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Abstract

Two distinct classes of magnetic confinement models exist for the solar

tachocline. The ‘slow tachocline’ models are associated with a large-scale

primordial field embedded in the radiative zone. The ‘fast tachocline’ mod-

els are associated with an overlying dynamo field. I describe the results

obtained in each case, their pros and cons, and compare them with existing

solar observations. I conclude by discussing new lines of investigation that

should be pursued, as well as some means by which these models could be

unified or reconciled.

7.1 Introduction

7.1.1 Magnetic fields in the tachocline

Two distinct possible origins for solar magnetic fields in the tachocline region

can be identified. The Ohmic decay timescale of a large-scale dipolar field

embedded in the radiative interior is much larger than the estimated age of

the Sun (Cowling 1945; Garaud 1999), so that a fraction of the magnetic

flux initially frozen within the accreting protostellar gas is likely to persist

today. In parallel, according to the standard dynamo field theory, small-

scale magnetic fields are thought to be constantly generated by fluid motions

within the solar interior. Optimal conditions for the generation of large-scale

fields require the combination of large-scale azimuthal shear and small-scale

helical motion, which are both naturally found in the region of the tachocline

(Parker 1993; Ossendrijver 2003; Tobias 2005).

The fundamental differences between primordial and dynamo-generated

fields — see the discussion by Tobias & Weiss in Chapter 13 — have nat-

urally led to two distinct classes of tachocline confinement models: a slow
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Table 7.1. Properties at the base of the convection zone

Quantity Value Quantity Value

ρ 0.2 η 4.3 × 102

T 2.2 ×106 ν 20
g 5.3 × 104 κ 1.3 × 107

N 9 × 10−4 rcz 5 × 1010

Numerical values (in cgs units) of typical values of the den-
sity ρ, temperature T , gravity g, the buoyancy frequency N ,
the molecular magnetic diffusivity η, viscosity ν, and thermal
diffusivity κ and finally the radius rcz.

tachocline, interacting on secular timescales with an underlying large-scale

primordial field and slow meridional flows, and a fast tachocline, interacting

on dynamical timescales with small-scale turbulent flows and an overlap-

ping or overlying dynamo field. This chapter strives to provide a fairly

complete overview of the state of this rapidly evolving topic, and presents

the two alternative confinement models that were considered at the time of

the workshop. Since historically these two types of models have remained

clearly separated, I shall take the same path and present them independently

in §§7.2 and 7.3. Whether the true tachocline genuinely does fall into one

category or another was widely debated during the meeting, and is discussed

in §7.4 (see also Chapter 1 by Gough). A first attempt at constructing a

global tachocline model that includes both fast and slow dynamics has been

developed since then by McIntyre and is presented in Chapter 8; the reader

should bear this new development in mind when reading this chapter.

7.1.2 Characteristic numbers in the tachocline

In order to compare models and observations of the tachocline, I adopt

characteristic values for certain quantities in that region as listed in Table

7.1 (see also Table 1.1 in Chapter 1). For consistency, these values are

used throughout this review; in some cases, however, they differ from those

adopted by various other authors by factors of order unity.

7.2 Primordial field confinement: the slow tachocline

7.2.1 First models

With tremendous insight into today’s debate, Mestel (1953) realised early

on that even a very weak large-scale primordial field within the solar inte-
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rior would have a significant impact on the solar angular velocity profile.

Indeed, Alfvén waves are possibly the most efficient transporter of angu-

lar momentum in a rotating magnetized fluid. They propagate unimpeded

along poloidal field lines with a characteristic velocity that depends on the

local field amplitude and the local fluid density. Both the field geometry and

the density stratification result in spatial inhomogeneities of the Alfvén ve-

locity and the consequent phase mixing and damping of the waves. Angular

momentum is then redistributed along (and across) the field lines, leading

to a rotation profile satisfying Ferraro’s (1937) isorotation law:

B · ∇Ω = 0 , (7.1)

or in other words, with Ω constant along magnetic field lines. It has been

argued that field amplitudes as low as 10−2G are capable of enforcing uni-

form rotation to the entire radiative interior (Mestel 1953; Cowling 1957;

Mestel & Weiss 1987).

The first model to study quantitatively the effect of an internal primor-

dial field on the solar radiative zone rotation profile, and in particular

its potential role in confining the tachocline, was proposed by Rüdiger &

Kitchatinov (1997). Shortly afterward, MacGregor & Charbonneau (1999)

complemented their work by studying the effects of different internal field

geometries.

Both investigations evaluate the steady-state outcome of the interaction

between a primordial field and the latitudinal shear diffusing from the con-

vection zone. Meridional flows are assumed to be negligible, on the grounds

that the strong local stratification effectively reduces their amplitude to a

few centimetres per second (Miesch & Gilman 2004); given this assumption,

the poloidal component of the field decouples from the governing equations

and can be chosen arbitrarily. While Rüdiger & Kitchatinov only consider

poloidal fields entirely confined within the radiative zone, MacGregor &

Charbonneau also study various cases in which at least some field lines

overlap the convective zone. The steady-state structure of the toroidal field

Bφ and angular velocity of the fluid Ω is then obtained by solving the az-

imuthal component of the momentum equation (here, cast in the form of a

conservation equation for angular momentum) and of the induction equa-

tion:

∇ · (ρνr2 sin2 θ∇Ω) +
1

µ0
Bp · ∇(r sin θBφ) = 0 , (7.2)

r sin θBp · ∇Ω + η

(

∇2Bφ − Bφ

r2 sin2 θ

)

= 0 , (7.3)
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where the poloidal component of the field, Bp, is fixed. These equations

are subject to the boundary conditions at the interface with the convective

zone,

Ω(rcz, θ) = Ωeq(1 − a2 cos2 θ − a4 cos4 θ) , (7.4)

Bφ(rcz, θ) = 0 , (7.5)

where Ωeq, a2 and a4 are derived from helioseismic inversions of the rotation

profile in the convective zone; typically, Ωeq/2π = 460nHz, a2 = 0.14 and

a4 = 0.15 (Charbonneau et al. 1999). Adequate regularity conditions are

applied on the polar axis and at the centre. The boundary condition on

the toroidal field is related to the assumption that any toroidal field at the

interface with the convection zone is promptly removed through buoyancy

instabilities. An alternative boundary condition that is sometimes also used

assumes the convection zone to be an excellent insulator (with η → ∞),

and matches the interior field to a potential field. These two possibilities

result in different quantitative estimates for the confining field strength and

toroidal field amplitudes, but have otherwise qualitatively similar associated

solutions.

The numerical solutions reveal a striking difference in angular velocity

profile between the confined field and open field cases (see Figure 7.1). While

the former results in a more-or-less uniformly rotating radiative zone, with a

thin shear layer effecting the smooth diffusive transition to the differentially

rotating convective zone, the latter results in a latitudinally sheared state

close to Ferraro isorotation, as field lines connected to the differentially

rotating convection zone provide a support for the inward propagation of

Alfvén waves. Helioseismic observations appear to set empirical constraints

on the geometry of an embedded primordial field.

The angular momentum equation (7.2) illustrates the balance between vis-

cous transport and magnetic transport near the outer boundary. A bound-

ary analysis provides useful quantitative estimates of the tachocline proper-

ties in both open and confined geometries: viscous effects are only important

in a thin Ekman-Hartmann boundary layer (see the review by Acheson &

Hide 1973) of width

δ‖ =

(

µ0ρνη

B2
0r2

cz

)1/4

rcz =

(

EνEη

Λ

)1/4

rcz ∼ 4 × 10−5B
−1/2
0 rcz , (7.6)

where the field of amplitude B0 is assumed to be mostly parallel to the outer

boundary (as in the case of the confined field) and is measured in gauss. The
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Fig. 7.1. Steady-state solutions obtained by MacGregor & Charbonneau (1999)
for the open and confined field configurations (top and bottom row respectively),
for increasing Reynolds numbers. For this figure, the Reynolds numbers are de-
fined as Rν = B0rcz/(ν

√
µ0ρ) and Rm = B0rcz/(η

√
µ0ρ), so that increasing the

Reynolds numbers can be interpreted as increasing B0 or decreasing ν and η. The
left quadrant shows the poloidal field lines, whereas the right quadrants show the
rotation profile (solid lines) and the toroidal field amplitude (dashed and dotted
lines correspond to positive and negative Bφ).

usual Ekman numbers are defined as

Eν =
ν

r2
czΩ0

, Eη =
η

r2
czΩ0

, (7.7)

and a new parameter Λ is defined as

Λ =
v2
A

v2
Ω

, (7.8)

where vΩ = rczΩ0 and vA is the Alfvén velocity vA = B0/
√

µ0ρ. Here, Ω0 is

a mean angular velocity of the system. Equation (7.6) provides the first of

many estimates of the relation between the internal field strength and the

tachocline thickness. If the poloidal field is given by

Bp = ∇×
(

A

r sin θ
êφ

)

, with A = Bin
r2

2

(

1 − r

rcz

)q

, (7.9)

where the index q controls the field concentration towards the interior, and
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Bin is the amplitude of the field deep in the interior, then a field of amplitude

B0 in a tachocline of thickness ∆ corresponds to

Bin ≃ q

2
B0

(

rcz

∆

)q−1

. (7.10)

Combining all of the above estimates suggests that a field strength of 2 ×
10−6G near the edge of the convective zone (which corresponds to an interior

field of about 6G for q = 5) would confine the tachocline to its observed

width of 0.03rcz (Elliott & Gough 1999).

In a very interesting remark, MacGregor & Charbonneau (1999) point out

that even in a laminar tachocline, angular momentum transport between the

convective and radiative zones would not, in fact, proceed through viscous ef-

fects only; as Spiegel & Zahn (1992, see also Chapter 4 by Zahn) had shown,

the tachocline spread is aided by meridional flows, which act approximately

as a hyperdiffusion of the kind

∂Ω

∂t
∼ r4

cz

tES

∂4Ω

∂r4
, where tES =

1

4

N2

Ω2
0

r2
cz

κ
∼ 2 × 1011yr , (7.11)

where N is the local buoyancy frequency in the tachocline. In that case an

equivalent boundary layer analysis reveals a different relation between the

tachocline thickness and the field strength:

δ =

(

µ0ρη

B2
0tES

)1/6

rcz =

(

Eη

ΛΩ0tES

)1/6

rcz ∼ 0.0001B
−1/3
0 rcz . (7.12)

The local poloidal field required to confine the tachocline is now of the order

of B0 ∼ 6×10−4G, and the resulting toroidal field has a typical amplitude of

the order of 105G, which (as MacGregor & Charbonneau point out) is inter-

estingly close to the estimated upper limit for field storage against magnetic

buoyancy within the tachocline (Schüssler et al. 1994).

7.2.2 Towards a self-consistent model: the governing equations

Despite the great degree of simplification inherent in the model just de-

scribed, one essential result is of profound generality: Alfvénic angular mo-

mentum transport occurs on a very rapid timescale, and does not permit

large deviations from isorotation anywhere in the radiative zone. Observed

sheared regions (such as the tachocline) must be relatively free of poloidal

field. The magnetic confinement problem takes an alternative but equiva-

lent meaning: there must exist some mechanisms that confine the primordial

field within the radiative zone in such a way as to be largely disjoint from

the convective zone. Very little overlap between the internal field and the
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convective region is allowed by the upper limits set from observations of the

sunspot parity throughout the cycles (Boyer & Levy 1984; Boruta 1996).

The microscopic magnetic diffusivity in the radiative zone does not ex-

ceed ∼ 500 cm2s−1. Consequently, even apparently slow flows have a large

magnetic Reynolds number. Radial motions in the tachocline are heavily

suppressed by the strong local stratification, the flow speed for a steady-

state system being controlled by the thermal diffusion time. Across the

tachocline, the upper limit for the radial flow velocities is ur ∼ 10−4cm s−1

with a corresponding magnetic Reynolds number of a few hundred, which

is sufficient to have significant nonlinear interactions with the poloidal field,

contrary to the assumptions of the studies described in the previous section.

Gough & McIntyre (1998) realized the importance of meridional flows in

the dynamics of the tachocline. They proposed a model in which gyroscopic

pumping near the convective-radiative interface drives flows whose role is

to confine the interior field, thereby completing the missing piece of the

tachocline puzzle.

Their model consists of four radially distinct regions (see Figure 7.2). In

the convection zone (extended, if necessary, by a few tens of megametres to

include the overshoot region, and a corresponding fast tachocline), angular

momentum balance is achieved between anisotropic Reynolds or Maxwell

stresses, and large-scale advection by meridional flows (zone 1). The flow

geometry near the convective-radiative interface is dictated by the steady-

state thermal wind and thermal energy balance. The flows burrow into the

stably stratified, mostly laminar region directly underneath (zone 2) and

interact with the deeply embedded magnetic field within a thin magnetic

boundary layer (zone 3). This conveniently results in the simultaneous con-

finement of the underlying field to the lower part of the radiative zone, and

that of the meridional flows within a well-ventilated but mostly magnetic

free upper part of the radiative zone. Below the magnetic boundary layer,

the confined field imposes uniform rotation to the bulk of the radiative zone

(zone 4).

It is perhaps worth pointing out here that the notion of a tachocline has

significantly evolved in recent years. Within the well-ventilated, magnetic-

free region (zone 2) angular momentum is roughly conserved along the

meridional flow lines and the latitudinal shear imposed by the convective

zone is not so much suppressed as ‘reshuffled’. As a result, given the strict

definition of tachocline as ‘a strong shear layer beneath the convective re-

gion’ one could argue that the Gough & McIntyre tachocline is in fact lim-

ited to the magnetic diffusion layer. On the other hand, a more modern

interpretation of the tachocline as ‘the region which operates the dynamical
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Fig. 7.2. Schematic representation of the Gough & McIntyre model. The outer
convection zone is differentially rotating, and generates meridional flows (black
lines) through gyroscopic pumping. These confine the underlying field (thick grey
lines) to the radiative interior, while leaving the tachocline virtually magnetic free.

transition between the convection zone and the radiative zone’ would then

encompass both the magnetic diffusion layer and the magnetic-free region

directly above. This distinction will be useful when comparing the various

predictions for the tachocline thickness proposed in the literature. More-

over, a third meaning of tachocline confinement now emerges in relation

to the tachocline meridional flows. Observations of surface abundances of

light elements and helioseismic observation of the sound speed profile in the

tachocline suggest that the depth of the mixed layer beneath the convection

zone is of the order of a few percent of the solar radius (see Chapter 3 by

Christensen-Dalsgaard & Thompson for more detail; Rüdiger & Pipin 2001;

Elliott & Gough 1999). Given that the upper limits on the depth of the over-

shoot region have been recently estimated to be significantly smaller than

the tachocline depth (Brummell, Clune & Toomre 2002; Rogers & Glatz-

maier 2005), these observations can be related with reasonable confidence

to the tachocline ventilation depth (zones 2 and 3).

The equations governing laminar fluid motions in the radiative zone con-

sist of the momentum equation, the mass conservation equation, the ther-

mal energy conservation equation, the field advection-diffusion equation, the

equation of state and, finally, a solenoidal condition for the field. When con-
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sidering slow meridional flows in a slowly rotating star like the Sun, one can

linearize the equations around a uniformly rotating, spherically symmetric

background hydrostatic equilibrium and use the anelastic approximation.

The complete set of equations representing the secular laminar dynamics of

the radiative interior is then

ρ
∂u

∂t
+ 2ρΩ0 × u = −∇p̃ − ρ̃g + j × B + ∇ · π , (7.13)

∇ · (ρu) = 0 , (7.14)

ρT
∂s

∂t
+ ρTu · ∇s = ∇ · (k∇T ) , (7.15)

p̃

p
=

ρ̃

ρ
+

T̃

T
, (7.16)

∂B

∂t
= ∇× (u× B) + ∇× (η∇× B) , (7.17)

∇ · B = 0 , (7.18)

where tildes denote perturbations from hydrostatic equilibrium, s is the

entropy, π is the viscous stress tensor, k = ρcpκ is the thermal conductivity

and all other quantities have their usual meaning. This complete system

of equations canot yet be solved exactly for realistic solar values of the

background state quantities. Numerical solutions have difficulties reaching

simultaneously the correct thermal, viscous and magnetic diffusivities, while

analytical solutions struggle to cope with the complex geometry and the

intrinsic nonlinearity of the problem. What follows describes the various

attempts at treating the problem that have been proposed so far.

7.2.3 The Gough & McIntyre boundary layer analysis

The insight of Gough & McIntyre’s seminal work (1998) is to reduce the

above system of equations to a boundary layer analysis, by considering from

the outset the thin nature of the tachocline, and retaining in each zone

identified only the dominant terms in the dynamical balance.

Thermal-wind balance in the upper region of the tachocline (zone 2). In

this region, Gough & McIntyre assume that the amplitude of the confined

internal magnetic field is too low to have any significant effect on the flow

dynamics. In that case, thermal-wind balance is achieved: the azimuthal

component of the vorticity equation reduces to

2Ω0r sin θ
∂Ω̃

∂z
=

g

rT

∂T̃

∂θ
, (7.19)
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where the pressure fluctuations in the equation of state have been neglected

in accordance with the anelastic approximation. Maintaining the thermal-

wind balance against diffusion requires heat and momentum advection by

meridional flows; within a thin tachocline this is equivalent to:

N2Tur

g
=

1

ρcpr2

∂

∂r

(

r2k
∂T̃

∂r

)

, (7.20)

where k is the thermal conductivity (κ = k/ρc).

Additional information on the flow geometry related to the tachocline

shear can be deduced qualitatively from equations (7.19) and (7.20). The

observed angular velocity profile in the tachocline, as given by equation

(7.4), corresponds to a significant latitudinal entropy perturbation, positive

near the poles and equator, and negative at mid-latitudes. In order to

maintain this gradient against diffusion (specifically in the radial direction,

since the overlying convective zone is largely isentropic) meridional flows are

required, with downwelling near the poles and upwelling in mid-latitudes.

This geometry favours the internal field confinement only if the upwelling

region is sufficiently narrow.

Advection-diffusion balance in the magnetic diffusion layer (the tachopause,

zone 3). In the downwelling regions, the tachocline flow meets the under-

lying field and confines it to the radiative interior. In a steady state, the

system is in equilibrium when the downward advection exactly compensates

the outward diffusion of the field. Within a thin diffusion layer, the domi-

nant terms of the advection-diffusion balance are extracted to yield

2Ω0uθ cos θ =
B0

µ0ρr sin θ

∂

∂θ
(Bφ sin θ) , (7.21)

−B0 sin θ
∂Ω̃

∂θ
= η

∂2Bφ

∂r2
, (7.22)

from the angular momentum equation and the azimuthal component of the

induction equation, respectively. Here, B0 is the amplitude of the meridional

component of the primordial field in the region of the tachocline. In addition,

a rough estimate of the radial flow velocity required to balance the diffusion

of the field in the boundary layer of thickness δ3 is

ur ∼ η

δ3
, (7.23)
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which can be combined with the anelastic mass conservation equation to

obtain an estimate of the latitudinal velocity:

1

r2

∂

∂r
(r2ρur) +

1

r sin θ

∂

∂θ
(ρ sin θuθ) = 0 . (7.24)

Boundary layer scaling. Boundary layer scalings are easily derived using

the approximations ∂/∂r ∼ 1/δ2 in zone 2, ∂/∂r ∼ 1/δ3 in zone 3 and

sin θ ∼ cos θ ∼ 1/
√

2 with ∂/∂θ ∼ iL, where L is a latitudinal wavenumber.

Before outlining the results obtained by Gough & McIntyre, it should

be noted that in the limit where the magnetic diffusion layer is of similar

width to the whole tachocline (in that case, there is no magnetic-free region

— zones 2 and 3 are combined) δ2 = δ3 and the combination of equations

(7.19) to (7.24) with ∂/∂r = 1/δ yields (as expected) exactly the estimate

of the tachocline thickness (7.12) derived by MacGregor & Charbonneau

(1999). For this scaling to hold, it is important to verify that the Lorentz

force in the vorticity equation can be neglected compared to the thermal-

wind balance. This is indeed the case for the field amplitude corresponding

to the observed tachocline width.

The Gough & McIntyre model suggests that a different force balance

can occur when the magnetic diffusion layer is significantly thinner than

the magnetic-free region. In zone 2, a unique expression relating the flow

amplitude and the thickness of the region δ2 can be derived from the thermal-

wind balance and the thermal energy equations, namely (7.19) and (7.20):

ur ∼ 2

L

(

κ

r2
czΩ0

)(

rcz

δ2

)3 (Ω0

N

)2
(

Ω̃

Ω0

)

rΩ0 . (7.25)

Note that if δ2 is fixed, this equation provides a stringent relation between

the imposed shear and the meridional flows permitted within the tachocline.

Two scenarios may then occur depending on the strength of the inter-

nal field. The Gough & McIntyre model assumes that the magnetic field

amplitude within the tachopause is sufficiently small for the thermal wind

relation to hold there as well. Thus, equations (7.19) and (7.20) complement

equations (7.21) to (7.24) in zone 3 to yield the scaling:

δ3 ∼
(

4

L4

v2
Ω

v2
A

Ω2
0

N2

κη

r4
czΩ

2
0

)1/6

rcz . (7.26)

Note that the Gough & McIntyre tachopause is exactly the boundary layer

studied by MacGregor & Charbonneau (1999) — see equation (7.12). Match-

ing the tachopause dynamics with the overlying flow from zone 2, by com-

bining (7.26) with (7.23) and (7.25), yields a unique relation between δ2 and
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B0:

δ2 ∼




28

L10

v2
Ω

v2
A

(

κ

η

)5 κ2

r4
czΩ

2
0

(

Ω2
0

N2

)7(
Ω̃

Ω0

)6




1/18

rcz . (7.27)

Comparing the expression for δ2 to the observed tachocline ventilation depth

as measured by Elliott & Gough (1999), Gough & McIntyre deduce that the

internal field strength (in the tachocline region) is of the order of 10−4T,

corresponding to a primordial field strength in the deep interior of the Sun

of the order of 1 T. As assumed, the thickness of the tachopause is only a few

percent of the thickness of the whole tachocline. The tachocline ventilation

time is of the order of 3 × 106 yrs; while being slow, it provides sufficient

mixing of light elements beneath the convective zone to explain the observed

abundances of Li and Be. This ventilation timescale is still significantly

smaller than the solar spin-down timescale, which accounts for the fact that

the interior angular velocity is close to that of the surface layers.

Given this estimate for the field amplitude in the tachopause, it appears

that neglecting the Lorentz force in the vorticity equation is only marginally

justified. In fact, Gough & McIntyre themselves acknowledge that the

thermal-wind relation may not hold in the lower regions of the magnetic

boundary layer, where the nonlinear interaction between the field and the

flow is maximal. What happens in the alternative case has not yet been

evaluated in detail; however, dropping equations (7.19) and (7.20) plausibly

describes the right balance, and reveals a new boundary layer scaling

δ3 ∼
(

2

L3

Ω0

Ω̃

v2
Ω

v2
A

η2

r4
czΩ

2
0

)1/4

rcz , (7.28)

which, when combined with equation (7.23) from the poloidal advection-

diffusion balance, and equation (7.25) from thermal-wind balance in zone 2,

reveals yet another possible relation between the tachocline thickness, the

imposed shear and the magnetic field:

δ2 ∼




25

L7

(

κ

η

)4 η2

r4
czΩ

2
0

(

Ω2
0

N2

)4 (
Ω̃

Ω0

)3
v2
Ω

v2
A





1/12

rcz . (7.29)

The main difference between this boundary layer analysis and the one pro-

posed by Gough & McIntyre is the non-thermal nature of the boundary

layer.†
So which (if any) of the above scalings really correspond to the solar

† The tachopause in the Gough & McIntyre model is also a thermal boundary layer.
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tachocline? This question is difficult to answer without a careful quantitative

estimate of the force balance in the tachopause, which can only be done

through numerical simulations. Moreover, since the Coriolis force and the

field geometry vary strongly with latitude, the force balance and the nature

of the boundary layer is very likely to differ between the equator, mid-

latitudes and the poles.

7.2.4 Numerical solutions of the Gough & McIntyre model

To obtain a more precise view of the geometry of the tachocline dynamics,

as well as quantitative predictions for the internal rotation rate, the light

element depletion timescale and the amount of overlap between the interior

field and the convective zone, one must resort to numerical simulations. Two

approaches have recently been considered. Douglas Gough and I have been

interested in studying the steady-state tachocline balance, while Brun &

Zahn (2006) are looking at its temporal evolution for a given initial poloidal

field configuration. While the former is able to bypass the various numerical

problems caused by the wide range of timescales inherent in the physics of

the system, the latter is ideally suited to the study of potential multiple

equilibria, and naturally eliminates from the force balance any processes

occurring on a timescale longer than the stellar evolution timescale.

7.2.4.1 Steady-state calculations

Axially symmetric steady-state calculations can be performed by an expan-

sion of all governing equations on a suitably selected basis of orthogonal

polynomials in the latitudinal direction, and then by solving the remain-

ing ODEs using a Newton-Raphson relaxation procedure. Note that other

methods also exist (expansion in spherical harmonics or finite differences in

all directions), but have not been implemented for the steady-state problem.

In 2002, I presented a preliminary numerical study of the nonlinear in-

teraction between the primordial field and the meridional flows, in an ideal-

ized setup where the solar tachocline and radiative zone are assumed to be

composed of an incompressible, homogeneous and isentropic fluid (Garaud

2002). This assumption largely simplifies the set of governing equations

since all thermodynamical quantities decouple from the system; however, it

also eliminates the crucial baroclinicity that is thought to drive meridional

flows. These must then be artificially replaced by Ekman flows driven by

viscous forces on a no-slip impermeable boundary. The latitudinal varia-

tion of the Coriolis force implied by the imposed shear from the convection

zone (for the Gough & McIntyre model) and in a viscous Ekman layer (in
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the simplified model) provides gyroscopic pumping with a similar geometry,

but of different amplitude. This simplified model clearly could not provide

any quantitative estimates of the tachocline dynamics, but the geometrical

similarities with the correct model provide an interesting complement to the

Gough & McIntyre (1998) boundary layer analysis.

In this simplified model, the equations solved are the following:

2Ω0 × u = −∇p + j × B + ν∇2u , (7.30)

∇ · u = 0 , (7.31)

∇× (u× B) = η∇× (∇× B) , (7.32)

∇ ·B = 0 , (7.33)

with a fiducial density ρ = 1. No-slip, impermeable boundary conditions

are assumed for the meridional flows, and on the upper boundary the rota-

tion profile is given by the convection zone profile (see equation 7.4). The

lower boundary is a stress-free solid conducting core. The field is matched

onto a potential field decaying exponentially outside the radiative zone, and

matching on to a point dipole of given amplitude Bin located at the centre

of the inner core.

The dynamical connection between the interior flow and the top boundary

operates through Ekman and Hartmann layers, which have typical scalings

of the order of

δν = E1/2
ν rcz , (7.34)

for a purely viscous Ekman layer, and

δ‖ =

(

EνEη

Λ

)1/4

rcz and δ⊥ =

(

EνEη

Λ

)1/2

rcz , (7.35)

for Hartmann layers when a magnetic field of amplitude B0 is respectively

parallel and perpendicular to the outer boundary. Ekman numbers of the

order of 10−5 or less are therefore required to model structures on the scale

of the tachocline.

In what follows, it is important to remember that the induction equation

is linear in the field amplitude; thus, the ability of the flow to confine the field

depends not so much on the field amplitude as on the meridional flow velocity

and corresponding magnetic Reynolds number Rm = urδ/η.† Gyroscopic

pumping (of the Ekman, or Ekman-Hartmann type) on the outer boundary

implies that the latitudinal component of the flow uθ has amplitude compa-

rable to the azimuthal velocity of the outer boundary uφ, whereas the radial

† Note that there is, in this simulation, an indirect dependence on the field strength through
Ekman-Hartmann pumping.
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component of the flow is given by ur ∼ δuθ/rcz, where δ is the thickness of

the relevant boundary layer. This simple estimate has two important conse-

quences. Since δ is naturally smaller for larger field strengths, the stronger

the field, the smaller the effective magnetic Reynolds number. Moreover, for

a given field strength δ‖ ≫ δ⊥, so that the Ekman-Hartmann flow is much

stronger in the confined field case (i.e. parallel to the outer boundary) than

for the open field case (i.e. perpendicular to the outer boundary). The sys-

tem is therefore subject to a strong positive feedback effect: when and where

the field lines are confined because of an initially large flow amplitude, the

resulting field geometry permits large flow amplitudes. The converse is true

for the open field case, with weak flows as a cause and consequence of the

radial field geometry on the boundary. Such dual dynamics with positive

feedback in both limits is likely to harbour multiple equilibria. Unfortu-

nately, the numerical algorithm I use is not ideally suited for the search for

co-existing steady states; this could however be the subject of an interesting

investigation.

The following results are the only steady states found for a given set of

parameters. Varying the internal field strength (through Λ) for fixed Ekman

numbers reveals three possible dynamical structures. Note that the physical

interpretation of the numerical results given here differs from that of the

original paper (Garaud 2002), and should be preferred.

For low field strengths (Λ ≪ 1), the internal flow is dominated by Coriolis

forces, with a more-or-less cylindrical angular velocity profile (commonly

referred to as Taylor-Proudman rotation). Meridional flows are of Ekman

type (with ur ∼ E
1/2
ν rczΩ̃), penetrate deep into the radiative zone, and

confine the field to the interior (except in the polar regions).

For very high field strengths (Λ ≫ 1), the internal flow is dominated by

Lorentz forces, and the angular velocity is in a state of isorotation with the

field. In contrast with the previous case, the driven flows are particularly

weak (ur ∼ δ⊥Ω̃, so that Rm ∼ Eν/Λ ≪ 1 ), and do not have significant

effects on the field, which retains a mostly dipolar structure throughout the

computational domain. The field lines freely connect with the convective

zone, and the shear is propagated inwards accordingly. In this limit, it is in

fact possible to linearize the equations around a state of isorotation, which

was successfully done by Dormy, Cardin & Jault (1998) and Dormy, Jault

& Soward (2002).

For intermediate field strength, the nonlinear interaction between the in-

ternal field and the meridional flows dominates the dynamics of the interior.

Two separate regions can be identified. The essentially radial geometry of
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the flow in the polar regions, as suspected by Gough & McIntyre, provides

only weak coupling with the underlying (mostly radial) field. Polar field

lines are connected to the convection zone, which results in slowly rotating,

strongly sheared polar regions. On the other hand, the downwelling flow near

the equator is able to confine the internal field over a broad range of latitudes,

which results in a uniform rotation profile below. In this region, a Hartmann

layer is observed with flow amplitudes scaling as ur ∼ δ‖Ω̃ and corresponding

to a magnetic Reynolds number Rm ∼ (Eν/Eη)
1/2Λ−1 = Pm1/2/Λ (where

Pm = ν/η is the magnetic Prandtl number). The meridional flows them-

selves are deflected by the underlying field and the resulting radial mixing is

strongly suppressed. There is a marginal hint for the type of nested bound-

ary layer structure predicted by Gough & McIntyre (1998), with a largely

magnetic-free region overlying a thin diffusion layer. However, this result

needs to be confirmed with lower diffusivity simulations.

The intermediate field strength case appears to approach qualitatively the

dynamical structure that we may expect to see in the solar tachocline. How-

ever, the incompressible and isentropic nature of the fluid is an intrinsic flaw

of this preliminary work which needs to be addressed. New results obtained

by Douglas Gough and me on the steady-state structure of the Gough &

McIntyre tachocline including stratification and thermal diffusion were pre-

sented at the workshop. This time, the complete set of equations (7.13) to

(7.18) are solved for a steady-state solution. The boundary conditions are

similar to the ones used in the incompressible case for the magnetic field,

but the assumption of ‘impermeability’ of the base of the convection zone to

flows was dropped in favour of one which assumes the continuity of Reynolds

stresses across the boundary. Several Reynolds stress prescriptions in the

convection zone are currently being explored, and the preliminary results

presented in Figure 7.3 correspond to a simplistic stress-free assumption

(although as before, the observed rotation profile of the convection zone is

still imposed at the top of the computational domain). Finally, we assume

that the convection zone acts as a perfect conductor, so our numerical so-

lution is matched to a ‘potential solution’ ∇2T = 0 at the outer boundary.

The main consequence of this new set of boundary conditions is to eliminate

spurious Ekman flows and let the force balance within the tachocline dictate

the flow amplitude and geometry.

The background state used was derived from a realistic solar model (Chris-

tensen-Dalsgaard, Gough & Thompson 1991) where, for numerical purposes,

the thermal conductivity, viscosity and magnetic diffusivity are artificially

increased by the factors fk, fν and fη respectively; this is necessary, since
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viscous and magnetic diffusion layers on the artificial outer boundary are

otherwise too thin to be resolved. Typical values of f achieved in preliminary

simulations are of the order of 107, with corresponding Ekman numbers of

the order of 10−6; when fν = fη = fκ the solar values of the magnetic and

thermal Prandtl numbers are respected.

In the absence of strong magnetic fields the amplitude and geometry of the

meridional flow satisfy the expectations from the Gough & McIntyre model:

the steady-state solutions appear to depend on the thermal conductivity

only, confirming that the weak flows that may be driven by the artificial

stresses on the outer boundary are negligible compared to the baroclinic

flows. These numerical results do therefore provide a good insight into the

slow tachocline dynamics.

A thorough quantitative study of the numerical solutions is currently be-

ing performed, but preliminary qualitative results are found to be very sensi-

tive to the thermal and magnetic diffusion parameters fk and fη. According

to the scalings obtained in §7.2.3, the magnetic Reynolds number corre-

sponding to the tachocline ventilation flow is

Rm ∼ κ

η

Ω2
0

N2

r2
cz

∆2

Ω̃

Ω0
∼ 0.01

r2
cz

∆2
, (7.36)

for solar values of the diffusion and rotation parameters. Hence provided

there exists a confining mechanism for the tachocline and ∆ ≪ r then Rm ≫
1, confirming the nonlinear interaction between the field and the flow; on

the other hand, Rm ≪ 1 if the tachocline is not confined. Again, this dual

structure suggests either a very strong sensitivity of the equilibrium solution

to the input parameters, or even the existence of multiple equilibria.

For most parameter values (in the low-diffusivity limit) numerical simu-

lations show that the internal field retains a mainly dipolar structure with

field lines connecting to the convective region. The interior rotation profile

is close to a state of isorotation, and no tachocline is observed in this limit.

For carefully chosen parameters, however, it is possible to obtain solutions

that are encouragingly close to what may be expected from a slow tachocline

(see Figure 7.3). Meridional flows burrow into the radiative zone and confine

the field to the interior except within the upwelling region. The width of

the upwelling region is always of the order of the depth of the tachocline,

and the flow direction within the upwelling region is roughly parallel to the

rotation axis. Contrary to the incompressible simulations, field confinement

also occurs in the polar regions. Interestingly, a thermal boundary layer

appears to be present in the polar regions, but not in the equatorial regions.
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Fig. 7.3. Numerical results of equations (7.13) to (7.18) in a steady-state calculation
for fν = fκ = 5 × 108 and fη = 5 × 106. Each quadrant shows the solution in the
radiative zone only, and the dotted line represents the edge of the convection zone.
The rotation rate contours (from darker to lighter shading) range from 0.6Ωeq to
Ωeq. The streamlines are shown with dotted lines for clockwise flows and solid lines
for anti-clockwise flows. The temperature perturbations range from 0K to +50K.

7.2.4.2 Time-dependent calculations

The first numerical time-dependent simulations of a slow solar tachocline

following the idea of Gough & McIntyre were presented by Sacha Brun

and Jean-Paul Zahn at the workshop. The numerical algorithm used is the

ASH code (Glatzmaier 1984; Clune et al. 1999; Miesch et al. 2000; Brun et

al. 2004), which performs a spectral decomposition of the governing MHD

anelastic equations into spherical harmonics and Chebyshev polynomials in

the horizontal and vertical directions respectively. The massively parallel

numerical algorithm achieves significant resolution in all three directions. It

is ideally suited for studying the radiative-convective interface.

Brun & Zahn (2006) study numerically the dynamical evolution of the
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radiative zone when subject to shearing from the overlying convective re-

gion, and in the presence of a large-scale embedded primordial field. Their

computational domain includes the radiative zone only, and they model the

radiative-convective interface as an impermeable, electrically and thermally

conducting, sheared boundary. Various initial magnetic field configurations

are studied, ranging from deeply embedded fields to open field configura-

tions. Furthermore. the assumption of axial symmetry is dropped, which

enables them to study the emergence of all the possible non-axisymmetric

MHD and baroclinic instabilities that have recently been discussed (see

Chapters 10, by Gilman & Cally, and 11, by Hughes, in this volume), as

well as the angular momentum transport from the associated Reynolds and

turbulent Maxwell stresses (see §7.2.5.1).
The numerical values of the viscous, thermal and magnetic transport co-

efficients (ν, η and κ) used in the ASH code are far greater than the micro-

scopic solar values; however, by respecting their hierarchy (i.e. by respect-

ing the hierarchy of all expected boundary layer widths and all dynamical

timescales), Brun & Zahn attempt to capture the essential dynamical bal-

ance in the tachocline, if not quantitatively at least qualitatively.

Their main result could reshape our view of the slow tachocline: none of

the simulations appear to reach the steady-state balance suggested by the

Gough & McIntyre model. Instead, the system is observed to evolve in time

following the diffusion of the magnetic field out of the radiative zone. In

consequence, the dynamical evolution of the interior depends crucially on

the initial magnetic configuration.

For initially open field lines, isorotation is rapidly achieved, as suspected

from the results of MacGregor & Charbonneau (1999). The meridional

flows are strongly suppressed by the Lorentz force exerted by the mostly

radial field lines, and fail to confine the field (the magnetic Reynolds number

associated with their flows is of order of unity). After a rapid transient period

(roughly, one Alfvén time), the system continues evolving as a result of the

slow global field dissipation, whilst remaining in a Ferraro state. There is

no evidence for the presence of a tachocline in this case.

When the field is initially in a configuration close to what one may expect

from the Gough & McIntyre steady state (corresponding to the marginally

confined field configuration of Rüdiger & Kitchatinov 1997), one could ex-

pect that the meridional flows, not being hindered by the field, would act in

such a way as to confine it (see the incompressible analogue discussed in the

§7.2.4.1). However, Brun & Zahn find that in this case also, the field lines

quickly diffuse across the initially existing tachocline, connect to the convec-

tion zone and from there ensues Ferraro isorotation within a short Alfvénic
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timescale. It appears that although meridional flows of the kind predicted

by Gough & McIntyre are indeed observed in the simulation, they do not

have enough time to achieve dynamical balance in the magnetic diffusion

layer before the field diffuses and connects with the convective zone.

Only for a deeply confined initial field does the outward diffusion occur

slowly enough to allow for the formation of the tachopause. In that case,

magnetic field lines are indeed seen to be confined to the radiative interior

by the meridional flows, except in the polar regions which retain a mod-

est amount of latitudinal shear. This simulation appears to reproduce the

Gough & McIntyre view of the slow tachocline, save for a very important

difference: the Ohmic diffusion of the internal field is only partially reduced

by the tachocline dynamics, so that the field amplitude steadily decreases

on a magnetic diffusion timescale. As this happens, the position and width

of the tachocline and tachopause slowly change (the tachopause rises, and

the tachocline becomes correspondingly thinner).

The absence of a stable steady state implies a direct relationship between

the observed tachocline structure and the initial field configuration. This

result, should it be confirmed, has important implications for dynamo ac-

tion during the pre-main-sequence phase of solar evolution. A primordial

centrally condensed magnetic field configuration can presumably only be

achieved by a timely switch from a steady-state or largely irregular dynamo

to a cyclic dynamo, which must happen before the convection zone has en-

tirely retreated to its present radius. This idea is plausible given that the

timescale for the evolution of the convective-radiative interface (∼ 107 yr) is

much shorter than the magnetic diffusion timescale (∼ 1010 yr). In addition,

the Mount Wilson Ca II program has found strong observational evidence

for a transition from irregular dynamo action in very young stars to periodic

dynamos for older stars (Saar et al. 1994). This trend has been associated

with the transition between young, very rapid rotators and older, slower

rotators, and interestingly, the timescale for magnetic braking of very young

stars is also of the order of 107yrs. Schüssler (1975), Parker (1981) and

Mestel & Weiss (1987) studied the typical magnetic fields that are likely to

remain from dynamo action during the pre-main-sequence stage; perhaps it

is time to revisit their results in the light of Brun & Zahn’s simulations using

modern dynamo models, numerical algorithms and recent observations.

However, the numerical results obtained by Brun & Zahn pose another

important problem. In all simulations, even for the most centrally con-

densed initial field configurations, the tachopause eventually reaches the

outer boundary and, as field lines connect with the convective region, the

system switches to the usual Ferraro state of isorotation. Using a rough
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scaling argument to compensate for the large diffusivities used in the simu-

lations, Brun & Zahn estimate that this state is likely to be achieved before

the present solar age regardless of the initial conditions. This striking result

is difficult to reconcile with helioseismic observations; if confirmed, it could

shed serious doubts on the relevance of the current slow tachocline model

to the solar radiative zone. However, I discuss in §7.2.5.3 how a better

understanding of the outer boundary conditions to be applied to the slow

tachocline model may rescue the situation.

7.2.5 Discussion and prospects for slow tachocline models

In recent years, slow tachocline models have come under increased scrutiny

and criticism. By design, they ignore phenomena occurring on rapid time-

scales, concentrating instead on the secular dynamical interaction between

slow meridional flows and the internal field. As such, they neglect three

important effects that are likely to have a significant impact on the fragile

balance described above: the potential axisymmetric and non-axisymmetric

instabilities of the calculated equilibria, the combined effects of all possi-

ble rapid-timescale angular-momentum transporters known to exist in the

tachocline, and the effect of an overlying dynamo field. In addition, the

typical boundary conditions used to model the interface with the convective

zone are highly idealized and may distort our view of the tachocline. I shall

now discuss briefly the consequences of these effects on our understanding

of the tachocline dynamics.

7.2.5.1 Stability of the slow tachocline models

Slow tachocline models may be subject to a wide variety of instabilities,

including purely hydrodynamical shear and baroclinic instabilities, MHD

instabilities of the large-scale primordial field, magnetic buoyancy instabil-

ities, magneto-rotational instabilities and magneto-shear instabilities. De-

tailed investigations in the context of the slow tachocline model are only

just beginning.

Linear and weakly nonlinear stability analyses of an idealized purely hy-

drodynamical tachocline shear flow in the non-diffusive limit have been per-

formed by Watson (1981), Charbonneau, Dikpati & Gilman (1999), Dikpati

& Gilman (2001) and myself (Garaud 2001). The tachocline latitudinal

shear is found to be close to marginal stability. The observed radial shear is

stabilized by the very strong stratification (the typical Richardson number is

of the order of a thousand). However, as Schatzman, Zahn & Morel (2000)

point out, the standard Richardson criterion for stratified shear instabil-
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ity must be corrected to account for thermal diffusion in the tachocline; in

that case, the radial shear is again close to marginal stability. In addition,

Petrovay (2003) suggests that independent shellular fluid motions create

much stronger small-scale radial shear layers, which could lead to secondary

shear instabilities in the tachocline. This interesting proposal has not been

confirmed numerically yet, but would correspond to a scenario close to that

proposed by Spiegel & Zahn (1992), and have important consequences for

all slow and fast tachocline models alike.

In any case, the addition of magnetic fields changes the nature and stabil-

ity of non-axisymmetric perturbations; reviews of the stability of tachocline

flows in the presence of strong fields and of the effects of magnetic buoyancy

are given in Chapters 10 and 11. The magneto-rotational instability (see

Chapter 12 by Ogilvie) could operate in regions of the Sun where angular

velocity decreases outward from the rotation axis (as it does in the polar re-

gions). Balbus & Hawley (1994) showed that the strong local stratification

of the tachocline limits displacements to horizontal surfaces, as expected;

this could provide a source of latitudinal momentum mixing in the polar

regions.

Even more problematic for slow tachocline models are the well-known

non-axisymmetric field instabilities of a mostly dipolar field in stellar interi-

ors. Early works by Wright (1973), Markey & Tayler (1973, 1974) and Pitts

& Tayler (1985) already suggested that a purely dipolar structure deep in

the interior (as assumed in the above slow tachocline models) was subject

to adiabatic perturbations near its neutral points (any confined field struc-

ture necessarily has such points). These are known to be stabilized by the

presence of toroidal fields, but the current slow tachocline field structures

are indeed found to be unstable (Brun & Zahn 2006). A new method for

finding possible stable field structures in stellar interiors was developed by

Braithwaite & Spruit (2004). It would be interesting to see how the slow

tachocline models may be modified by the additional constraint that the

underlying primordial field should be in a stable configuration.

Self-consistent studies of the model and of its stability have tentatively

been performed. The Newton-Raphson relaxation algorithm I have used

to calculate steady-state solutions of the slow tachocline equations can-

not find unstable equilibria. Therefore the solutions found for the range

of diffusion parameters studied are known to be stable to all axisymmetric

perturbations. However, it provides no information on the evolution of non-

axisymmetric perturbations. The numerical algorithm used by Brun & Zahn

(2006), on the other hand, is ideally suited for the study of 3D instabilities of

all kinds. They observe the growth of non-axisymmetric instabilities associ-
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ated with the primordial dipolar field, but do not detect any other intrinsic

instabilities in the tachocline region. This result is interesting in the light

of the local and global analyses mentioned above, but could be consistent

with instabilities that only develop at high Reynolds and magnetic Reynolds

numbers.

In conclusion, there are clear signs that the slow tachocline model might

be unstable to a variety of non-axisymmetric instabilities. These could play

an important role in redistributing chemical species, angular momentum

and thermal energy within the tachocline, and must therefore be analyzed.

Various clues to the relative lack of mixing below the tachocline also suggest

that any derived model should be constructed in such a way as to maximize

stability below the tachocline; this constrains the geometry of the assumed

primordial field.

7.2.5.2 Gravity waves as angular momentum transporters

The tachocline is known to host a wide spectrum of gravity waves, excited

by overshooting convective plumes pounding on the stably stratified interior.

These waves transport and deposit angular momentum further down in the

radiative zone; the differential damping between prograde and retrograde

waves is known to accentuate shearing flows and can be likened to some

kind of anti-diffusion mechanism (McIntyre 2003, and Chapter 8; Kumar,

Talon & Zahn 1999; Kim & MacGregor 2001, 2003; Talon & Charbonnel

2005). Quantitative estimates for the amplitude of the gravity waves thus

generated, as well as their damping rate as a result of nonlinear interac-

tions (mode-mode interaction or critical layer interaction) are difficult to

obtain, although numerical simulations provide a new promising route for

resolving this problem (Rogers & Glatzmaier 2006a). To complicate mat-

ters, dynamical interactions between the gravity waves and magnetic fields

in the tachocline transfer energy into a wider spectrum of Alfvén waves,

with correspondingly different propagation and damping mechanisms (Kim

& MacGregor 2003). The global action of gravity and Alfvén waves on the

background fluid generates large-scale dynamical structures that can have

a radial extent much larger than the overshoot layer. Moreover, although

the total flux of angular momentum transported is small, it is nonetheless

important on the secular timescales considered for the slow tachocline mod-

els. Thus in this case again, significant modifications to the existing slow

tachocline models could be required.



24 P. Garaud

7.2.5.3 Boundary conditions

One of the most difficult problems faced by all tachocline models (including

the fast tachocline, see §7.3) is the choice of boundary conditions used to

describe the convective-radiative interface. The problem is exacerbated in

the case of the slow tachocline, where meridional flows play an important role

in redistributing angular momentum, preserving the thermal-wind balance

and confining the internal field. Indeed, artificial flows generated on the

boundary of the computational domain are an inevitable consequence of

any attempt to impose stresses locally. Two situations may arise.

If the boundary is assumed to be impermeable, Ekman and Ekman-

Hartmann layers form (the layer structure is modified for stress-free bound-

aries, but does not disappear); numerical models must monitor the ampli-

tude of these boundary layer flows and ensure that they are only a small

perturbation to the baroclinic flows of interest. This constraint places up-

per limits on the values of the Prandtl (ν/κ) and inverse Roberts (η/κ)

numbers. However, even in a limit where Ekman flows can be neglected,

the presence of an impermeable outer boundary constrains the geometrical

structure of the meridional flow cells by limiting their upper radial extent,

and by mass conservation, their latitudinal geometry. This numerical arte-

fact is inevitable in the case of impermeable boundaries, and will affect the

latitudinal force balance within the tachocline.

Another option is to relax the condition of impermeability. In that case,

continuity of radial stresses replaces the condition of impermeability, but the

problem is then merely transposed into a Reynolds stress modelling prob-

lem for turbulent convection. In addition, associated with the thought that

it is possible to approximate the radiative-convective interface with simple

‘boundary conditions’ is the underlying assumption that the structure and

dynamics of the convective region are independent of the tachocline dynam-

ics. However, the recent works of Miesch (2003) and Rempel (2005) refute

this hypothesis. The differential rotation near the convective-radiative in-

terface is related to the differential rotation in the convective region, which

results from the angular momentum balance between Reynolds stresses and

large-scale meridional flows; these flows burrow into the tachocline and ad-

vect entropy to create a latitudinal entropy gradient which strongly con-

strains differential rotation through the thermal-wind balance. Thus the

radiative-convective system is inseparably coupled. It is to be hoped that

in the next few years, models will pay particular attention to modelling the

convective zone and the tachocline simultaneously.

The role of the convection zone as a boundary condition on the magnetic
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field is even more ambiguous. Even while leaving aside the possible presence

of a dynamo field in the outer layers of the tachocline (see §7.3 for a review

of the effect of the dynamo field on the tachocline dynamics), currently used

boundary conditions could be warping our conclusions on the slow tachocline

dynamics. All models thus far assume the convective zone to be nearly

perfectly insulating (η → ∞) and match a potential field to the internal field.

By assumption, field lines are smoothly anchored to the convective zone (i.e.

to the outer boundary). However, we know that this is very far from the

true situation: overshooting plumes interact with the magnetic field lines,

stirring and shaking them, advecting them into large horizontal excursions,

promoting reconnection as well as regeneration (the dynamo effect). In

fact, it is more likely that the combined effect of convection is to confine

the interior field (at least, its long-term averaged component) somewhat

below the overshoot region. Indeed, flux expulsion and magnetic pumping

by the convective plumes (Tobias et al. 2001; Dorch & Nordlund 2001) is

sometimes thought of as being the principal reason for the lack of overlap

between the internal primordial field and the dynamo field (as discussed

by Boruta 1996). By contrast, the underlying assumption that field lines

can be smoothly anchored into the convective zone leads to the ubiquitous

emergence of a Ferraro state of isorotation in most numerical simulations of

the slow tachocline. It will be interesting to know whether this conclusion

holds should a more realistic model of the effect of the overshooting plumes

on the primordial field be used.

In any case, the presence of a dynamo field may entirely change our view

of the solar tachocline; the next section reviews recent models that explicitly

involve the solar dynamo in the tachocline dynamics.

7.3 Dynamo field confinement: the fast tachocline

The solar dynamo field is observed through the regular emergence of strong

flux concentrations at the solar surface, which appear in the form of ac-

tive regions composed of dark sunspots and bright faculae. Chapter 13 re-

views current observational knowledge of the solar dynamo and the potential

role of the tachocline in its generation. Some important models favour the

radiative-convective interface as the optimal location for the solar dynamo

(Parker 1993): field stretching by the strong shear in the azimuthal flow

can generate large-scale toroidal fields, accumulating in the tachocline un-

til buoyancy instabilities trigger their rise into the convective region. From

there, part of the flux emerges coherently through the surface, while the rest

is promptly distorted into small-scale fields in all directions. Non-zero mean
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flow helicity results in non-zero mean poloidal flux generation, which is then

pumped back down into the tachocline by convective overshooting. Many

alternative models of the solar dynamo exist (see the review by Ossendrijver

2003), in some of which dynamo action is independent of the tachocline shear

and relies only on turbulent and large-scale motions within the convective

zone (Glatzmaier 1984; Brun, Miesch & Toomre 2004; Brandenburg 2005).

In reality, however, magnetic flux is necessarily pumped into the tachocline

by overshooting convective plumes (Tobias et al. 2001).

The inevitable presence of strong dynamo-generated magnetic fields in the

tachocline naturally raises many questions. What are the consequences for

the tachocline dynamics? How far down into the tachocline does the dynamo

field penetrate? Could the dynamo field be entirely, or partly, responsible

for the observed rotation profile below the convective zone?

Contrary to the primordial field confinement models described above, the

dynamics arising from the interaction of the tachocline shear with the dy-

namo field occurs on much shorter timescales. The intrinsic field variability

is of the order of 11 years, with a much larger amplitude than the assumed

primordial field (and a correspondingly much shorter Alfvén time). Shear

and magneto-shear instabilities operate on timescales typical of the rotation

rate and Alfvén timescales (Chapter 10). Finally, where overshoot is im-

plied, the flow turnover timescale is of the order of a month. For obvious

reasons, this new view of the tachocline was loosely called the fast tachocline

(Gilman 2000).

7.3.1 Fast tachocline diffusion models

How deep is the fast tachocline? A quick answer associates the thickness of

the fast tachocline with the dynamo field penetration depth. The dynamo

field is pumped into the overshoot layer by downward penetrating plumes

(Tobias et al. 2001) and diffuses downward into the radiative zone. However,

the regular field polarity reversal plays an important role in limiting the

field diffusion, since each cycle nearly cancels out the previous one (Mestel

& Weiss 1987); as a result the field is strongly suppressed within a skin-

depth δSD ∼ (τD/τη)
1/2rcz (assuming the dynamo is exactly periodic with

a period τD and where τη = r2
cz/η is the Ohmic diffusion timescale). For

a laminar tachocline with microscopic diffusivity η ∼ 400cm2s−1 the skin

depth is less than a few kilometres. This figure can be increased to a few

megametres should one consider eddy diffusion in a turbulent tachocline with

ηt ∼ 1010cm2s−1 (Forgács-Dajka & Petrovay 2001). Whether turbulence in

the tachocline does indeed act as an ‘eddy diffusivity’ should be kept in mind
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throughout the following section, and is discussed in more detail in §7.3.2
and in Chapter 9.

A promising way of confining the tachocline was first suggested and later

developed by Forgács-Dajka & Petrovay (2001, 2002; Forgács-Dajka 2004).

They consider the structure of a turbulent tachocline pervaded by an oscilla-

tory dynamo field. The field diffuses downward into the radiative zone and

interacts with the tachocline shear. By construction, within the dynamo

skin-depth the magnetic diffusion timescale is of the order of the dynamo

period. The Alfvén crossing time, on the other hand, depends on the im-

posed field amplitude and can be assumed to be much smaller than the

dynamo period for fields of the order of several kilogauss or larger. Ferraro

isorotation along the poloidal field lines is therefore rapidly achieved.

In their first paper on the dynamics of the fast tachocline, Forgács-Dajka

& Petrovay assume a given poloidal field structure within the dynamo skin-

depth and impose a sheared angular velocity profile at the interface with the

convective zone (see equation 7.4). These are equivalent to the assumption

that all meridional motions are negligible within the tachocline; indeed,

in that case the equations governing the poloidal and toroidal components

of the field decouple. The poloidal component satisfies a simple diffusion

equation with periodic forcing, which has a spatially damped oscillatory

solution. Here for simplicity the poloidal field Bp is assumed to have the

functional form

Bp(r, θ, t) = Bp(r, θ) cos(ωDt) , (7.37)

where 2π/ωD = τD = 22 yr. Under those conditions, the azimuthal compo-

nent of the momentum and induction equations can be integrated to obtain

the profiles of angular velocity and toroidal field as functions of time.

An approximate analytical solution to the governing equations can be

derived in the limit of large poloidal field strength (i.e. in the limit where

there is a clear separation between the Alfvén time and the dynamo period),

and thin tachocline. Let vA be the typical Alfvén velocity of the imposed

poloidal field; then by assumption ǫ = rωD/vA ≪ 1. Following Forgács-

Dajka & Petrovay (2001), the equations are for simplicity written in a local

Cartesian system (with θ ↔ x and r ↔ z). In units of the Alfvén timescale

and the radius of the convective zone the non-dimensional governing equa-

tions are

∂tuφ = cos(2πǫt)∂xBφ +
τA

τν
∇2uφ , (7.38)

∂tBφ = cos(2πǫt)∂xuφ +
τA

τη
∇2Bφ . (7.39)



28 P. Garaud

In the limit ǫ ≪ 1 it is possible to perform a two-timescale analysis and seek

solutions on the slow timescale τ = ǫt (which evolves on the timescale of the

cyclic dynamo field). The slow solutions satisfy the reduced equation

cos(2πτ)∂xBφ = −τA

τν
∇2uφ , (7.40)

cos(2πτ)∂xuφ = −τA

τν
∇2Bφ , (7.41)

and, should one assume that ∂z ≫ ∂x, can be found analytically; they display

an oscillatory temporal structure with the timescale of the imposed field τD,

and an oscillatory spatially damped structure below the convective-radiative

interface on a typical lengthscale δD, where

δD

r
=

(

4τ2
A

τντη cos2(2πτ)L2

)1/4

(7.42)

and L is the latitudinal wavenumber of the imposed poloidal field. Not

surprisingly, this estimate is equivalent to the depth of a Hartmann layer

for an imposed field with field lines parallel to the boundary and ampli-

tude B0 cos(2πt/τD). This fast tachocline model therefore predicts the same

tachocline thickness scalings as a function of the imposed field as had been

obtained by Rüdiger & Kitchatinov (1997).† By extension, there is a natural

generalization of the result should the imposed dynamo field have a strong

radial component.

For the model assumptions to be consistent, it is important to verify that

δSD ≫ δD. This places lower limits on the imposed field strength for a given

turbulent diffusivity. In addition, if the field is much weaker than about

0.1 T, the simple two-timescale analysis fails and interactions between the

dynamo forcing and the Alfvén waves could lead to the excitation of modes

with new frequencies. This has not been investigated yet.

Numerical solutions have been computed by Forgács-Dajka & Petrovay

(2001) for a dipolar poloidal field of varying amplitude. They show a clear

confinement of the imposed latitudinal shear for large enough field strength

(typically, |Bp| ∼ 0.2T for ηt ∼ 106m2s−1). The latitudinal variation of the

field amplitude leads to a significant latitudinal variation of the tachocline

depth, which is consistent with the above estimates. Observations, however,

reveal only a weak latitudinal variation of the tachocline position and width

(Charbonneau et al. 1999) which could in principle set strong constraints

on the poloidal field geometry diffusing from the overlying dynamo. As

† Forgács-Dajka & Petrovay (2001) derive other scaling laws between the confining field strength
and the tachocline thickness in the limit where the dynamo frequency is higher (which could
be applicable for stars other than the Sun).
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expected also from the analysis, there is a significant temporal variability of

the depth and aspect of the tachocline on an 11-yr period (the differential

rotation is independent of the field polarity). Both results confirm and

quantify common expectations that there must exist some variability in

the tachocline angular velocity profile on the dynamo timescale. However,

precise helioseismic observations by MDI/SOI on board SoHO have only

been available for slightly less than one solar cycle, and little to no tachocline

variability on the dynamo timescale has yet been detected (Corbard et al.

2001). Definite answers on this topic are impatiently awaited: so far, only

1.3yr torsional oscillations have been found (Howe et al. 2000).

In following works, Forgács-Dajka & Petrovay (2002) and Forgács-Dajka

(2004) study various improvements to the model, including the effects of

a large-scale (imposed) meridional flow, of a radially varying magnetic dif-

fusivity and varying magnetic Prandtl number. The background state is

derived from the solar model of Guenther et al. (1992). They also calcu-

late the poloidal component of the dynamo field self-consistently from the

poloidal component of the advection-diffusion equation: in these new sim-

ulations the poloidal field is advected by the imposed meridional flows in

addition to diffusion. Finally, they impose a realistic description of latitu-

dinal and temporal variation of the migrating dynamo field as a boundary

condition, which is derived from the observations of Stenflo (1994). The

modelled meridional flows are poleward near the solar surface with a ve-

locity of about 10-20m s−1, in accordance with direct observations of the

motion of small magnetic features (e.g. Komm, Howard & Harvey 1993) or

inferences from local helioseismology (Giles et al. 1997). Two geometries

are studied: a single-cell structure with an equatorward return flow in the

tachocline, and a double-cell structure with a poleward return flow in the

tachocline and a null node at about r = 0.85R⊙. Note that numerical sim-

ulations of turbulent convection do not appear to favour the view of stable

long-lived circulation cells deep in the convective zone; meridional flows are

instead very intermittent, with strongly variable geometries (Brun & Toomre

2002).

The results, illustrated in Figure 7.4, can be summarized as follows. The

role of the meridional flows as transporters of angular momentum naturally

aids the tachocline confinement process in the case of the modelled two-

cell circulation pattern (by transporting angular momentum poleward) and

hinders it in the case of the single-cell circulation pattern. The numerical

simulations confirm these expectations, and suggest that flows as slow as

a few cm s−1 in the tachocline have a significant impact on the observed

differential rotation profile.
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Fig. 7.4. Numerical solutions for the fast tachocline model of Forgács-Dajka &
Petrovay. This simulation includes a realistic representation of the poloidal field
extracted from the butterfly diagram, but neglects meridional motions. Upper
panels: Resulting differential rotation spreading into the radiative interior in two
cases. In the left panel η = ν = 106m2/s throughout the domain (in which case
Pm = ν/η = 1). In the right panel Pm is varied with depth between 0.024 and
0.1. In this case the variations of η and ν are: log10 η = 3.5− 6 and log10 ν = 2− 5.
Bottom panels: Corresponding latitudinal variation (left) and temporal variation
(right) of the tachocline thickness.

A strong decrease in turbulent magnetic diffusivity with depth beneath

the tachocline is expected from the steep increase in the background strat-

ification. Note that the decrease in turbulent mixing below the tachocline

is clearly constrained by independent observations of the light element de-

pletion fraction (see Chapter 3). In that case again, the imposed convec-

tion zone shear is still easily quenched by the fast tachocline fields. How-

ever, across the turbulent/laminar transition the dynamo field penetration
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is abruptly suppressed and is therefore not able to reduce any deep-seated

residual shear related to solar spin-down; this is an intrinsic problem of all

fast tachocline models. One possible solution stems from the fact that the

solar dynamo cycle is not exactly periodic. Mestel & Weiss (1987) sug-

gested that the (apparently) random component of the dynamo field could

diffuse much deeper into the radiative zone than its periodic counterpart.

I investigated this possibility in detail (Garaud 1999), and found that an

internal field with an rms value of about 10−4B0 (where B0 is the amplitude

of the poloidal component of the dynamo field) could build up deeper in the

interior.

7.3.2 Discussions and prospect for the dynamo confinement

model

In comparison with slow tachocline models, the idea proposed by Forgács-

Dajka & Petrovay has the advantage of being based on a robust balance

of forces, which holds even in the presence of instabilities (it does in fact

rely on the presence of instabilities), and can be tuned to compensate any

additional angular momentum transport from convective plumes, gravity

waves or meridional flows. The spatial variation of the tachocline depth

observed in the numerical simulations can be reconciled with observations for

specific poloidal field structures, and the strong temporal variation observed

could still be consistent with observations should the tachocline be in fact

a little bit shallower than current estimates (this statement is mostly based

on the resolution of helioseismic inversions).

One must nonetheless bear in mind the three assumptions inherent in

the model: the tachocline is turbulent, the turbulence leads to an eddy

diffusivity greater than 109cm2s−1 in the tachocline and, finally, the dynamo

generation mechanism does not rely on the detailed tachocline structure.

If we assume that the tachocline has a width ∼ 0.02R⊙, then turbulent

motions at the level required by the fast tachocline model cannot result from

overshooting plumes only. The stability of the tachocline to hydrodynamic

and magneto-hydrodynamic instabilities was discussed in §7.2.5.1 and is

reviewed in Chapters 10 and 11; magneto-shear instabilities offer a promising

route for the maintenance of turbulent motions. In fact, these instabilities

are so ubiquitous that the maintenance of large-scale fields in the tachocline

appears to be the more relevant problem. Nonetheless, the first of the three

governing assumptions is not much under dispute.

However, the role of turbulent motions in ‘diffusing’ large-scale fields is

a far more difficult issue. Although very commonly used in astrophysi-
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cal MHD models, the physical basis for turbulent diffusivity, as well as its

parametrization, is still ambiguous. The concept of turbulent diffusion is

typically derived from heuristic arguments on the vectorial form of the av-

eraged electromotive force due to small-scale fields and flows (see Chapter

13):

(u× b)i = αijBj − βijk∂jBk . . . (7.43)

This expression naturally emphasizes the tensorial nature of the turbulent

diffusivity β; assuming that β ∼ ηt is a scalar is a largely unjustified (but

commonly used) simplification.

The turbulent diffusivity is known to be quenched when the magnetic

fields start having a strong effect on the turbulent flow (near energy equipar-

tition); at the largest scales in the tachocline, this effect is relevant for fields

upward of a few thousand gauss, which already has implications for fast

tachocline models. But the situation may in fact be much worse. In the

tachocline, the magnetic Prandtl number is of the order of ν/η ∼ 10−2;

if a small-scale dynamo indeed operates at these values of the magnetic

Prandtl number (Boldyrev & Cattaneo 2004) magnetic energy accumulates

somewhere on the turbulent inertial range and reaches equipartition well

before the larger scale field does. This process could quench the turbulent

magnetic diffusivity for much lower field strengths (Cattaneo & Vainshtein

1991). Catastrophic η−quenching is shown to occur in 2D flows through

numerical simulations (Cattaneo 1994) and quasi-linear closure (Gruzinov

& Diamond 1995). The situation is still unclear in the case of 3D flows. The

η−quenching process could pose serious threats to the fast tachocline mod-

els: using the scalings proposed by Cattaneo & Vainshtein (1991), large-scale

fields as low as a few gauss would suffice to quench the turbulent diffusiv-

ity of the fast tachocline by several orders of magnitude. This creates an

intrinsic contradiction within the model.

In any case, the current fast tachocline model neglects all effects of the

turbulent motions except for their role in enhancing the magnetic diffusiv-

ity. However, other macroscopic effects are known to occur and are likely to

play an important role in the tachocline dynamics. Turbulent flux expulsion

has been observed in a wide variety of systems where turbulent and laminar

regions coexist (Tao, Proctor & Weiss 1998; Tobias et al. 2001). Field gener-

ation by small-scale turbulent motions, the α-effect, has also been predicted

by turbulence closure models (Krause & Rädler 1980) and observed in nu-

merical simulations (e.g. Brandenburg et al. 1990). Finally, non-isotropic

Reynolds stresses and turbulent Maxwell stresses may be as important as

the large-scale Lorentz forces in reducing the imposed shear. In other words,
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a consistent model for the fast tachocline will require a consistent description

of the effects of turbulent motions on the large-scale flows and fields.

Building on this idea, another natural step in the study of fast tachocline

confinement models is to calculate self-consistently the temporal evolution

of the field and the flow, using for instance a mean-field dynamo model.

Indeed, current mean-field models calculate the field evolution assuming a

given angular velocity profile in the tachocline, whereas current tachocline

confinement models study the effect of an assumed dynamo field on the

shear. In an integrated model, can dynamo action be sustained if the radial

shear is quenched by the dynamo itself? This could indeed happen should

dynamo action rely more on the latitudinal shear than the radial shear, or if

the solar dynamo is more of an α2 dynamo than an αΩ-dynamo. Reproduc-

ing simultaneously the tachocline profile and the solar cycle is an interesting

challenge which could provide much insight into the correct parametrization

of the α− and β-effects.

7.4 Discussion and prospects

We have now reached a stage in the process of studying the tachocline dy-

namics where there exist a large enough variety of studies, models and ob-

servations to support critical discussions. What are the next steps in the

study of the tachocline magnetohydrodynamics? The few points that I be-

lieve will have a significant impact on our understanding of the tachocline

in the next few years are the following.

Coexisting ‘fast’ and ‘slow’ tachoclines? In the light of the discussions out-

lined in §§7.2 and 7.3, is it still possible to consider the idea of coexisting

‘fast’ and ‘slow’ tachoclines? The only way to do this would be to construct

a complex layered structure starting from the bottom of the convective zone

with a turbulent, magnetic overshoot region, which gradually quietens down-

ward to give way to a more laminar region where the large-scale (dynamo)

fields are pumped, stored and stretched. Slightly further down, the low mag-

netic diffusivity forbids the oscillating field from penetrating very far down

and thus appear successively the well-ventilated, magnetic free region of the

Gough & McIntyre tachocline, the magnetic diffusion layer and finally the

magnetically constrained interior. And most of the above must be packed,

according to observations, within a total width spanning no more than 2-

4% of the solar radius. This scenario can only work if fluid motions in the

tachocline are to a very large degree two-dimensional. However, there are

doubts that this may be the case at all times despite the strong stratification.
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Numerical simulations suggest there are occasional very strong overshoot-

ing events with large radial extent. Can the slow tachocline balance survive

these mixing events? More precisely if, as suspected, the Gough & McIntyre

model indeed harbours multiple equilibria, mixing events extending between

the interior and the overshoot region could dredge out interior field lines and

drag them into the convective region, triggering the transition from a con-

fined interior field to the open field configuration. Should this happen, there

is no simple mechanism capable of returning the system to the confined field

configuration of the Gough & McIntyre model within the typical timescale

of occurrence of the mixing events. Furthermore, magnetic buoyancy and

other instabilities (see the discussions in Chapters 10, 11 and 12) are intrin-

sically three-dimensional. In particular, the ‘tipping’ instabilities discussed

by Spruit (1999, 2002; Braithwaite & Spruit 2004) may change the picture

drastically, as explained by McIntyre in Chapter 8.

The role of the interaction between overshooting plumes and an internal

primordial field. As discussed in §9.5.2.3, this interaction is likely to play

a dominant role in the tachocline dynamics. Tamara Rogers and I have

begun studying this phenomenon to determine whether this may indeed be

a sufficient, self-consistent way of confining an internal field while bypassing

the need for baroclinic meridional flows. We hope to show for instance that

the ubiquitous emergence of Ferraro rotation in laminar models is in fact

an artefact of the simplified interface conditions; in fact, we believe that the

interaction between overshoot and an internal field may form the basis for

a minimalist model of the tachocline and the radiative interior.

The role of gravity waves. Talon & Charbonnel (2005) have recently claimed

that the continuous adjustment of the angular velocity of the radiative core

to that of the convection zone could in fact be entirely attributed to gravity

wave mixing. This would supress the need for an internal primordial field.

An important task for the near future is to test the Talon & Charbonnel

model for angular momentum transport against direct numerical simulations

of gravity waves in the solar interior (Rogers & Glatzmaier 2006b), and to

investigate ways in which observations (combining asteroseismology, surface

light-element abundances and magnetic activity measurements) may help

distinguish between the magnetic and non-magnetic scenarios.

Consequences of recent solar abundance revisions for all tachocline models.

The recent announcements of revised solar abundances of carbon, nitro-

gen and oxygen could entirely re-shape our view of the solar interior (see
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Chapter 3 and references therein). Revised solar models with similar total

mass, luminosity and age predict a significantly shallower convection zone

than previous estimates, which are in serious disagreement with helioseis-

mic inversions (Christensen-Dalsgaard et al. 1991). What are the conse-

quences of these findings for tachocline models? If indeed the solution is

related to opacity calculations (see Chapter 3), which is quite plausible,

then the tachocline models will, on the whole, be unchanged. However, if

the position of the critical radius for convective stability is indeed raised to

r = 0.726R⊙, then most existing tachocline models are affected. To begin

with, the standard solar model will have to be revised to explain the serious

sound speed discrepancy between models and observations. Perhaps the ad-

dition of an extended nearly-adiabatic region matching smoothly on to the

strongly stratified interior near r = 0.713r⊙ will suffice, but can overshoot

models explain the persistence of such a large region throughout the solar

lifetime as well as the heat fluxes required to operate a smooth matching?†
If so, will this be more likely to accomodate both fast and slow tachoclines?

Is there indeed a relation between the tentatively observed variation with

latitude of the tachocline depth (with a thicker tachocline near the poles)

and that of the overshoot region ( Brummell et al. 2002)?

The early evolution of the Sun and its relation to the internal primordial

field. Given its likely dominant role in the interior dynamics, it is perhaps

disappointing that we know so little about the interior field. How much

of the collapsing cloud’s magnetic flux survives the fully convective phase

of stellar evolution? What happens to this flux as the convective zone fi-

nally retreats? The Mount Wilson observations of the magnetic activity

of very young solar type stars now permit a more comprehensive study of

the correlation between dynamo action, rotation and internal structure: can

we construct a model of the early solar magnetism that would include this

new data and enable us to predict the current internal field strength and

geometry?

Self-consistent mean-field hydrodynamics and dynamo models. Current mean-

field dynamo models assume a given differential rotation profile, while cur-

rent fast tachocline models assume a given magnetic field profile. Rempel

(2005) showed that it is now possible to use mean-field hydrodynamics to

model simultaneously the tachocline and the convection zone; the extension

† A large discontinuity in N2 at the base of the convection zone is precluded by helioseismology
(Basu 1997).
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of this work to include magnetic stresses as well as mean-field dynamo pro-

cesses might provide a model of rotation and dynamo action in the Sun.

This would be a significant advance in the field, since the self-consistent

determination of rotation (which can be measured by helioseismology) and

meridional flows (which appear to constrain the equatorward sunspot drift

throughout the cycle in many types of dynamos) may help distinguish be-

tween various competing dynamo models. Comparison with the rotation

profile and magnetic activities of other stars would also help refine our un-

derstanding of this exceedingly complex system. In fact, such an approach

may be the only route towards a better understanding of interior dynamics:

it is becoming increasingly clear that we have very little hope of reaching the

asymptotic values of the Reynolds and Rayleigh numbers in 3D simulations

of the whole Sun that would permit a trustworthy study of the convection

zone and the tachocline. However, numerical simulations in a local box are

on the other hand much closer to solar values, and may help constrain the

parametrizations to be used in mean-field models.
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Corbard, T., Jiménez-Reyes, S.J., Tomczyk, S., Dikpati, M. & Gilman, P.A. (2001).

In Helio- and Astero-Seismology at the Dawn of the Millennium, ed. A. Wilson
(ESA Publications), p. 265.

Cowling, T.G. (1945). Mon. Not. Roy. Astron. Soc. 105, 166.
Cowling, T.G. (1957). Magnetohydrodynamics (Interscience, New York).
Dikpati, M. & Gilman, P.A. (2001). Astrophys. J. 551, 536.
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