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Abstract

This paper explores nonparametric and semiparametric nonstationary modeling methodologies that cou-

ple stationary Gaussian processes and (limiting) linear models with treed partitioning. Partitioning is

a simple but effective method for dealing with nonstationarity. Mixing between full Gaussian processes

and simple linear models can yield a more parsimonious spatial model while significantly reducing com-

putational effort. The methodological developments and statistical computing details which make this

approach efficient are described in detail. Illustrations of our model are given for both synthetic and real

datasets.

Key words: recursive partitioning, nonstationary spatial model, nonparametric regression, Bayesian

model averaging

1 Introduction

The Gaussian process (GP) model is a well-established approach for spatial modeling (e.g., Cressie, 1993;

Wackernagel, 2003; Banerjee et al., 2003) as well as for modeling other stochastic processes such as computer

experiment output (e.g., Sacks et al., 1989; Santner et al., 2003) and unknown functions (O’Hagan, 1991).

However, the standard GP model has a number of known drawbacks, as discussed in the next paragraph.

Fully flexible nonstationary formulations can be difficult to work with, particularly for larger datasets. In

this paper we introduce an expansion of Gaussian processes based on the idea of Bayesian partition models

(Chipman et al., 2002; Denison et al., 2002) which is able to address many of these issues.

GPs are conceptually straightforward, can easily accommodate prior knowledge in the form of covariance

functions, and can return estimates of predictive confidence. However, we highlight three potential disad-

vantages to the standard form of a GP. First, inference on the GP scales poorly with the number of data

points, typically requiring computing time that grows with the cube of the sample size. Second, GP models

are usually stationary in that the same covariance structure is used throughout the entire input space, which
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may be too strong an assumption. Third, the estimated predictive error does not directly depend on the

locally observed response values. Rather, it depends on them only indirectly through the distance to the

spatial locations of the nearest observations and a global measure of error, which also stems from the sta-

tionarity assumption. In many real-world spatial and stochastic problems, uncertainty will not be uniform

in this sense, but instead, some regions of the space will tend to exhibit larger variability than others. On

the other hand, fully nonstationary Bayesian GP models (e.g., Higdon et al., 1999; Paciorek, 2003) can be

difficult to fit, and not computationally tractable for more than a relatively small number of datapoints.

Further discussion of nonstationary models is deferred until the end of Section 1.2.

All of these shortcomings can be addressed by partitioning the input space into regions, and fitting

separate GP models within each region (e.g., Kim et al., 2005). Partitioning allows for the modeling of non-

stationary behavior, and can ameliorate some of the computational demands by fitting models to less data. A

Bayesian model averaging approach allows for the explicit estimation of predictive uncertainty, which can now

vary in a nonstationary manner. Finally, an R package with implementations of all of the models discussed

in this paper is available at http://www.cran.r-project.org/src/contrib/Descriptions/tgp.html.

This paper is in two parts and combines work from multiple research areas in statistics. Section 2

combines stationary Gaussian processes (GPs) and treed partitioning to create treed GPs, implementing a

tractable nonstationary model for nonparametric regression. The methodology is illustrated and validated

on synthetic data, as well as on a number of classic nonstationary data sets. Section 3 exploits a particular

Gaussian process parameterization which implements a semiparametric model that treats some or all of the

input dimensions as linear, decoupling them from the GP correlation function. The utility of the this model

will be made apparent in its own right, however the greatest “bang for your buck” is obtained when combining

it with treed partitioning. The result is a uniquely efficient nonstationary semiparametric regression tool.

Section 4 concludes with some discussion.

1.1 Related work

Our approach for nonparametric and semiparametric nonstationary modeling combines standard GPs and

treed partitioning within the context of Bayesian hierarchical modeling and model averaging. We assume

that the reader is familiar with the basic concepts of Bayesian model averaging (e.g., Hoeting et al., 1999)

and inference via Markov chain Monte Carlo (e.g., Gilks et al., 1996). An introduction to GPs and treed

partition modeling follows.
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1.1.1 Stationary Gaussian Processes

A common specification of stochastic processes for spatial data, of which the stationary Gaussian Process

(GP) is a particular case, specifies that model outputs (responses) z depend on multivariate inputs (explana-

tory variables) x as z(x) = β>x + w(x) where β are linear trend coefficients, w(x) is a zero mean random

process with covariance C(x,x′) = σ2K(x,x′), and K is a correlation matrix. Low-order polynomials are

sometimes used instead of the simple linear mean β>x, or the mean process is specified generically, often as

m(x,β) or m(x) (Stein, 1999).

GPs are a popular method for nonparametric regression and classification, with a history going back to

Kriging (Matheron, 1963). Consider a training set D = {xi, zi}Ni=1. The collection of inputs is indicated as

the N ×mX matrix X whose ith row is x>
i . Formally (Stein, 1999), a Gaussian process is a collection of

random variables Z(x) indexed by x having a jointly Gaussian distribution for any finite subset of indices. It is

specified by a mean µ(x) = E
(

Z(x)
)

and correlation functionK(x,x′) = 1
σ2E

(

[Z(x)−µ(x)][Z(x′)−µ(x′)]>
)

.

With data D, the resulting predictive density for a new point x, assuming (for now) that the m(x,β) = 0,

has a Normal distribution, with mean ẑ(x) and variance σ̂2
ẑ(x):

ẑ(x) = k>(x)K−1Z σ̂2(x) = σ2[K(x,x) − k>(x)K−1
N k(x)], (1)

where k>(x) is the N -vector whose ith component is K(x,xi), K is the N × N matrix with i, j element

K(xi,xj), and Z is the N -vector of observations with ith component zi. Notice how ẑ(x) is linear in the

responses (Z), but σ̂2(x) depends only indirectly on Z through inference on K.

We assume that the GP correlation functions K(·, ·) can be written in the form of

K(xj ,xk|g) = K∗(xj ,xk) + gδj,k. (2)

where δ·,· is the Kronecker delta function, and K∗ is the true underlying parametric correlation function.

The g term in Eq. (2) is referred to as the nugget in the geostatistics literature (Matheron, 1963; Cressie,

1993) and sometimes as jitter in Machine Learning literature (Neal, 1997). It must always be positive

(g > 0), and serves two purposes. Primarily, it provides a mechanism for introducing measurement error

into the stochastic process. It arises when considering a model of the form: Z(X) = m(X,β)+ ε(X)+η(X),

where m(·, ·) is the underlying (often linear) mean process, ε(·) is a process covariance whose underlying

correlation is governed by K∗, and η(·) is simply Gaussian noise. Secondarily, though perhaps of equal

practical importance, the nugget (or jitter) helps prevent K from becoming numerically singular. Notational

convenience and conceptual congruence motivates referral to K as a correlation matrix, even though the

nugget term (g) forces K(xi,xi) > 1. There is an isomorphic model specification wherein K depicts honest
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correlations. Under both specifications K∗ does indeed define a valid correlation matrix K∗.

The correlation functions K∗(·, ·) are typically specified through a low dimensional parametric structure,

and produce correlation matrices which are symmetric (K∗ = (K∗)>) and positive semi-definite (a>K∗a ≥

0, for any column-vector a). A general reference for families of correlation functions K∗ is provided by

Abrahamsen (1997). Here we focus on the power family, although our methods are clearly extensible to

other families, such as the Matérn class (Matérn, 1986). Further discussion of correlation structures can

be found in Adler (1990), Abrahamsen (1997), or Stein (1999). The power family of correlation functions

includes the simple isotropic parameterization

K∗(xj ,xk|d) = exp

{

−||xj − xk||p0
d

}

, (3)

where d > 0 is a single range parameter and p0 ∈ (0, 2] determines the smoothness of the process. Thus the

correlation of two points depends only on the Euclidean distance ||xj−xk|| between them. A straightforward

enhancement to the isotropic power family is to employ a separate range parameter di in each dimension

(i = 1, . . . ,mX). The resulting correlation function is still stationary, but no longer isotropic:

K∗(xj ,xk|d) = exp

{

−
mX
∑

i=1

|xij − xik|p0
di

}

. (4)

When the true underlying correlation structure is isotropic, the extra parameters of the separable model

represent a sort of overkill, and in terms of efficiency of implementation, a hindrance.

Fitting parameter values for the correlation function can be done either by maximizing the likelihood,

integrating over them, or by taking a Bayesian approach. The usual priors (Gelman et al., 1995) can be

placed on the linear (β) part of the model, including a conditionally conjugate inverse-gamma prior for σ2,

allowing Gibbs sampling for these parameters. Priors also need to be placed on the hyperparameters to

the correlation structure K. If little is known in advance about the process, then reference priors can be

used (Berger et al., 2001). The posteriors can be sampled using the Metropolis-Hastings algorithm.

1.2 Treed Partitioning for Nonstationary Modeling

Many spatial modeling problems require more flexibility than is offered by a stationary GP. One way to

achieve a more flexible, nonstationary, process is to use a partition model—a meta-model which somehow

divides up the input space and fits different base models to data independently in the regions depicted by

the partitions. Treed partitioning is one possible approach.

Treed partition models typically divide up the input space by making binary splits on the value of a

single variable (e.g., x1 > 0.8) so that partition boundaries are parallel to coordinate axes. Partitioning
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is recursive, so each new partition is a sub-partition of a previous one. For example, a first partition may

divide the space in half by whether the first variable is above or below its midpoint. The second partition

will then divide only the space below (or above) the midpoint of the first variable, so that there are now three

partitions (not four). Since variables may be revisited, there is no loss of generality by using binary splits,

as multiple splits on the same variable will be equivalent to a non-binary split. In each partition (leaf of the

tree), an independent model is applied. Classification and Regression Trees (CART) (Breiman et al., 1984)

are an example of a treed partition model. CART, which fits a constant surface in each leaf, has become

popular because of its ease of use, clear interpretation, and ability to provide a good fit in many cases.

The Bayesian approach is straightforward to apply to tree models (Chipman et al., 1998; Denison et al.,

1998), provided that one can specify a meaningful prior for the size of the tree. We follow Chipman et

al. (1998, 2002) who specify the prior through a tree-generating process. Starting with a null tree (all data

in a single partition), a leaf node η ∈ T , representing a region of the input space, splits with probability

a(1 + qη)
−b, where qη is the depth of η ∈ T and a and b are parameters chosen to give an appropriate

size and spread to the distribution of trees. Further details are available in the Chipman et al. papers. A

sensible prior might further require that each new region have at least a minimal number of data points to

ensure that there is enough data to infer the parameters of the independent models, and we impose this

constraint as well. The prior for the splitting process involves first choosing the splitting dimension u from a

discrete uniform, and then the split location s is chosen uniformly from a subset of the locations X in the uth

dimension. Integrating out dependence on the tree structure T can be accomplished via Reversible-Jump

MCMC as further described in Section 2.2.2.

Section 2 takes this approach to another level by fitting stationary GPs in each of the leaves of the tree.

Our models bear some similarity to those of Kim et al. (2005), who fit separate GPs in each element of a

Voronoi tessellation. The treed GP approach is better geared toward problems with a smaller number of

distinct partitions, leading to a simpler overall model. Voronoi tessellations allow an intricate partitioning

of the space, but have the trade-off of added complexity and can produce a final model that is difficult to

interpret. A nice review of Bayesian partition modeling is provided by Denison et al. (2002).

Other approaches to nonstationary modeling include those which use spatial deformations and process

convolutions. The idea behind the spatial deformation approach is to map nonstationary inputs in the

original, geographical, space into a dispersion space wherein the process is stationary. The approach taken by

Sampson and Guttorp (1992) uses thin-plate spline models and multidimensional scaling (MDS) to construct

the mapping. Damian et al. (2001) explore a similar methodology from a Bayesian perspective. Schmidt

and O’Hagan (2003) also take the Bayesian approach, but put a Gaussian process prior on the mapping.
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The process convolution approach (Higdon et al., 1999; Fuentes and Smith, 2001; Paciorek, 2003) proceeds

by allowing the convolution kernels Ks(·) to vary in parameterization as a function of their location s ∈ <d.

Ks is treated as an unknown, smooth function of s.

A common theme among such nonstationary models is the introduction of meta-structure which ratchets

up the flexibility of the model, ratcheting up the computational demands as well. This is in stark contrast

to the treed approach which introduces a structural mechanism, the tree T , that actually reduces the

computational burden relative to the base model, e.g., a GP, because smaller matrices are inverted.

2 Treed Gaussian process models

Extending the partitioning ideas of Chipman et al. (1998, 2002) for simple Bayesian treed models, we fit

stationary GP models with linear trends independently within each of R regions, {rν}Rν=1, depicted at

the leaves of the tree T , instead of constant (1998) or linear (2002) models. The tree is averaged out by

integrating over possible trees, using reversible-jump Markov chain Monte Carlo (RJ-MCMC) (Richardson

and Green, 1997), with the tree prior specified through a tree-generating process. Prediction is conditioned

on the tree structure, and is averaged over in the posterior to get a full accounting of uncertainty.

2.1 Hierarchical Model

A tree T recursively partitions the input space into into R non-overlapping regions: {rν}Rν=1. Each region

rν contains data Dν = {Xν ,Zν}, consisting of nν observations. Let m ≡ mX + 1 be number of covariates in

the design (input) matrix X plus an intercept. For each region rν , the hierarchical generative GP model is

Zν |βν , σ2
ν ,Kν ∼ Nnν

(Fνβν , σ
2
νKν), β0 ∼ Nm(µ,B)

βν |σ2
ν , τ

2
ν ,W,β0 ∼ Nm(β0, σ

2
ντ

2
νW) τ2

ν ∼ IG(ατ/2, qτ/2), (5)

σ2
ν ∼ IG(ασ/2, qσ/2), W−1 ∼W ((ρV)−1, ρ),

with Fν = (1,Xν), and W is an m × m matrix. N , IG, and W are the (Multivariate) Normal, Inverse-

Gamma, and Wishart distributions, respectively. Constants µ,B,V, ρ, ασ, qσ, ατ , qτ are treated as known.

The model (5) specifies a multivariate normal likelihood with linear trend coefficients βν , variance σ2
ν and

nν × nν correlation matrix Kν . The coefficients βν are believed to have come from a common unknown

mean β0 and region-specific variance σ2
ντ

2
ν . There is no explicit mechanism in the model (5) to ensure that

the process near the boundary of two adjacent regions is continuous across the partitions depicted by T .

However the model can capture smoothness through model averaging, as will be discussed in Section 2.3. In

our work with models for physical processes, we frequently encounter problems with phase transitions where
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the response surface is not smooth at the boundary between distinct physical regimes (such as sub-sonic vs.

super-sonic flight), so we view the ability to fit a discontinuous surface as a feature of this model.

The GP correlation structure Kν(xj ,xk) = K∗
ν (xj ,xk)+ gνδj,k generating Kν for each partition rν takes

K∗
ν to be from the isotropic power family (3), or separable power family (4), with a fixed power p0, but

unknown (random) range and nugget parameters. However, since most of the following discussion holds

for K∗
ν generated by other families, as well as for unknown p0, we shall refer to the correlation parameters

indirectly via the resulting correlation matrix K, or function K(·, ·). For example, p(Kν) can represent

either of p(dν , gν) or p(dν , gν), etc. Priors which encode a belief that the global covariance structure is

nonstationary are chosen for parameters to K∗
ν and gν , as further described in Section 3, Equation (20).

2.2 Estimation

The data Dν = {X,Z}ν are used to estimate the GP parameters θν ≡ {β, σ2,K}ν , for ν = 1, . . . , R.

Conditional on the tree T , the full set of parameters is denoted as θ = θ0∪
⋃R
ν=1 θν , where θ0 = {W,β0, τ}

denotes hyperparameters that are also estimated. Samples from the posterior distribution of θ are gathered

using Markov chain Monte Carlo (MCMC) by first conditioning on the hierarchical priors θ0 and drawing

θν |θ0 for ν1, . . . , νR, and then θ0 is drawn as θ0|
⋃R
ν=1 θν . Section 2.2.1 gives the details. All parameters

can be sampled with Gibbs steps, except those which parameterize the covariance function K(·, ·), e.g.,

{d, g}ν , which require Metropolis-Hastings (MH) draws. Section 2.2.2 shows how RJ-MCMC is used to

gather samples from the joint posterior of (θ, T ) by alternately drawing θ|T and T |θ.

2.2.1 GP parameters given a tree (T )

Finding full conditionals is the first step towards efficient sampling. Since parameters associated with the

linear trend have conditionally conjugate priors, they can be sampled using Gibbs steps. Some parame-

ters ({K, σ2}ν) are sampled more efficiently if their full conditionals can be marginalized by analytically

integrating out dependence on other parameters. Full derivations are included in Appendix A.1.

The linear regression parameters βν and prior mean β0 both have conditionally conjugate multivariate

normal full conditionals: βν |rest ∼ Nm(β̃ν , σ
2
νVβ̃ν

), and β0|rest ∼ Nm(β̃0V β̃0
), where

Vβ̃ν
= (F>

ν K−1
ν Fν + W−1/τ2

ν )−1 β̃ν = Vβ̃ν
(F>

ν K−1
ν Zν + W−1β0/τ

2
ν ). (6)

Vβ̃0
=
(

B−1 + W−1∑r
i=0(σντν)

−2
)−1

β̃0 = Vβ̃0

(

B−1µ+ W−1∑r
i=1 βν(σντν)

−2
)

. (7)

The linear variance parameter τ 2 follows the conditionally conjugate inverse-gamma:

τ2
ν |rest ∼ IG((ατ +m)/2, (qτ + bν)/2) where bν = (βν − β0)

>W−1(βν − β0)/σ
2
ν . (8)
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The linear model covariance matrix W follows the conditionally conjugate inverse-Wishart:

W−1|rest ∼Wm

(

ρV+VT̂ , ρ+ r
)

where VT̂ =

r
∑

i=1

1

(σντν)2
(βν − β0)(βν − β0)

>. (9)

Analytically integrating out βν and σ2
ν gives a marginal posterior for Kν and improves mixing of the

Markov chain (Berger et al., 2001). Details are left to Appendix A.2.

p(Kν |Zν ,β0,W, τ2) =

(

|Vβ̃ν
|

(2π)nν |Kν ||W|τ2m

)
1
2

(qσ/2)
ασ/2

[(qσ + ψν)/2]
(ασ+nν)/2

Γ [(ασ + nν)/2]

Γ [ασ/2]
p(Kν), (10)

where ψν = Z>
ν K−1

ν Zν + β>
0 W−1β0/τ

2 − β̃
>

ν V−1

β̃ν
β̃ν . (11)

Eq. (10) can be used to iteratively obtain draws for the parameters of Kν(·, ·) via Metropolis-Hastings (MH),

or as part of the acceptance ratio for proposed modifications to T [see Section 2.2.2]. Many terms in (10)

cancel when examining the MH acceptance ratio for Kν in isolation. Dropping constants that would be

common in the numerator and denominator results in the simplified expression

p(Kν |Zν ,β0, τ
2
ν ,W) ∝ p(Kν) ×

(

|Vβ̃ν
|

|Kν |

)
1
2

×
(

qσ + ψν
2

)−ασ+nν
2

. (12)

Any hyperparameters to Kν(·, ·), e.g., parameters to priors for {d, g}ν of the isotropic power family, would

also require MH draws. Dropping the prior p(Kν) gives an integrated likelihood (Berger et al., 2001).

The conditional distribution of σ2
ν with βν integrated out is

σ2
ν |dν , g,β0,W ∼ IG((ασ + nν)/2, (qσ + ψν)/2), (13)

which allows Gibbs sampling. The full derivation of (13) is also included in Appendix A.2.

2.2.2 Tree (T )

Integrating out dependence on the tree structure (T ) is accomplished by RJ-MCMC. We augment the tree

operations of Chipman et al. (1998)—grow, prune, change, swap—with a rotate operation. Tree proposals

can change the size of the parameter space (θ). Proposals for new parameters (via an increase in the

number of partitions R) are drawn from their priors, thus eliminating the Jacobian term usually present in

RJ-MCMC. New splits are chosen uniformly from the set of marginalized input locations (X).

Swap and change tree operations are straightforward because the number of partitions, and thus param-

eters, stays the same. A change operation proposes moving an existing split-point {u, s} to either the next

greater or lesser value of s (s+ or s−) along the uth column of X. This is accomplished by sampling s′

uniformly from the set {uν , sν}dR/2eν=1 × {+,−} which causes the MH acceptance ratio for change to reduce
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to a simple likelihood ratio since parameters θr in regions r below the split-point {u, s′} are held fixed.

X[:, 1] ≥ 3

T :

T1 T2

T3{1, 3}

{1, 5}

T swapped:

T1

{1, 3}

X[:, 1] < 5

X[:, 1] < 3 X[:, 1] ≥ 3

T2{1, 5}

∅

swap swap

X[:, 1] ≥ 5X[:, 1] < 3

X[:, 1] < 5 X[:, 1] ≥ 5

Figure 1: Swapping on the same variable is always rejected because one of the leaves corresponds to an
empty region. T1, T2, T3 are arbitrary sub-trees (could be leaves).

A swap operation proposes changing the order in which two adjacent parent–child (internal) nodes split

up the inputs. An internal parent–child node pair is picked at random from the tree and their splitting rules

are swapped. When both child splitting rules are the same, Chipman et al. (1998) propose jointly swapping

the parent with both of its children. We found that this situation is rare in practice, especially for continuous

explanatory variables. So instead, we supplement swap with a modification for our more common situation.

Swaps on parent-child internal nodes which split on the same variable cause problems because a child region

below both parents becomes empty after the operation. Figure 1 gives an illustration. However, if instead

a rotate operation from Binary Search Trees (BSTs) is performed, the proposal will almost always accept.

Rotations are a way of adjusting the configuration and height of a BST without violating the BST property.

Red-Black Trees make extensive use of rotate operations (Cormen et al., 1990).

In the context of a Bayesian MCMC tree proposal, rotations encourage better mixing of the Markov

chain by providing a more dynamic set of candidate nodes for pruning, thereby helping escape local minima

in the marginal posterior of T . Figure 2 shows an example of a successful right-rotation where the swap

of Figure 1 fails. Since the partitions at the leaves remain unchanged, the likelihood ratio of a proposed

rotate is always 1. The only “active” part of the MH acceptance ratio is the prior on T , preferring trees

of minimal depth. Still, calculating the acceptance ratio for a rotate is non-trivial because the depth of

two of its sub-trees change. Sub-trees T1 and T3 of Figure 2 change depth, either increasing or decreasing

respectively, depending on the direction of the rotation. In a right-rotate, nodes in T1 decrease in depth,
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X[:, 1] < 5 X[:, 1] ≥ 5

X[:, 1] < 3 X[:, 1] ≥ 3

T1 T2

T3{1, 3}

{1, 5} {1, 3}

X[:, 1] < 3 X[:, 1] ≥ 3

T1
{1, 5}

X[:, 1] < 5

T2

X[:, 1] ≥ 5

T3

rotate

T rotated:T :

rotate (right)

Figure 2: Rotating on the same variable is almost always accepted. T1, T2, T3 are arbitrary sub-trees (could
be leaves).

while those in T3 increase. The opposite is true for left-rotation. If I = {Ii, I`} is the set of nodes (internals

and leaves) of T1 and T3, before rotation, which increase in depth after rotation, and D = {Di, D`} are those

which decrease in depth, then the MH acceptance ratio for a right-rotate is

p(T ∗)

p(T )
=
p(T ∗

1 )p(T ∗
3 )

p(T1)p(T3)
=

∏

η∈Ii

a(2 + qη)
−b
∏

η∈I`

[1 − a(2 + qη)
−b]

∏

η∈Ii

a(1 + qη)
−b
∏

η∈I`

[1 − a(1 + qη)
−b]

·

∏

η∈Di

aq−bη
∏

η∈D`

[1 − aq−bη ]

∏

η∈Di

a(1 + qη)
−b
∏

η∈D`

[1 − a(1 + qη)
−b]

.

The MH acceptance ratio for a left-rotate is analogous.

Grow and prune operations are complex because they add or remove partitions, changing the dimension

of the parameter space. The first step for either operation is to uniformly select a leaf node (for grow), or

the parent of a pair of leaf nodes (for prune). When a new region r is added, new parameters {K(·, ·), τ 2}r
must be proposed, and when a region is taken away the parameters must be absorbed by the parent region,

or discarded. When evaluating the MH acceptance ratio the linear model parameters {β, σ2}r are integrated

out (10). One of the newly grown children is uniformly chosen to receive the correlation function K(·, ·) of

its parent, essentially inheriting a block from its parent’s correlation matrix. To ensure that the resulting

Markov chain is ergodic and reversible, the other new sibling draws its K(·, ·) from the prior. Symmetrically,

prune operations randomly select parameters from K(·, ·) for the consolidated node from one of the children

being absorbed. After accepting a grow or prune, σ2
r can be drawn from its marginal posterior, with βr

integrated out (13), followed by draws for βr and the rest of the parameters in the rth region.

Let {X,Z} be the data at the new parent node η at depth qη, and {X1,Z1} and {X2,Z2} be the

partitioned child data at depth qη+1 created by a new split {u, s}. Also, let P be the set of pruneable nodes
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of T , G the set of growable nodes. If P ′ is the set of prunable nodes in T ′ after the (successful) grow at η

and the parent of η was prunable in T , then |P ′| = |P |. Otherwise |P ′| = |P |+ 1. The MH acceptance ratio

for grow is:

|P ′|
|G| × a(1 + qη)

−b(1 − a(2 + qη)
−b)2

1 − a(1 + qη)−b
× p(K1, |Z1,β0, τ

2
1 ,W)p(K2|Z2,β0, τ

2
2 ,W)

p(K|Z,β0, τ
2,W)

. (14)

The prune operation is analogous. Note that in (14) the posteriors p(K|Z,β0, τ
2,W), p(K1|Z1,β0, τ

2
1 ,W)

and p(K2|Z2,β0, τ
2
2 ,W) must be evaluated using the formula in (10), not the simplified one in (12), because

the terms canceled from (10) do not occur the same number of times in the numerator and denominator.

2.3 Treed GP Prediction

Prediction under the above GP model, called Kriging (Matheron, 1963) in the geostatistics community, is

straightforward (Hjort and Omre, 1994). The predicted value of z(x ∈ rν) is normally distributed with

mean ẑ(x) = E(Z(x)| data,x ∈ Dν)

= f>(x)β̃ν + kν(x)>K−1
ν (Zν − Fνβ̃ν), (15)

and variance σ̂(x)2 = Var(z(x)| data,x ∈ Dν)

= σ2
ν [κ(x,x) − q>

ν (x)C−1
ν qν(x)], (16)

where C−1
ν = (Kν + τ2

νFνWF>
ν )−1 qν(x) = kν(x) + τ2

νFνWνf(x) (17)

κ(x,y) = Kν(x,y) + τ2
ν f

>(x)Wf(y)

with f>(x) = (1,x>), and kν(x) is a nν−vector with kν,j(x) = Kν(x,xj), for all xj ∈ Xν . Notice that

the predictive mean equations use β̃ν , the posterior mean estimate of βν . Using βν instead requires the

predictive variance relation in (1).

Conditional on a particular tree (T ), the posterior predictive surface described in Eqs. (15–16) is discon-

tinuous across the partition boundaries of T . However, in the aggregate of samples collected from the joint

posterior distribution of {T ,θ}, the mean tends to smooth out near likely partition boundaries as the tree

operations grow, prune, change, and swap integrate over trees and GPs with larger posterior probability.

Uncertainty in the posterior for T translates into higher posterior predictive uncertainty near region bound-

aries. When the data actually indicate a non-smooth process, the treed GP retains the flexibility necessary

to model discontinuities.
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2.4 Implementation

The treed GP model is coded in a mixture of C and C++, using C++ for the tree structure and C for the GP

at each leaf of T . The C code can interface with either standard platform-specific Fortran BLAS/Lapack

libraries for the necessary linear algebra routines, or link to those automatically configured for fast execution

on a variety of platforms via the ATLAS library (Whaley and Petitet, 2004). In most cases, the ATLAS imple-

mentation is significantly faster than standard BLAS/Lapack. The code has been tested on Unix (Solaris,

Linux, FreeBSD, OSX) and Windows (2000, XP) platforms. To improve usability, the routines have been

wrapped up in an intuitive R interface, and are available on CRAN (R Development Core Team, 2004) at

http://www.cran.r-project.org/src/contrib/Descriptions/tgp.html, as a package called tgp.

It is useful to first translate and re-scale the input dataset (X) so that it lies in an <mX dimensional unit

cube. This makes it easier to construct prior distributions for the width parameters to the correlation function

K(·, ·). Conditioning on T , proposals for all parameters which require MH sampling are taken from a uniform

“sliding window” centered around the location of the last accepted setting. For example, a proposed a new

nugget parameter gν to the correlation function K(·, ·) in region rν would go as g∗ν ∼ Unif (3gν/4, 4gν/3).

Calculating the forwards and backwards proposal probabilities for the MH acceptance ratio is straightforward.

After conditioning on {T ,θ}, prediction can be parallelized by using a producer/consumer model. This

allows the use of PThreads in order to take advantage of multiple processors, and get speed-ups of at least

a factor of two, which is helpful as multi-processor machines become commonplace. Parallel sampling of the

posterior of θ|T for each of the {θν}Rν=1 is also possible.

2.5 Illustration & Experimentation

In this section the treed GP model is illustrated on synthetic and real world data. To keep things simple,

for now, the isotropic power family (3) correlation function (p0 = 2) is chosen for K∗(·, ·|d) in the following

experiments, with range parameter d, combined with nugget g to form K(·, ·|d, g).

2.5.1 1-d Synthetic Sinusoidal data

Consider 1-dimensional simulated data on the input space [0, 20]. The true response comes partly from

Higdon (2002), augmented to include a linear region. Eq. (18) gives a formula describing the data. This

dataset typifies the type of nonstationary response surface that the treed GP model was designed to exploit.

Zero mean Gaussian noise with sd = 0.1 is added to the response to keep things interesting.

z(x) =











sin
(

πx
5

)

+ 1
5 cos

(

4πx
5

)

x < 10

x/10 − 1 otherwise
(18)
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Figure 3: Comparison between Bayesian linear CART (left), stationary GP (middle) and the treed GP model
(right), for the 1-d Sine data.

Figure 3 shows the posterior predictive surfaces of three regression models for comparison based on

samples obtained at N = 200 evenly-spaced input locations—mean in solid black, and 95% intervals in

dashed-red. The left panel is from a Bayesian Linear CART model (Chipman et al., 2002), which does well

in the linear region, but comes up short in the sinusoidal region. The middle panel is from a stationary GP

model which is heavily influenced by the sinusoidal region, and consequently fits it well, but is unable to

model the more smooth linear process. This is because nonstationarity in the data cannot be captured by a

stationary (or homogeneous) correlation structure. The right panel shows the best of both worlds: a treed

GP where correlation is lower in the sinusoidal region and higher in the linear region.

2.5.2 2-d Synthetic Exponential data

Next, results are shown for a two-dimensional input space in [−2, 6] × [−2, 6]. The true response is given

by z(x) = x1 exp(−x2
1 − x2

2). A small amount of Gaussian noise (with sd = 0.001) is added. Besides its

dimensionality, a key difference between this dataset and the last one is that it is not defined using step

functions; this smooth function does not have any artificial breaks between regions.

Figure 4 shows plots comparing fits of Bayesian Linear CART (left) and the treed GP (right) which find

an average of roughly five and three partitions, respectively. It is clear from the figure that the treed GP

is better. The fit for a stationary GP is not shown because it looks very similar to that of the treed GP,

since the data are indeed stationary. Much of the advantage of the treed GP in this situation, over a single

stationary GP, is in speed of computation. Inverting three matrices, one of half and two of one quarter of

the original size (N), is considerably faster than inverting a single N ×N matrix.

2.5.3 Motorcycle data

The Motorcycle Accident Dataset (Silverman, 1985) is a classic dataset used in recent literature (Rasmussen

and Ghahramani, 2002) to demonstrate the success of nonstationary models. The data set consists of

measurements of acceleration of the head of a motorcycle rider as a function of time in the first moments

13
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Figure 4: Comparison between Bayesian linear CART (left), and the treed GP model (right), for the 2-d
Exponential data.

after an impact. In addition to being nonstationary, the data has input-dependent noise, an aspect overlooked

by a number of nonparametric regression analyses of this dataset.
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Figure 5: 1-d Motorcycle Dataset, fit by our nonstationary model.

Figure 5 shows the data and the fit given by the treed GP model. The left panel shows the estimate

of the surface with 90%-quantile error bars; the right panel shows the difference in quantiles. Vertical lines

on both panels illustrate a typical treed partition T . The error bars, and estimated error spread, can give

insight into the uncertainty in the posterior distribution for T . Notice the sharp rise in estimated variance

from the leftmost region to the center region. Contrast this with the more gradual descent in variance from

the center to the rightmost region. 20,000 MCMC rounds yielded an average average of 3.11 partitions in T .

These results are quite different from those reported by Rasmussen & Ghahramani (2002). In particular,

the error-bars they report for the leftmost region seem too large relative to the center and rightmost regions.

They use a what they call an “infinite” mixture of GP “experts” which is really a Dirichlet process mixture

of GPs. They report that the posterior distribution uses between 3 and 10 experts to fit this dataset, which

they admit has “roughly” three regions. In fact, in their histogram of the number of GP experts used
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throughout the MCMC rounds, they show that between 3 and 10 experts are equally likely, and even 10-15

experts still have considerable posterior mass. Contrast this with the treed GP model which almost always

partitions into three regions, occasionally four, rarely two. On speed grounds, the treed GP is also a winner.

Rasmussen & Ghahramani (2002) report that they ran the mixture of GP experts model using a total of

11,000 MCMC rounds, discarding the first 1,000 and keeping every 100th after that. This took roughly one

hour on a 1 GHz Pentium. Allowing treed GP to use 25,000 MCMC rounds, discarding the first 5,000 and

keeping every sample thereafter takes about 3 minutes on a 1.8 GHz Athalon.

3 Gaussian processes and limiting linear models

Gaussian processes (GPs) retain the linear model (LM) either as a special case, or in the limit. This section

shows how the limiting parameterization can be exploited when the data are at least partially linear. However,

from the prospective of the Bayesian posterior, the GPs which encode the LM either have probability of nearly

zero or are otherwise unattainable without the explicit construction of a prior with the limiting linear model

(LLM) in mind. Here, we develop such a prior and show how its practical benefits extend well beyond

the computational and conceptual simplicity of the LM. For example, linearity can be extracted on a per-

dimension basis yielding a semiparametric model, or can be combined with treed partitioning to yield a

highly efficient nonstationary model.

The correlation function and its parameters are the focus of this section, so a particular parameterization

is needed. Here we work with the power family (2), with power p0 = 2, and nugget g, in the form:

K(xj ,xk|g) = K∗(xj ,xk) + gδj,k. Recall that the isotropic correlation function (3) is parameterized with a

single range parameter, d: K∗(xj ,xk|d) = exp{−||xj −xk||2/d} and that the separable function (4) has mX

range parameters d = {d1, . . . , dmX
}: K∗(xj ,xk|d) = exp{−∑mX

i=1 |xij − xik|2/di}. When it applies to both

separable and isotropic versions, d and d are used interchangeably since the isotropic version is a special case

of the separable one. Subscripts (ν) are dropped as the discussion applies generally to any GP. However,

when coupled with treed partitioning, it may be possible to treat formerly non-linear data as piecewise linear

and gain a great advantage. This work is clearly extensible to the case of unknown power p0 or to other

families of correlation functions.

3.1 Limiting Linear Models

A special limiting case of the Gaussian process model is the standard linear model. Replacing the likelihood

Z|β, σ2,K ∼ NN (Fβ, σ2K) in the hierarchical model given in Eq. (5) with Z|β, σ2 ∼ NN (Fβ, σ2I), where I is

the N×N identity matrix, gives a parameterization of a linear model. From a phenomenological perspective,
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GP regression is more flexible than standard linear regression in that it can capture nonlinearities in the

interaction between covariates (x) and responses (z). From a modeling perspective, the GP can be more than

just overkill for linear data. Parsimony and over-fitting considerations are the tip of the iceberg. Inference

for GPs on linear data unnecessarily requires the inversion of a large covariance matrix—an operation that

can be costly as well as numerically unstable as the smooth/linear data support large finite range parameters

(d) which can cause the off-diagonal elements of K to be nearly one.

So in other words, for some parameterizations, the GP is operationally equivalent to the limiting linear

model (LLM), but comes with none of its benefits, e.g., speed and stability. Exploiting and/or manipulating

such equivalence can be of great practical benefit. As Bayesians, this means constructing a prior distribution

on K that makes it clear in which situations each model is preferred; i.e., when should K → cI.

Theoretically, there are only two parameterizations to a GP correlation structure K(·, ·) which encode

the LLM. Though they are well-known, without intervention they are quite unhelpful from the perspective

of practical estimation and inference. The first one is when the range parameter d is set to zero. In this

case K = (1 + g)I, and the result is clearly a linear model. The second is when the nugget goes to infinity.

A third, hybrid, parameterization is alluded to by Cressie (1993, Section 3.2.1) in an analysis of the “effect

of variogram parameters on kriging”. Specifically, he remarks that a large nugget coupled with a large

range drives the interpolator towards the linear mean. Thus an essentially linear model can be reached with

nonzero d and finite g. This is refreshing since constructing a prior for the LLM by exploiting the former

GP parameterization (range d→ 0) is difficult, and for the latter (nugget g → ∞) near impossible.

3.2 Understanding the models

Before constructing a prior, it makes sense to study the kriging neighborhood. The following exploratory

analysis focuses on studying likelihoods and posteriors for GPs fit to data generated from a linear model

with evenly spaced x-values in the range [0, 1]:

zi = 1 + 2xi + ε, where εi
iid∼ N(0, 1) (19)

Illustrating the limiting linear model parameterization (g → ∞), the left-hand side of Figure 6 shows

how as the nugget g increases, the likelihood of the GP approaches that of the linear model for a sample of

size n = 100 from (19) with the range parameter fixed at d = 1. The nugget must be quite large relative

to the actual variability in the data be before the likelihoods of the GP and LLM become comparable. The

right-hand side of Figure 6 summarizes the ratio of the ML GP parameterization over the ML linear model

based on 1000 simulations of ten evenly spaced random draws from (19). A likelihood ratio of one means
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Figure 6: Left: Likelihoods as the nugget gets large for an n = 100 sample from Eq. (19). The x-axis is
(log g), the range is fixed at d = 1. Likelihood of the LLM (d = 0) shown for comparison. Right: Histogram of
the ratio of the ML GP parameterization over the likelihood of the limiting LM. For visibility, the horizontal
axis is truncated at 10; full summary statistics are shown.

that the LLM was best for a particular sample. The histogram (with the x-axis truncated at 10 for visibility)

and summary statistics in Figure 6 (right) show that the GP is seldom much better than the linear model.

More than two-thirds of the ratios are close to one—approximately 1/3 (362) were exactly one but 2/3 (616)

had ratios less than 1.5—which means that posterior inference for borderline linear data is likely to depend

heavily the prior specification of K(·, ·).

If it is suspected that the data might be linear then this bias should be encoded in the prior somehow. This

is a non-trivial task given the nature of the GP parameterizations which encode the LLM. The marginalized

posterior p(K|Z,β0, τ
2,W) of Eq. (12) can be used, which integrates out β and σ2, which for the power

family means specifying p(d, g). Alternatively, one could consider dropping the p(K) term from (12) and

look solely at the marginalized likelihood (Berger et al., 2001). Consider a mixture of gammas prior for d:

p(d, g) = p(d) × p(g) = p(g) × 1

2
[G(d|α = 1, β = 20) +G(d|α = 10, β = 10)]. (20)

It gives roughly equal mass to small d representing a population of GP parameterizations for wavy surfaces,

and a separate population for those which are quite smooth or approximately linear. Figure 8 depicts p(d)

via histogram, ignoring p(g) which we take to be a simple exponential distribution. Alternatively, one could

encode the prior as p(d, g) = p(d|g)p(g) and then use a reference prior (Berger et al., 2001) for p(d|g). We

prefer the more deliberate, mixture, specification for reasons that will become apparent shortly.

Figure 7 (left) shows a representative MAP GP (d ≈ 1) fit for a sample of size n = 100 from (19). The

likelihood around d = 0, shown in the middle panel, is severely peaked, but small, nonzero, d-values have

extremely low likelihood. So the large likelihood at d = 0 is effectively a point-mass which does not get

picked up by the posterior because p(d = 0) = 0; instead the data give a continuum large d parameters,
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Figure 7: Left shows the GP(d, g) fit with a sample of size n = 100; middle shows the likelihood and right

shows the integrated posterior distribution for range (d, x-axis) and nugget (g, lines) settings.
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Figure 8: Prior distribution for the boolean (b) superimposed on p(d).

and hence the GP, high posterior probability (right). Thus, the MAP estimate (d ≈ 1) results in a linear

“looking” predictive surface which bears the computational burden implied by full-fledged GPs.

3.3 Model Selection Priors

Motivated by the discussion above, we set out to construct a prior for the “mixture” of the GP with its LLM.

The key idea is an augmentation of the parameter space by mX indicators b = {b}mX

i=1 ∈ {0, 1}mX . The

boolean bi is intended to select either the GP (bi = 1) or its LLM for the ith dimension. The actual range

parameter used by the correlation function is multiplied by b: e.g., K∗(·, ·|bd).1 To encode the preference

that GPs with larger range parameters be more likely to “jump” to the LLM, the prior on bi is specified as

a function of the range parameter di: p(bi, di) = p(bi|di)p(di).

Probability mass functions which increase as a function of di, e.g.,

pγ,θ1,θ2(bi = 0|di) = θ1 +
θ2 − θ1

1 + exp{−γ(di − 0.5)} (21)

with 0 < γ and 0 ≤ θ1 ≤ θ2 < 1, can encode such a preference by calling for the exclusion of dimensions

i with large di when constructing K. Thus bi determines whether the GP or the LLM is in charge of the

1i.e. component-wise multiplication—like the “b.∗d” operation in Matlab
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marginal process in the ith dimension. Accordingly, θ1 and θ2 represent minimum and maximum probabilities

of jumping to the LLM, while γ governs the rate at which p(bi = 0|di) grows to θ2 as di increases. Figure 8

plots p(b|d) with (γ, θ1, θ2) = (10, 0.2, 0.95) superimposed on the mixture of Gammas prior p(di) from (20).

The θ2 parameter is taken to be strictly less than one so as not to preclude a GP which models a genuinely

nonlinear surface using an uncommonly large range setting.

The implied prior probability of the full mX -dimensional LLM is

p(linear model) =

mX
∏

i=1

p(bi = 0|di) =

mX
∏

i=1

[

θ1 +
θ2 − θ1

1 + exp{−γ(di − 0.5)}

]

. (22)

The resulting process is still a GP if any of the booleans bi are one. The primary computational advantage

associated with the LLM is foregone unless all of the bi’s are zero. However, the intermediate result offers an

improvement in numerical stability in addition to describing a unique transitionary model lying somewhere

between the GP and the LLM. Specifically, it allows for the implementation of semiparametric stochastic

processes like Z(x) = βf(x) + ε(x̃) representing a piecemeal spatial extension of a simple linear model. The

first part (βf(x)) of the process is linear in some known function of the the full set of covariates x = {xi}mX

i=1 ,

and ε(·) is a spatial random process, e.g., a GP, which acts on a subset of the covariates x̃. Such models

are commonplace in the statistics literature (e.g., Dey et al., 1998). Traditionally, x̃ is determined and fixed

a priori. The separable boolean prior in (21) implements an adaptively semiparametric process where the

subset x̃ = {xi : bi = 1, i = 1, . . . ,mX} is given a prior distribution, instead of being fixed.

3.3.1 Prediction

Prediction under the limiting GP model is a simplification of Eqs. (15–17) since it is known that K = (1+g)I.

A characteristic of the standard linear model is that all input configurations (x) are treated as independent

conditional on knowing β. Moreover, the terms k(x) and K(x,y) in (15–17) are zero for all x, and y 6= x.

Thus, the predicted value of z at x is normally distributed with mean ẑ(x) = f>(x)β̃, and variance

σ̂(x)2 = σ2[1 + τ2f>(x)Wf(x) − τ2f>(x)WF>((1 + g)I + τ2FWF>)−1FWf(x)τ2]. (23)

It is helpful to re-write the above expression for the variance as

σ̂(x)2 = σ2[1 + τ2f>(x)Wf(x)] − σ2

[

τ2

1 + g
f>(x)WF>

(

I +
τ2

1 + g
FWF>

)−1

FWf(x)τ2

]

. (24)

A matrix inversion lemma called the Woodbury formula (Golub and Van Loan, 1996, p. 51) or the Sherman-

Morrison-Woodbury formula (Bernstein, 2005, p. 67; best to see Mathworld for easy access to both formulas):
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states that for (I + V>AV) non-singular, (A−1 + VV>)−1 = A − (AV)(I + V>AV)−1V>A. Taking

V ≡ F>(1 + g)−
1
2 and A ≡ τ2W in (24) gives

σ̂(x)2 = σ2

[

1 + f>(x)

(

W−1

τ2
+

F>F

1 + g

)−1

f(x)

]

. (25)

Not only is (25) a simplification of the predictive variance given in (23), but it should be familiar. Recall

the expression for the posterior variance of the regression coefficients Vβ̃ given in (7). Writing Vβ̃ with

K−1 = I/(1 + g) gives Vβ̃ =
(

W
−1

τ2 + F
>
F

1+g

)−1

. Thus the predictive variance for the LLM is actually

σ̂(x)2 = σ2
[

1 + f>(x)Vβ̃f(x)
]

. (26)

But this is just the usual result for the predictive variance at x under the standard linear model. Therefore,

the posterior predictive distribution under the LLM is simply

y(x) = N [f>(x)β̃, σ2(1 + f>(x)Vβ̃f(x))]. (27)

This means we have a choice when it comes to obtaining samples from the posterior predictive distribution

under the LLM. Eq. (26) is preferred over (23) because the latter involves inverting the N × N matrix,

I + τ2FWF>/(1 + g), whereas the former only requires the inversion of an m×m matrix.

3.4 Implementation, results, and comparisons

Here, the GP with jumps to the LLM (hereafter GP LLM) is illustrated on synthetic and real data. Most of

the experiments are in the context of applying the GP LLM at the leaves of the tree, upgrading the treed GP

model of Section 2 to a treed GP LLM model. Section 3.4.2 shows an example without treed partitioning.

Partition models are an ideal setting for evaluating the utility of the GP LLM as linearity can be extracted

in large areas of the input space. The result is a uniquely tractable nonstationary semiparametric spatial

model. Treed and non-treed GP LLM models are implemented in the tgp package on CRAN.

A separable correlation function is used throughout this section for brevity and consistency, even though

in some cases the process which generated the data is clearly isotropic. Proposals for the booleans b are

drawn from the prior, conditional on d, and accepted or rejected on the basis of the constructed covariance

matrix K. The same prior parameterizations are used for all experiments unless otherwise noted, the idea

being to develop a method that works “right out of the box” as much as possible.
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Figure 9: Histograms of the areas of the domain under the LLM spread over 20 repeated n = 100 samples
from (left) the sine data and (right) exponential data.

3.4.1 Revisiting simple synthetic and real data with the treed GP LLM

Recall the synthetic sinusoidal data from Section 2.5.1, which we know from (18) is linear for exactly half

of the domain. The left panel of Figure 9 shows a histogram of the areas under the LLM for each of 10,000

MCMC samples collected for the treed GP LLM model over 20 repeated experiments of size n = 100. An

average of 42% of the input domain was under the LLM, and the mode can be seen to be near 0.5. A similar

experiment which included predicting at n′ = 200 new locations revealed that the treed GP LLM was 27%

faster than treed GP alone.

Recall the 2-d synthetic exponential data from Section 2.5.2. On this dataset, the partitioning structure

of the treed GP LLM first splits the region into two halves, one of which can be fit linearly. It then recursively

partitions the half with the “action” into a piece which requires a GP and another piece which is also linear.

The right panel of Figure 9 shows a histogram of the areas of the domain under the LLM over 20-fold

repeated experiments. The four modes of the histogram clump around 0%, 25%, 50%, and 75% showing

that most often the obvious three-quarters of the space are under the LLM, although sometimes one of the

two partitions will use a very smooth GP. On average, 66% of the domain was under the LLM. The treed GP

LLM was 40% faster than the treed GP alone when combining estimation and sampling from the posterior

predictive distributions at the remaining n′ = 241 points from the grid.

Recall the Motorcycle Accident Dataset from Section 2.5.3. In an experiment using the treed GP LLM,

an average of 29% of the domain was under the LLM, split between the left low-noise region (before impact)

and the noisier right region. The Rasmussen and Ghahramani (2002) analysis of this dataset with the DPGP

reportedly took one hour on a 1 GHz Pentium. Such times are typical of nonstationary modeling because of

the computational effort required to construct and invert large covariance matrices. In contrast, the treed

GP LLM fits this dataset with comparable accuracy but in less than one minute on a 1.8 GHz Athalon.
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In all three experiments, the predictive surfaces obtained are virtually identical to those shown in Section

2.5, so they are not shown here. The main advantage of the treed GP LLM for these data is speed. Three

things make the treed GP LLM fast relative to most nonstationary spatial models. (1) Partitioning fits

models to less data, yielding smaller matrices to invert. (2) Jumps to the LLM mean fewer inversions all

together. (3) MCMC mixes better because under the LLM the parameters d and g are out of the picture

and all sampling can be performed via Gibbs steps.

3.4.2 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate MARS (Multivariate Adaptive

Regression Splines) (Friedman, 1991). There are 10 covariates in the data (x = {x1, x2, . . . , x10}), but the

function that describes the responses (Z), observed with standard Normal noise,

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (28)

depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrelevant effects. Comparisons are

made on this dataset to results provided for several other models in recent literature. The x’s are taken

to be randomly distributed on the unit interval. Chipman et al. (2002) used this dataset to compare their

linear CART algorithm to four other methods of varying parameterization: linear regression, greedy tree,

MARS, and neural networks. The statistic they use for comparison is root mean-square error (RMSE):

MSE =
∑n′

i=1(µi − ẑi)
2/n′ and RMSE =

√
MSE where ẑi is the model-predicted response for input xi.

RMSE’s are gathered for fifty noisy simulations of size n = 100 from (28), and the posterior mean predictive

responses at the training data (i.e., n′ = n) are compared to the true expectation. Chipman et al. provide

a nice collection of boxplots showing the results. However, they do not provide any numerical results, so we

have extracted some key numbers from their plots and refer the reader to that paper for the full results.

We duplicated this experiment using the GP LLM. For this dataset, a single model was used, not a

treed model, as the function is essentially stationary in the spatial statistical sense (so if we were to try to

fit a treed GP, it would keep all of the data in a single partition). Linearizing boolean prior parameters

(γ, θ1, θ2) = (10, 0.2, 0.9) were used, which gave the LLM a relatively low prior probability of 0.35, for large

range parameters di. The RMSEs obtained for the GP LLM are summarized in the table below.

Min 1st Qu. Median Mean 3rd Qu. Max
GP LLM 0.4341 0.5743 0.6233 0.6258 0.6707 0.7891
LM 1.710 2.165 2.291 2.325 2.500 2.794

Results on the linear model are reported for calibration purposes, and can be seen to be essentially the same

as those reported by Chipman et al. RMSEs for the GP LLM are on average significantly better than all of
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those reported for the above methods, with lower variance. For example, the best mean RMSE shown in the

boxplot is about 0.9. That is 1.4 times higher than the worst one obtained for GP LLM. Further comparison

to the boxplots provided by Chipman et al. shows that the GP LLM is the clear winner.

In fitting the model, the Markov chain quickly keyed in on the fact that only the first three covariates

contribute nonlinearly. After burn-in, the booleans b almost never deviated from (1, 1, 1, 0, 0, 0, 0, 0, 0, 0).

From the following table summarizing the posterior for the linear regression coefficients β it can be seen that

the coefficients for x4 and x5 (between double-bars) were estimated accurately, and that the model correctly

determined that {x6, . . . x10} were irrelevant, i.e., not included in the GP, and had β’s close to zero.

x4 x5 x6 x7 x8 x9 x10

5% Qu. 8.40 2.60 -1.23 -0.89 -1.82 -0.60 - 0.91
β Mean 9.75 4.59 -0.190 0.049 -0.612 0.326 0.066

95% Qu. 10.99 9.98 0.92 1.00 0.68 1.21 1.02

For a final comparison, consider an SVM method (Drucker et al., 1996) illustrated on this dataset and

compared to Bagging (Breiman, 1996) regression trees. Note that the SVM method required cross-validation

(CV) to set some of its parameters. In the comparison, 100 randomized training sets of size n = 200 were

used, and MSEs were collected for a (single) test set of size n′ = 1000. An average MSE of 0.67 is reported,

showing the SVM to be uniformly better than the Bagging method with an MSE of 2.26. We repeated the

experiment for the GP LLM (which requires no CV), and obtained an average MSE of 0.293, which is 2.28

times better than the SVM, and 7.71 times better than Bagging.

3.4.3 Boston housing data

A commonly used data set for validating multivariate models is the Boston Housing Data (Harrison and

Rubinfeld, 1978) available from the UCI Machine Learning repository (Newman et al., 1998), which contains

506 responses over 13 covariates. Chipman et al. (2002) showed that their (Bayesian) linear CART model

gave lower RMSEs, on average, compared to a number of popular techniques (the same ones listed above).

The treed GP LLM is a generalization of the linear CART model, retaining the original linear CART as an

accessible special case. Though computationally more intensive than linear CART, the treed GP LLM gives

impressive results. To mitigate some of the computational demands, the LLM can be used to initialize the

Markov chain by breaking the larger data set into smaller partitions. Before treed GP burn-in begins, the

model is fit using only the faster (limiting) linear CART model. Once the treed partitioning has stabilized,

this fit is taken as the starting value for a full MCMC exploration of the posterior for the treed GP LLM.

This initialization process allows fitting of GPs to smaller segments of the data, reducing the size of matrices

that need to be inverted and greatly reducing computation time.

23



Experiments in the Bayesian linear CART paper (Chipman et al., 2002) consist of calculating RMSEs

via 10-fold CV. The data are randomly partitioned into 10 groups, iteratively trained on 9/10 of the data,

and tested on the remaining 1/10. This is repeated for 20 random partitions, and boxplots are shown. The

logarithm of the response is used, and CV is only used to assess predictive error, not to tune parameters.

Samples are gathered from the posterior predictive distribution of the linear CART model for six parame-

terizations using 20 restarts of 4000 iterations. In order to obtain a fair comparison, we followed suit for the

treed GP LLM . Settings of (γ, θ1, θ2) = (10, 0.2, 0.95) were used, which gives the LLM a prior probability

of 0.9513 ≈ 0.51, when the di’s are large. Our “boxplot” for training and testing RMSEs are summarized

numerically in the table below. As before, linear regression (on the log responses) is used for calibration.

Min 1st Qu. Median Mean 3rd Qu. Max
train GP LLM 0.0701 0.0716 0.0724 0.0728 0.0730 0.0818

LM 0.1868 0.1869 0.1869 0.1869 0.1869 0.1870
test GP LLM 0.1321 0.1327 0.1346 0.1346 0.1356 0.1389

LM 0.1926 0.1945 0.1950 0.1950 0.1953 0.1982

The RMSEs for the linear model have extremely low variability. This is similar to the results provided

by Chipman et al. and was a key factor in determining that the experiment was well-calibrated. Upon

comparison of the above numbers with the boxplots in Chipman et al., it can readily be seen that the treed

GP LLM is leaps and bounds better than linear CART, and all of the other methods in the study. The treed

GP LLM’s worst training RMSE is almost two times lower than the best ones from the boxplot. All testing

RMSEs are lower than the lowest ones from the boxplot, and the median RMSE (0.1346) is 1.26 times lower

than the lowest median RMSE (≈ 0.17) from the boxplot.

More recently, Chu et al. (2004, Table V) performed a similar experiment, but instead of 10-fold CV, they

randomly partitioned the data 100 times into training/test sets of size 481/25 and reported average MSEs

on the un-transformed responses. They compare their Bayesian SVM regression algorithm (BSVR) to other

high-powered techniques like Ridge Regression, Relevance Vector Machine, GPs, etc., with and without ARD

(automatic relevance determination). Repeating their experiment for the treed GP LLM gave an average

MSE of 6.96 compared to that of 6.99 for the BSVR with ARD, making the two algorithms by far the best in

the comparison. However, without ARD the MSE of BSVR was 12.34, 1.77 times higher than the treed GP

LLM, and the worst in the comparison. The reported results for a GP with (8.32) and without (9.13) ARD

showed the same effect, but to a lesser degree. Thus the GP LLM might similarly benefit from an ARD-like

approach. Perhaps not surprisingly, the average MSEs do not tell the whole story. The 1st, median, and

3rd quantile MSEs obtained for the treed GP LLM were 3.72, 5.32 and 8.48 respectively, showing that its

distribution had a heavy right-hand tail. This may be an indication that several responses in the data are

either misleading, noisy, or otherwise very hard to predict.
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4 Conclusion

In this paper, we introduced the treed Gaussian Process model as a simple and efficient method for non-

stationary modeling, and validated it on synthetic and real data. A fully Bayesian treatment of the treed

GP model was laid out, treating the hierarchical parameterization of the correlation function K(·, ·) as a

modular component, easily replaced by a different family of correlations.

We also argued that Gaussian processes are a flexible modeling tool which can be overkill for many

applications. We showed how the limiting linear model parameterization of the GP can be both useful and

accessible in terms of Bayesian posterior estimation and prediction. The benefits include speed, parsimony,

and a relatively straightforward implementation of an adaptively semiparametric model. Combined with

treed partitioning, the GP LLM further extends the treed GP model, resulting in a uniquely nonstationary,

semiparametric, tractable, and highly accurate model that contains linear CART as a special case.

We believe that a large contribution of the treed GP (and LLM) will be in the domain of sequential

design of computer experiments (Santner et al., 2003; Gramacy et al., 2004) which was the inspiration for

much of the work presented here. Empirical evidence suggests that many computer experiments are nearly

linear. That is, either the response is linear in most of its input dimensions, or the process is entirely linear

in a subset of the input domain. Supremely relevant, but receiving less emphasis in this paper, is that

the Bayesian treed GP LLM provides a full posterior predictive distribution (particularly a nonstationary

and thus region-specific estimate of predictive variance) which can be used towards active learning in the

input domain. Exploitation of these characteristics should lead to a efficient framework for the adaptive

exploration of computer experiment parameter spaces.
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A Parameter Estimation Details

The following sub-sections show full derivations of conditional and marginalized posteriors of the parameters

to the Gaussian processes at the leaves of the tree.
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A.1 Full Conditionals

β: p(βν |rest) ∝ p(Zν |βν , σ2
ν , dν , gν)p(βν |β0, σ

2
ν , τ

2
ν ,W) = N(Zν |Fνβν , σ2

νKν) ·N(βν |β0, σ
2
ντ

2W)

∝ exp
{

−(2σν)
−2
[

(Zν − Fνβν)
′K−1

ν (Zν − Fνβν) + (βν − β0)
′
(τ2
νW)−1τ2

ν (βν − β0)
]}

∝ exp
{

−(2σν)
−2
[

−2Z′
νK

−1
ν Fνβν + β′

νF
′
νK

−1
ν Fνβν + β′

ν(τνW)−1βν − 2β′
ν(τ

2
νW)−1β0
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= exp
{
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−2
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ν(F

′
νK

−1
ν Fν + W−1/τ2)βν − 2β′

ν(F
′
νK

−1
ν Zν + W−1β0/τ

2)
]}

giving βν |rest ∼ N(β̃ν , σ
2
νVβ̃ν

) (29)

where Vβ̃ν
= (F′

νK
−1
ν Fν + W−1/τ2)−1 β̃ν = Vβ̃ν

(F′
νK

−1
ν Zν + W−1β0/τ

2).

β0: p(β0|rest) = p(β|β0, σ
2, τ2,W)p(β0)

= p(β0)

r
∏

i=1

p(βν |β0, σ
2
ν , τ

2
ν ,W) = N(β0|µ,B)

r
∏

i=1

N(βν |β0, σ
2
ντ

2
νW)

∝ exp

{

−1

2
(β0 − µ)′B−1(β0 − µ)

} r
∏

i=1

exp

{

− 1

2σ2
ντ

2
ν

(βν − β0)
′W−1(βν − β0)

}

= exp

{

−1

2

[

(β0 − µ)′B−1(β0 − µ) +

r
∑

i=1

1

σ2
ντ

2
ν

(βν − β0)
′W−1(βν − β0)

]}

p(β0|rest) ∝ exp

{

−1

2

[

β′
0B

−1β0 − 2β′
0B

−1µ+ β′
0W

−1
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β0

σ2
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βν
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ντ

2
ν
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∝ exp
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2
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β′
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(

B−1 +
r
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i=0

W−1

σ2
ντ

2
ν

)

β0 − 2β′
0

(

B−1µ+ W−1
r
∑

i=1

βν
σ2
ντ

2
ν

)]}

giving β0|rest ∼ N(β̃0,V β̃0
) (30)

where Vβ̃0
=

(

B−1 + W−1
r
∑

i=0

(σντν)
−2

)−1

β̃0 = Vβ̃0

(

B−1µ+ W−1
r
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i=1

βν(σντν)
−2

)

.

τ2: p(τ2
ν |rest) = p(βν |β0, σ

2
ν ,W)p(τ2

ν ) = N(βν |β0, σ
2τ2
νW)IG(τ2

ν |ατ/2, qτ/2)

∝ (τ2
ν )−

m
2 exp
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2σ2
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2
+1) exp
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2
ν

2τ2
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giving τ2
ν ∼ IG

(

ατ +m

2
,
qτ + (βν − β0)

>W−1(βν − β0)/σ
2
ν

2

)

. (31)

W−1: p(W−1|rest) = p(W)p(β|β0, σ
2, τ2,W)

= W (W−1|(ρV)−1, ρ) ·
r
∏

i=1

N(βν |β0, σ
2
ντ

2
νW)

∝ |W−1|(ρ−m−1)/2 exp

{

−1

2
tr((ρV)W−1)

}

×

|W−1|r/2 exp
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2
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(

r
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1

σ2
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2
ν

(βν − β0)
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)]}

obtained because a scalar is equal to its trace. Applying more properties of the trace operation gives

p(W−1|rest) ∝ |W−1| ρ+r−m−1

2 exp

{

−1

2

[

tr

((

ρV+
r
∑

i=1

(βν − β0)(βν − β0)
′

σ2
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2
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)]}

giving W−1|rest ∼W





(

ρV+

r
∑

i=1

1

σ2
ντ

2
ν

(βν − β0)(βν − β0)
′

)−1

, ρ+ r



 . (32)

A.2 Marginalized Conditional Posteriors

Complete conditional posteriors for the parameters to the correlation function K(·, ·) can be obtained by

analytically integrating out β and σ2 to get a marginal posterior.

p(K|Z,β0,W, τ2) =
∏

ν

p(Kν |Zν ,β0, τ
2,W)

∝
∏

ν

p(Kν)

∫
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{
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−1Zν + β′
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2
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′
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β̃ν
β̃ν . (33)
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Expanding the prior for σ2
ν gives:

p(Kν |Z,β0, τ
2,W) ∝

∏
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ν ,

since the integrand above is really IG((ασ + nν)/2, (qσ + ψν)/2), the integral evaluates to 1, giving:

p(K|Z,β0, τ
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Eq. (34) can be used in place of the likelihood of the data conditional on all parameters. It can be thought

of as a likelihood of the data, conditional on only the parameterization of K(·, ·). When computing a

Metropolis-Hastings acceptance ratio for proposed Kν in a particular region rν , it suffices to use only the

terms in (34) which contain some function of the imputed correlation matrix Kν :

p(Kν |Zν ,β0, τ
2
ν ,W) ∝ p(Kν) ×

(

|Vβ̃ν
|

|Kν |

)
1
2

×
(

qσ + ψν
2
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2

. (35)

Using the same ideas one can obtain the complete conditional of σ2
ν with βν integrated out, which

strangely enough involves the same ψν quantity:

p(σ2
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which means that

σ2
ν |d, g,β0,W ∼ IG((ασ + nν)/2, (qσ + ψν)/2). (36)
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