collection of points, then the limit of all solutions starting at S
exists and equals one of them.

Let us apply this result to gradient differential inclusions.

Gradient differential inclusions revisited

Consider the gradient differential inclusion (35) associated to a continuous and convex
function f : Rd → R. Let us study here the asymptotic behavior of the solutions. From our previous
discussion, we know that solutions exist and are unique. In particular, this fact means that in this
case the notions of weakly nonincreasing and strongly nonincreasing function coincide. Therefore,
let us simply show that the function f is weakly nonincreasing on Rd for the gradient differential
inclusion.

For any ζ ∈ ∂P f(x), there is v = −ζ ∈ −∂P f(x) such that ζT v = −‖ζ‖2
2 ≤ 0. In

particular, this implies

L−∂P ff(x) ≤ 0, for all x ∈ Rd.

Proposition 10(i) now guarantees that f is weakly nonincreasing on Rd. Since the solutions of the
gradient differential inclusion are unique, f is monotonically nonincreasing.

The application of the Lyapunov stability theorem and the LaSalle Invariance Principle
above gives now rise to the following nice nonsmooth counterpart of the classical smooth results
for gradient flows.

Stability of gradient differential inclusions. Let f be a continuous and convex
function. Then, the strict minima of f are strongly stable equilibria of the gradient differential
inclusion associated to f . Furthermore, if the level sets of f are bounded, then the solutions of the
gradient differential inclusion asymptotically converge to the set of minima of f .
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Stabilization of control systems

Consider an autonomous control system on Rd of the form

ẋ = X(x, u), (41)

where X : Rd × Rm → Rd (note that the space of admissible controls is U ⊂ Rm). The system is
locally (respectively globally) continuously stabilizable if there exists a continuous map k : Rd → Rm

such that the closed-loop system

ẋ = X(x, k(x))

is locally (respectively globally) asymptotically stable at the origin. The celebrated result by
Brockett [1], see also [2, 3], states that many control systems are not continuously stabilizable.

Theorem 5. Let X : Rd × Rm → Rd be continuous and X(0, 0) = 0. A necessary
condition for the existence of a continuous stabilizer of the control system (41) is that X maps any
neighborhood of the origin in Rd × Rm onto some neighborhood of the origin in Rd.

In particular, Theorem 5 implies that driftless control systems of the form

ẋ = u1X1(x) + · · · + umXm(x), (42)

with m < n, and Xi : Rd → Rd, i ∈ {1, . . . , m} continuous, cannot be stabilized by a continuous
feedback.

The condition in Theorem 5 is only necessary. There exist control systems that satisfy
it, and still cannot be stabilized by means of a continuous stabilizer. The cart on a circle example
is one of them. The map ((x1, x2), u) → g(x)u is onto any neighborhood of (0, 0). However, it
cannot be stabilized with a continuous k : R2 → R, see [45] for various ways to justify it.

The obstruction to the existence of continuous stabilizers has motivated the search for
time-varying and discontinuous feedback stabilizers. Regarding the latter, an immediate question
pops up: if one uses a discontinuous map k : Rm → Rd, how should the solutions of the resulting
discontinuous dynamical system ẋ = X(x, k(x)) be understood? From the previous discussion, we
know that Caratheodory solutions are not a good candidate, since in many situations they fail to
exist. The following result [47, 48], shows that Filippov solutions are not a good candidate either.

Theorem 6. Let X : Rd × Rm → Rd be continuous and X(0, 0) = 0. Assume that for
each U ⊂ Rm and each x ∈ Rd, one has X(x, co U) = co X(x, U). Then, a necessary condition for
the existence of a measurable, locally bounded stabilizer of the control system (41) (where solutions
are understood in the Filippov sense) is that X maps any neighborhood of the origin in Rd × Rm

onto some neighborhood of the origin in Rd.
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In particular, driftless control systems of the form (42) cannot be stabilized by means
of a discontinuous feedback if solutions are understood in the Filippov sense. This impossibility
result, however, can be overcome if solutions are understood in the sample-and-hold sense, as shown
in [32]. This work used this notion to solve the open question concerning the relationship between
asymptotic controllability and feedback stabilization.

Let us briefly discuss this result in the light of our previous exposition. Consider the
differential inclusion (18) associated with the control system (41). The system (41) is (open loop)
globally asymptotically controllable (to the origin) if 0 is a Lyapunov stable equilibrium of (18), and
every point x ∈ Rd has the property that there exists a solution of (18) satisfying x(0) = x and
limt→∞ x(t) = 0. On the other hand, a feedback k : Rd → Rm stabilizes the system (41) in the
sample-and-hold sense if, for all x0 ∈ Rd and all ε ∈ (0,∞), there exist δ, T ∈ (0,∞) such that, for
any partition π of [0, t1] with diam(π) < δ, the corresponding π-solution γ of (41) starting at x0

satisfies ‖γ(t)‖2 ≤ ε for all t ≥ T .

The following result states that both notions, global asymptotic controllability and the
existence of a feedback stabilizer, are equivalent.

Theorem 7. Let X : Rd ×Rm → Rd be continuous and X(0, 0) = 0. Then, the control
system (41) is globally asymptotically controllable if and only if it admits a measurable, locally
bounded stabilizer in the sample-and-hold sense.

The implication from right to left is clear. The converse implication is proved by
explicit construction of the stabilizer, and is based on the fact that the control system (41) is
globally asymptotically controllable if and only if it admits a continuous Lyapunov pair, see [49].
Using the continuous Lyapunov function provided by this characterization, one constructs explicitly
the discontinuous feedback for the control system (41), see [32, 45]. The existence of a Lyapunov
pair “in the sense of generalized gradients” (that is, when instead of using the lower set-valued Lie
derivative involving proximal subdifferential, one uses the set-valued Lie derivative involving the
generalized gradient) turns out to be equivalent to the existence of a stabilizing feedback in the
sense of Filippov, see [50].

As an illustration, consider the cart on a circle example. We have already shown that
(0, 0) is a globally weakly asymptotically stable equilibrium of the differential inclusion associated
with the control system. Therefore, the control system is globally asymptotically controllable,
and can be stabilized in the sample-and-hold sense by means of a discontinuous feedback. The
stabilizing feedback that results from the proof of Theorem 7 is the following, see [45, 51]: if to the
left of the x2 axis, move in the direction of the vector field g, if to the right of the x2 axis, move
in the opposite direction of the vector field g, and make an arbitrary decision on the x2-axis. The
stabilizing nature of this feedback can be graphically checked in Figure 9(a) and (b).
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Remarkably, for systems affine in the control, there exist [52] stabilizing feedbacks whose
discontinuities form a set of measure zero, and, moreover, the discontinuity set is repulsive for the
solutions of the closed-loop system. In particular, this fact means that in applying the feedback,
the solutions can be understood in the Caratheodory sense. This situation is exactly what we see
in the cart on a circle example.

Conclusions

We have presented an introductory tutorial on discontinuous dynamical systems. We
have begun by reviewing the classical notion of solution for ordinary differential equations. We
have illustrated in various examples the pertinence of the continuity and Lipschitzness hypotheses
that guarantee the existence and uniqueness of classical solutions. Our discussion has motivated
the need for more general notions than the classical one. From this point, three main themes
have guided our discussion: appropriate notions of solution for discontinuous systems, nonsmooth
analysis and gradient information of candidate Lyapunov functions, and nonsmooth stability tools
to characterize the asymptotic behavior of solutions.

Regarding the first theme, we have introduced the notions of Caratheodory, Filippov
and sample-and-hold solutions, discussed existence and uniqueness results, and examined various
examples to illustrate them. Regarding the second theme, we have presented two sets of alternative
tools: on the one hand, locally Lipschitz functions and their generalized gradients, and on the other
hand, lower semicontinuous functions and their proximal subdifferentials. We have provided tools
for the explicit computation of these gradient notions, and discussed suitable generalizations of
the concept of critical points and directions of descent. As a paradigmatic example, we have
paid special attention to the gradient flow of both locally Lipschitz and lower semicontinuous
functions. Finally, regarding the third theme, we have introduced Lie derivative tools to analyze
the monotonic behavior of candidate Lyapunov functions. Making use of these tools, we have
presented generalizations of the Lyapunov stability theorem and the LaSalle Invariance Principle
for discontinuous systems. We have illustrated the application of these results with the class
of nonsmooth gradient flows and other examples. For reference, the sidebar “Index of Symbols”
presents the symbols corresponding to the main mathematical concepts used throughout the article.

Numerous important issues have been left out. The topic of discontinuous dynamical
systems is a vast one, and we have focused our attention on the above-mentioned themes with the
aim of providing a coherent exposition. We hope that this tutorial serves as a guided motivation
for the reader to further explore the exciting topic of discontinuous systems. The list of references
of this manuscript provides a good starting point to undertake this endeavor.

52



Acknowledgments

This research was supported by NSF CAREER Award ECS-0546871. The author
wishes to thank Dennis Bernstein for his initial encouragement to write this article, and Francesco
Bullo and Anurag Ganguli for countless hours of fun with Filippov solutions.

References

[1] R. W. Brockett, “Asymptotic stability and feedback stabilization,” in Geometric Control The-
ory (R. W. Brockett, R. S. Millman, and H. J. Sussmann, eds.), (Boston, MA), pp. 181–191,
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Sidebar 1: Locally Lipschitz Functions
A function f : Rd → Rm is locally Lipschitz at x ∈ Rd if if there exist Lx, ε ∈ (0,∞) such that

‖f(y) − f(y′)‖2 ≤ Lx‖y − y′‖2,

for all y, y′ ∈ B(x, ε). A locally Lipschitz function at x is continuous at x, but the converse is not
true (f : R → R, f(x) =

√
|x|, is continuous at 0, but not locally Lipschitz at 0). A function is

locally Lipschitz on S ⊂ Rd if it is locally Lipschitz at x, for all x ∈ S. We abbreviate “f is locally
Lipschitz on Rd” by simply saying “f is locally Lipschitz.” Note that continuously differentiable
functions at x are locally Lipschitz at x, but the converse is not true (f : R → R, f(x) = |x|,
is locally Lipschitz at 0, but not differentiable at 0). Here, functions like f : R × Rd → Rm,
that depend explicitly on time, are locally Lipschitz at x ∈ Rd if there exists ε ∈ (0,∞) and
LX : R → (0,∞) such that ‖f(t, y)−f(t, y′)‖2 ≤ Lx(t)‖y−y′‖2, for all t ∈ R and y, y′ ∈ B(x, ε).
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Sidebar 2: Absolutely continuous functions
A function γ : [a, b] → R is absolutely continuous if for all ε ∈ (0,∞), there exists δ ∈ (0,∞)
such that any finite collection (a1, b1), . . . , (an, bn) of disjoint open intervals contained in [a, b]
with

∑n
i=1(bi − ai) < δ verifies

n∑

i=1

|γ(bi) − γ(ai)| < ε.

Locally Lipschitz functions are absolutely continuous. The function γ : [0, 1] → R, γ(x) =
√

x,
is absolutely continuous but not locally Lipschitz at 0. Absolutely continuous functions are
(uniformly) continuous. The function γ : [−1, 1] → R defined by γ(t) = t sin

(
1
t

)
for t 6= 0 and

γ(0) = 0 is continuous, but not absolutely continuous. Finally, absolutely continuous functions
are differentiable almost everywhere.
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Sidebar 3: Set-valued Maps
A set-valued map, as its name suggests, are maps that have sets as images. More formally,
let B(S) be the collection of all possible subsets of S ⊂ Rd. We consider (non-autonomous)
set-valued maps of the form F : R×Rd → B(Rd). The map F assigns each point (t, x) ∈ R×Rd

to the set F(t, x) ⊂ Rd. One can develop a complete analysis for set-valued maps, very much
like in the case of standard regular maps, see, for instance [35]. Here, we are mainly interested
in concepts related to boundedness and continuity, that we define next for completeness.
A set-valued map F : R×Rd → B(Rd) is locally bounded (respectively locally essentially bounded)
at (t, x) ∈ R×Rd if there exist ε ∈ (0,∞) and an integrable function m : [t, t+ δ] → (0,∞) such
that ‖z‖2 ≤ m(s) for all z ∈ F(s, y), all s ∈ [t, t + δ], and all y ∈ B(x, ε) (respectively, almost
all y ∈ B(x, ε) in the sense of Lebesgue measure).
An (autonomous) set-valued map F : Rd → B(Rd) is upper semicontinuous (respectively, lower
semicontinuous) at x ∈ Rd if for all ε ∈ (0,∞), there exists δ ∈ (0,∞) such that F(y) ⊂
F(x) + B(0, ε) (respectively, F(x) ⊂ F(y) + B(0, ε)) for all y ∈ B(x, δ). A set-valued map
F : Rd → B(Rd) is continuous at x ∈ Rd if it is both upper and lower semicontinuous at
x ∈ Rd. Finally, a set-valued map F : Rd → B(Rd) is locally Lipschitz at x ∈ Rd if there exist
Lx, ε ∈ (0,∞) such that

F(y′) ⊂ F(y) + Lx‖y − y′‖2B(0, 1),

for all y, y′ ∈ B(x, ε). A locally Lipschitz set-valued map at x is upper semicontinuous at x, but
the converse is not true.
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Sidebar 4: Differential Inclusions and Caratheodory Solutions
Differential inclusions are a generalization of differential equations: at each state, they specify
a range of possible evolutions, rather than a single one. These objects are defined by means
of set-valued maps, see the sidebar “Set-valued maps.” The differential inclusion associated to
F : R × Rd → B(Rd) is an equation of the form

ẋ(t) ∈ F(t, x(t)). (S1)

A point x∗ ∈ Rd is an equilibrium of the differential inclusion if 0 ∈ F(t, x∗) for all t ∈ R. We
define the notion of solution of a differential inclusion a la Caratheodory. The flexibility provided
by the differential inclusion makes things work under fairly general conditions.
A (Caratheodory) solution of (S1) defined on [t0, t1] ⊂ R is an absolutely continuous map
γ : [t0, t1] → Rd such that γ̇(t) ∈ F(t, γ(t)) for almost every t ∈ [t0, t1]. The existence of at
least a solution starting from each initial condition is guaranteed by the following result (see,
for instance, [3, 15]).

Proposition S1. Let F : R × Rd → B(Rd) be locally bounded and take nonempty,
compact and convex values. Assume that, for each t ∈ R, the set-valued map x 7→ F(t, x) is
upper semicontinuous, and, for each x ∈ Rd, the set-valued map t 7→ F(t, x) is measurable.
Then, for any (t0, x0) ∈ R×Rd, there exists a solution of (S1) with initial condition x(t0) = x0.

This result is sufficient for our purposes. The reader is invited to find in the literature other
existence results that work under different assumptions, see for instance [3, 13]. Uniqueness of
solutions of differential inclusions is guaranteed by the following result.

Proposition S2. Under the hypothesis of Proposition S1, further assume that for
all (t, x) ∈ R × Rd, there exist LX(t), ε ∈ (0,∞) such that for almost every y, y′ ∈ B(x, ε), one
has

(v − w)T (y − y′) ≤ Lx(t) ‖y − y′‖2
2, (S2)

for all v ∈ F(t, y) and w ∈ F(t, y′). Assume that the function t 7→ LX(t) is integrable. Then,
for any (t0, x0) ∈ R×Rd, there exists a unique solution of (S1) with initial condition x(t0) = x0.

Let us present an example of the application of Propositions S1 and S2. Following [35], consider
the set-valued map F : R → B(R) defined by

F(x) =

{
0, x 6= 0,

[−1, 1], x = 0.

Note that F is upper semicontinuous, but not lower semicontinuous (and hence, it is not contin-
uous). This set-valued map verifies all the hypotheses in Proposition S1, and therefore solutions
exist starting from any initial condition. In addition, F satisfies equation (S2) as long as y and
y′ are different from 0. Therefore, Proposition S2 guarantees uniqueness. Actually, the solution
of ẋ(t) ∈ F(x(t)) starting from any initial condition is just the equilibrium solution.
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Sidebar 5: Piecewise Continuous Vector Fields
To guarantee uniqueness of solution for a piecewise continuous vector field, we can not resort
to Proposition 5. To see this, let X : Rd → Rd, d ≥ 2, be piecewise continuous, and consider a
point of discontinuity x ∈ SX . For simplicity, assume it belongs to the boundaries of just two
domains, that is, x ∈ ∂Di ∩ ∂Dj (the argument proceeds similarly for the general case). For
ε ∈ (0,∞), let us show that equation (16) is violated on a set of non-zero measure contained in
B(x, ε). Notice that

(X(y) − X(y′))T (y − y′) = ‖X(y) − X(y′)‖2 ‖y − y′‖2 cos α(y, y′),

where α(y, y′) = ∠(X(y) − X(y′), y − y′) is the angle between the vectors X(y) − X(y′) and
y − y′. Therefore, equation (16) is equivalent to

‖X(y) − X(y′)‖2 cos α(y, y′) ≤ LX‖y − y′‖2. (S3)

Consider the vectors X|Di
(x) and X|Dj

(x). Since X is discontinuous at x, we have X|Di
(x) 6=

X|Dj
(x). Take any y ∈ Di ∩B(x, ε) and y′ ∈ Dj ∩B(x, ε). Note that as y and y′ tend to x, the

vector X(y) − X(y′) tends to X|Di
(x) − X|Dj

(x). Consider then a straight line L that crosses

SX , passes through x, and forms a small angle β > 0 with X|Di
(x) − X|Dj

(x) (see Figure S1).
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X|Di
(x) − X|Dj

(x)

Di

Dj

SX

Figure S1. Piecewise continuous vector field. The vector field has a unique Filippov
solution starting from any initial condition –solutions that reach SX coming from
Dj cross it, and then continue in Di. However, Proposition 5 cannot be invoked to
conclude uniqueness.

Let R be the set enclosed by the line L and the line in the direction of the vector X|Di
(x) −

X|Dj
(x). If y ∈ Di ∩R and y′ ∈ Dj ∩R tend to x, we deduce that ‖y − y′‖2 → 0 while at the

same time

‖X(y) − X(y′)‖2 | cos α(y, y′)| ≥
‖X(y) − X(y′)‖2 cos β −→ ‖X|Di

(x) − X|Dj
(x)‖2 cos β > 0.

Therefore, it cannot exist LX ∈ (0,∞) such that equation (S3) is verified for y ∈ R∩Di∩B(x, ε)
and y′ ∈ R∩Dj ∩ B(x, ε).
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Sidebar 6: Regular Functions
Let us recall here the notion of regular function. To introduce it, we need to first define what
right directional derivatives and generalized right directional derivatives are. Given f : Rd → R,
the right directional derivative of f at x in the direction of v ∈ Rd is defined as

f ′(x, v) = lim
h→0+

f(x + hv) − f(x)

h
,

when this limits exists. On the other hand, the generalized directional derivative of f at x in
the direction of v ∈ Rd is defined as

fo(x; v) = lim sup
y→x
h→0+

f(y + hv) − f(y)

h
= lim

δ→0+

ε→0+

sup
y∈B(x,δ)
h∈[0,ε)

f(y + hv) − f(y)

h
.

This latter notion has the advantage of always being well-defined. In general, these directional
derivatives may not be equal. When they are, we call the function regular. More formally, a
function f : Rd → R is regular at x ∈ Rd if for all v ∈ Rd, the right directional derivative of f
at x in the direction of v exists, and f ′(x; v) = fo(x; v). A continuously differentiable function
at x is regular at x. Also, a convex and locally Lipschitz function at x is regular (cf. [33,
Proposition 2.3.6]). An example of a non-regular function is f : R → R, f(x) = −|x|. The
function is continuously differentiable everywhere except for zero, so it is regular on R \ {0}.
However, its directional derivatives

f ′(0; v) =

{
−v, v > 0,

v, v < 0,
fo(0; v) =

{
v, v > 0,

−v, v < 0,

do not coincide. Hence, the function is not regular at 0.
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Sidebar 7: Index of Symbols
The following is a list of the symbols used throughout the article.

Symbol Description

G[X] Set-valued map associated with a control system X : R × Rd × U → Rd

co(S) Convex hull of a set S ⊂ Rd

diam(π) Diameter of the partition π

fo(x, v) Generalized directional derivative of the function f : Rd → R at x ∈ Rd in
the direction of v ∈ Rd

f ′(x, v) Right directional derivative of the function f : Rd → R at x ∈ Rd in the
direction of v ∈ Rd

SX Set of points where the vector field X : Rd → Rd is discontinuous

dist(p, S) Euclidean distance from the point p ∈ Rd to the set S ⊂ Rd

F [X] Filippov set-valued map associated with a vector field X : Rd → Rd

∂f Generalized gradient of the locally Lipschitz function f : Rd → R

∇f Gradient of the differentiable function f : Rd → R

Ln(S) Least-norm elements in the closure of the set S ⊂ Rd

Ω(γ) Set of limit points of a curve γ

N Nearest-neighbor map

ne Unit normal to the edge e of a polygon Q pointing toward the interior of Q

Ωf Set of points where the locally Lipschitz function f : Rd → R fails to be
differentiable

π Partition of a closed interval

B(S) Set whose elements are all the possible subsets of S ⊂ Rd

∂P f Proximal subdifferential of the lower semicontinuous function f : Rd → R

L̃Ff Set-valued Lie derivative of the locally Lipschitz function f : Rd → R with
respect to the set-valued map F : Rd → B(Rd)

L̃Xf Set-valued Lie derivative of the locally Lipschitz function f : Rd → R with
respect to the Filippov set-valued map F [X] : Rd → B(Rd)

LFf Lower set-valued Lie derivative of the lower semicontinuous function f :
Rd → R with respect to the set-valued map F : Rd → B(Rd)

LFf Upper set-valued Lie derivative of the lower semicontinuous function f :
Rd → R with respect to the set-valued map F : Rd → B(Rd)

F Set-valued map

smQ Minimum distance function from a point in a convex polygon Q ⊂ Rd to the
boundary of Q
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